KR101853091B1 - 기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램 - Google Patents

기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램 Download PDF

Info

Publication number
KR101853091B1
KR101853091B1 KR1020170062551A KR20170062551A KR101853091B1 KR 101853091 B1 KR101853091 B1 KR 101853091B1 KR 1020170062551 A KR1020170062551 A KR 1020170062551A KR 20170062551 A KR20170062551 A KR 20170062551A KR 101853091 B1 KR101853091 B1 KR 101853091B1
Authority
KR
South Korea
Prior art keywords
problem
user
view
method
service server
Prior art date
Application number
KR1020170062551A
Other languages
English (en)
Inventor
차영민
허재위
장영준
Original Assignee
(주)뤼이드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)뤼이드 filed Critical (주)뤼이드
Priority to KR1020170062551A priority Critical patent/KR101853091B1/ko
Application granted granted Critical
Publication of KR101853091B1 publication Critical patent/KR101853091B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers
    • G09B7/06Electrically-operated teaching apparatus or devices working with questions and answers of the multiple-choice answer-type, i.e. where a given question is provided with a series of answers and a choice has to be made from the answers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/06Electrically-operated educational appliances with both visual and audible presentation of the material to be studied
    • G09B5/065Combinations of audio and video presentations, e.g. videotapes, videodiscs, television systems

Abstract

본 발명은 사용자 맞춤형 학습 컨텐츠를 제공하는 방법에 대한 것으로, 적어도 하나 이상의 보기를 포함하는 객관식 문제를 적어도 하나 이상 포함하는 문제 데이터베이스를 구성하고, 상기 문제에 대한 사용자의 보기 선택 데이터를 수집하는 a 단계; 상기 보기 선택 데이터를 이용하여 상기 사용자에 대한 모델링 벡터를 계산하고, 상기 문제에 대한 모델링 벡터를 상기 보기별로 각각 생성하는 b 단계; 및 상기 사용자의 모델링 벡터 및 상기 문제의 보기 모델링 벡터를 이용하여 상기 사용자의 보기 선택 확률을 계산하는 c 단계를 포함하는 것을 특징으로 한다.

Description

기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램 {METHOD, APPARATUS AND COMPUTER PROGRAM FOR PROVIDING PERSONALIZED EDUCATIONAL CONTENTS THROUGH USER RESPONSE PREDICTION FRAMEWORK WITH MACHINE LEARNING}

발명은 데이터를 분석하고 맞춤형 컨텐츠를 제공하는 방법에 대한 것이다. 보다 구체적으로 본 발명은 수집된 문제 풀이 결과 데이터를 문제의 보기 파라미터를 적용하여 확장하는 학습 데이터 분석 방법에 대한 것이다.

지금까지 교육 컨텐츠는 일반적으로 패키지로 제공되어 왔다. 예를 들어 종이에 기록되는 문제집은 권당 최소 700문제가 수록되어 있으며, 온라인 또는 오프라인 강의 역시 1-2 시간 단위로 최소 한달간 공부할 양을 묶어서 한번에 판매된다.

그러나 교육을 받는 학생들 입장에서는 개별적으로 취약한 단원과 취약한 문제 유형이 모두 상이하기 때문에 패키지 형태보다는 개인 맞춤형 컨텐츠에 대한 니즈가 존재한다. 자신이 취약한 단원의 취약한 문제 유형만을 골라서 학습하는 것이 문제집의 7백 문제 전체를 푸는 것보다 훨씬 효율적이기 때문이다.

그러나 피교육자인 학생들 스스로 자신의 취약점을 파악하는 것은 매우 어렵다. 나아가 학원, 출판사 등 종래의 교육 업계에서도 주관적 경험과 직관에 의존하여 학생 및 문제들을 분석하기 때문에 개별 학생들에게 최적화된 문제를 제공하는 것을 쉽지 않다.

이와 같이 종래의 교육 환경에서는 피교육자가 가장 효율적으로 학습 결과를 낼 수 있는 개인 맞춤형 컨텐츠를 제공하는 것이 쉽지 않으며, 학생들은 패키지 형태의 교육 컨텐츠에 대해 성취감과 흥미를 금방 잃게 되는 문제가 발생한다.

