KR101730241B1 - Selective catalytic reduction system - Google Patents

Selective catalytic reduction system Download PDF

Info

Publication number
KR101730241B1
KR101730241B1 KR1020150086565A KR20150086565A KR101730241B1 KR 101730241 B1 KR101730241 B1 KR 101730241B1 KR 1020150086565 A KR1020150086565 A KR 1020150086565A KR 20150086565 A KR20150086565 A KR 20150086565A KR 101730241 B1 KR101730241 B1 KR 101730241B1
Authority
KR
South Korea
Prior art keywords
urea
reducing agent
supply pipe
hydrolysis
agent supply
Prior art date
Application number
KR1020150086565A
Other languages
Korean (ko)
Other versions
KR20160110002A (en
Inventor
김규종
김정래
양희성
김건호
김대희
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020150035271 priority Critical
Priority to KR20150035271 priority
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Publication of KR20160110002A publication Critical patent/KR20160110002A/en
Application granted granted Critical
Publication of KR101730241B1 publication Critical patent/KR101730241B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/25Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ammonia generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • Y02T10/24
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

본 발명은 SCR 반응기에 환원제를 공급함에 있어서, SCR 반응기에 환원제를 공급하는 환원제 공급관을 우레아의 가수분해 공간으로 활용함과 함께 환원제 공급관의 일측에 가열수단을 구비시키고, 환원제 공급관의 특정 지점에 온도센서를 구비시켜 우레아 가수분해에 최적화된 온도를 갖는 환원제 공급관의 특정 지점에 우레아가 선택적으로 공급되도록 함으로써 우레아 가수분해에 요구되는 장치 구성을 간략화하고 우레아의 가수분해 효율을 향상시킬 수 있는 SCR 장치에 관한 것으로서, 본 발명에 따른 SCR 장치는 환원제에 의한 질소산화물의 환원 반응이 진행되는 공간을 제공하는 SCR 반응기; 우레아의 가수분해 공간을 제공함과 함께 우레아의 가수분해에 의해 생성된 환원제를 상기 SCR 반응기로 공급하는 환원제 공급관; 상기 환원제 공급관의 일단에 구비되어, 우레아의 가수분해가 진행되는 구간의 환원제 공급관 내부에 열을 인가하는 가열장치; 상기 환원제 공급관의 일측에 환원제 공급관의 길이 방향을 따라 이격되어 반복, 배치되는 복수의 온도센서; 상기 각 온도센서가 구비된 지점마다 배치되어, 환원제 공급관 내부에 우레아를 공급하는 우레아 공급노즐; 및 각 온도센서로부터 입력되는 온도 신호가 미리 설정된 최적의 우레아 가수분해 온도 범위에 속하는지 여부를 판단함과 함께 특정 온도센서로부터 입력된 온도 신호가 최적의 우레아 가수분해 온도 범위에 속하는 경우 해당 온도센서가 구비된 지점의 우레아 공급노즐을 동작시켜 우레아가 해당 지점의 환원제 공급관에 분사되도록 제어하는 제어장치를 포함하여 이루어지는 것을 특징으로 한다. In the present invention, in supplying a reducing agent to an SCR reactor, a reducing agent supply pipe for supplying a reducing agent to the SCR reactor is utilized as a hydrolysis space of urea, a heating means is provided at one side of the reducing agent supply pipe, A sensor is provided to selectively supply urea to a specific point of the reducing agent supply pipe having a temperature optimized for urea hydrolysis, thereby simplifying the apparatus configuration required for urea hydrolysis and improving the hydrolysis efficiency of urea. The SCR apparatus according to the present invention includes a SCR reactor for providing a space in which a reduction reaction of nitrogen oxides by a reducing agent proceeds; A reducing agent supply pipe for supplying a reducing agent produced by hydrolysis of urea to the SCR reactor while providing a hydrolysis space of urea; A heating device provided at one end of the reducing agent supply pipe to apply heat to the inside of the reducing agent supply pipe in a section where hydrolysis of urea proceeds; A plurality of temperature sensors repeatedly disposed on one side of the reducing agent supply pipe and spaced along the length direction of the reducing agent supply pipe; A urea supply nozzle disposed at each of the points provided with the temperature sensors and supplying urea into the reducing agent supply pipe; And determining whether or not the temperature signal input from each of the temperature sensors belongs to a preset optimum urea hydrolysis temperature range, and when the temperature signal inputted from the specific temperature sensor belongs to the optimum urea hydrolysis temperature range, And a control device for operating the urea supply nozzle at the point where the urea supply port is provided, and controlling the urea to be injected into the reducing agent supply pipe at the corresponding point.
Figure R1020150086565

