KR101785155B1 - Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법 - Google Patents

Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법 Download PDF

Info

Publication number
KR101785155B1
KR101785155B1 KR1020150133725A KR20150133725A KR101785155B1 KR 101785155 B1 KR101785155 B1 KR 101785155B1 KR 1020150133725 A KR1020150133725 A KR 1020150133725A KR 20150133725 A KR20150133725 A KR 20150133725A KR 101785155 B1 KR101785155 B1 KR 101785155B1
Authority
KR
South Korea
Prior art keywords
tim
expression
cells
hif
mice
Prior art date
Application number
KR1020150133725A
Other languages
English (en)
Other versions
KR20170035089A (ko
Inventor
박은정
고한석
전성호
장지영
윤희정
전새봄
김형석
안예현
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Priority to KR1020150133725A priority Critical patent/KR101785155B1/ko
Publication of KR20170035089A publication Critical patent/KR20170035089A/ko
Application granted granted Critical
Publication of KR101785155B1 publication Critical patent/KR101785155B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0622Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Neurosurgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Pathology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 TIM-3 (T-cell immunoglobulin and mucin domain protein 3) 억제제를 유효성분으로 포함하는 뇌손상 질환의 예방 또는 치료용 약학적 조성물 및 TIM-3를 이용한 뇌손상 질환 치료제의 스크리닝 방법에 관한 것이다. 본 발명자들은 허혈에 의해 발생하는 저산소(hypoxia) 상태시 유발되는 뇌손상에서 TIM-3 단백질이 조절자로서 역할하며, TIM-3의 발현이 저산소 상태에서 발생하는 유전자 발현을 조절하는 HIF-1에 의해 조절받는다는 것을 밝혔다. 따라서, 본 발명은 저산소증이 수반되는 뇌신경계 질환의 치료 및 예방을 위해 유용하게 사용될 수 있다.