대한민국 공개특허공보 제10-2016-0117097호 (2016.10.10)

본 발명은 상기와 같은 문제를 해결하는 것을 목적으로 한다. 보다 구체적으로 본 발명은, 사용자 및/또는 문제 분석을 위해 필요한 데이터를 추출하고, 수집된 데이터가 포함하고 있는 파라미터를 효율적으로 활용할 수 있는 데이터 분석 프레임워크를 제공하는 것을 목적으로 한다.

본 발명의 실시예를 따르는 사용자 맞춤형 학습 컨텐츠를 제공하는 방법은, 적어도 하나 이상의 보기를 포함하는 객관식 문제를 적어도 하나 이상 포함하는 문제 데이터베이스를 구성하고, 상기 문제에 대한 사용자의 보기 선택 데이터를 수집하는 a 단계; 상기 보기 선택 데이터를 이용하여 상기 사용자에 대한 모델링 벡터를 계산하고, 상기 문제에 대한 모델링 벡터를 상기 보기별로 각각 생성하는 b 단계; 및 상기 사용자의 모델링 벡터 및 상기 문제의 보기 모델링 벡터를 이용하여 상기 사용자의 보기 선택 확률을 계산하는 c 단계를 포함하는 것을 특징으로 한다.

본 발명의 실시예를 따르면, 수집된 사용자 문제 풀이 결과 데이터에서 사용자가 선택한 보기 파라미터를 적용하여 문제 또는 사용자를 분석할 수 있어 동일한 결과 데이터를 가지고 사용자를 보다 정밀하게 분석할 수 있는 효과가 있다.

도 1은 본 발명의 실시예를 따르는 데이터분석 프레임워크의 동작 내용을 설명하기 위한 도면

본 발명은 이하에 기재되는 실시예들의 설명 내용에 한정되는 것은 아니며, 본 발명의 기술적 요지를 벗어나지 않는 범위 내에서 다양한 변형이 가해질 수 있음은 자명하다. 그리고 실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 널리 알려져 있고 본 발명의 기술적 요지와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다.

한편, 첨부된 도면에서 동일한 구성요소는 동일한 부호로 표현된다. 그리고 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시될 수도 있다. 이는 본 발명의 요지와 관련이 없는 불필요한 설명을 생략함으로써 본 발명의 요지를 명확히 설명하기 위함이다.

최근 IT 디바이스의 보급이 확대되면서, 사용자 분석을 위한 데이터 수집이 용이해지고 있다. 사용자 데이터를 충분히 수집할 수 있으면, 사용자의 분석이 보다 정밀해지고 해당 사용자에게 가장 적합한 형태의 컨텐츠를 제공할 수 있다.

이러한 흐름과 함께 특히 교육 업계에서 사용자 맞춤형 교육 컨텐츠 제공에 대한 니즈가 높다.

간단한 예를 들어, 어떤 사용자가 영어 과목에서 “동사의 시제”에 대한 이해도가 떨어지는 경우, “동사의 시제”에 대한 개념을 포함하고 있는 문제를 추천할 수 있으면 학습 효율은 보다 높아질 것이다. 그런데 이와 같이 사용자 맞춤형 교육 컨텐츠를 제공하기 위해서는 각각의 컨텐츠 및 사용자 개개인에 대한 정밀한 분석이 필요하다.

종래에는 컨텐츠와 사용자를 분석하기 위해 해당 과목의 개념들을 전문가에 의해 수작업으로 정의하고 해당 과목에 대한 각 문제가 어떤 개념을 포함하고 있는지 전문가가 개별적으로 판단하여 태깅하는 방식을 따랐다. 이후 각 사용자가 특정 개념에 대해 태깅된 문제들을 풀어본 결과 정보를 토대로 학습자의 실력을 분석하는 것이다.

그러나 이와 같은 방법은 태그 정보가 사람의 주관에 의존하는 문제점이 있었다. 사람의 주관이 개입되지 않고 수학적으로 생성된 태그 정보들이 수학적으로 문제에 부여되는 것이 아니기 때문에 결과 데이터에 대한 신뢰도가 높을 수 없는 문제가 있었다.