Description

SCR 장치{Selective catalytic reduction system}SCR (Selective catalytic reduction system)
본 발명은 SCR 장치에 관한 것으로서, 보다 상세하게는 SCR 반응기에 환원제를 공급함에 있어서, SCR 반응기에 환원제를 공급하는 환원제 공급관을 우레아의 가수분해 공간으로 활용함과 함께 환원제 공급관의 일측에 가열수단을 구비시키고, 환원제 공급관의 특정 지점에 온도센서를 구비시켜 우레아 가수분해에 최적화된 온도를 갖는 환원제 공급관의 특정 지점에 우레아가 선택적으로 공급되도록 함으로써 우레아 가수분해에 요구되는 장치 구성을 간략화하고 우레아의 가수분해 효율을 향상시킬 수 있는 SCR 장치에 관한 것이다.
The present invention relates to an SCR apparatus, and more particularly, to a system and method for supplying a reducing agent to an SCR reactor, which utilizes a reducing agent supply pipe for supplying a reducing agent to the SCR reactor as a hydrolysis space of urea, And a temperature sensor is provided at a specific point of the reducing agent supply pipe to selectively supply urea to a specific point of the reducing agent supply pipe having a temperature optimized for urea hydrolysis to simplify the apparatus configuration required for urea hydrolysis, To an SCR apparatus capable of improving decomposition efficiency.
선박의 배기가스에 포함되어 있는 질소산화물(NOx) 및 황산화물은 국제해사기구(IMO, International Maritime Organization)에 의해 배출규제를 받고 있는 대표적인 대기오염물질이다. Nitrogen oxides (NO x ) and sulfur oxides contained in the ship's exhaust are representative air pollutants subject to emission regulation by the International Maritime Organization (IMO).
질소산화물을 제거하기 위해 선박에는 통상, 선택적촉매환원 장치(selective catalytic reduction system)(이하, SCR 장치라 함)가 구비된다(한국공개특허 제2012-30553호 참조). SCR 장치는 촉매가 내장된 SCR 반응기, SCR 반응기 내에 암모니아(NH3)와 같은 환원제를 공급하는 환원제 공급장치를 포함하여 구성된다. In order to remove nitrogen oxides, a ship is usually equipped with a selective catalytic reduction system (hereinafter referred to as SCR device) (Korean Patent Publication No. 2012-30553). The SCR apparatus includes a SCR reactor having a catalyst and a reducing agent supply unit for supplying a reducing agent such as ammonia (NH 3 ) in the SCR reactor.
SCR 장치에 의한 질소산화물 제거는 다음과 같은 과정으로 진행된다. 엔진의 배기가스가 SCR 반응기에 유입되는 상태에서 SCR 반응기 내에 암모니아(NH3)가 공급되면, 암모니아(NH3)가 배기가스와 섞여 촉매를 통과하게 되며 촉매를 통과하는 과정에서 암모니아(NH3)가 배기가스 내의 질소산화물(NOx)과 반응하여 질소산화물(NOx)이 질소(N2)와 수증기로 환원된다. The removal of nitrogen oxide by the SCR apparatus proceeds as follows. When the ammonia (NH 3) is supplied into the SCR reactor in a state in which the exhaust gas of the engine flowing into the SCR reactor, ammonia (NH 3) that is to be mixed with the exhaust gas passing through the catalyst ammonia in the course of passing through the catalyst (NH 3) is reacted with nitrogen oxide (NO x) in exhaust gas of nitrogen oxides (NO x) are reduced to nitrogen (N 2) and water vapor.
질소산화물(NOx)의 환원제로 사용되는 암모니아(NH3)는 우레아(Urea, CO(NH2)2)의 가수분해에 의해 생성됨에 따라, SCR 장치에는 우레아를 가수분해하기 위한 우레아 가수분해장치가 필수적으로 구비되며, 우레아 가수분해장치는 우레아를 가수분해 온도까지 가열하기 위한 히터 또는 버너 등의 가열수단을 구비한다(한국등록특허 제141726호 참조). 이와 같이, 우레아가 암모니아(NH3)로 분해되기 위해서는 고온의 열이 요구됨에 따라, 유지관리비용을 절감하기 위해서는 우레아 가수분해시 요구되는 에너지를 최소화할 필요가 있다.
Since ammonia (NH 3 ) used as a reducing agent of nitrogen oxides (NO x ) is produced by hydrolysis of urea (Urea, CO (NH 2 ) 2 ), the SCR apparatus is equipped with a urea hydrolysis apparatus And the urea hydrolysis apparatus has a heating means such as a heater or a burner for heating the urea to the hydrolysis temperature (see Korean Patent No. 141726). As described above, in order to decompose urea into ammonia (NH 3 ), high-temperature heat is required. Therefore, in order to reduce the maintenance cost, it is necessary to minimize the energy required for urea hydrolysis.
한국공개특허 제2012-30553호Korea Patent Publication No. 2012-30553 한국등록특허 제141726호Korean Patent No. 141726
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, SCR 반응기에 환원제를 공급함에 있어서, SCR 반응기에 환원제를 공급하는 환원제 공급관을 우레아의 가수분해 공간으로 활용함과 함께 환원제 공급관의 일측에 가열수단을 구비시키고, 환원제 공급관의 특정 지점에 온도센서를 구비시켜 우레아 가수분해에 최적화된 온도를 갖는 환원제 공급관의 특정 지점에 우레아가 선택적으로 공급되도록 함으로써 우레아 가수분해에 요구되는 장치 구성을 간략화하고 우레아의 가수분해에 사용되는 에너지를 절감할 수 있는 SCR 장치를 제공하는데 그 목적이 있다.
DISCLOSURE OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and it is an object of the present invention to provide a reducing agent feeder for supplying a reducing agent to an SCR reactor, as a space for hydrolyzing urea, And a temperature sensor is provided at a specific point of the reducing agent supply pipe to selectively supply urea to a specific point of the reducing agent supply pipe having a temperature optimized for urea hydrolysis to simplify the apparatus configuration required for urea hydrolysis, The present invention provides an SCR device capable of reducing the energy used in the hydrolysis of hydrocarbons.