Description

TIM-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법{Composition for the treatment of brain injury targeting TIM-3 and screening method thereof}
본 발명은 TIM-3 (T-cell immunoglobulin and mucin domain protein 3) 억제제를 유효성분으로 포함하는 뇌손상 질환의 예방 또는 치료용 약학적 조성물 및 TIM-3를 이용한 뇌손상 질환 치료제의 스크리닝 방법에 관한 것이다.
뇌 허혈(cerebral ischaemia)은 복잡한 병태생리학적 변화를 야기하여 궁극적으로, 특히 허혈 조직의 중심부위(ischaemic core)를 둘러싼 반음영 영역(penumbral area)에서, 뇌 손상을 일으킨다[Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796808 (2011); 및 Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181198 (2010)]. 이러한 변화들에는 상주세포(resident cell)의 활성화, 염증 매개인자(inflammatory mediators)의 생성 및 염증세포의 침윤(infiltration)이 포함된다. 임상실험 결과에 따르면 뇌 허혈에 따른 염증반응은 뇌손상의 발병과 관련이 있는 것으로 보이나[Terao, S. et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 39, 25602570 (2008); McColl, B. W., Allan, S. M. & Rothwell, N. J. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158, 10491061 (2009); 및 Jin, R., Yang, G. & Li, G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779789 (2010)], 이에 관계된 염증반응에 관해서는 아직 많이 알려져 있지 않다.
T-세포 면역글로뷸린 및 뮤신 도메인 단백질 패밀리(T-cell immunoglobulin and mucin domain protein family)의 멤버인 TIM-3는 TH1-의존적 면역 반응을 음성적으로 조절하는 제1형 헬퍼(helper) T 세포(TH1)-특이적 표면 분자로 처음 동정되었으나[Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536541 (2002)], 후속 연구들에서 TIM-3는 TH17 세포, Tregs, NK 세포, 단핵백혈구(monocytes), 수지상세포, 비만세포(mast cells) 및 미세아교세포(microglia)를 포함한 다양한 유형의 면역세포에서 발현되어, 적응면역(adaptive immunity)뿐만 아니라 선천면역(innate immunity)도 조절한다는 사실이 밝혀졌다[Zhu, C., Anderson, A. C. & Kuchroo, V. K. TIM-3 and its regulatory role in immune responses. Curr. Top. Microbiol. Immunol. 350, 115 (2011); Anderson, A. C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 11411143 (2007); Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832842 (2012); 및 Gleason, M. K. et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119, 30643072 (2012)]. 최근의 연구결과에 따르면, TIM-3는 선천성 면역세포의 활성화를 조절하는데 중요한 역할을 하여, 환경에 따라 활성화 마커 또는 활성화 제한인자로 작용한다[Han, G., Chen, G., Shen, B. & Li, Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front. Immunol. 4, 449 (2013)]. 동물모델 및 인체에서 TIM-3는 감염, 자가면역질환 및 암을 포함한 다양한 면역 관련 질병과 밀접한 관련이 있는 것으로 나타났다[Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 1473314738 (2010); Kearley, J., McMillan, S. J. & Lloyd, C. M. Th2-driven, allergen-induced airway inflammation is reduced after treatment with anti-Tim-3 antibody in vivo. J. Exp. Med. 204, 12891294 (2007); 및 Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 21752186 (2010)]. 흥미롭게도, TIM-3는 세포의 종류와 환경에 따라 다양한 기능을 나타내는 것으로 보인다[Han, G., et al. (2013)]. 예를 들어, 만성 바이러스 감염 및 종양에서 TIM-3의 억제는 고갈된 T 세포의 이펙터(effector) 기능을 증가시키는 반면[Takamura, S. et al. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J. Immunol. 184, 46964707 (2010); Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 21872194 (2010); 및 Lee, S. Y. & Goverman, J. M. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J. Immunol. 190, 49914999 (2013)], TIM-3 신호전달의 증가는 Th-1-매개된 EAE (experimental autoimmune encephalomyelitis)를 개선하는 것으로 나타났다[Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 12451252 (2005); 및 Sakuishi, K., Jayaraman, P., Behar, S. M., Anderson, A. C. & Kuchroo, V. K. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol. 32, 345349 (2011)]. 또한, 자가면역성 간염에서 CD4+CD25- T 세포상의 TIM-3 수준의 감소는 면역조절의 손상에 기여한 반면[Liberal, R. et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56, 677686 (2012)], 만성 C형 간염에서는 CD4+ 및 CD8+ T 세포의 TIM-3가 과발현되었다[Golden-Mason, L. et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J. Virol. 83, 91229130 (2009)].
저산소증(hypoxia)에 대한 생리학적 반응은, 산소-조절성 알파-서브유닛(oxygen-regulated α-subunit)과 구성적 베타-서브유닛(constitutive β-subunit)으로 이루어진 이형이합체성(heterodimeric) 전사인자인, HIF (hypoxia-inducible factor)-1 에 의해 주로 매개되는 것으로 알려져 있다[Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 79877992 (1998)]. HIF-1 복합체는 저산소증에의 적응과 관련된 여러 유전자들의 저산소-반응 부위(hypoxic-response elements, HREs)에 결합한다[Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345350 (2001)]. 흥미롭게도 HIF-1은 저산소 환경에서뿐만 아니라 염증 환경하에서도 세포 반응을 조절하며, 여러 염증 관련 질병들의 발병에도 중요한 역할을 하는 것으로 보인다[Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat. Immunol. 14, 11731182 (2013); Cramer, T. et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645657 (2003); Cowburn, A. S. et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc. Natl Acad. Sci. USA 110, 1757017575 (2013); 및 Scholz, C. C. & Taylor, C. T. Targeting the HIF pathway in inflammation and immunity. Curr. Opin. Pharmacol. 13, 646653 (2013)]. 생체내(in vivo) 및 시험관내(in vitro) 실험에서 HIF-1은 골수 세포 이동과 같은 골수 세포 매개 염증반응에 필수적인 것으로 나타났다[Peyssonnaux, C. et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 18061815 (2005)]. 또한, HIF-1 활성은 허혈성 폐 및 장 손상 후의 병원성 염증 반응과 관련이 있었다[Feinman, R. et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G833G843 (2010); 및 Takeda, N. et al. Differential activation and antagonistic function of HIF-alpha isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491501 (2010)]. 따라서 HIF-1은 염증-관련 신호전달을 조절하는 핵심적인 조절인자로 여겨진다.
한편, 중추신경계(CNS)는 면역관용지역(immune-privileged regions)인 것으로 알려져 있었으나, 최근의 연구결과에서 선천성 및 후천적 적응성 면역반응(subsequent adaptive immune responses)을 빠르게 유발할 수 있는 정교한 감시 시스템(sentinel system)을 갖추고 있는 것으로 보고되었다[Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193201 (2010)]. CNS의 면역반응에 있어서 주된 면역세포로 기능하는 교세포(glial cell)들은 뇌의 미세한 변화를 인지하고 병태생리학적 자극에 빠르게 반응한다[Jeon, S. B., Yoon, H. J., Park, S. H., Kim, I. H. & Park, E. J. Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J. Immunol. 181, 80778087 (2008); 및 Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429439 (2009)].
위와 같은 종래의 보고들을 바탕으로 연구한 결과 본 발명자들은 저산소증 환경에서 미세아교세포(microglia) 및 성상세포(astrocyte)의 TIM-3 발현이 증가(upregulated)되며, 이러한 TIM-3의 발현 증가가 호중구(neutrophils)의 저산소성 반음영(hypoxic penumbra)으로의 침윤(infiltration)에 영향을 미친다는 사실을 새롭게 발견하였다. 이러한 침윤은 허혈성 뇌손상의 주된 원인으로 알려져 있다[Murikinati, S. et al. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 24, 788798 (2010)]. 또한, 본 발명자들은 신경교세포에서 HIF-1이 TIM-3의 산소-의존적 발현을 조절한다는 사실을 밝히고, 이러한 실험결과들로부터 본 발명을 완성하게 되었다.
US 2014/0099254A1
본 발명의 목적은 TIM-3 (T-cell immunoglobulin and mucin domain protein 3)를 표적으로 하여 이의 발현 또는 활성을 억제시키는 뇌손상 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 다른 목적은 TIM-3를 이용하여 뇌손상 질환의 치료제를 스크리닝하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 TIM-3 (T-cell immunoglobulin and mucin domain protein 3) 억제제를 유효성분으로 포함하는 뇌손상 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 직접 또는 간접적으로 TIM-3에 결합하거나 이와 반응하거나 또는 이의 발현을 조절하는 등의 방법으로 TIM-3의 발현 또는 활성을 특이적으로 억제 또는 감소시킬 수 있는 물질로, 유기 또는 무기 화합물, 단백질, 항체, 펩타이드 또는 핵산 분자 등을 포함할 수 있다. 본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 TIM-3에 결합하거나 이와 반응하여 TIM-3의 활성을 특이적으로 억제 또는 감소시키는 길항 항체 또는 그의 단편일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 TIM-3 유전자의 발현을 직접 또는 간접적으로 억제하는 핵산 분자일 수 있으며, 이러한 핵산 분자의 예로는 TIM-3 유전자 또는 그의 단편에 대한 안티센스 뉴클레오티드, siRNA, shRNA 또는 miRNA 등이 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 TIM-3 단백질은 서열번호 1의 아미노산 서열로 이루어진 것일 수 있으며, 상기 TIM-3 유전자는 서열번호 2의 염기서열로 이루어진 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 TIM-3 유전자의 상위(upstream) 유전자 또는 TIM-3 유전자의 발현조절부위의 발현 또는 활성을 억제함으로써 TIM-3의 발현을 억제하는 작용을 하는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 HIF-1 (hypoxia-inducible factor-1)의 발현 또는 활성을 억제시킬 수 있다.
본 발명의 일실시예에 있어서, 상기 TIM-3 억제제는 호중구 화학주성인자(neutrophil chemotactic factor)의 발현 또는 활성을 감소시켜 호중구의 이동 및 침윤을 저해함으로써 뇌손상 질환의 예방 또는 치료 효과를 나타내는 것일 수 있다.
또한, 본 발명은 (a) TIM-3가 발현되는 세포 또는 동물모델에 후보 물질을 처리하는 단계; (b) 상기 후보 물질 처리 후, TIM-3의 발현 또는 활성 정도를 측정하는 단계; 및 (c) 상기 TIM-3의 발현 또는 활성 정도가 후보 물질을 처리하지 않은 대조군에 비해 감소한 후보 물질을 선별하는 단계를 포함하는 뇌손상 질환 치료제의 스크리닝 방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 스크리닝 방법은 상기 (c) 단계에서 선별한 후보물질이 대조군에 비하여 HIF-1의 발현 또는 활성을 억제시키는지 여부를 추가로 분석하는 단계를 더 포함할 수 있다.
본 발명의 일실시예에 있어서, 상기 (b) 단계의 측정 및/또는 상기 HIF-1의 발현 또는 활성을 분석하는 방법은 면역조직화학염색, PCR, RT-PCR, 웨스턴 블랏, ELISA 또는 단백질칩으로 구성된 군 중에서 선택되는 방법으로 수행할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 TIM-3가 발현되는 세포는 신경교세포(glial cell)일 수 있으나 이에 제한되는 것은 아니다. 본 발명의 일실시예에 있어서, 상기 동물모델은 저산소 허혈성(hypoxia-ischemia) 뇌손상 질환 모델일 수 있으나, 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 뇌손상 질환의 예로는 뇌경색, 뇌졸중, 저산소성 뇌손상, 허혈성 뇌질환, 중풍 등이 있으나, 이에 제한되는 것은 아니다. 본 발명의 일실시예에 따르면 상기 뇌손상 질환은 저산소(hypoxia) 환경에서 발생한 염증(inflammation)-관련 뇌손상일 수 있다.
본 발명자들은 허혈에 의해 발생하는 저산소(hypoxia) 상태시 유발되는 뇌손상에서 TIM-3 단백질이 조절자로서 역할하며, TIM-3의 발현이 저산소 상태에서 발생하는 유전자 발현을 조절하는 HIF-1에 의해 조절받는 다는 사실을 확인하였다. 따라서, 본 발명은 저산소증이 수반되는 뇌신경계 질환, 예를 들면 뇌경색, 뇌졸중, 저산소성 뇌손상, 허혈성 뇌질환 및 중풍 질환의 치료 및 예방을 위해 유용하게 사용될 수 있다.
도 1은 TIM-3가 저산소 허혈성 뇌졸증 마우스 모델의 저산소가 유도된 뇌 영역에서 발현된다는 것을 보여준다. (a) TIM-3 전사레벨을 저산소 허혈성 뇌졸증 유도 24시간 후 생쥐 모델에서 대측성 피질 (C, boxed region)과 뇌졸증이 유도된 동측성 피질(I, boxed region) 로부터 뇌조직을 떼어내어 측정하였다. 역전사 효소 유전자 증폭방법에 의해 나온 결과는 image J 프로그램을 사용하여 양을 측정하고 actin의 발현을 반영하여 정량화하였다. HIF-1α 전사 레벨은 저산소의 positive control로 나타내었다. 오른쪽 패널은 저산소 허혈성 뇌졸증 유도 마우스 모델 뇌 단면조직의 TTC 염색을 보여준다. (b) 보이는 웨스턴 블롯 분석법은 TIM-3 와 HIF-1 단백질의 발현을 보여준다 (n=3). 상대적인 TIM-3 발현 정도는 독립적인 3번의 실험으로부터 측정된 유의값으로 보여주었다. (c) 저산소 허혈성 뇌졸증 생쥐 뇌단면의 동측성 피질과 대측성 피질에서 TIM-3 발현을 Tim-3 항체를 사용하여 면역조직 화학법을 통해 확인 하고, TIM-3를 발현하는 세포수를 mm2당 개수로 측정하였다 (d) 면역조직화학법은 저산소 허혈성 뇌졸증이 유도된 생쥐에서 뇌 절편을 떼내어 TIM-3와 hypoxyprobe-1 (red, to detect hypoxic regions) 항체를 사용하여 측정한 것이다. Scale bars, 50μm ( × 20); 50μm ( × 40). (e,f) 그룹마다 3마리에서 동측성 부위와 대측성 부위로부터 뇌세포를 분리하고 성상세포를 나타낼 수 있는 GFAP (f) 와 소교세포를 나타내는 Iba-1 (e) 그리고 TIM-3 항체를 일제히 붙여서 FACS(형광이용세포분류기)를 사용하여 분석하였다. 이 결과는 게이팅된 소교세포에서 상대적인 TIM-3 레벨을 나타낸 것으로 3번의 독립적인 실험을 통해 확인되었다.
도 2는 일차배양한 신경교세포에서 HIF-1α가 TIM-3의 프로모터에 결합하고 그 발현을 조절한다는 것을 보여준다. (a) BV2세포에 20% O2또는 1% O2환경을 24시간 유지한 뒤 TIM-3의 세포표면 발현양상을 PE가 결합된 TIM-3 항체로 염색하고 형광이용세포분류기를 사용하여 분석하였다. 3번의 독립적인 실험을 통해 얻은 결과를 막대그래프로서 나타내고 평균값의 변화 (± s.d.)를 정상환경 샘플과 비교하여 나타낸 것이다. (b) 생쥐로부터 배양한 신경교세포를 24시간 동안 정상환경과 저산소 환경에서 배양하고, 그 세포들을 Tim-3 항체를 사용하여 면역세포화학법을 통해 TIM-3의 발현을 확인하였다. (c,d) 생쥐로부터 일차배양한 신경교세포와 신경세포를 24시간 동안 정상환경과 저산소 환경에서 배양하고, 역전사 효소 유전자 증폭방법으로 TIM-3와 actin의 발현 정도를 측정하였다. 발현 변화를 독립적으로 3번 반복한 실험을 통해 평균값 변화 (± s.d.) 를 그래프로 보여주고 있다. (NS, 통계가 유효하지 않음, StudentNewmanKeuls test). (e) 생쥐로부터 유래된 신경교세포를 24시간 동안 정상환경과 저산소 환경에서 배양하고 면역침강정제법을 HIF-1 항체와 대조군 IgG 가지고 수행하였다. 결과는 3번 독립적인 실험을 통해서 그래프로 나타낸것이다. (f) HIF-1α +f/+f 생쥐에서 유래된 신경교세포에 Ad-GFP or Ad-Cre/GFP 바이러스를 감염시키고, 이 감염된 세포에 TIM-3-luciferase reporter(Tim-3 프로모터 유전자가 들어있는 vector)constructs 을 형질 주입하고 24시간 동안 정상환경과 저산소 환경에서 배양하였다. 프로모터 유전자 발현 활성을 ratio of luciferase activity/β-galactosidase activity로서 표현하였다. (g,h) 역전사 효소 유전자 증폭방법 (g) 과 western blot 분석법은 (h) primer 와 항체를 사용하여 24시간 동안 정상환경과 저산소 환경아래에서 수행하였다. 이 데이터는 독립적으로 3번 반복실험을 통해 나타낸 것이다. 그래프는 저산소 환경안에서 Ad-GFP가 감염된 세포들에 비해서 TIM-3 유전자 전사와 단백질 발현량을 비교하여 보여주는 것이다. IP, 면역침강