따라서 본 발명의 실시예를 따르는 데이터 분석 서버는 학습 데이터 분석에 머신 러닝 프레임워크를 적용하여 데이터 처리 과정의 사람의 개입을 배제할 수 있다.

이에 따르면, 사용자의 문제 풀이 결과 로그를 수집하고, 사용자와 문제로 구성된 다차원 공간을 구성하고, 사용자가 문제를 맞았는지 틀렸는지를 기준으로 상기 다차원 공간에 값을 부여하여, 각각의 사용자 및 문제에 대한 벡터를 계산하는 방식으로 사용자 및/또는 문제를 모델링할 수 있다.

나아가 상기 사용자 벡터 및/또는 문제 벡터를 이용하여 전체 사용자에서 특정 사용자의 위치, 특정 사용자와 유사한 그룹으로 클러스터링할 수 있는 다른 사용자, 다른 사용자와 해당 사용자의 유사도, 전체 문제에서 특정 문제의 위치, 상기 문제와 유사한 그룹으로 클러스터링할 수 있는 다른 문제, 다른 문제와 해당 문제의 유사도 등을 수학적으로 계산할 수 있다. 나아가 적어도 하나 이상의 속성을 기준으로 사용자 및 문제를 클러스터링할 수 있다.

이때 본 발명에서 상기 사용자 벡터, 상기 문제 벡터들이 어떤 속성, 또는 피처를 포함하고 있는지는 제한하여 해석될 수 없음을 유의해야 한다.

예를 들어 본 발명의 실시예를 따르면, 상기 사용자 벡터는 상기 사용자가 임의의 개념에 대해 이해하고 있는 정도, 즉 개념의 이해도를 포함할 수 있다. 나아가 상기 문제 벡터는 상기 문제가 어떤 개념들로 구성되어 있는지, 즉 개념 구성도를 포함할 수 있다.

그런데 머신러닝을 적용하여 학습 데이터를 분석하면, 몇가지 해결해야 할 문제가 존재한다.

첫번째는 문제 풀이 결과로 정오답 여부만을 벡터값 추출을 위한 파라미터로 사용하는 경우에는 임의의 신뢰도 이상의 분석 결과를 제공하기 위해서는 문제 풀이 결과 데이터를 대량으로 수집해야 한다는 것이다.

객관식 문제는 지문뿐만 아니라 보기 요소가 포함되어 구성된다. 그런데 분석의 소스로 정오답 여부만을 반영하는 종래의 방법에 따르면 두 학생이 같은 문제를 틀렸으나 다른 선택지를 골랐을 경우, 두 학생의 벡터값 계산에 해당 문제가 미치는 미치는 영향은 동일할 것이다.

다시 말하면, 어떤 학생이 어떤 문제를 “동명사”에 대한 보기를 선택하면서 틀린 경우와 “동사의 시제”에 대한 보기를 선택하면서 틀린 경우, 종래의 방식에 따르면 해당 문제의 벡터값 계산에 해당 학생의 풀이 결과 데이터가 미치는 영향은 동일하고, 해당 문제의 풀이 결과는 사용자 분석에 충분히 반영되지 못하고 실질적으로 희석될 것이다.

따라서 두 학생이 각각 동명사에 대한 이해도와 동사의 시제에 대한 이해도가 떨어진다는 것을 결과값을 얻기 위해서는 희석된 결과를 극복할 수 있을 정도의 보다 많은 양의 문제 풀이 결과 데이터의 수집이 요구될 것이다.

즉, 정오답 결과만을 데이터 분석을 위한 입력 값으로 사용하는 종래의 방식을 따르면, 문제와 사용자를 임의의 범위 이상의 신뢰도로 분석하기 위해서는 보다 많은 양의 문제 풀이 결과 데이터가 수집돼야 한다.

본 발명의 실시예를 따르면 상기와 같은 문제를 해결할 수 있다. 보다 구체적으로, 본 발명의 실시예를 따르면 문제 풀이 결과 데이터에서 사용자가 선택한 보기 파라미터를 적용하여 사용자 및/또는 문제를 분석할 수 있다. 이를 통해, 동일한 문제 풀이 결과 데이터를 해당 문제의 보기 개수만큼 확장할 수 있어, 동일한 결과 데이터를 가지고 보다 정밀하게 사용자와 문제를 분석할 수 있는 효과가 있다.