상기의 목적을 달성하기 위한 본 발명에 따른 SCR 장치는 환원제에 의한 질소산화물의 환원 반응이 진행되는 공간을 제공하는 SCR 반응기; 우레아의 가수분해 공간을 제공함과 함께 우레아의 가수분해에 의해 생성된 환원제를 상기 SCR 반응기로 공급하는 환원제 공급관; 상기 환원제 공급관의 일단에 구비되어, 우레아의 가수분해가 진행되는 구간의 환원제 공급관 내부에 열을 인가하는 가열장치; 상기 환원제 공급관의 일측에 환원제 공급관의 길이 방향을 따라 이격되어 반복, 배치되는 복수의 온도센서; 상기 각 온도센서가 구비된 지점마다 배치되어, 환원제 공급관 내부에 우레아를 공급하는 우레아 공급노즐; 및 각 온도센서로부터 입력되는 온도 신호가 미리 설정된 최적의 우레아 가수분해 온도 범위에 속하는지 여부를 판단함과 함께 특정 온도센서로부터 입력된 온도 신호가 최적의 우레아 가수분해 온도 범위에 속하는 경우 해당 온도센서가 구비된 지점의 우레아 공급노즐을 동작시켜 우레아가 해당 지점의 환원제 공급관에 분사되도록 제어하는 제어장치를 포함하여 이루어지는 것을 특징으로 한다. According to an aspect of the present invention, there is provided an SCR apparatus comprising: a SCR reactor for providing a space in which a reduction reaction of nitrogen oxides by a reducing agent proceeds; A reducing agent supply pipe for supplying a reducing agent produced by hydrolysis of urea to the SCR reactor while providing a hydrolysis space of urea; A heating device provided at one end of the reducing agent supply pipe to apply heat to the inside of the reducing agent supply pipe in a section where hydrolysis of urea proceeds; A plurality of temperature sensors repeatedly disposed on one side of the reducing agent supply pipe and spaced along the length direction of the reducing agent supply pipe; A urea supply nozzle disposed at each of the points provided with the temperature sensors and supplying urea into the reducing agent supply pipe; And determining whether or not the temperature signal input from each of the temperature sensors belongs to a preset optimum urea hydrolysis temperature range, and when the temperature signal inputted from the specific temperature sensor belongs to the optimum urea hydrolysis temperature range, And a control device for operating the urea supply nozzle at the point where the urea supply port is provided, and controlling the urea to be injected into the reducing agent supply pipe at the corresponding point.
상기 제어장치는, 제반 온도센서로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위에 속하지 않으면, 제반 온도센서로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위보다 낮은 경우 상기 가열장치에 공급되는 연료량 및 공기량을 증가시키고, 그 반대의 경우 연료량 및 공기량이 감소되도록 제어할 수 있다. If the temperature signals input from all the temperature sensors are not within the optimal urea hydrolysis temperature range, if the temperature signals inputted from all the temperature sensors are lower than the optimal urea hydrolysis temperature range, The fuel amount and the air amount to be supplied may be increased, and vice versa.
상기 환원제 공급관의 일측에 SCR 배기관이 연결되며, 상기 SCR 배기관을 통해 SCR 반응기로부터 배출되는 SCR 배기가스가 우레아의 가수분해가 진행되는 환원제 공급관의 일 구간에 공급될 수 있다.
An SCR exhaust pipe is connected to one side of the reducing agent supply pipe and the SCR exhaust gas discharged from the SCR exhaust pipe through the SCR exhaust pipe may be supplied to a section of the reducing agent supply pipe where hydrolysis of urea proceeds.
본 발명에 따른 SCR 장치는 다음과 같은 효과가 있다. The SCR device according to the present invention has the following effects.
환원제 공급관 내부의 일 구간에서 우레아의 가수분해가 진행됨에 따라 별도의 우레아 가수분해 챔버가 요구되지 않아 장치 구성을 간략화할 수 있다. 또한, 우레아가 가수분해가 진행되는 환원제 공급관에 일정 간격을 두고 온도센서를 배치함과 함께 각 온도센서의 지점마다 우레아 공급노즐이 구비되도록 하여 최적의 우레아 가수분해 온도에 해당되는 지점에 우레아가 공급되도록 하여 우레아의 가수분해 효율을 향상시킬 수 있다. As the urea hydrolysis proceeds in one section of the reducing agent supply pipe, a separate urea hydrolysis chamber is not required, so that the device configuration can be simplified. In addition, a temperature sensor is disposed at a predetermined interval in a reducing agent supply pipe where urea is hydrolyzed, and a urea supply nozzle is provided at each point of each temperature sensor to supply urea at a point corresponding to the optimal urea hydrolysis temperature So that the hydrolysis efficiency of urea can be improved.
이와 함께, SCR 반응기 후단의 배기가스를 재순환시킴으로써 가열장치의 과잉공기량을 낮춤으로써 연료절감 효과가 있다.
At the same time, the exhaust gas at the rear end of the SCR reactor is recycled, thereby reducing the excess amount of air in the heating apparatus, thereby reducing fuel consumption.
도 1은 본 발명의 일 실시예에 따른 SCR 장치의 구성도. 1 is a configuration diagram of an SCR apparatus according to an embodiment of the present invention;