도 3은 TIM-3의 차단은 저산소 허혈성 뇌졸증후에 유도되는 뇌손상을 의미 있게 감소시킨다는 것을 보여준다. (a) IgG (n=12)와 TIM-3 blocking 항체 (n=12) 100μg 을 처리한 저산소 허혈성 뇌졸증 모델 생쥐로부터TTC 염색된 뇌 절편의 이미지를 나타낸 대표 그림. 경색 volume은 image J 프로그램을 통해 분석하였고 손상된 동측성 부위를 백분율로 표현하였다. (b) 저산소 허혈성 뇌졸증 유도 24시간 후 TIM-3 항체를 처리한 생쥐 (n=4)와 IgG (n=4)를 처리한 생쥐로부터 얻은 MRI(자기 공명 영상법) 대표 사진. (c) 저산소 허혈성 뇌졸증 유도 24시간 후 TIM-3 항체를 처리한 생쥐 (n=4)와 IgG (n=4)를 처리한 생쥐로부터 얻은 T2-MRI(자기 공명 영상법) 대표 사진. (d) 부종의 형성 정도를 T2-weighted MRI images and ADC map을 통해서 얻었다. (e) 저산소 허혈성 뇌졸증 유도 24시간 후 TIM-3 항체를 처리한 생쥐와 IgG 를 처리한 생쥐로부터 얻은 뇌 절편안에서 NeuN(신경세포) cleaved caspase-3(세포사멸을 detection 하는 항체)로 면역조직화학법을 하고 confocal 현미경으로 측정한 대표 사진. Scale bar, 50μm. 그래프는 NeuN과 cleaved caspase-3 항체로 염색된 세포수를 mm2 당 평균 개수를 보여준다. (f) 저산소 허혈성 뇌졸증 유도 24시간 후 TIM-3 항체를 처리한 생쥐와 IgG를 처리한 생쥐로부터 얻은 대측성 피질과 동측성 피질안에서 full-length PARP 단백질(세포사멸을 나타내는 단백질) 발현을 나타낸 western blot 사진. 그래프는 full-length PARP 의 레벨을 비교하여 보여준 것이다. 모든 데이터는 3번의 독립된 실험으로부터 유의한 값으로 나타냈다
도 4는 TIM-3 차단 항체가 호중구의 이동을 감소시킨다는 것을 보여준다. 역전사 효소 유전자 증폭방법 (a) 및 웨스턴 블랏 분석법 (b)을 IgG 와 TIM-3 blocking 항체가 처리된 저산소 허혈성 뇌졸증 모델 생쥐에서 MPO 발현을 측정하기 위해서 사용하였다. 그래프는 MPO 레벨을 비교하여 보여준 것이다. (c) 저산소 허혈성 뇌졸증 유도 24시간 후 TIM-3 항체를 처리한 생쥐와 IgG 를 처리한 생쥐로부터 얻은 뇌 절편 안에서 MPO 와 Gr-1 항체로 면역조직화학법을 하고 confocal 현미경으로 측정한 대표 사진. Scale bar, 50μm. 그래프는 MPO와 Gr-1 항체로 염색된 세포수의 mm2 당 평균 개수를 보여준다 (± s.d.). 저산소 허혈성 뇌졸증 모델 생쥐로부터 유래된 (d) 대뇌 피질과 (e) 기저부위에서 얻은 뇌 절편을 MPO항체와 Gr-1 항체를 사용하여 면역조직화학법을 수행하고, MPO와 Gr-1이 염색된 세포들을 mm2 당 세포수를 세었다.
도 5는 생체내와 생체외 모두에서 TIM-3의 차단은 대표적인 두개의 호중구 화학주성인자들의 발현을 감소시킨다는 것을 보여준다. (a) 생쥐로부터 일차배양한 신경교세포(2 × 105)를 트랜스 웰의 low chamber에 깔고 TIM-3 와 대조군 IgG 항체를 그림에 나타난 대로 우선 처리 한 후, 비장세포 5 × 105 를 upper chamber에 올린다. 저산소 상황에서 24시간 배양 후, 비장세포 low chamber에 이동된 정도를 형광이용세포분류기를 사용하여 분석하였다. 독립적인 3번의 실험을 통하여 low chamber로 이동한 Gr-1highCD11bhigh 세포의 %를 평균값±s.d로 표현하였다. (b) Gr-1highCD11bhigh 인 호중구를 C57BL/6 생쥐의 골수에서부터 분리하고, IgG 와 TIM-3 항체를 처리한 신경교세포와 함께 저산소환경에서 배양한다. 3번의 독립적인 실험으로부터 얻은 결과는 IgG를 처리한 세포를 1로 보았을 때 감소된 정도를 나타낸다. (c) 역전사 효소 유전자 증폭법을 IgG와 TIM-3를 처리한 저산소 허혈성 뇌졸증 모델로부터 얻은 조직에 대해서 수행하였다. (d) 그래프는 actin 으로 보정하여 나타낸 결과를 보여주는 것이다 (n=3). (e) 생쥐로부터 유래된 신경교세포에 IgG 와 TIM-3 항체를 처리하고 정상환경과 저산소 환경에서 24시간 동안 배양한다. CXCL1과 IL-1beta 전사레벨은 역전사 효소 유전자 증폭법에 의해 결정하였다. 그래프는 독립적으로 3번 실험한 결과로부터 나온 것이다. NS, 유효성이 없다.
도 6은 저산소에 의해 유도되는 호중구의 이동은 HIF-1이 결여된 환경에서 감소한다는 것을 보여준다. (a) HIF - +f/+f 생쥐로부터 일차배양한 신경교세포(2 × 105)에 Ad-GFP or Ad-Cre/GFP 바이러스를 감염시키고, 트랜스 웰의 low chamber에 놓고, 5 × 105 를 upper chamber에 올린다. 저산소 상황에서 24시간 배양 후, 비장세포가 low chamber에 이동된 정도를 형광이용세포분류기를 사용하여 분석하였다. (b) Gr-1highCD11bhigh 인 호중구를 C57BL/6 생쥐의 골수에서부터 분리하고, HIF - +f/+f 생쥐로부터 일차배양한 신경교세포를 Ad-GFP 또는 Ad-Cre/GFP 바이러스로 감염시켜 호중구 세포와 같이 저산소 환경에서 배양한다. 3번의 독립적인 실험을 통해 얻은 결과들은 Ad-GFP 감염된 HIF - +f/+ 생쥐의 신경교세포와 비교하여 호중구 세포의 이동변화를 나타낸 것이다 (c) CXCL1과 IL-1beta 전사레벨은 Ad-GFP 또는 Ad-Cre/GFP바이러스를 감염시킨 신경교세포를 정상환경과 저산소환경에서 24시간동안 배양하여 그 발현을 확인하였다. (d)그래프는 real-time quantitative PCR 로부터 얻은 결과이다.
도 7은 LysM - Hif - -/- 형질전환 쥐에서 저산소 허혈성 뇌졸증에 의해 유도된 뇌손상이 감소된다는 것을 보여주는 실험결과이다. (a) HIF - +f/+f 또는 LysM -Hif-1α -/- 생쥐로부터 배양한 신경교세포에서 표시된 프라이머를 이용하여 역전사 효소 유전자 증폭법을 수행하였다 (b) TIM-3 유전자 전사 레벨을 HIF - +f/+f or LysM-Hif-1α -/- 생쥐(n=3)의 대측성 피질과 허혈성 뇌졸증이 유도된 동측성 피질로부터 유래된 뇌조직으로부터 확인하였다. (c) 24시간 동안 저산소 허혈성 뇌졸증이 유도된 HIF - +f/+f (n=12) or LysM - Hif - -/- 생쥐 (n=12) 부터 TTC 염색된 뇌 절편의 이미지를 나타낸 대표 그림. 경색 volume은 image J 프로그램을 통해 분석하였고 손상된 동측성 부위를 백분율로 표현하였다. (d) 저산소 뇌졸증 24시간 후 HIF-1α +f/+f or LysM - Hif - -/- 생쥐로부터 얻은 뇌 절편안에서 NeuN (신경세포를 detection 하는 항체) cleaved caspase-3 (세포사멸을 detection 하는 항체)로 면역조직화학법을 하고 confocal 현미경으로 측정한 대표 사진. Scale bar, 50μm. 그래프는 NeuN과 cleaved caspase-3 항체로 염색된 세포수의 mm2 당 평균 개수를 보여준다. (±s.d. 3번 독립적으로 실험)
도 8은 LysM-Hif-1a-/- 생쥐에 LV-TIM3-GFP의 두개강 접종은 뇌경색 범위와 신경학적 후유증을 증가시킨다는 것을 보여주는 실험결과이다. (a) IVI spectrum system (Xenogen IVIS-200)을 사용하여 PBS, GFP가 과발현되는 렌티바이러스를 접종한 생쥐, 그리고 TIM-3와 GFP가 과발현된 렌티바이러스를 접종한 생쥐의 형광 이미지를 측정한 대표 그림(excitation filter, from 445 to 490nm, and emission filter, from 515 to 575nm). (b) LV-TIM3-GFP 또는 LV-GFP를 접종한 생쥐로부터 TTC 염색된 뇌 절편의 이미지를 나타낸 대표 그림. (c,d) 경색 크기 (c, n=6 for LV-GFP or n=5 for LV-TIM3-GFP) and 신경학적 휴유증 (d, n=6 for each group)은 저산소 허혈성 뇌졸증 유도 24시간 후 검사하였다.
도 9는 저산소 뇌환경에서 발생 가능한 TIM-3 관련 사건의 모식도이다. 저산소 환경 의존적 HIF-1a의 활성은 소교세포와 성상세포에서 TIM-3 발현을 증가시킨다. HIF-1/TIM-3축의 활성화는 호중구 유인물질 생성과 저산소 지역으로 호중구의 침윤을 유도한다. 호중구의 비정상적인 침윤현상은 과도한 염증반응을 유도하고 이어서 뇌의 병태생리학적 환경에 원인이 된다.
도 10은 1% 산소조건 및 20% 산소조건 하에서 일차 배양 교세포 또는 BV2 미세아교세포에 TIM-3의 shRNA를 각각 세포 감염 시킨 후, PCR 및 면역세포 화학법을 통해 세포 내에서 TIM-3의 발현정도를 비교 분석한 결과를 나타낸 것으로, 10A는 일차 배양 교세포의 결과를, 10B는 BV2 미세아교세포 결과를 나타낸 것이며, 10A에서 a는 PCR 분석결과이고, b는 면역세포 화학법을 나타낸 것이다.
본 발명은 허혈성 뇌졸증 등 저산소증에 의한 뇌손상 질환의 치료용 조성물 및 뇌손상 질환 치료제 스크리닝 방법에 관한 것으로, 구체적으로는 TIM (T-cell immunoglobulin and mucin domain protein)-3 억제제를 유효성분으로 포함하는 뇌손상 질환의 치료용 조성물; 및 (a) TIM-3가 발현되는 세포 또는 동물에 후보 물질을 처리하는 단계; (b) TIM-3의 발현 또는 활성 정도를 측정하는 단계; 및 (c) TIM-3의 발현 또는 활성 정도가 후보 물질을 처리하지 않은 대조군에 비해 감소한 후보 물질을 선별하는 단계를 포함하는 뇌손상 질환 치료제의 스크리닝 방법에 관한 것이다.
대뇌 허혈(cerebral ischaemia)은 일련의 병태생리학적 변화를 야기시켜 뇌손상을 유발한다. 염증매개체(inflammatory mediator)의 생산 및 침투는 뇌손상을 야기하는 중요한 단계로, 대뇌 허혈에 따른 뇌손상 정도는 염증 상태와 매우 밀접한 관련이 있음을 시사하는 임상 및 연구결과들이 증가하고 있다. 이에, 염증조절을 타겟으로 하는 뇌신경계 질환의 치료제 개발 전략에 대한 관심이 커지고 있다. 다만, 현재까지는 허혈성 뇌질환시 수반되는 염증반응에 관해서 알려진 정보가 매우 적은 한계가 있었다.
본 발명은 허혈 이후에 발생하는 hypoxia(저산소) 상태에 따른 뇌손상에 TIM-3가 비정상적인 염증세포 침투 및 염증반응과 연관이 있으며, TIM-3의 제어는 염증반응, 뇌세포 사멸, 뇌경색부위 감소에 영향을 준다는 것을 규명함에 그 특징이 있다. 본 발명은 허혈에 의해 발생하는 저산소(hypoxia) 상태시 유발되는 뇌손상에서 TIM-3 단백질이 조절자로서의 역할을 하고 있으며, TIM-3의 발현이 저산소 상태에서 발생하는 유전자 발현을 조절하는 HIF-1에 의해 조절받는다는 연구결과를 기반으로 하고 있다. 본 발명의 일실시예에 따르면, 저산소 허혈성 뇌졸증 마우스 모델 (Hypoxia-ischemia mouse model)의 저산소가 유도된 뇌영역의 신경교세포(glial cell)에서 TIM-3의 발현은 증가하였으며(도 1), TIM-3의 발현은 HIF-1에 의해 조절되었다(도 2). 또한, TIM-3의 차단은 저산소 허혈증 후 수반되는 뇌경색 부위 및 뇌세포사멸을 감소시키며(도 3), 호중구의 뇌로의 이동 및 이동관련 사이토카인을 감소시킨다는 것을 확인하였다(도 4). 또한, 저산소에 의해 유도되는 호중구의 이동 및 뇌손상은 HIF-1 결핍 마우스의 저산소 허혈 뇌졸중 모델에서도 감소되었으며(도 6), 위 마우스에 TIM-3의 발현을 증가시키면 뇌손상이 다시 증가하였다. 이러한 결과들은 저산소 환경에서 HIF-1/TIM-3 축과 뇌손상의 관련성을 나타낸다.
따라서 본 발명은 TIM-3 억제제를 유효성분으로 함유하는 뇌손상 질환, 예를 들면 뇌경색, 뇌졸중, 저산소성 뇌손상, 허혈성 뇌질환 및 중풍 질환의 예방 또는 치료용 약학적 조성물을 제공할 수 있다. 본 명세서에 사용된 용어 "예방"은 요법제(예를 들면, 예방제 또는 치료제) 또는 요법제의 조합물을 투여하여 대상체에서 뇌손상 질환의 징후가 나타나거나 재발 또는 발전되는 것을 막는 것을 의미한다. 본 명세서에 사용된 용어 "치료"는 뇌손상 질환 환자의 증상이나 어느 하나 이상의 신체적 파라미터를 개선시키거나 조절하거나 그 발생이나 진전을 지연시키는 것을 의미하며, 환자의 인식 여부는 불문한다. 본 발명의 약학적 조성물은 하나 이상의 약제학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. 사용하기에 적합한 담체로는 식염수, 인산염 완충 식염수, 최소 필수 배지(MEM) 또는 HEPES 완충액의 MEM을 포함하는 수성 매질을 들 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 등의 형태일 수 있다. 본 발명의 약학적 조성물은 근육, 피하, 경피, 정맥, 비강내, 복강내 또는 경구 경로로 투여될 수 있고 바람직하게는 근육내 또는 피하 경로로 투여될 수 있다. 조성물의 투여량은 투여 경로, 동물의 연령, 성별, 체중 및 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다.
본 발명의 약학적 조성물은 하기의 다양한 경구 또는 비경구 투여 형태로 제형화할 수 있으나, 이에 제한되는 것은 아니다. 우선, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 경질 또는 연질 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 유효성분에 적어도 하나 이상의 부형제를 섞어 조제될 수 있다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 있는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제가 포함될 수 있다. 또한, 본 발명의 약학적 조성물은 비경구 투여도 가능하며, 비경구 투여는 피하주사제, 정맥주사제, 근육 내 주사제 또는 흉부 내 주사제를 주입하는 방법 등에 의한다. 이 경우 비경구 투여용 제형으로 제제화하기 위하여 본 발명의 유효성분을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여형으로 제조할 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 또는 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌 글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름 또는 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 또한, 본 발명의 약학적 조성물은 마우스, 랫, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있으며, 그 예로는 경구, 직장, 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내 주사 등이 있다. 본 발명의 약학적 조성물은 환자의 나이, 성별, 체중에 따라 적절한 방법을 선택하여 투여될 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
<실시예 1>
실험재료 및 방법
<1-1> 실험동물
Randall Johnson 박사가 제작한
Figure 112015092230129-pat00001
(HIF-1α-floxed alleles)를 가진 마우스를 사용하였다. 골수 계통 세포에서 HIF-1α가 결핍된 마우스는
Figure 112015092230129-pat00002
마우스와 LysM-Cre 형질전환 마우스의 이종교배로부터 제작하였다[Cramer, T. et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 64557 (2003)]. 8주령의 수컷 C57BL/6 마우스(Orient Bio)를 생체내(in vivo) 및 시험관내(in vitro) 실험에 사용하였다.
<1-2> 저산소성 뇌 허혈증 모델 및 경색(infarct) 부피의 측정
C57BL/6 수컷 마우스(8주, Orient Bio)에 대해 Zhang et al.[Zhang, L. et al. Estrogen stimulates microglia and brain recovery from hypoxia-ischemia in normoglycemic but not diabetic female mice. J. Clin. Invest. 113, 855 (2004)]과 같은 방법으로 H/I를 유도하였다. 간략히 설명하면, 마우스를 Zoletil (Virbac) 및 Rompun (Bayer) (4:1)로 마취시키고, 각각의 마우스의 우측 총경동맥(common carotid artery)을 노출시키고, 4-0 수술용 실크(surgical silk)로 이중접합하였다. 절개 부위를 봉합하고, 과량의 음식과 물로 2시간 동안 마우스를 회복시켰다. 전신성 저산소증(systemic hypoxia)은 온도-조절 저산소 챔버(BioSpherix, C-474)에서 8% 산소/밸런스 N2에 노출시켜 유도하였다. 이러한 일시적 한쪽 뇌 허혈증(transient unilateral cerebral ischaemia) 모델은 동측 반구(ipsilateral hemisphere)에서 재생가능한 뇌손상을 발생시키나, 대측 반구(contralateral hemisphere)에서는 발생시키지 않는다. TIM-3-억제(blocking) 실험을 위해, H/I 30분 후에 마우스에 100 μg 의 랫(rat) IgG2a, k isotype (eBioscience, 16-4321) 또는 항-TIM-3 모노클로날 항체(eBioscience, RMT-3-23)를 정맥주사하였다. H/I 후 24시간째 마우스를 죽인 후, 뇌를 제거하고 즉시 2-mm-두께 섹션으로 자른 후, TTC와 함께 37℃에서 30분간 배양하였다. 상기 섹션의 이미지들은 카메라가 장착된 입체현미경(Zeiss, Stereo Discovery.V20)으로 관찰하였다. 경색(infarct) 부피는 경색 조직의 부종에 대해 보상하는 간접적인 방식으로 측정하였으며, 반구면적에 대한 손상면적 비율의 백분율로 계산되었으며, 부종으로 인한 반구의 팽윤(swelling)은 보정되었다. 경색 부피의 계산식은 다음과 같다[Swanson, R. A. et al. A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 10, 29093 (1990) 참조]:
경색 부피(Infarct volume) (%)=[(대측성 반구 - 동측성 반구의 건강한 영역)/대측성 반구]×100
<1-3> 자기공명영상 측정(Magnetic resonance imaging assessments)
마우스를 동물침대에 고정시키고 MRI 측정장비(Bruker7T BioSpec) 아래 위치시킨 후 영상측정 동안 마취시킨다. Relaxation Enhancement sequence를 가진 Rapid Acquisition을 이용하여 T2-가중된(weighted) 이미지를 얻었다. 0.7mm의 두께를 가진 18개의 인접 축 슬라이스를 얻었다[matrix 256×256; field of view = 20×20 mm; TR (Repetition Time) = 2,500 ms; TE (Echo Time) = 35 ms; acquisition time = 4분; no gap]. ADC(apparent diffusion coefficient) 맵은 스핀-에코 시퀀스를 이용하여 확산-가중된(diffusion-weighted) 이미지에 의해 얻었다. 이를 위해, 8개의 인접 축 이미지들을 얻었다[thickness 0.7 mm, matrix 256×128, field of view = 20×20 mm, TR = 2,000 ms, TE = 26.936ms, acquisition time = 16 분, 1 average, b values = 45,350, ㎟ 당 1,000 및 2,000 s, no gap]. ADC 맵은 스캐너로 얻었다. 부종 부피는 T2-가중된 이미지로부터 얻었으며 ADC 맵은 Image J analyser로 얻었다. 부종 부피(Oedema volume) (%) = [(동측성 부피 - 대측성 부피)/대측성 부피]×100.
<1-4> 마우스 뇌 조직으로부터 미세아교세포(microglia) 및 성상세포(astrocytes)의 분리
공지의 방법에 따라 뇌 조직으로부터 미세아교세포를 분리하였다[Frank, M. G.,Wieseler-Frank, J. L., Watkins, L. R. & Maier, S. F. Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J. Neurosci. Methods 151, 12130 (2006)]. 간략히 설명하면, 관류된(perfused) 마우스로부터 뇌를 제거하고, 동측성(ipsilateral) 및 대측성(contralateral) 반구로 나눈 후, 갈고 250 ㎍
Figure 112015092230129-pat00003