도 1은 본 발명의 실시예를 따라 문제 풀이 결과 데이터를 분석하는 방법을 설명하기 위한 순서도이다.

단계 110 및 단계 115는 본 발명의 실시예를 따르는 데이터 분석 시스템에서 학습 데이터를 수집하고 문제와 사용자를 모델링하는 단계이다.

본 발명의 실시예를 따르면 단계 110에서 전체 문제와 전체 사용자에 대해 풀이 결과 데이터가 수집될 수 있다.

보다 구체적으로, 데이터 분석 서버는 문제 데이터베이스를 구성하고, 상기 문제 데이터베이스에 속하는 전체 문제들에 대한 전체 사용자의 풀이 결과 데이터를 수집할 수 있다.

예를 들어 데이터 분석 서버는 시중에 나와 있는 각종 문제들에 대한 데이터베이스를 구축하고, 사용자가 해당 문제들을 푼 결과를 수집하는 방식으로 풀이 결과 데이터를 수집할 수 있다. 상기 문제 데이터베이스는 듣기 평가 문제를 포함하고, 텍스트, 이미지, 오디오, 및/또는 동영상 형태일 수 있다.

이때 데이터 분석 서버는 수집된 문제 풀이 결과 데이터를 사용자, 문제, 결과에 대한 리스트 형태로 구성할 수 있다. 예를 들어 Y (u, i)는 사용자 u가 문제 i를 푼 결과를 의미하며, 정답인 경우 1, 오답인 경우 0의 값이 부여될 수 있다.

나아가 본 발명의 실시예를 따르는 데이터 분석 서버는 사용자와 문제로 구성된 다차원 공간을 구성하고, 사용자가 문제를 맞았는지 틀렸는지를 기준으로 상기 다차원 공간에 값을 부여하여, 각각의 사용자 및 문제에 대한 벡터를 계산할 수 있다. (단계 120) 이때 상기 사용자 벡터와 문제 벡터가 포함하는 피처는 특정되지 않는 것으로 해석되어야 한다.

본 발명의 실시예를 따르는 데이터 분석 프레임워크에서 사용자와 문제를 모델링 벡터로 표현하는 이유는 궁극적으로는 특정 사용자가 특정 문제를 맞출지 틀릴지를 정밀하게 예측하기 위한 것이다.

그런데 사용자의 문제에 대한 정답률은 전술한 바와 같이 사용자의 정오답 결과를 수집하여 분석하는 방식으로 추정할 수 있지만, 보기의 선택 확률을 이용하여 추정할 수도 있다.

예를 들어 제 1 사용자가 특정 문제에 대한 보기 선택 확률이 (0.1, 0.2, 0, 0.7)인 경우, 사용자는 높은 확률로 보기 4번을 선택할 것이고, 해당 문제의 정답이 4번인 경우, 제 1 사용자는 그 문제를 맞을 확률이 높을 것으로 예상할 수 있다.

나아가 문제의 난이도는 전체 사용자들의 정오답 결과를 수집하여 분석하는 방식으로 추정할 수도 있지만, 보기의 선택확률을 이용하여 추정할 수도 있다.

예를 들어 4지 선다형으로 구성된 특정 문제에 대해 사용자들의 보기 선택 확률이 (0.5, 0.1, 0.3, 0.6)인 경우, 사용자들이 제 2 문제에서 보기 1번을 고를 확률과 보기 4번을 고를 확률이 비슷하므로, 제 2 문제는 난이도가 높은 것으로 분류할 수 있다.

이를 위해 도 1의 예에서 데이터 분석 서버는 전체 문제와 전체 사용자에 대한 풀이 결과 데이터를 사용자가 선택한 보기 요소를 포함하여 수집할 수 있다. (단계 130) 보다 구체적으로 데이터 분석 서버는 문제 데이터베이스를 구성하고, 상기 문제 데이터베이스에 속하는 전체 문제들에 대해 전체 사용자가 어떤 보기를 선택했는지에 대한 결과 데이터를 수집할 수 있다.