본 발명은 우레아(Urea, CO(NH2)2)를 가수분해하여 암모니아(NH3)를 생성하고 생성된 암모니아를 환원제로 SCR 반응기에 공급함에 있어서, 우레아 가수분해에 요구되는 장치 구성을 최소화함과 함께 우레아의 가수분해 효율을 향상시키는 기술을 제시한다. 이를 위해, 본 발명은 환원제 공급관의 일 구간을 우레아의 가수분해 공간으로 이용함으로써 별도의 가수분해 챔버 등이 요구되지 않으며, 가열수단에 의해 가열되는 환원제 공급관에 있어서 최적의 우레아 가수분해 온도를 갖는 환원제 공급관의 특정 지점에 우레아가 공급되도록 함으로써 우레아의 가수분해 효율을 향상시킬 수 있는 기술을 제시한다. The present invention minimizes the apparatus configuration required for urea hydrolysis when ammonia (NH 3 ) is produced by hydrolyzing urea (Urea, CO (NH 2 ) 2 ) and ammonia produced is supplied to the SCR reactor using a reducing agent To improve the hydrolysis efficiency of urea. To this end, the present invention uses a part of the reducing agent supply pipe as the hydrolysis space of the urea, thereby eliminating the need for a separate hydrolysis chamber and the like. In the reducing agent supply pipe heated by the heating means, the reductant having the optimum urea hydrolysis temperature A technique for improving the hydrolysis efficiency of urea by supplying urea to a specific point of the supply pipe is proposed.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 SCR 장치를 상세히 설명하기로 한다. Hereinafter, an SCR device according to an embodiment of the present invention will be described in detail with reference to the drawings.
도 1을 참조하면, 본 발명의 일 실시예에 따른 SCR 장치는 SCR 반응기(110), 환원제 공급관(120), 가열장치(130), 우레아 공급장치(40), 온도센서(140), 우레아 공급노즐(150) 및 제어장치(160)를 포함하여 이루어진다. Referring to FIG. 1, an SCR apparatus according to an embodiment of the present invention includes an SCR reactor 110, a reducing agent supply pipe 120, a heating device 130, a urea supply device 40, a temperature sensor 140, A nozzle 150 and a control device 160. [
상기 SCR 반응기(110)는 환원제에 의한 질소산화물의 환원 반응이 진행되는 공간을 제공한다. 상기 SCR 반응기(110)의 일측에 구비된 배기가스 공급관(30)을 통해 상기 SCR 반응기(110)로 엔진 배기가스가 공급되며, 환원제는 환원제 공급관(120)으로부터 배기가스 공급관(30)을 거쳐 SCR 반응기(110)로 공급된다. 즉, 환원제 공급관(120)의 일단에 배기가스 공급관(30)에 연결된 형태이며, 배기가스 공급관(30) 내에서 엔진 배기가스와 환원제가 혼합되어 SCR 반응기(110)로 공급된다. 상기 환원제 공급관(120)을 통해 SCR 반응기(110)로 공급되는 환원제는 우레아의 가수분해에 의해 생성되는 암모니아(NH3)이며, 암모니아(NH3)는 SCR 반응기(110) 내에서 배기가스 내에 포함되어 있는 질소산화물(NOx)과 반응하여 질소산화물(NOx)을 질소(N2)와 수증기로 환원시키는 역할을 한다. 상기 배기가스 공급관(30)을 통해 SCR 반응기(110)로부터 공급되는 엔진 배기가스는 엔진(10)으로부터 직접 배기되는 배기가스(EGB, Engine Gas Bypass) 또는 터보차저(turbo charger)(20)를 거쳐 배치되는 배기가스이거나 이들의 혼합 배기가스일 수 있다. 도면에 표시되지는 않았지만 배기가스 공급관(30)에 환원제 공급관(120)의 일단이 AIG(Ammonia Injection Grid) 형태로 부착 될 수도 있다. The SCR reactor 110 provides a space where the reduction reaction of nitrogen oxides by the reducing agent proceeds. The engine exhaust gas is supplied to the SCR reactor 110 through the exhaust gas supply pipe 30 provided at one side of the SCR reactor 110. The reducing agent is supplied from the reducing agent supply pipe 120 through the exhaust gas supply pipe 30 to the SCR Is supplied to the reactor (110). That is, one end of the reducing agent supply pipe 120 is connected to the exhaust gas supply pipe 30. In the exhaust gas supply pipe 30, the engine exhaust gas and the reducing agent are mixed and supplied to the SCR reactor 110. The reducing agent supplied to the SCR reactor 110 through the reducing agent supply pipe 120 is ammonia (NH 3 ) generated by hydrolysis of urea and ammonia (NH 3 ) is contained in the exhaust gas in the SCR reactor 110 It is reacted with nitrogen oxide (NO x), which serves to reduce nitrogen oxide (NO x) to nitrogen (N 2) and water vapor. The engine exhaust gas supplied from the SCR reactor 110 through the exhaust gas supply pipe 30 flows through an exhaust gas (EGB, Engine Gas Bypass) or a turbocharger 20 directly exhausted from the engine 10 Exhaust gas to be disposed, or mixed exhaust gas thereof. Although not shown in the drawing, one end of the reducing agent supply pipe 120 may be attached to the exhaust gas supply pipe 30 in the form of an AIG (Ammonia Injection Grid).
상기 환원제 공급관(120)은 전술한 바와 같이 우레아의 가수분해에 의해 생성된 암모니아(NH3)를 SCR 반응기(110)로 공급하는 역할을 하는데, 이와 같은 역할과 함께 상기 환원제 공급관(120)은 우레아의 가수분해 공간을 제공한다. 종래의 경우, 우레아 가수분해장치에 의해 우레아가 가수분해되어 암모니아(NH3)가 생성되고, 생성된 암모니아(NH3)가 환원제 공급관(120)에 공급되는 장치적 구조를 이루나, 본 발명의 경우 환원제 공급관(120)의 일 구간(도 1의 'A' 참조)이 우레아의 가수분해 공간으로 제공된다. The reducing agent supply pipe 120 serves to supply ammonia (NH 3 ) generated by the hydrolysis of urea to the SCR reactor 110 as described above. In addition, the reducing agent supply pipe 120 may include urea Lt; / RTI > In the case of the prior art, is the urea is hydrolyzed by the urea hydrolysis apparatus for ammonia (NH 3) is generated and the generated ammonia (NH 3) is yiruna the device structure to be supplied to the reducing agent supply pipe 120, the present invention A section (refer to 'A' in FIG. 1) of the reducing agent supply pipe 120 is provided to the hydrolysis space of the urea.