의 collagenase IV/DNase I을 처리한 뒤 37℃에서 45분간 배양하여 분해하였다. 그 세포 분해 산물을 50/70% Percoll 농도구배(gradients)에서 1,000 g로 25분간 분획하였다. 50 및 70% 밴드 사이의 경계면에서 미세아교세포를 모으고 HBSS (hanks’ balanced salt solutions)로 세척하였다(Welgene). 분리된 미세아교세포의 순도는 FACS 분석으로 측정하였다. 공지의 방법에 따라 성상세포를 분리하였다[Weinstein, D. Isolation and purification of primary rodent astrocytes. Curr. Protoc. Neurosci. Chapter 3, Unit 35 (2001)]. 간략히 설명하면, 뇌 조직으로부터의 세포 서스펜션(suspensions)을 30/60% Percoll 농도구배(gradients)에서 1,000 g로 25분간 분획하였다. PBS/30% 경계면에서 성상세포를 수집하였다. 분리된 성상세포의 순도는 항-GFAP 항체를 이용한 FACS 분석으로 측정하였다(Cell Signaling Technology, #3670, 1:500).
<1-5> 신경교세포 및 뉴런-강화(enriched) 중뇌 배양
1- 내지 3-일된 마우스의 대뇌 피질로부터 마우스 1차 혼합 신경교세포(primary mixed glial cells)를 배양하였다[Chang, C. Y. et al. Dual functionality of myeloperoxidase in rotenone-exposed brain-resident immune cells. Am. J. Pathol. 179, 96479 (2011)]. 항-CD11b 항체를 사용한 FACS 분석에 의해 쥐의 혼합 신경교세포 배양에서 미세아교세포의 비율은 30.50%로 측정되었다(eBioscience, 11-0112, 5 ㎍
Figure 112015092230129-pat00004
). 14 배아일(embryonic day)의 마우스로부터 뉴런-강화(enriched) 중뇌 세포를 배양하였다[Chang, C. Y. et al. Dual functionality of myeloperoxidase in rotenone-exposed brain-resident immune cells. Am. J. Pathol. 179, 96479 (2011)]. 간략히 설명하면, 배 쪽 중뇌 조직(ventral mesencephalic tissues)을 절개하고, CMF-HBSS (Ca2+, Mg2+-free HBSS)에서 10분간 배양하고, CMF-HBSS 내 0.01% 트립신(trypsin)에서 9분간 37℃로 배양하였다. 배양물을 10% 소 태아 혈청, 6 mg
Figure 112015092230129-pat00005
글루코스, 204 mg
Figure 112015092230129-pat00006
L-글루타민 및 트립신 저해를 위한 100 U
Figure 112015092230129-pat00007
페니실린/스트렙토마이신(P/S)을 첨가한 DMEM (Dulbecco’s modified eagle’s medium)에서 두 번 세척한 후 분쇄하여 단일 세포로 분리시켰다. 세포들을 폴리-D-라이신(5mg
Figure 112015092230129-pat00008
) 및 라미닌(laminin)(0.2 mg
Figure 112015092230129-pat00009
) 코팅 플레이트에 분주하였다(웰 당 2 ×106 세포).
<1-6> 아데노바이러스 형질도입(Adenoviral transduction)
Cre 재조합효소 유전자가 사이토메갈로바이러스 프로모터의 조절 하에 발현되는 비증식성 아데노바이러스(AD-GFP/Cre)를 Vector Biolabs로부터 구입하였다. 리포터 Ad-GFP를 대조군으로 사용하였다(Vector Biolabs). 아데노바이러스 형질도입을 위하여, 1차 혼합 신경교세포를
Figure 112015092230129-pat00010
마우스로부터 배양하고, Ad-GFP 또는 Ad-GFP/Cre로 24시간 동안 감염시켰다[MOI(multiplicity of infection)=100]. 유세포분석으로 측정된 감염 효율(infection efficiency)은 약 50%였다.
<1-7> ChIP 어세이
ChIP 어세이 키트(Upstate Biotechnology)를 사용하여 ChIP 어세이를 수행하였다. 마우스 1차 혼합 신경교세포를 저산소 환경에서 24시간 동안 배양하고, 즉시 1% 포름알데히드/포스페이트-버퍼 식염수(phosphate-buffered saline)로 고정하고, 초음파 처리하여 500- 내지 1,000-bp DNA 단편을 얻었다. 크로마틴(chromatin)을 5 ㎍의 항-HIF-1α(Novus, NB100-134) 또는 토끼 IgG로 면역침전시켰다. 면역침전된 DNA를 TIM-3-프로모터에 특이적인 프로모터 쌍으로 증폭시켰다[F, 5‘-CCTGCTGCTTTGGAATTTGC-3‘ (서열번호 3); 및 R, 5‘-GAGTACTTGGCAGGGGAAATC-3‘ (서열번호 4)].
<1-8> 호중구 이동 측정(Neutrophil migration assay)
FITC-결합된 항-CD11b (eBioscience, 11-0112, 5 ㎍
Figure 112015092230129-pat00011
) 및 PE-결합된 항-Gr-1(Ly6G) (eBioscience, 12-5931, 2 ㎍
Figure 112015092230129-pat00012
)의 결합에 기초하여, FACS Aria system (BD Bioscience)을 사용하여 호중구를 분리하였다. 분류된 호중구들을 트랜스웰(Transwell)의 위쪽 챔버에 마우스 1차 혼합 신경교세포가 분주된 24-웰 플레이트 위에 첨가하였다. 상기 세포들을 1% 또는 20% 산소 조건으로 24시간 동안 배양하였다. 이동(transmigration)은 헤마토사이토미터(haematocytometer) 및 유세포분석기(flow cytometry)를 이용하여 측정하였다.
<1-9> 신경학적 후유증(neurological deficits)의 측정
신경학적 후유증은 신경학적 스코어링 시스템(neurological scoring system)을 사용하여 평가하였다[Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883885 (1994)]. 마우스의 신경학적 점수는 다음과 같다: 0, 정상 운동기능(normal motor function); 1, 꼬리 들어올리기에 의한 대측성 몸체 및 앞다리의 굴절(flexion of contralateral torso and forelimb upon lifting by tail); 2, 대측으로의 회전(circling to the contralateral side when mouse was held by the tail, but normal posture at rest); 3, 휴식기 대측으로의 편향(leaning to contralateral side at rest); 및 4, 자발적 운동능력의 상실(no spontaneous motor activity).
<1-10> 면역조직화학(immunohistochemistry)
면역조직화학을 위해 뇌를 제거하고 파라핀에 고정 및 포매하였다. 마이크로톰(microtome)을 사용하여 경색 부위를 통해 관상부(coronal sections)(10-mm 두께)를 자르고 슬라이드에 마운트하였다. 파라핀을 제거하고, 섹션을 PBS-T로 세척하고 10% 소 혈청 알부민에서 2시간 동안 블로킹하였다. 그 후 다음 1차 항체들을 적용하였다: goat anti-TIM-3 (Santa Cruz Biotechnology, sc-30326, 2 ㎍
Figure 112015092230129-pat00013
), rat anti-Gr-1(Ly6G) (eBioscience, MPO (Dako, A0398, 10 ㎍
Figure 112015092230129-pat00014
), rabbit anti-Iba-1 (Wako, #019-19741, 2 ㎍
Figure 112015092230129-pat00015
), rabbit anti-cleaved caspase-3 (Cell Signaling Technology, #9662S, 1:300), mouse anti-NeuN (Millipore, #MAB377, 10 ㎍
Figure 112015092230129-pat00016
). 피모니다졸(pimonidazole) (Hypoxyprobe-1, Natural Pharmacia International)을 사용하여 저산소 영역을 검출하였다[Blouw, B. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4, 13346 (2003)]. 공초점 현미경(Carl Zeiss LSM510)을 사용하여 이미지를 얻었다. 1차 신경교세포에서 TIM-3 발현의 측정을 위해, 마우스 1차 혼합 신경교세포를 메탄올로 고정하고, PBS-T로 세척하고, 항-TIM-3 항체(R&D Systems, AF1529, 1 ㎍
Figure 112015092230129-pat00017
)로 4 ℃에서 배양하였다.
<1-11> TIM-3 프로모터 어세이
게놈 DNA로부터 마우스 TIM-3 프로모터의 1,517-bp 단편(시작 코돈에 대해 -1,517 부터 +1)을 PCR-증폭하고, PGL3 basic vector (Promega)에 클로닝하였다. 돌연변이 프라이머 및 Phusion High-Fidelity DNA 중합효소(NEB)를 사용하여 각각의 HRE의 부위 특이적 돌연변이(site-directed mutagenesis)를 수행하였다. 모든 제작물(constructs)은 DNA 시퀀싱으로 확인하였다. Lipofectamine 2000 (Invitrogen)을 사용하여 마우스 1차 혼합 신경교세포(primary mixed glial cells)를 트랜스펙션시켰다. 트랜스펙션 후에, 세포들을 1% 또는 20% 산소 조건으로 24시간 동안 배양하고, luciferase assay system (Promega)으로 리포터 유전자 활성을 측정하였다. 트랜스펙션 효율의 표준화(normalization)를 위해 베타-갈락토시다제(β-Galactosidase) 활성을 측정하였다.
<1-12> 웨스턴 블랏 분석
H/I 마우스의 우측 및 좌측 반구를 절개하고, 프로테아제 저해제(protease inhibitors)[2mM phenylmethylsulphonyl fluoride, 100 ㎍
Figure 112015092230129-pat00018
leupeptin, 10 ㎍
Figure 112015092230129-pat00019
pepstatin, 1㎍
Figure 112015092230129-pat00020
aprotinin 및 2mM EDTA]를 함유한 얼음 냉각한 RIPA 버퍼에서 pellet pestle (Fisher)로 균질화하였다. 균질화물을 4℃에서 12,000 rpm으로 30분간 원심분리하고, 상층액을 수거하였다. 샘플들을 SDS폴리아크릴아미드 젤 전기영동법으로 분리하고, 니트로셀룰로스 막(nitrocellulose membranes)으로 옮기고, 다음 1차 항체들과 함께 배양하였다: goat anti-TIM-3 (R&D Systems, AF1529, 0.1 ㎍
Figure 112015092230129-pat00021
), mouse anti-PARP (Zymed, 33-3100, 2 ㎍
Figure 112015092230129-pat00022
), rabbit anti-MPO (Dako, A0398, 2 ㎍
Figure 112015092230129-pat00023
), goat anti-Iba-1 (Abcam, ab5076, 0.5 ㎍
Figure 112015092230129-pat00024
), mouse anti-GFAP (Cell Signaling Technology, #3670, 1:1,000), mouse anti-NeuN (Millipore, #MAB377, 1 ㎍
Figure 112015092230129-pat00025
), mouse anti-α-tubulin (Sigma, T5168, 1:5,000), microtubule-associated protein 2 (Millipore, #MAB3418, 1 ㎍
Figure 112015092230129-pat00026
), glutamate decarboxylase (Abcam, ab11070, 1 ㎍
Figure 112015092230129-pat00027
), peroxidase-conjugated goat anti-rabbit (Bio-Rad, #170-6515, 1:5,000), peroxidase-conjugated rabbit anti-goat (Zymed, R-21459, 1:5,000), peroxidase-conjugated goat anti-mouse (Bio-Rad, #170-6516, 1:5,000). 결과는 증가된 화학발광 시스템(enhanced chemiluminescence system)을 사용하여 시각화하였고, 농도계(densitometric analysis) (Image J software, NIH)로 정량하였다. 모든 실험들은 독립적으로 적어도 3반복으로 수행되었다.
<1-13> RTPCR 분석
Easy-Blue (iNtRON)를 사용하여 총 RNA를 분리하고, avian myeloblastosis virus reverse transcriptase (TaKaRa)를 제조사의 설명에 따라 사용하여 cDNA를 합성하였다. 2530 사이클의 연속반응으로 PCR을 수행하였다. 모든 실험들은 독립적으로 적어도 3반복으로 수행되었고, PCR 산물들은 NIH Image J를 사용하여 정량하고 액틴에 대해 표준화하였다. QuantiFast SYBR Green PCR kit (Qiagen)를 사용하여 real-time PCR을 수행하였다. Roche LightCycler 480 Real-Time PCR System (Roche Applied Science) 및 LigthCycler 480 Quantification Software Version 1.5를 사용하여 real-time PCR을 수행 및 분석하였다.
정량적(quantitative) PCR에 사용된 프라이머들은 다음과 같다:
IL-1β에 대해 (forward) 5’-GGATGAGGACATGAGCACCT-3’(서열번호 5) 및 (reverse) 5’-TCCATTGAGGTGGAGAGCTT-3’(서열번호 6);
CXCL1에 대해 (forward) 5’-TGCACCCAAACCGAAGTCAT-3’(서열번호 7) 및 (reverse) 5’-TTGTCAGAAGCCAGCGTTCAC-3’(서열번호 8);
HIF-1α에 대해 (forward) 5’-CTCATCAGTTGCCACTTCC-3’(서열번호 9) 및 (reverse) 5’-TCATCTTCACTGTCTAGACCAC-3’ (서열번호 10);
GAPDH에 대해 (forward) 5’-TGTCGTGGAGTCTACTGGTGTCTTC-3’ (서열번호 11) 및 (reverse) 5’-CGTGGTTCACACCCATCACAA-3’ (서열번호 12).
기타 사용된 PCR 프라이머 서열은 다음과 같다:
TIM-3에 대해 (forward) 5’-CCCTGCAGTTACACTCTACC-3’ (서열번호 13) 및 (reverse) 5’-GTATCCTGCAGCAGTAGGTC-3’ (서열번호 14);
HIF1α에 대해 (forward) 5’-AGCCTTAACCTGTCTGCCACTT-3’(서열번호 15) 및 (reverse) 5’-GAAATCATTTAACATTGCATATATACTAGAACAT-3’ (서열번호 16);
MPO에 대해 (forward) 5’-AGGATAGGACTGGATTTGCCTG-3’ (서열번호 17) 및 (reverse) 5’-GTGGTGATGCCAGTGTTGTCA-3’ (서열번호 18);
IL-1β에 대해 (forward) 5’-TACAGGCTCCGAGATGAACAACAA-3’ (서열번호 19) 및 (reverse) 5’-TGGGGAAGGCATTAGAAACAGTCC-3’(서열번호 20);
CXCL1에 대해 (forward) 5’-CGCTCGCTTCTCTGTGCAGC-3’ (서열번호 21) 및 (reverse) 5’-GTGGCTATGACTTCGGTTTGG-3’(서열번호 22);
Actin에 대해 (forward) 5’-CATGTTTGAGACCTTCAACACCCC-3’ (서열번호 23) 및 (reverse) 5’-GCCATCTCCTGCTCGAAGTCTAG-3’(서열번호 24).
<1-14> 유세포분석(Flow cytometry)
모든 염색 단계는 어둠 속에서 수행되었고 BD Fc Block으로 차단되었다. 새로 얻은 미세아교세포 및 성상세포를 다음 항체들로 염색하였다: rabbit anti-Iba-1 (Wako, #019-19741, 1 ㎍
Figure 112015092230129-pat00028
) 후에 Alexa 488-conjugated chick anti-rabbit (Invitrogen, A21441, 2 ㎍
Figure 112015092230129-pat00029
), 및 PE-conjugated anti-mouse TIM-3 (eBioscience, RMT-3-23, 2 ㎍
Figure 112015092230129-pat00030
) 또는 isotype control Ab (eBioscience, 2 ㎍
Figure 112015092230129-pat00031
)로 4℃에서 30분간. GFAP의 세포내 염색을 위해, IC fixation/permeabilization 버퍼(eBioscience)를 사용하여 세포들을 20분간 고정 및 투과화하고, 투과화(permeabilization) 버퍼로 두 번 세척하고, 항-GFAP (Cell Signaling Technology, #3672, 1:500)와 함께 투과화 버퍼에서 30분간 배양하고, Alexa 488-conjugated chick anti-mouse (Invitrogen, A21200, 2 ㎍
Figure 112015092230129-pat00032
)로 염색하였다. 데이터는 Cell-Quest software (BD Bioscience) 및 FlowJo software (Treestar) 패키지로 분석하였다.
<1-15> 렌티바이러스 생산 및 정위 주사(stereotaxic injection)
TIM-3 (GE Dharmacon)의 코딩 서열을 PLL3.7.EF1α 플라스미드(Addgene, Inc.)에 접합시켜 PLL3.7.EF1α-TIM3를 제작하였다. 상기 플라스미드를 사용하여 재조합 렌티바이러스 LV-TIM3-GFP를 제작하였다. 대조군으로 GFP만을 발현하는 렌티바이러스 벡터(LV-GFP)를 만들었다. 렌티바이러스를 유세포분석기를 사용하여 적정하였다[Kutner, R. H., Zhang, X. Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 49505 (2009)]. 뇌 고정장치(stereotaxic instrument)를 이용하여 LV-TIM3-GFP 또는 LV-GFP를 주사하였다. 각각의 마우스는 4번의 렌티바이러스(5×
Figure 112015092230129-pat00033
TU
Figure 112015092230129-pat00034
를 함유한 20 ㎕를 우측 반구로) 두개주사(intracranial injections)를 맞았다. 시험관내(in vitro) 형광 이미징을 위해, 수집된 세포를 FACS 및 항-GFP 항체(Santacruz, sc-9996, 1:1,000)를 사용한 웨스턴 블랏팅으로 분석하였다. Caliper Life Science’s Xenogen IVIS Spectrum을 사용하여 전체 몸의 생체내(in vivo) 이미징을 수행하였다[여기(excitation) 필터에서 445부터 490 nm, 방출(emission) 필터에서 515부터 575 nm에서 조사].
<1-16> 데이터 분석
모든 데이터는 평균±s.d로 표시하였다. SigmaPlot 10.0을 사용하여 Post-hoc comparisons (StudentNewmanKeuls test)를 수행하였다. 신경학적 점수(neurological scores)는 비모수적(nonparametric) 통계처리로 평가하였다. 두 그룹들(IgG vs anti-TIM-3,
Figure 112015092230129-pat00035
마우스 vs LysM-
Figure 112015092230129-pat00036
마우스, LV-GFP 주사 LysM-
Figure 112015092230129-pat00037
마우스 vs LV-TIM3-GFP 주사 LysM-
Figure 112015092230129-pat00038
) 간의 비교는 Mannhitney U-tests로 분석하였다.
<실시예 2>
저산소 반음영(hypoxic penumbra)에서의 TIM-3 발현의 증가