예를 들어 데이터 분석 서버는 시중에 나와 있는 각종 문제들에 대한 데이터베이스를 구축하고, 사용자가 해당 문제에서 어떤 보기를 선택했는지, 보기 선택 결과를 수집하는 방식으로 풀이 결과 로그를 수집할 수 있으며, 추가적으로 해당 문제에 대한 정오답 결과를 수집할 수도 있다. 이때 데이터분석 서버는 사용자, 문제, 해당 사용자가 해당 문제에서 선택한 보기에 대한 리스트를 구성할 수 있다.

이후 데이터분석 서버는 하나의 문제를 보기 단위로 확장하여 데이터 분석 처리를 수행할 수 있다. (단계 140)

예를 들어 문제 i가 사지선다형 문제인 경우, 문제 i는 (i, 1) (i, 2) (i, 3) (i, 4)의 변수 4개로 확장되며, 각 문제-보기의 각 사용자의 선택 여부가 값으로 부여될 수 있다.

예를 들어 E (i, j)는 문제 i의 보기 j를 의미하며, Y' (u, E)는 사용자 u가 문제 i의 보기 j를 선택했는지를 의미하며, 본 발명의 실시예를 따르면 선택한 경우 1, 선택하지 않은 경우 0의 값이 부여될 수 있다.

나아가 데이터 분석 서버는 사용자 및 문제-보기를 변수로 다차원 공간을 구성하고, 사용자가 해당 문제-보기를 선택했는지를 기준으로 상기 다차원 공간에 값을 부여하여, 각각의 사용자 및 문제-보기에 대한 벡터를 계산할 수 있다.

이후 데이터 분석 서버는 상기 사용자 벡터와 상기 문제-보기 벡터를 이용하여 임의의 사용자가 임의의 문제-보기를 선택할 확률, 즉 선택률을 추정할 수 있다. (단계 150)

이때 상기 사용자 벡터와 상기 문제-보기 벡터에 다양한 알고리즘을 적용하여 상기 선택률을 추정할 수 있으며, 본 발명을 해석함에 있어 선택률을 계산하기 위한 알고리즘은 제한되지 않는다.

예를 들어, 본 발명의 실시예를 따르면, 아래의 수학식 1과 같은 시그모이드 함수를 적용하면, 사용자의 문제-보기 선택률을 추정할 수 있다. (x는 문제-보기 벡터, 는 사용자 벡터)

[수학식 1]

hO(x) = 1 / ( 1 + e( -O * T * X) )

나아가 본 발명의 실시예를 따르는 데이터 분석 서버는 사용자의 보기 선택률을 이용하여 문제의 정답률을 추정할 수 있다. (단계 160)

그런데 예를 들어 4지 선다형으로 구성된 특정 문제에 대해 특정 사용자의 보기 선택 확률이 (0.5, 0.1, 0.3, 0.6)이며, 정답 보기는 1번인 경우, 상기 사용자가 해당 문제를 맞출 확률은 얼마인지가 문제된다. 즉, 해당 문제에 대한 복수의 보기 선택률을 이용하여 해당 문제의 정답률을 추정하는 방법을 고려할 수 있다.

본 발명의 실시예를 따라 보기 선택률을 문제 정답률로 환원하는 간단한 방식으로는 전체 보기의 선택률 대비 정답 보기의 선택률을 비교하는 방법을 고려할 수 있다. 이 경우 앞의 예에서 해당 사용자의 해당 문제에 대한 정답률은 0.5 / (0.5+0.1+0.3+0.6)로 계산할 것이다. 그러나 사용자는 문제를 풀이할 때는 보기 단위로 구분하여 해당 문제를 이해하는 것이 아니라, 전체 보기에 대한 구성 및 문제의 출제 의도를 포함하여 문제 단위로 이해하기 때문에 보기 선택률과 정답률은 단순 연결될 수 없다.

따라서 본 발명의 실시예를 따르면, 해당 문제의 전체 보기 선택률을 평균화하고 정답 보기의 평균화된 선택률을 전체 보기의 선택률에 적용하는 방식으로 보기 선택률로부터 해당 문제의 정답률을 추정할 수 있다.

앞의 예에서 보기의 선택 확률이 (0.5, 0.1, 0.3, 0.6)인 경우, 이를 전체 보기에 대해 평균화하면 각각의 보기 선택률은 (0.33, 0.07, 0.20, 0.41)로 스케일이 변경될 수 있다. 정답 보기가 1번인 경우, 보기 1의 평균화된 선택률은 0.33으로, 해당 사용자의 해당 문제에 대한 정답률은 33%로 추정될 수 있다.