상기 환원제 공급관(120)의 일 구간 우레아의 가수분해 공간으로 활용되기 위해, 환원제 공급관(120)의 일단에는 가열장치(130)가 구비됨과 함께 우레아 가수분해 공간에 해당되는 환원제 공급관(120)의 일 구간의 일측에는 환원제 공급노즐이 구비된다. A heating device 130 is provided at one end of the reducing agent supply pipe 120 and a reducing agent supply pipe 120 corresponding to the urea hydrolysis space is used for the hydrolysis space of the urea of the reductant supply pipe 120. [ And a reducing agent supply nozzle is provided at one side of the section.
상기 가열장치(130)는 우레아 가수분해 공간에 해당되는 환원제 공급관(120) 내부에 고온의 열을 인가하며, 상기 우레아 공급노즐(150)은 가열장치(130)의 열이 인가되는 환원제 공급관(120) 내부에 환원제를 분사하는 역할을 한다. 우레아 공급노즐(150)을 통해 우레아가 환원제 공급관(120) 내부에 분사됨과 함께 고온의 열이 인가됨에 따라 해당 환원제 공급관(120) 내부에서는 우레아의 가수분해 반응이 진행되고, 그 결과 환원제 즉, 암모니아(NH3)가 생성된다. 참고로, 우레아 공급노즐(150)로부터 분사되는 우레아는 우레아 공급장치(40)로부터 공급된다. The heating device 130 applies high temperature heat to the reducing agent supply pipe 120 corresponding to the urea hydrolysis space and the urea supply nozzle 150 is connected to the reducing agent supply pipe 120 ) To inject the reducing agent. As the urea is injected into the reducing agent supply pipe 120 through the urea supply nozzle 150 and the high temperature heat is applied, the hydrolysis reaction of the urea proceeds inside the reducing agent supply pipe 120. As a result, (NH 3 ) is produced. For reference, the urea injected from the urea supply nozzle 150 is supplied from the urea supply device 40.
상기 가열장치(130)는 전기히터 또는 버너 등으로 구성되는데, 고온의 열을 인가하기 위해서는 에너지가 소모된다. 특히, 가열장치(130)가 버너로 구성되는 경우 일정량의 연료와 공기가 소모된다. '발명의 배경이 되는 기술'에서 언급한 바와 같이 가열장치(130)를 동작시키기 위한 에너지를 최소화할 필요가 있으며, 이를 위해 가열장치(130)의 동작에 소모되는 에너지를 절감하기 위한 방안으로 환원제 공급관(120)(우레아 가수분해 공간에 해당되는 환원제 공급관(120)의 전단 부위)의 일측에 SCR 배기관(170)을 연결시키는 구조를 채택할 수 있다. SCR 배기가스를 이용하면 가열장치(130)를 통해 우레아 가수분해 온도까지 승온시키는데 소모되는 에너지를 줄일 수 있게 된다. 즉, SCR 배기관(170)을 통해 엔진의 운전 부하에 따라 약 200∼300℃의 SCR 배기가스가 환원제 공급관(120)에 공급됨에 따라, 외부공기만을 이용하여 가수분해 온도까지 승온시키는 경우에 대비하여 가열장치(130)에 소모되는 에너지를 최소화할 수 있게 된다. The heating device 130 is composed of an electric heater or a burner, and energy is consumed to apply heat at a high temperature. Particularly, when the heating device 130 is constituted by a burner, a certain amount of fuel and air are consumed. In order to reduce the energy consumed in the operation of the heating device 130, it is necessary to minimize the energy required to operate the heating device 130 as mentioned in the ' A structure may be adopted in which the SCR exhaust pipe 170 is connected to one side of the supply pipe 120 (the front end portion of the reducing agent supply pipe 120 corresponding to the urea hydrolysis space). The SCR exhaust gas can reduce the energy consumed for raising the temperature to the urea hydrolysis temperature through the heating device 130. [ That is, since the SCR exhaust gas at about 200 to 300 ° C. is supplied to the reducing agent supply pipe 120 through the SCR exhaust pipe 170 in accordance with the operation load of the engine, in case of raising the temperature to the hydrolysis temperature using only outside air The energy consumed in the heating device 130 can be minimized.
한편, 우레아의 가수분해 공간으로 활용되는 환원제 공급관(120)의 일 구간은 상기 가열장치(130)로부터 일정 거리 이격된 곳에 위치한다. 가열장치(130)에 의해 생성되는 열은 우레아 가수분해 온도보다 높도록 설정되는데, 엔진의 운전조건에 따라 배기가스의 양이 변하게 되므로 배기가스 중의 NOx를 제거하기 위한 암모니아의 양도 변하게 된다. 이에, 우레아 가수분해 량도 가변되며, 가열장치의 연료량 및 연소공기량도 변하게 되어 우레아 가수분해에 적합한 최적온도가 가열장치(130)로부터 이격된 거리에 따라 가변된다. 가령, 가열장치에서의 연소가스가 630℃ 이상이면 우레아가 암모니아로 분해되지 않고 산화되어 암모니아가 생성되지 않는다. 따라서 우레아를 공급하는 노즐의 최적 배기가스 온도는 300~600℃ 범위이며 바람직하게는 500~550℃ 범위이다. Meanwhile, one section of the reducing agent supply pipe 120 used as the hydrolysis space of the urea is located at a certain distance from the heating device 130. The heat generated by the heating device 130 is set to be higher than the urea hydrolysis temperature. Since the amount of the exhaust gas varies depending on the operating conditions of the engine, the amount of ammonia for removing NO x in the exhaust gas also varies. Thus, the amount of urea hydrolysis is also varied, and the amount of fuel and the amount of combustion air in the heating device are also changed, so that the optimum temperature suitable for urea hydrolysis varies depending on the distance from the heating device 130. For example, if the combustion gas in the heating apparatus is 630 DEG C or higher, urea is not decomposed into ammonia, but is oxidized to produce no ammonia. Therefore, the optimum exhaust gas temperature of the nozzle for supplying urea is in the range of 300 to 600 캜, preferably in the range of 500 to 550 캜.