허혈성 뇌손상과 염증 사이의 상호의존적 관련성의 기초가 되는 분자적 기작을 알아보기 위하여, 본 발명자들은 뇌의 저산소 허혈증(cerebral hypoxia-ischaemia, H/I)에 따른 병태생리학적 염증 반응에 주된 역할을 할 수 있는 후보 분자들을 조사하였다. 이를 위해 우측 경동맥의 한쪽 접합(unilateral ligation) 후 전신적 저산소증(systemic hypoxia)을 유발한 일시적 한쪽 뇌 허혈증(transient unilateral cerebral ischaemia) 마우스 모델을 이용하였다[Zhang, L. et al. Estrogen stimulates microglia and brain recovery from hypoxia-ischemia in normoglycemic but not diabetic female mice. J. Clin. Invest. 113, 8595 (2004)]. H/I 24시간 후에 대측성(contralateral) 및 반음영(penumbral) 피질 영역으로부터 조직을 얻은 후 다양한 염증 관련 분자들의 발현 수준을 RNA 및 단백질 수준에서 조사하였다. 그 결과 동측성 반음영(ipsilateral penumbra)에서 TIM-3 (T-cell immunoglobulin and mucin domain-3)의 전사 수준이 대측성 영역(contralateral regions)에서보다 훨씬 높게 증가한 것을 발견하였다. 또한, 동측성 반음영(ipsilateral penumbra)에서 TIM-3 단백질 역시 대측성 영역에서보다 증가한 것을 확인하였다(도 1a,b). 위 동측성 반음영 영역은 저산소 하에서 양성 대조군(positive control)인 HIF-1의 전사체 및 단백질 수준이 높은 것으로 보고되었다[Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 2151321518 (1993); 및 Bergeron, M., Yu, A. Y., Solway, K. E., Semenza, G. L. & Sharp, F. R. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11, 41594170 (1999)].
위 결과를 확증하기 위하여, TIM-3에 대한 항체를 이용하여 H/I 마우스의 관상면(coronal sections)에 면역조직화학법을 수행하였다[Williams, R. The Mouse Brain Library http://www.mbl.org/atlas165/atlas165_start (1999); 및 Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Elsevier/Academic Press, 2008)]. 그 결과, 상기 결과와 일치하게, 동측성 반음영에서 TIM-3-양성 세포가 상당히 증가한 것을 확인할 수 있었다(도 1c). 추가로 저산소증 마커인 피모니다졸(pimonidazole) (hypoxyprobe-1)을 이용하여, H/I 마우스의 hypoxyprobe-1 염색된 저산소 반음영에서 TIM-3가 높게 발현된 것을 확인하였다(도 1d).
이러한 결과들은 TIM-3 발현이 저산소 반음영에서 상향조절된다는 것을 보여주며, TIM-3가 뇌 허혈에 따른 병태생리학적 변화에 어떤 역할을 할 수 있음을 시사한다.
<실시예 3>
저산소 환경의 신경교세포에서 TIM-3 발현의 상향조절
본 발명자들은 H/I 후에 어떤 세포가 TIM-3의 상향조절(upregulation)을 나타내는지를 조사하였다. 웨스턴 블랏 분석 결과, H/I 24시간 후에 H/I 마우스의 동측성 피질에서, 활성화된 미세아교세포 마커인 Iba-1 (ionized calciumbinding adaptor molecule-1) 및 활성화된 성상교세포 마커인 GFAP (glial fibrillary acidic protein)의 단백질 발현 수준이 대측성 피질에서보다 더 높았다. 반면에 NeuN (neuronal nuclei), 마이크로튜뷸-연관 단백질 2(microtubule-associated protein 2) 및 글루타메이트 디카르복실레이즈(glutamate decarboxylase)와 같은 뉴런 세포 마커들의 발현 수준은 반음영 피질 조직(penumbral cortex tissues)에서 감소하였다.
따라서 본 발명자들은 H/I 24시간 후에 미세아교세포(microglia) 및 성상교세포(astrocytes)에서 TIM-3의 발현 수준을 조사하였다. 면역조직화학 결과, H/I 마우스의 동측성 피질에서 TIM-3-발현 세포의 많은 영역은 Iba-1 양성으로 나타났다. 또한, 동측성 피질의 GFAP-면역활성(immunoreactive) 성상교세포에서 TIM-3의 강한 발현도 관찰되었다. 추가로, H/I 마우스로부터 분리한 뇌 세포의 FACS (Fluorescence-activated cell sorting) 분석 결과, 저산소-허혈증(hypoxia-ischaemia)은 미세아교세포 및 성상교세포의 활성을 초래하였고, 이는 증가된 TIM-3 발현을 나타낸다. 높은 수준의 Iba-1을 발현하는 미세아교세포 및 높은 수준의 GFAP를 발현하는 성상교세포는 H/I 24시간 후에 동측성 반음영(ipsilateral penumbra)에서 상당히 증가하였으며, 이는 미세아교세포 및 성상교세포가 저산소 환경에서 활성화되었다는 것을 의미한다. 또한, TIM-3 발현은, 동측성 피질로부터 분리한 Iba-1-양성 미세아교세포 및 GFAP-양성 성상교세포에서, 대측성 영역에서 분리한 것보다, 유의미한 수준으로 높게 나타났다(도 1e,f).
이러한 결과들은 저산소 하에서 활성화된 미세아교세포 및 성상교세포에서 TIM-3 발현이 상당히 증가한다는 사실을 뒷받침한다.
<실시예 4>
저산소 환경에서 TIM-3의 HIF-1-의존적 증가
상기 실험결과들을 바탕으로 본 발명자들은 신경교세포(glial cell)에서 TIM-3의 발현이 산소 분압(oxygen tension)에 의해 변경될 수 있는지 여부를, BV2 미세아교세포 및 1차 배양된 신경교세포를 사용하여 실험하였다. BV2 세포는 정상산소(normoxic) (20% O2) 또는 저산소(hypoxic) (1% O2) 조건에서 24시간 동안 배양하였으며, TIM-3의 세포 표면 수준은 FACS 분석으로 측정하였다. 흥미롭게도, TIM-3 발현은 저산소 조건에서 상당히 증가하였다(도 2a). 면역세포화학(immunocytochemistry) 분석 결과 역시 마우스 1차 혼합 신경교세포(primary mixed glial cells)에서 TIM-3 발현이 정상산소(normoxic) 환경에 비해 저산소(hypoxic) 환경에서 상당히 증가한다는 것을 보여주었다(도 2b). 또한, 본 발명자들은 저산소 환경에서 TIM-3의 전사 수준이 1차 혼합 신경교세포에서는 증가한 반면, 1차 뉴런 세포(primary neuronal cells)에서는 증가하지 않음을 확인하였다(도 2c,d). 이러한 결과들은 신경교세포에서 저산소증이 TIM-3 발현을 유도한다는 것을 보여준다.
HIF-1은 저산소 환경에서 여러 유전자들의 주된 전사 조절인자이다. 신경교세포에서 저산소에 의해 자극받은 TIM-3의 상향조절이 HIF-1에 의해 매개되는지 알아보기 위하여, 본 발명자들은 항-HIF-1α 항체 및 잠재적 HRE 컨센서스 서열(HIF-responsive element (HRE) consensus sequences)을 포함하는 TIM-3 프로모터 영역(elements)을 이용하여 ChIP 어세이(chromatin immunoprecipitation assay)를 수행하였다. 도 2e에 나타낸 바와 같이, 저산소 환경의 1차 혼합 신경교세포(primary mixed glial cell)에서 HIF-1α는 HRE-포함 TIM-3 프로모터 영역에 결합할 수 있었다. 추가로, 위 결과를 확인하기 위해 본 발명자들은 HIF-1α-결핍 신경교세포에서 TIM-3 프로모터의 활성을 조사하였다.
Figure 112015092230129-pat00039
마우스로부터 1차 혼합 신경교세포를 배양한 후, 아데노바이러스-Cre/GFP (Ad-Cre/GFP) 또는 대조군 GFP (녹색 형광 단백질(GFP)을 암호화하는 아데노바이러스(Ad-GFP))로 감염시켰다. FACS를 이용하여 바이러스 감염의 효율을 확인하고, 세포들을 TIM-3 루시퍼라제 리포터(- 1,517/+ 1)로 트랜스펙션시킨 후, TIM-3 프로모터 활성을 측정하였다. 예상대로, 저산소 환경에서 TIM-3 프로모터 활성은 대조군 Ad-GFP-감염된 신경교세포(
Figure 112015092230129-pat00040
)에서는 상당히 증가하였으나, Ad-Cre/GFP-감염된, HIF-1α-결핍 신경교세포(
Figure 112015092230129-pat00041
)에서는 상당히 감소하였다(도 2f). TIM-3 프로모터의 잠재적 HREs의 부위 특이적 돌연변이(site-directed mutagenesis)는 루시퍼라제 활성의 저산소-의존적 증가를 야생형 리포터에 비해 상당히 감소시켰다. 또한, Ad-Cre/GFP-감염된 HIF-1α-결핍 신경교세포에서 TIM-3 전사체 및 단백질의 저산소-자극에 의한 증가는 상당히 억제되었다(도 2g,h).
이러한 결과들은 저산소 환경에서 TIM-3의 발현이 HIF-1-의존적 방식으로 조절된다는 것을 보여준다.
<실시예 5>
마우스 H/I 모델에서 TIM-3 억제에 의한 뇌손상의 감소
H/I 마우스 모델의 신경교세포에서 TIM-3가 상향조절되었으므로, 본 발명자들은 대뇌(cerebral) H/I 후 뇌에서 저산소-유도된 TIM-3의 역할을 조사하였다. 이를 위해, H/I 24시간 후에 TIM-3-억제 항체가 뇌손상에 미치는 영향을 TTC (2,3,5-triphenyltetrazolium) 염색을 이용하여 조사하였다. 도 3a에 나타낸 바와 같이, 대조군 IgG-주사 마우스에 비하여 100 μg의 TIM-3-억제 항체를 정맥주사한 마우스에서 TTC-음성 영역이 상당히 감소한 것을 확인할 수 있었다. 이러한 결과는 저산소 환경에서 TIM-3-억제 항체가 뇌손상을 감소시킬 수 있음을 보여준다.
뇌경색의 생명을 위협하는 결과인 부종은 염증과 허혈성 뇌손상에 수반되어 나타난다[Gerriets, T. et al. Noninvasive quantification of brain edema and the spaceoccupying effect in rat stroke models using magnetic resonance imaging. Stroke 35, 566571 (2004)]. 따라서 본 발명자들은 TIM-3-억제가 H/I에 따른 부종의 형성에 미치는 영향을 조사하였다. 경색(infarct) 영역과 부종 형성을 관찰하기 위하여, H/I 1일부터 7일까지 T2-가중(weighted) 자기공명 영상을 얻었다. TTC 염색으로부터 얻은 결과와 유사하게, H/I 1일째 TIM-3-항체-주입 마우스의 동측성 반구(ipsilateral hemispheres)에서 경색과 부종 형성은 IgG-주입 마우스에 비해 상당히 감소하였으며(도 3bd), 이러한 부종 형성과 경색의 감소는 3, 5 및 7일째에도 지속되었다(도 3c,d).
H/I 후 뇌손상과 TIM-3의 관련성을 추가로 조사하기 위하여, TIM-3-억제 항체가 뉴런 세포 사멸에 미치는 영향을, 뇌 허혈증에 중요한 역할을 하는 세포 사멸 이펙터 프로테아제(cell death effector protease)인 카스파제(caspase)-3의 발현을 측정함으로써 조사하였다[Le, D. A. et al. Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc. Natl Acad. Sci. USA 99, 1518815193 (2002); 및 Broughton, B. R., Reutens, D. C. & Sobey, C. G. Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331e339 (2009)]. 면역조직화학 결과, IgG-처리 H/I 마우스의 동측성 피질 영역의 뉴런 세포에서 카스파제-3의 발현은 상당히 증가한 반면, TIM-3 억제 항체 처리 마우스에서 이러한 증가는 상당히 감소하였다(도 3e). 다음으로, 대조군 IgG 또는 TIM-3-억제 항체를 처리한 H/I 마우스의 동측성 및 대측성 피질에서, 카스파제-3에 의해 절단되는 카스파제-3 활성의 마커이며 허혈성 세포 사멸과 관련이 있는 PARP (poly (ADP-ribose) polymerase)의 수준을 측정하였다[Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 31 (2010)]. 도 3f에 나타낸 바와 같이, 대조군 IgG-주사 H/I 마우스의 동측성 피질 조직에서 전장 PARP의 발현은 상당히 감소하였으나, TIM-3-억제 항체-주사 H/I 마우스에서는 감소하지 않았다.
이러한 결과들은 TIM-3의 억제가 마우스에서 뇌 허혈증 후의 경색 부위와 뉴런 세포 사멸을 상당히 감소시킬 수 있음을 보여준다.
<실시예 6>
TIM-3 억제에 의한 호중구(neutrophil) 침윤의 감소
여러 연구들에 따르면, 호중구는 허혈성 뇌로 몇 시간 안에 빠르게 침윤되어, 염증반응과 뇌손상 발생에 관여한다[McColl, B. W., Rothwell, N. J. & Allan, S. M. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophildependent mechanisms. J. Neurosci. 27, 4403.4412 (2007); 및 Chen, H. et al. Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann. Neurol. 35, 458.463 (1994)]. 신경교세포는 허혈증 발생 후 수 분 안에 관련된 활성을 나타내는 뇌손상에 1차적으로 반응하는 세포들 중 하나이므로, 본 발명자들은 신경교세포에서 TIM-3의 HIF-1-의존적 증가가 호중구의 허혈 반음영(ischaemic penumbra)으로의 침윤에 영향을 미치며, TIM-3가 호중구를 끌어모으는 능력의 하향조절(downregulation)은 뇌 허혈 후의 뇌손상을 감소시킬 수 있을 것이라는 가설을 세웠다. 이에 따라 먼저 대표적인 두 개의 호중구 마커인 MPO (myeloperoxidase) 및 Gr-1 (granulocyte receptor-1)의 발현을 측정하고, H/I 후 24시간째 대측성 영역에 비하여 반음영 피질(penumbral cortex) 및 선조체(striatum)에서 상기 마커들에 양성인 세포들(
Figure 112015092230129-pat00042
Figure 112015092230129-pat00043
)이 크게 증가하는 것을 확인하였다. 다음으로, 본 발명자들은 신경교세포(glial cells)가 저산소 환경에서
Figure 112015092230129-pat00044
Figure 112015092230129-pat00045
호중구를 모을 수 있는지를 조사하였다. C57BL/6 마우스로부터 지라세포(splenocytes)를 분리하고, 1차 혼합 신경교세포 또는 면역세포를 손상부위로 모으는 것으로 알려진 쥐 배아섬유아세포(murine embryonic fibroblast) 대조군 세포를 포함하거나 포함하지 않은 트랜스웰(Transwell) 시스템에서, 1 또는 20% 산소 조건으로 24시간 동안 배양하였다[Kobayashi, S. D., Voyich, J. M., Burlak, C. & DeLeo, F. R. Neutrophils in the innate immune response. Arch. Immunol. Ther. Exp. (Warsz). 53, 505517 (2005)]. 신경교세포 또는 쥐 배아섬유아세포의 존재 하에,
Figure 112015092230129-pat00046
Figure 112015092230129-pat00047
세포들은 저산소 환경에서는 아래쪽 챔버로 상당히 많이 이동하였으나, 정상(normoxic) 환경에서는 몇 개의 세포만이 이동하였다. 하지만 이러한
Figure 112015092230129-pat00048
Figure 112015092230129-pat00049
세포 이동의 저산소-의존적 증가는 신경교세포가 없는 상태에서는 상당히 감소하였다. 이러한 결과들은 신경교세포가 저산소 환경에서
Figure 112015092230129-pat00050
Figure 112015092230129-pat00051
세포들을 모으는데 관여할 수 있음을 시사한다.
다음으로, 본 발명자들은 H/I 후 24시간째 TIM-3-억제가 호중구의 동측성 반구(ipsilateral hemispheres)로의 침윤에 미치는 효과를 실험하였다. H/I 마우스의 피질 조직에 대한 역전사PCR (RTPCR) 및 웨스턴 블랏 분석 결과는, 대조군 IgG-처리 마우스에 비해 TIM-3-억제 항체-처리 마우스에서 MPO 발현 수준이 상당히 감소한다는 것을 보여주었다(도 4a,b). 동측성 피질의 관상면(coronal section)에 대한 면역조질화학 실험 결과 역시 TIM-3-억제 항체 처리에 의해
Figure 112015092230129-pat00052
Figure 112015092230129-pat00053
세포들이 상당히 감소한다는 것을 보여준다(도 4c). 이러한 결과들은 항-호중구 및 항-MPO 항체들을 사용한 면역조직화학 실험에 의해서도 확인되었다. 또한, H/I 뇌 (bregma - 2부터 +2)의 여러 동측성 영역의 관상면을 사용하여, TIM-3 억제가 호중구 침윤에 미치는 영향을 여러 시점에서 측정하였다. 도 4d,e에 나타낸 바와 같이, 모든 관찰 시점(1~7일)에서 TIM-3를 억제시킨 마우스의 반음영 피질 및 선조체(striatum)에서 더 적은 수의
Figure 112015092230129-pat00054
Figure 112015092230129-pat00055
세포들이 관찰되었다.
위 결과들은 저산소 환경에서 TIM-3 가 호중구의 손상된 뇌로의 침윤과 관련되어 있음을 강하게 시사한다.
<실시예 7>
TIM-3 차단에 따른 호중구 동원(recruitment)의 감소
교세포 TIM-3가 호중구 이동에 미치는 영향을 좀 더 특이적으로 측정하기 위하여, 저산소 환경에서 교세포가 호중구를 동원하는 능력이 TIM-3 차단에 의해 영향을 받는지 여부를 조사하였다. 트랜스웰(Transwell) 시스템을 이용하여, 1차 교세포(primary glial cells)를 아래쪽 챔버에 플레이팅하고, TIM-3-억제 항체 또는 대조군 IgG로 전처리한 뒤 위쪽 챔버에 지라세포(splenocytes)를 로딩하였다. 1% 산소 조건에서 24시간 동안 세포들을 배양하고, 아래쪽 챔버에 있는
Figure 112015092230129-pat00056
Figure 112015092230129-pat00057
세포들의 비율을 FACS 분석으로 측정하였다. 그 결과 저산소 환경에서 아래쪽 챔버에 있는
Figure 112015092230129-pat00058
Figure 112015092230129-pat00059
세포들이, 대조군 IgG에 비하여, 10 mg TIM-3-억제 항체에 의해 상당히 감소한 것을 확인하였다(도 5a).
상기 결과를 추가로 검증하기 위하여, 저산소 환경에서 골수(BM)-유래
Figure 112015092230129-pat00060
Figure 112015092230129-pat00061
세포의 이동을 조사하였다.
Figure 112015092230129-pat00062
Figure 112015092230129-pat00063
세포를 BM 세포들로부터 분리하여 위쪽 챔버에 플레이팅하고, 아래쪽 챔버에는 1% 산소 조건에서 TIM-3-억제 항체 또는 대조군 IgG-처리된 1차 혼합 신경교세포(primary mixed glial cells)를 로딩하였다. 상기 결과와 일치하게, BM-유래
Figure 112015092230129-pat00064
Figure 112015092230129-pat00065
세포의 아래쪽 챔버로의 이동은 대조군 IgG 처리에 비해 TIM-3-억제 항체 처리에 의해 상당히 감소하였다(도 5b). 이러한 결과들은 뇌 허혈 후 저산소 영역으로 호중구가 동원되는데 있어 교세포 TIM-3의 역할을 명확하게 보여준다.
<실시예 8>
TIM-3 억제에 의한 호중구 화학주성인자(chemoattractants)의 감소
호중구의 염증 또는 손상 부위로의 침윤은 화학주성인자(chemoattractants)에 의해 조절되며, 이들은 허혈 후 뇌의 호중구 침윤에 앞서 상향조절된다[Murikinati, S. et al. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 24, 788798 (2010)]. 따라서 본 발명자들은 TIM-3 억제가 허혈 상태의 뇌에서 호중구 화학주성인자로 작용하는 IL-1β 및 CXCL1 수준에 미치는 영향을 조사하였다[Muir, K. W., Tyrrell, P., Sattar, N. & Warburton, E. Inflammation and ischaemic stroke. Curr. Opin. Neurol. 20, 334.342 (2007)]. H/I 후 30분째 마우스들에게 100 mg의 TIM-3-억제 항체 또는 대조군 IgG를 정맥주사하였다. 24시간 후에, 동측성 및 대측성 피질 조직에서 IL-1β 및 CXCL1 전사 수준을 조사하였다. 도 5c,d에 나타낸 바와 같이, 대조군 IgG를 주사한 H/I 마우스의 동측성 피질 영역에서 IL-1β 및 CXCL1의 전사체 수준이 모두 상당히 증가하였으나, 이러한 효과는 TIM-3-억제 항체를 주사한 마우스에서는 상당히 감소되었다.