나아가 본 발명의 실시예를 따르는 서비스 서버는 사용자의 문제-보기 선택 확률을 이용하여 문제의 정답률을 추정할 수 있으며, 이를 통해 특정 개념에 대한 사용자의 이해도를 추정할 수 있다.

나아가 데이터 분석 서버는 문제의 보기별 선택률을 기반으로 해당 사용자의 특정 문제에 대한 학습 효율을 계산할 수 있다. (단계 165)

본 발명의 실시예를 따르는 데이터 분석 서버는 전술한 바와 같이, 문제의 보기 단위의 모델링 벡터와 사용자 모델링 벡터를 이용하여 각각의 사용자에 대해 문제의 보기 단위의 선택 확률 및 해당 사용자의 문제 단위의 정답 확률을 계산할 수 있다. 이를 바탕으로 본 발명의 실시예를 따르는 데이터 분석 서버는, 특정 사용자의 임의의 문제의 보기별 선택 확률에 상기 사용자가 해당 보기를 선택한 경우, 다른 문제의 정답률 변경값의 평균값을 적용하면 해당 문제의 학습 효율을 계산할 수 있다.

예를 들어 사용자 A의 특정 문제 a의 제 1 보기에 대한 선택률이 a1, 제 2 보기에 대한 선택률이 a2, 제 3 보기에 대한 선택률이 a3, 제 4 보기에 대한 선택률이 a4인 경우를 고려할 수 있다.

그때, 사용자 A가 해당 문제에 대해 1 보기를 선택한 것으로 가정하면, 사용자 A의 모델링 벡터 및 전체 문제들의 모델링 벡터는 사용자 A의 제 1 보기 선택 이벤트가 적용하여 다소 변경될 것이며, 변경된 모델링 벡터에 따라 각 문제들의 정답률이 다소 변경될 것이다. 이에 따라 데이터 분석 서버는 사용자 A의 제 1 보기 선택에 대한 가상 이벤트를 적용하여 전체 문제들의 정답률 변경 평균값 AVC_a1을 계산할 수 있다.

동일한 방법으로 데이터 분석 서버는 사용자 A가 제 2 보기를 선택한 것으로 가정하여 AVC_a2를 계산하고, 제 3 보기를 선택한 것으로 가정하여 AVC_a3를 계산하고, 제 4 보기를 선택한 것으로 가정하여 AVC_a4를 계산할 수 있다.

이후 데이터 분석 서버는 사용자 A의 문제 a를 통한 학습효율 E(A,a)를 아래의 수식을 통해 계산할 수 있다.

[수학식 2]

E(A,a)= a1* AVC_a1 + a2* AVC_a2 + a3* AVC_a3 + a4* AVC_a4

나아가 데이터 분석 서버는 전체 문제에 대해 E(A)를 계산하고, E(A)가 가장 높은 문제 순으로 사용자 맞춤형 문제를 제공할 수 있다. (단계 170) 즉, 본 발명의 실시예를 따르면 임의의 사용자에게 가장 학습 효율이 높은 문제를 제공할 수 있다.

한편 데이터 분석 서버는 사용자 벡터, 문제-보기 벡터, 보기 선택률, 문제의 정답률, 사용자의 개념 이해도, 문제의 개념 구성도 중 적어도 하나 이상을 이용하여 사용자 맞춤형 컨텐츠를 추천할 수 있다. (단계 170)

예를 들어 서비스 서버는 특정 개념에 대한 이해도가 낮은 사용자에게 해당 개념에 대한 심화 강좌를 추천할 수 있다.

또 다른 예로 서비스 서버는 복수의 개념을 모두 포함하는 문제에 대한 정답률이 낮은 사용자에게 상기 복수의 개념을 포함하도록 구성된 문제를 추천할 수 있다.

나아가 서비스 서버는 문제 데이터베이스 세트 중 사용자가 이미 풀어본 문제를 제외하고, 나머지 문제들을 특정 사용자에 대한 정답률이 낮은 순서대로 정렬하여 해당 사용자에 대한 추천 문제 리스트를 작성하고 이를 제공할 수 있다.