따라서, 우레아 공급은 최적의 우레아 가수분해 온도가 인가되는 지점에 우레아 공급노즐(150)을 구비하고, 엔진의 운전 조건별로 해당 지점에 우레아를 분사하여 우레아의 가수분해가 진행되도록 한다. Accordingly, the urea supply is provided with the urea supply nozzle 150 at the point where the optimum urea hydrolysis temperature is applied, and the urea is sprayed to the corresponding point according to the operation condition of the engine, so that the hydrolysis of the urea proceeds.
본 발명은 엔진의 운전부하, 가열장치의 운전조건 및 배기가스 재순환량에 따라 우레아 가수분해 온도가 인가되는 지점이 변동되어도 최적의 지점에 우레아를 공급시킬 수 있도록 다음과 같은 구성을 제시한다. 우레아 가수분해 공간에 해당되는 환원제 공급관(120)의 일측에 일정 간격을 두고 온도센서(140)를 반복, 배치시킴과 함께 온도센서(140)가 구비된 각 지점마다 우레아 공급노즐(150)을 구비시킨다. 이와 같은 구성 하에, 각 온도센서(140)로부터 입력되는 온도를 체크하고 특정 온도센서(140)에 의해 감지된 온도가 우레아 가수분해 온도에 적합한 경우 해당 온도센서(140)가 배치된 지점의 우레아 공급노즐(150)을 통해 우레아가 공급되도록 하여 해당 온도센서(140) 및 우레아 공급노즐(150)이 구비된 환원제 공급관(120)의 지점에서 우레아의 가수분해가 진행되도록 한다. 이와 같이, 최적의 우레아 가수분해 온도를 갖는 특정 환원제 공급관(120)의 지점에 선택적으로 우레아를 공급함에 따라, 우레아의 가수분해 효율 즉, 암모니아(NH3) 생성 효율을 향상시킬 수 있게 된다. The present invention provides the following structure to supply urea to an optimum point even if the point where the urea hydrolysis temperature is applied varies depending on the operation load of the engine, the operating condition of the heating apparatus, and the exhaust gas recirculation amount. The temperature sensor 140 is repeatedly disposed at a predetermined interval on one side of the reducing agent supply pipe 120 corresponding to the urea hydrolysis space and the urea supply nozzle 150 is provided at each point provided with the temperature sensor 140 . When the temperature sensed by the specific temperature sensor 140 is suitable for the urea hydrolysis temperature, the urea supply of the point where the temperature sensor 140 is disposed The urea is supplied through the nozzle 150 so that the urea hydrolysis proceeds at the point of the reducing agent supply pipe 120 provided with the temperature sensor 140 and the urea supply nozzle 150. As described above, by selectively supplying urea to a site of the specific reducing agent supply pipe 120 having an optimal urea hydrolysis temperature, the hydrolysis efficiency of urea, that is, the ammonia (NH 3 ) production efficiency can be improved.
상기 온도센서(140) 및 우레아 공급노즐(150)의 동작은 제어장치(160)에 의해 제어된다. 구체적으로, 상기 제어장치(160)는 각 온도센서(140)로부터 입력되는 온도 신호가 미리 설정된 최적의 우레아 가수분해 온도 범위에 속하는지 여부를 판단함과 함께 특정 온도센서(140)로부터 입력된 온도 신호가 최적의 우레아 가수분해 온도 범위에 속하는 경우 해당 온도센서(140)가 구비된 지점의 우레아 공급노즐(150)을 동작시켜 우레아가 해당 지점의 환원제 공급관(120)에 분사되도록 제어한다. 이와 함께, 상기 제어장치(160)는 제반 온도센서(140)로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위에 속하지 않는 경우 즉, 최적의 우레아 가수분해 온도 범위보다 낮거나 높을 경우 가열장치(130)에 공급되는 연료량 및 공기량을 제어할 수도 있다. 즉, 제반 온도센서(140)로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위보다 낮은 경우 연료량 및 공기량을 증가시키고, 그 반대의 경우 연료량 및 공기량이 감소되도록 제어할 수 있다. The operation of the temperature sensor 140 and the urea supply nozzle 150 is controlled by the controller 160. [ Specifically, the control device 160 determines whether the temperature signal input from each temperature sensor 140 falls within a predetermined optimum urea hydrolysis temperature range, and determines whether or not the temperature input from the specific temperature sensor 140 When the signal falls within the optimum urea hydrolysis temperature range, the urea supply nozzle 150 at the point where the temperature sensor 140 is provided is operated to control the urea to be injected into the reducing agent supply pipe 120 at the corresponding point. In addition, when the temperature signals input from the temperature sensors 140 are not all within the optimum urea hydrolysis temperature range, that is, when the temperature signals are lower or higher than the optimal urea hydrolysis temperature range, The amount of fuel and the amount of air supplied to the engine 130 may be controlled. That is, when the temperature signals input from the temperature sensors 140 are all lower than the optimum urea hydrolysis temperature range, the amount of fuel and the amount of air can be increased, and in the opposite case, the amount of fuel and the amount of air can be controlled to be decreased.
10 : 엔진 20 : 터보차저
30 : 배기가스 공급관 40 : 우레아 공급장치
110 : SCR 반응기 120 : 환원제 공급관
130 : 가열장치 140 : 온도센서
150 : 우레아 공급노즐 160 : 제어장치
170 : SCR 배기관
10: Engine 20: Turbocharger
30: exhaust gas supply pipe 40: urea supply device
110: SCR reactor 120: reducing agent supply pipe
130: Heating device 140: Temperature sensor
150: urea supply nozzle 160: control device
170: SCR exhaust pipe