교세포 TIM-3의 역할을 더 알아보기 위하여, TIM-3 차단이 IL-1β 및 CXCL1 발현 수준에 미치는 영향을 조사하였다. 상기 세포에 TIM-3-억제 항체 또는 대조군 IgG를 처리하고, 1% 산소 또는 20% 산소 조건 하에서 24시간 동안 배양하였다. 상기 결과와 일치하게, 20% 산소 조건에 비하여 1% 산소 조건에서 배양한 IgG-처리 대조군 세포에서 IL-1β 및 CXCL1 전사체의 수준은 증가하였으나, 이러한 증가는 TIM-3-억제 항체를 처리한 세포에서 상당히 감소하였다(도 5e,f).
이러한 결과들은 교세포 TIM-3가 호중구 침윤의 조절을 통하여 뇌 허혈증의 발병에 중요한 역할을 하는 인자임을 보여준다.
<실시예 9>
HIF-1 결핍에 따른 호중구 이동 및 경색(infarct)의 감소
저산소 환경의 신경교세포에서 HIF-1α가 TIM-3의 발현을 조절한다는 발견에 기초하여, 본 발명자들은 HIF-1α가 저산소 환경에서 신경교세포의 호중구 동원 능력에 영향을 미치는지 여부를 조사하였다.
Figure 112015092230129-pat00066
마우스로부터 배양한 1차 혼합 신경교세포를 Ad-GFP 또는 Ad-GFP/Cre로 감염시키고, 트랜스웰(Transwell) 시스템에서 지라세포(splenocytes)와 함께 1% 또는 20% 산소 조건으로 24시간 동안 배양하였다. 저산소 환경에서 아래쪽 챔버의
Figure 112015092230129-pat00067
Figure 112015092230129-pat00068
세포 비율은 지라세포를 Ad-GFP/Cre 감염된 HIF-1α-결핍 신경교세포와 함께 배양하였을 때, 대조군 Ad-GFP-감염 세포에 비해, 상당히 감소하였다. 반면에 20% 산소 조건에서 이동한
Figure 112015092230129-pat00069
Figure 112015092230129-pat00070
세포의 수는 HIF-1α-결핍 및 정상 세포 사이에 큰 차이가 없었다(도 6a). 다음으로 본 발명자들은 이동한 BM-유래
Figure 112015092230129-pat00071
Figure 112015092230129-pat00072
세포의 수가, 1% 산소조건에서 HIF-1α-결핍 신경교세포와 함께 배양함에 따라 상당히 감소한 것을 발견하였다(도 6b). 또한, 대조군 Ad-GFP-감염 세포에 비해, TIM-3의 저산소-의존적 증가가 나타나지 않은 Ad-GFP/Cre-감염된 HIF-1α-결핍 신경교세포에서 IL-1β 및 CXCL1의 저산소-의존적 증가는 상당히 감소하였다(도 6c,d).
미세아교세포(microglia)는 뇌에서 상주 골수세포(resident myeloid cells)가 되는 것으로 알려져 있다[Saijo, K. & Glass, C. K. Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11, 775.787 (2011)]. 교세포 HIF-1α의 역할을 확인하기 위하여, 본 발명자들은 골수세포에서 특이적으로 HIF-1α가 결핍된 LysMCre-
Figure 112015092230129-pat00073
(LysM-
Figure 112015092230129-pat00074
) 마우스에서 H/I 후 뇌 손상의 정도를 조사하였다. 먼저 본 발명자들은 LysM-
Figure 112015092230129-pat00075
마우스의 1차 미세아교세포에서 HIF-1α의 수준을 측정하였다. 도 7a에 나타낸 바와 같이, HIF-1α 전사체 수준은,
Figure 112015092230129-pat00076
에 비해, LysM-
Figure 112015092230129-pat00077
마우스의 미세아교세포에서 상당히 낮았다. H/I 후 24시간째 TIM-3 전사체 수준 역시 LysM-
Figure 112015092230129-pat00078
마우스의 동측 피질 영역에서 더 낮았다(도 7b). 본 발명자들은
Figure 112015092230129-pat00079
마우스에 비해 LysM-
Figure 112015092230129-pat00080
마우스에서 TTC 염색-음성 영역이 상당히 감소한 것을 발견하였으며, 이는 H/I 24시간 후 뇌손상에서 미세아교세포 HIF-1α의 역할을 나타낸다(도 7c).
Figure 112015092230129-pat00081
마우스에 비해 LysM-
Figure 112015092230129-pat00082
마우스의 뉴런 세포에서 카스파제(caspase)-3의 발현 역시 상당히 감소하였다(도 7d). 추가적으로, H/I 24시간 후 LysM-
Figure 112015092230129-pat00083
마우스의 동측성 피질에서 IL-1β 및 CXCL1 발현의 유의미한 증가는 검출되지 않았다.
이러한 결과들은 저산소증에서 HIF-1α가 TIM-3-관련 호중구 침윤 및 이어지는 뇌손상과 밀접한 관련이 있음을 보여준다.
<실시예 10>
TIM-3 차단 및 HIF-1α 결핍이 NDS에 미치는 영향
감소된 경색(infarct) 부피 및 뉴런세포 사멸이 신경 기능 개선과 연관되는지를 알아보기 위하여, 공지의 방법을 사용하여 H/I 모델에서 NDS (neurological deficit score)를 측정하였다[Ren, X. et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556.8563 (2011); 및 Kleinschnitz, C. et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 8, pii: e1000479(2010)]. 신경학적 후유증(neurological deficits)은 대측성 몸통(contralateral torso)과 앞다리의 굴절(flexion), 대측으로의 회전(circling to the contralateral side), 정지기의 대측으로의 편향(leaning to the contralateral side at rest), 및 자발적 운동 활동(spontaneous motor activity)에 의해 측정하였다. H/I에 의한 신경학적 후유증은, IgG-처리 마우스에 비해, TIM-3-억제 항체를 처리한 마우스에서 감소하였다. H/I 20시간 후에, IgG 처리 마우스에 대한 NDS는 2.8±0.8 (±s.d.)이었던 반면, TIM-3-억제 항체 처리 마우스에 대한 NDS는 0.8±0.8 이었다(표 1; P = 0.012; MannWhitney U-test).
Figure 112015092230129-pat00084
이러한 결과들은 TIM-3가 저산소 환경에서 신경기능과 관련이 있다는 것을 보여준다. 다음으로, 본 발명자들은
Figure 112015092230129-pat00085
마우스(n=10) 및 LysM-
Figure 112015092230129-pat00086
마우스(n=11)에 대해 H/I 후 24시간째 NDS를 측정하였다.
Figure 112015092230129-pat00087
마우스에서는 편향(leaning) 행동과 자발적 운동 기능의 부재가 관찰되었으나, LysM-
Figure 112015092230129-pat00088
마우스에서는 관찰되지 않았다. LysM-
Figure 112015092230129-pat00089
마우스에서 평균 NDS는
Figure 112015092230129-pat00090
마우스에서보다 상당히 낮았다(표 2; 1.2±0.6 vs. 2.6±1.1, P = 0.0008).
Figure 112015092230129-pat00091
이러한 결과들은 HIF-1α/TIM-3 축(axis)이 뇌경색 부피 및 병태생리학적 염증반응 뿐만 아니라 신경기능과도 밀접하게 관련되어 있다는 것을 보여준다.
<실시예 11>
HIF-1α-결핍 마우스에서 TIM-3에 의한 신경 손상의 증가
본 발명자들은 TIM-3가 H/I 후에 HIF-1α-결핍 마우스의 형질에 영향을 미칠 수 있는지를 실험하였다. 이를 위해 TIM-3 및 GFP를 발현하는 렌티바이러스 벡터(LV-TIM3-GFP)를 제작하였다. 먼저 렌티바이러스가 신경교세포를 감염시킬 수 있는지를 조사한 후, 렌티바이러스-주사 마우스의 GFP-양성-
Figure 112015092230129-pat00092
Figure 112015092230129-pat00093
신경교세포에서 TIM-3의 발현이 상당히 증가한 것을 관찰하였다. 뇌 고정장치(stereotaxic instrument)를 이용하여 바이러스를 LysM-
Figure 112015092230129-pat00094
마우스의 우측 반구에 주사하였다. 대조군 마우스에는 GFP만을 발현하는 LV-GFP를 주사하였다. 각각의 마우스의 우측 반구에 4번의 두개내 주사(intracranial injection)를 수행하였다(도 8a). H/I는 LysM-
Figure 112015092230129-pat00095
마우스에 LV-TIM3-GFP 또는 LV-GFP를 주사하고 5일 후에 유도하였으며, 경색 크기(infarct size) 및 신경학적 결과들은 24시간 후에 조사하였다. 도 8b,c에 나타낸 바와 같이, 대조군 LV-GFP-주사 마우스(n=6)에 비해, LV-TIM3-GFP 주사 마우스(n=5)에서 TTC-염색-음성 영역이 상당히 증가하였다. 또한, LV-TIM3-GFP를 주사한 LysM-
Figure 112015092230129-pat00096
마우스에 대한 평균 NDS는 LV-GFP-주사 대조군 마우스의 것보다 높았다(도 8d) (1.1±0.7 vs. 2.3±0.8, P=0.046). 이러한 결과들은 저산소 환경에서 HIF-1/TIM-3 축과 뇌손상의 관련성을 다시 한 번 보여주는 결과이다.
<실시예 12>
TIM-3에 대한 shRNA을 이용한 TIM-3 억제 활성 분석
앞서 수행한 실시예들에서의 실험은 TIM-3에 대한 항체를 이용하여 수행하였으며, 나아가 본 발명자들은 TIM-3을 억제할 수 있는 또 다른 방법으로 TIM-3에 대한 shRNA의 사용 가능성을 확인하였다. 이를 위해 먼저 일차배양 교세포(도 10A) 또는V2 미세아교세포(도 10B)에 TIM-3에 대한 shRNA를 발현하는 렌티 바이러스 또는 대조군 렌티 바이러스를 제품 생산회사(Santacruz #sc-72015-V)에서 제공된 설명서를 따라서 세포 내로 감염시켰다. 이후, 감염된 세포들을 24시간 동안 1% 또는 20% 산소 조건에서 배양하고, 역전사 중합효소 연쇄반응 분석법, 면역세포 화학법 및 유세포 분석법을 이용하여 TIM-3 의 발현을 확인하였고, 이러한 실험은 3번의 독립적인 반복실험으로부터 결과를 얻었으며 meanSD로서 보여주었다.
분석결과, 도 10에 나타낸 바와 같이, 본 발명의 실험에서 사용한 TIM-3에 대한 shRNA는 대조군과 비교해볼 때, 효과적으로 Tim-3의 발현을 억제하는 것으로 나타났으며, 또한 저산소 조건에서 TIM-3에 대한 shRNA를 처리한 군의 경우 대조군을 처리한 군에 비해 TIM-3의 발현 증가가 저해되는 것으로 나타났다.
따라서 이러한 결과를 토대로 볼 때, Tim-3의 발현 또는 활성을 저해할 수 있는 Tim-3에 대한 항체 또는 shRNA를 포함하는 Tim-3 저해제들은 TIM-3의 발현 또는 활성을 효과적으로 저해할 수 있는 것으로 나타났고 따라서 이러한 저해제들을 뇌손상 질환의 예방 또는 치료를 위한 제제로 사용할 수 있다는 것을 알 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
<110> National Cancer Center <120> Composition for the treatment of brain injury targeting TIM-3 and screening method thereof <130> PN1508-225 <160> 24 <170> KopatentIn 2.0 <210> 1 <211> 281 <212> PRT <213> Artificial Sequence <220> <223> TIM-3 amino acid sequence <400> 1 Met Phe Ser Gly Leu Thr Leu Asn Cys Val Leu Leu Leu Leu Gln Leu 1 5 10 15 Leu Leu Ala Arg Ser Leu Glu Asn Ala Tyr Val Phe Glu Val Gly Lys 20 25 30 Asn Ala Tyr Leu Pro Cys Ser Tyr Thr Leu Ser Thr Pro Gly Ala Leu 35 40 45 Val Pro Met Cys Trp Gly Lys Gly Phe Cys Pro Trp Ser Gln Cys Thr 50 55 60 Asn Glu Leu Leu Arg Thr Asp Glu Arg Asn Val Thr Tyr Gln Lys Ser 65 70 75 80 Ser Arg Tyr Gln Leu Lys Gly Asp Leu Asn Lys Gly Asp Val Ser Leu 85 90 95 Ile Ile Lys Asn Val Thr Leu Asp Asp His Gly Thr Tyr Cys Cys Arg 100 105 110 Ile Gln Phe Pro Gly Leu Met Asn Asp Lys Lys Leu Glu Leu Lys Leu 115 120 125 Asp Ile Lys Ala Ala Lys Val Thr Pro Ala Gln Thr Ala His Gly Asp 130 135 140 Ser Thr Thr Ala Ser Pro Arg Thr Leu Thr Thr Glu Arg Asn Gly Ser 145 150 155 160 Glu Thr Gln Thr Leu Val Thr Leu His Asn Asn Asn Gly Thr Lys Ile 165 170 175 Ser Thr Trp Ala Asp Glu Ile Lys Asp Ser Gly Glu Thr Ile Arg Thr 180 185 190 Ala Ile His Ile Gly Val Gly Val Ser Ala Gly Leu Thr Leu Ala Leu 195 200 205 Ile Ile Gly Val Leu Ile Leu Lys Trp Tyr Ser Cys Lys Lys Lys Lys 210 215 220 Leu Ser Ser Leu Ser Leu Ile Thr Leu Ala Asn Leu Pro Pro Gly Gly 225 230 235 240 Leu Ala Asn Ala Gly Ala Val Arg Ile Arg Ser Glu Glu Asn Ile Tyr 245 250 255 Thr Ile Glu Glu Asn Val Tyr Glu Val Glu Asn Ser Asn Glu Tyr Tyr 260 265 270 Cys Tyr Val Asn Ser Gln Gln Pro Ser 275 280 <210> 2 <211> 846 <212> DNA <213> Artificial Sequence <220> <223> TIM-3 cDNA sequence <400> 2 atgttttcag gtcttaccct caactgtgtc ctgctgctgc tgcaactact acttgcaagg 60 tcattggaaa atgcttatgt gtttgaggtt ggtaagaatg cctatctgcc ctgcagttac 120 actctatcta cacctggggc acttgtgcct atgtgctggg gcaagggatt ctgtccttgg 180 tcacagtgta ccaacgagtt gctcagaact gatgaaagaa atgtgacata tcagaaatcc 240 agcagatacc agctaaaggg cgatctcaac aaaggagacg tgtctctgat cataaagaat 300 gtgactctgg atgaccatgg gacctactgc tgcaggatac agttccctgg tcttatgaat 360 gataaaaaat tagaactgaa attagacatc aaagcagcca aggtcactcc agctcagact 420 gcccatgggg actctactac agcttctcca agaaccctaa ccacggagag aaatggttca 480 gagacacaga cactggtgac cctccataat aacaatggaa caaaaatttc cacatgggct 540 gatgaaatta aggactctgg agaaacgatc agaactgcta tccacattgg agtgggagtc 600 tctgctgggt tgaccctggc acttatcatt ggtgtcttaa tccttaaatg gtattcctgt 660 aagaaaaaga agttatcgag tttgagcctt attacactgg ccaacttgcc tccaggaggg 720 ttggcaaatg caggagcagt caggattcgc tctgaggaaa atatctacac catcgaggag 780 aacgtatatg aagtggagaa ttcaaatgag tactactgct acgtcaacag ccagcagcca 840 tcctga 846 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TIM-3-promoter primer_F <400> 3 cctgctgctt tggaatttgc 20 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TIM-3-promoter primer_R <400> 4 gagtacttgg caggggaaat c 21 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta primer_F <400> 5 ggatgaggac atgagcacct 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta primer_R <400> 6 tccattgagg tggagagctt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CXCL1 primer_F <400> 7 tgcacccaaa ccgaagtcat 20 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CXCL1 primer_R <400> 8 ttgtcagaag ccagcgttca c 21 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HIF-1 alpha primer_F <400> 9 ctcatcagtt gccacttcc 19 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> HIF-1 alpha primer_R <400> 10 tcatcttcac tgtctagacc ac 22 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> GAPDH primer_F <400> 11 tgtcgtggag tctactggtg tcttc 25 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH primer_R <400> 12 cgtggttcac acccatcaca a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TIM-3 primer_F <400> 13 ccctgcagtt acactctacc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TIM-3 primer_R <400> 14 gtatcctgca gcagtaggtc 20 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> HIF1 alpha primer_F <400> 15 agccttaacc tgtctgccac tt 22 <210> 16 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> HIF1 alpha primer_R <400> 16 gaaatcattt aacattgcat atatactaga acat 34 <210> 17 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> MPO primer_F <400> 17 aggataggac tggatttgcc tg 22 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> MPO primer_R <400> 18 gtggtgatgc cagtgttgtc a 21 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta primer_F <400> 19 tacaggctcc gagatgaaca acaa 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> IL-1 beta primer_R <400> 20 tggggaaggc attagaaaca gtcc 24 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CXCL1 primer_F <400> 21 cgctcgcttc tctgtgcagc 20 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CXCL1 primer_R <400> 22 gtggctatga cttcggtttg g 21 <210> 23 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Actin primer_F <400> 23 catgtttgag accttcaaca cccc 24 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Actin primer_R <400> 24 gccatctcct gctcgaagtc tag 23