예를 들어 사용자-문제 정답률 P의 1번 행의 값이 [0.3, 0.4, 0.1, 0.9, 0.7]인 경우 사용자 1이 문제 1, 2, 3, 4, 5를 맞출 확률이 각각 30%, 40%, 10%, 90%, 70%인 것으로 해석될 것이다. 서비스 서버는 문제 3, 1, 2, 5, 4의 순서로 우선순위를 부여한 문제 추천 리스트를 사용자에게 제공할 수 있다. 이때 문제 5번을 사용자 1이 이미 풀었다면 서비스 서버는 문제 5번은 제외하고 문제 추천 리스트를 작성할 수 있다.

본 명세서와 도면에 게시된 본 발명의 실시 예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 게시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (4)

  1. 서비스 서버에서, 사용자 맞춤형 학습 컨텐츠를 제공하는 방법에 있어서,
    상기 서비스 서버가 특정 과목에 대해 적어도 하나 이상의 보기를 포함하는 객관식 문제를 적어도 하나 이상 포함하는 문제 데이터베이스를 구성하고, 상기 문제를 사용자 디바이스에 제공하고, 상기 사용자 디바이스로부터 상기 문제에 대한 사용자의 보기 선택 데이터를 수집하는 a 단계;
    상기 서비스 서버에서, 상기 과목을 구성하는 개념을 정의하지 않고, 상기 사용자 및 상기 보기를 변수로 다차원 공간을 구성하고, 상기 사용자 각각의 상기 보기 선택 데이터를 이용하여, 상기 다차원 공간에 값을 부여하여 상기 사용자에 대한 모델링 벡터를 계산하고, 상기 문제에 대한 모델링 벡터를 상기 보기별로 각각 생성하는 b 단계; 및
    상기 서비스 서버에서, 상기 사용자의 모델링 벡터 및 상기 문제의 보기 모델링 벡터를 이용하여 상기 사용자의 보기 선택 확률을 계산하는 c 단계를 포함하는 것을 특징으로 하는 학습 컨텐츠 제공 방법.
  2. 제 1항에 있어서,
    상기 서비스 서버에서, 상기 보기 선택 확률을 이용하여 상기 문제의 정답률을 계산하는 단계를 더 포함하며,
    상기 문제의 정답률은, 상기 문제의 보기 선택 확률 각각을 평균화하고, 상기 문제의 정답 보기에 대한 평균화된 선택 확률을 적용하여 계산하는 것을 특징으로 하는 학습 컨텐츠 제공 방법.
  3. 제 2항에 있어서,
    상기 서비스 서버에서, 상기 사용자 모델링 벡터를 이용하여 상기 사용자의 취약 문제 모델을 생성하고, 상기 문제 데이터베이스에서 상기 취약 문제 모델과 미리 설정된 범위 이내의 유사도를 가지는 문제를 상기 사용자에게 추천하는 단계를 포함하는 것을 특징으로 하는 학습 컨텐츠 제공 방법.
  4. 제 3항에 있어서, 상기 c 단계는,
    상기 서비스 서버에서, 상기 사용자의 모델링 벡터에 시그모이드 함수를 적용하여 상기 보기 선택 확률을 계산하는 단계를 포함하는 것을 특징으로 하는 학습 컨텐츠 제공 방법.
KR1020170062551A 2017-05-19 2017-05-19 기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램 KR101853091B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170062551A KR101853091B1 (ko) 2017-05-19 2017-05-19 기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020170062551A KR101853091B1 (ko) 2017-05-19 2017-05-19 기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램
PCT/KR2017/005530 WO2018212394A1 (ko) 2017-05-19 2017-05-26 기계 학습 프레임워크를 운용하는 방법, 장치 및 컴퓨터 프로그램
JP2017119250A JP2018194804A (ja) 2017-05-19 2017-06-19 機械学習フレームワークを運用する方法、装置、及びコンピュータプログラム
US15/627,188 US20180336792A1 (en) 2017-05-19 2017-06-19 Method, apparatus, and computer program for operating machine-learning framework
CN201710469529.1A CN108959331A (zh) 2017-05-19 2017-06-20 运用设备学习框架的方法、装置及计算机程序