Claims (3)

  1. 환원제에 의한 질소산화물의 환원 반응이 진행되는 공간을 제공하는 SCR 반응기;
    우레아의 가수분해 공간을 제공함과 함께 우레아의 가수분해에 의해 생성된 환원제를 상기 SCR 반응기로 공급하는 환원제 공급관;
    상기 환원제 공급관의 일단에 구비되어, 우레아의 가수분해가 진행되는 구간의 환원제 공급관 내부에 열을 인가하는 가열장치;
    상기 환원제 공급관의 일측에 환원제 공급관의 길이 방향을 따라 이격되어 반복, 배치되는 복수의 온도센서;
    상기 각 온도센서가 구비된 지점마다 배치되어, 환원제 공급관 내부에 우레아를 공급하는 우레아 공급노즐; 및
    각 온도센서로부터 입력되는 온도 신호가 미리 설정된 최적의 우레아 가수분해 온도 범위에 속하는지 여부를 판단함과 함께 특정 온도센서로부터 입력된 온도 신호가 최적의 우레아 가수분해 온도 범위에 속하는 경우 해당 온도센서가 구비된 지점의 우레아 공급노즐을 동작시켜 우레아가 해당 지점의 환원제 공급관에 분사되도록 제어하는 제어장치를 포함하여 이루어지며,
    상기 제어장치는, 제반 온도센서로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위에 속하지 않으면, 제반 온도센서로부터 입력되는 온도 신호들이 모두 최적의 우레아 가수분해 온도 범위보다 낮은 경우 상기 가열장치에 공급되는 연료량 및 공기량을 증가시키고, 그 반대의 경우 연료량 및 공기량이 감소되도록 제어하며,
    상기 환원제 공급관의 일측에 SCR 배기관이 연결되며, 상기 SCR 배기관을 통해 SCR 반응기로부터 배출되는 SCR 배기가스가 우레아의 가수분해가 진행되는 환원제 공급관의 일 구간에 공급되는 것을 특징으로 하는 SCR 장치.
    An SCR reactor for providing a space in which the reduction reaction of nitrogen oxide by the reducing agent proceeds;
    A reducing agent supply pipe for supplying a reducing agent produced by hydrolysis of urea to the SCR reactor while providing a hydrolysis space of urea;
    A heating device provided at one end of the reducing agent supply pipe to apply heat to the inside of the reducing agent supply pipe in a section where hydrolysis of urea proceeds;
    A plurality of temperature sensors repeatedly disposed on one side of the reducing agent supply pipe and spaced along the length direction of the reducing agent supply pipe;
    A urea supply nozzle disposed at each of the points provided with the temperature sensors and supplying urea into the reducing agent supply pipe; And
    It is determined whether or not the temperature signal inputted from each temperature sensor belongs to the optimum urea hydrolysis temperature range set in advance and when the temperature signal input from the specific temperature sensor belongs to the optimum urea hydrolysis temperature range, And a control device for operating the urea supply nozzle at the provided point so as to control the urea to be injected into the reducing agent supply pipe at the corresponding point,
    If the temperature signals input from all the temperature sensors are not within the optimal urea hydrolysis temperature range, if the temperature signals inputted from all the temperature sensors are lower than the optimal urea hydrolysis temperature range, The fuel amount and the air amount to be supplied are increased, and in the opposite case, the fuel amount and the air amount are controlled to be decreased,
    Wherein an SCR exhaust pipe is connected to one side of the reducing agent supply pipe and the SCR exhaust gas discharged from the SCR exhaust pipe through the SCR exhaust pipe is supplied to a section of the reducing agent supply pipe where hydrolysis of urea proceeds.
  2. 삭제delete
  3. 삭제delete
KR1020150086565A 2015-03-13 2015-06-18 Selective catalytic reduction system KR101730241B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150035271 2015-03-13
KR20150035271 2015-03-13