Claims (13)

  1. TIM-3 (T-cell immunoglobulin and mucin domain protein 3)에 결합하거나 이와 반응하여 TIM-3의 활성을 특이적으로 억제 또는 감소시키는 길항 항체; 또는 TIM-3의 발현을 특이적으로 억제 또는 감소시킬 수 있는, TIM-3 유전자 또는 그의 단편에 대한 shRNA를 유효성분으로 포함하는 저산소 허혈성(hypoxia-ischemia) 뇌손상 질환의 예방 또는 치료용 약학적 조성물.
  2. 삭제
  3. 제1항에 있어서,
    상기 TIM-3는 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하는 조성물.
  4. 제1항에 있어서,
    상기 TIM-3 유전자는 서열번호 2의 염기서열로 표시되는 것을 특징으로 하는 조성물.
  5. 제1항에 있어서,
    상기 조성물은 HIF-1 (hypoxia-inducible factor-1)의 발현 또는 활성을 억제시키는 것을 특징으로 하는 조성물.
  6. 제1항에 있어서,
    상기 조성물은 호중구 화학주성인자(neutrophil chemotactic factor)의 발현 또는 활성을 감소시키는 것을 특징으로 하는 조성물.
  7. 삭제
  8. (a) TIM-3가 발현되는 세포 또는 동물모델에 후보 물질을 처리하는 단계;
    (b) 상기 후보 물질 처리 후, TIM-3의 발현 또는 활성 정도를 측정하는 단계; 및
    (c) 상기 TIM-3의 발현 또는 활성 정도가 후보 물질을 처리하지 않은 대조군에 비해 감소한 후보 물질을 선별하는 단계를 포함하는 저산소 허혈성(hypoxia-ischemia) 뇌손상 질환 치료제의 스크리닝 방법.
  9. 제8항에 있어서,
    상기 (b) 단계의 측정은 면역조직화학염색, PCR, RT-PCR, 웨스턴 블랏, ELISA 또는 단백질칩으로 구성된 군 중에서 선택되는 방법으로 수행하는 것을 특징으로 하는 방법.
  10. 제8항에 있어서,
    상기 선별한 후보물질이 대조군에 비하여 HIF-1의 발현 또는 활성을 억제시키는지 여부를 추가로 분석하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  11. 제8항에 있어서,
    상기 세포는 신경교세포(glial cell)인 것을 특징으로 하는 방법.
  12. 제8항에 있어서,
    상기 동물모델은 저산소 허혈성(hypoxia-ischemia) 뇌손상 질환 모델인 것을 특징으로 하는 방법.
  13. 삭제
KR1020150133725A 2015-09-22 2015-09-22 Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법 KR101785155B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150133725A KR101785155B1 (ko) 2015-09-22 2015-09-22 Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150133725A KR101785155B1 (ko) 2015-09-22 2015-09-22 Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법