Publications (1)

Publication Number Publication Date
KR101853091B1 true KR101853091B1 (ko) 2018-04-27

Family

ID=62081548

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170062551A KR101853091B1 (ko) 2017-05-19 2017-05-19 기계학습이 적용된 사용자 답변 예측 프레임워크를 통한 개인 맞춤형 교육 컨텐츠 제공 방법, 장치 및 컴퓨터 프로그램

Country Status (5)

Country Link
US (1) US20180336792A1 (ko)
JP (1) JP2018194804A (ko)
KR (1) KR101853091B1 (ko)
CN (1) CN108959331A (ko)
WO (1) WO2018212394A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358000A (ja) * 2001-03-08 2002-12-13 Boostmyscore.Com 個別に設計された診断ならびに矯正を使用するコンピュータ化された試験準備システム
JP4447411B2 (ja) * 2004-09-03 2010-04-07 株式会社エヌ・ティ・ティ・データ 学習者習得特性分析システム及びその方法並びにプログラム
JP2017068189A (ja) * 2015-10-02 2017-04-06 アノネ株式会社 学習支援装置、学習支援方法、学習支援装置用プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170842A (ja) * 2002-11-22 2004-06-17 Bsn Inet:Kk テスト結果に基づき学習者,受講者の理解度を判定する理解度判定システム
KR20150122100A (ko) * 2015-10-12 2015-10-30 주식회사 탐생 이동단말기를 이용한 맞춤형 오답 노트 출력 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358000A (ja) * 2001-03-08 2002-12-13 Boostmyscore.Com 個別に設計された診断ならびに矯正を使用するコンピュータ化された試験準備システム
JP4447411B2 (ja) * 2004-09-03 2010-04-07 株式会社エヌ・ティ・ティ・データ 学習者習得特性分析システム及びその方法並びにプログラム
JP2017068189A (ja) * 2015-10-02 2017-04-06 アノネ株式会社 学習支援装置、学習支援方法、学習支援装置用プログラム

Also Published As

Publication number Publication date
WO2018212394A1 (ko) 2018-11-22
JP2018194804A (ja) 2018-12-06
CN108959331A (zh) 2018-12-07
US20180336792A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
Romero et al. Data mining in education
Amershi et al. Combining unsupervised and supervised classification to build user models for exploratory
Wilder Effects of parental involvement on academic achievement: A meta-synthesis
Beck et al. Does help help? Introducing the Bayesian Evaluation and Assessment methodology
Ifenthaler et al. Development and validation of a learning analytics framework: Two case studies using support vector machines
Cox et al. Working with missing data in higher education research: A primer and real-world example
US10347148B2 (en) System and method for adapting lessons to student needs
Farrell et al. Computational models as aids to better reasoning in psychology
Calabrese et al. Kalman filter mixture model for spike sorting of non-stationary data
US20130052630A1 (en) Learning support system and learning support method
US20130288222A1 (en) Systems and methods to customize student instruction
Junco et al. Predicting course outcomes with digital textbook usage data
Crosby et al. The Roles Beacons Play in Comprehension for Novice and Expert Programmers.
Vasconcelos et al. Inspiration and fixation: Questions, methods, findings, and challenges
Dawson et al. Analytics to literacies: The development of a learning analytics framework for multiliteracies assessment
Donoho 50 years of data science
US20090075246A1 (en) System and method for quantifying student's scientific problem solving efficiency and effectiveness
WO2009089475A1 (en) Customized learning and assessment of student based on psychometric models
Galán et al. EEG estimates of engagement and cognitive workload predict math problem solving outcomes
van Dantzig et al. A sharp image or a sharp knife: Norms for the modality-exclusivity of 774 concept-property items
Greiff et al. Computer-generated log-file analyses as a window into students' minds? A showcase study based on the PISA 2012 assessment of problem solving
Sellar Data infrastructure: A review of expanding accountability systems and large-scale assessments in education
US10068490B2 (en) System and method for improving student learning by monitoring student cognitive state
Brinton et al. Individualization for education at scale: MIIC design and preliminary evaluation
Wang Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length

Legal Events

Date Code Title Description
A107 Divisional application of patent
GRNT Written decision to grant