Publications (2)

Publication Number Publication Date
KR20170035089A KR20170035089A (ko) 2017-03-30
KR101785155B1 true KR101785155B1 (ko) 2017-10-16

Family

ID=58503354

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150133725A KR101785155B1 (ko) 2015-09-22 2015-09-22 Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법

Country Status (1)

Country Link
KR (1) KR101785155B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3018375A1 (en) * 2016-03-30 2017-10-05 Carin Sjolund Negative allosteric modulators of mglur5 for use in the treatment of mature brain damages
UY37325A (es) 2016-07-14 2018-01-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware Anticuerpos monoclonales que se enlazan a tim3 para estimular respuestas inmunitarias y composiciones que los contienen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136541A2 (en) * 2014-03-12 2015-09-17 Yeda Research And Development Co. Ltd Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682143B2 (en) 2012-08-14 2017-06-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136541A2 (en) * 2014-03-12 2015-09-17 Yeda Research And Development Co. Ltd Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Neuroinflammation 2013, 10:141*

Also Published As

Publication number Publication date
KR20170035089A (ko) 2017-03-30

Similar Documents

Publication Publication Date Title
Koh et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia
Liu et al. MiR‐409‐3p and MiR‐1896 co‐operatively participate in IL‐17‐induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling
Verma et al. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke
Cruz et al. Loss of IRF2BP2 in microglia increases inflammation and functional deficits after focal ischemic brain injury
Yan et al. CNS-specific therapy for ongoing EAE by silencing IL-17 pathway in astrocytes
Aimé et al. Trib3 is elevated in Parkinson's disease and mediates death in Parkinson's disease models
Okoreeh et al. Astrocyte‐specific insulin‐like growth factor‐1 gene transfer in aging female rats improves stroke outcomes
Bastien et al. IL-1α gene deletion protects oligodendrocytes after spinal cord injury through upregulation of the survival factor Tox3
Park et al. Expression of suppressor of cytokine signaling-3 (SOCS3) and its role in neuronal death after complete spinal cord injury
EP2895606A2 (en) Compositions and methods for treating amyotrophic lateral sclerosis
Lalancette-Hébert et al. Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection
AU2014346987A1 (en) Compositions and methods for inhibiting NF-kB and SOD-1 to treat amyotrophic lateral sclerosis
Wang et al. Long non-coding KCNQ1OT1 promotes oxygen-glucose-deprivation/reoxygenation-induced neurons injury through regulating MIR-153-3p/FOXO3 axis
DK2454372T3 (en) HANDLING OF THE TREATMENT OF INFLAMMATORY OR AUTO-IMMUNE DISEASES USING HOM-1 EXPRESSION
US20190111111A1 (en) Treatment of Cerebral Cavernous Malformations
KR101785155B1 (ko) Tim-3을 표적으로 하는 뇌손상 질환 치료용 조성물 및 이의 스크리닝 방법
Ahn et al. Substance P reduces infarct size and mortality after ischemic stroke, possibly through the M2 polarization of microglia/macrophages and neuroprotection in the ischemic rat brain
Luo et al. P2Y1R silencing in Astrocytes Protected Neuroinflammation and Cognitive Decline in a Mouse Model of Alzheimer's Disease
EP3253777B9 (en) Rvg derived peptides
US11939633B2 (en) COTL1 protein involved in maintaining homeostasis of hematopoietic stem cell, and use thereof
JP6653054B2 (ja) Tim−3をターゲットとする脳損傷疾患治療用組成物及びこのスクリーニング方法
KR20200124038A (ko) 마이크로rna-381을 유효성분으로 포함하는, pmp22 과발현에 의한 말초신경병증의 예방 또는 치료용 약학적 조성물
CN115475247B (zh) β2-微球蛋白或其抑制剂的制药用途
He et al. Jun‐activated SOCS1 enhances ubiquitination and degradation of CCAAT/enhancer‐binding protein β to ameliorate cerebral ischaemia/reperfusion injury
JP2020527132A (ja) ミエリン障害を治療するための組成物および方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right