Publications (2)

Publication Number Publication Date
KR20160110002A KR20160110002A (en) 2016-09-21
KR101730241B1 true KR101730241B1 (en) 2017-04-25

Family

ID=57080438

Family Applications (19)

Application Number Title Priority Date Filing Date
KR1020150062062A KR20160109977A (en) 2015-03-13 2015-04-30 Scr system and control method thereof
KR1020150062073A KR102182935B1 (en) 2015-03-13 2015-04-30 Low Pressure Selective Catalytic Reduction System
KR1020150062580A KR101722834B1 (en) 2015-03-13 2015-05-04 Scr system and control method thereof
KR1020150065864A KR102172147B1 (en) 2015-03-13 2015-05-12 Low Pressure Selective Catalytic Reduction System and Urea Storage Tank Heating Control Method Thereof
KR1020150065872A KR20160109984A (en) 2015-03-13 2015-05-12 Power plant system for a ship
KR1020150065845A KR20160109981A (en) 2015-03-13 2015-05-12 Selective catalytic reduction system
KR1020150065871A KR101739183B1 (en) 2015-03-13 2015-05-12 Power plant system for a ship
KR1020150086417A KR20160110000A (en) 2015-03-13 2015-06-18 Scr system and control method thereof
KR1020150086401A KR20160109998A (en) 2015-03-13 2015-06-18 Low Pressure Selective Catalytic Reduction System and Urea Hydrolysis Device Heating Control Method Thereof
KR1020150086328A KR102227207B1 (en) 2015-03-13 2015-06-18 Scr system
KR1020150086402A KR20160109999A (en) 2015-03-13 2015-06-18 Low Pressure Selective Catalytic Reduction System and Operation Control Method Thereof
KR1020150086418A KR102204687B1 (en) 2015-03-13 2015-06-18 Scr system and control method thereof
KR1020150086565A KR101730241B1 (en) 2015-03-13 2015-06-18 Selective catalytic reduction system
KR1020150086327A KR20160109994A (en) 2015-03-13 2015-06-18 Scr system and control method thereof
KR1020150086329A KR102204688B1 (en) 2015-03-13 2015-06-18 Scr system
KR1020150086566A KR101722839B1 (en) 2015-03-13 2015-06-18 Selective catalytic reduction system
KR1020150090867A KR20160110005A (en) 2015-03-13 2015-06-26 Selective catalytic reduction system
KR1020150100335A KR20160110010A (en) 2015-03-13 2015-07-15 Selective Catalytic Reduction System and Reactor Regeneration Control Method Thereof
KR1020150109294A KR20160110017A (en) 2015-03-13 2015-08-03 Power plant system for a ship

Family Applications Before (12)

Application Number Title Priority Date Filing Date
KR1020150062062A KR20160109977A (en) 2015-03-13 2015-04-30 Scr system and control method thereof
KR1020150062073A KR102182935B1 (en) 2015-03-13 2015-04-30 Low Pressure Selective Catalytic Reduction System
KR1020150062580A KR101722834B1 (en) 2015-03-13 2015-05-04 Scr system and control method thereof
KR1020150065864A KR102172147B1 (en) 2015-03-13 2015-05-12 Low Pressure Selective Catalytic Reduction System and Urea Storage Tank Heating Control Method Thereof
KR1020150065872A KR20160109984A (en) 2015-03-13 2015-05-12 Power plant system for a ship
KR1020150065845A KR20160109981A (en) 2015-03-13 2015-05-12 Selective catalytic reduction system
KR1020150065871A KR101739183B1 (en) 2015-03-13 2015-05-12 Power plant system for a ship
KR1020150086417A KR20160110000A (en) 2015-03-13 2015-06-18 Scr system and control method thereof
KR1020150086401A KR20160109998A (en) 2015-03-13 2015-06-18 Low Pressure Selective Catalytic Reduction System and Urea Hydrolysis Device Heating Control Method Thereof
KR1020150086328A KR102227207B1 (en) 2015-03-13 2015-06-18 Scr system
KR1020150086402A KR20160109999A (en) 2015-03-13 2015-06-18 Low Pressure Selective Catalytic Reduction System and Operation Control Method Thereof
KR1020150086418A KR102204687B1 (en) 2015-03-13 2015-06-18 Scr system and control method thereof

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020150086327A KR20160109994A (en) 2015-03-13 2015-06-18 Scr system and control method thereof
KR1020150086329A KR102204688B1 (en) 2015-03-13 2015-06-18 Scr system
KR1020150086566A KR101722839B1 (en) 2015-03-13 2015-06-18 Selective catalytic reduction system
KR1020150090867A KR20160110005A (en) 2015-03-13 2015-06-26 Selective catalytic reduction system
KR1020150100335A KR20160110010A (en) 2015-03-13 2015-07-15 Selective Catalytic Reduction System and Reactor Regeneration Control Method Thereof
KR1020150109294A KR20160110017A (en) 2015-03-13 2015-08-03 Power plant system for a ship

Country Status (1)

Country Link
KR (19) KR20160109977A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109977A (en) * 2015-03-13 2016-09-21 현대중공업 주식회사 Scr system and control method thereof
KR101867367B1 (en) * 2016-11-03 2018-06-15 한국기계연구원 The SCR system of a ship for urea spray atomization
KR101884439B1 (en) * 2016-12-05 2018-08-01 주식회사 하이젠 A device for removing harmful gas and particulate matter
KR101864749B1 (en) * 2016-12-27 2018-06-08 주식회사 파나시아 Exhaust Gas Denitrifying System of Ship
KR101957450B1 (en) * 2017-04-27 2019-03-13 한국기계연구원 System and method for the processing of exhaust gas by using multi-step exhaust gas circulation
KR102089126B1 (en) 2017-05-24 2020-03-13 주식회사 엘지화학 Selected Catalytic Reduction System
DE102017112731A1 (en) * 2017-06-09 2018-12-13 Man Diesel & Turbo Se Method and control unit for operating an SCR exhaust aftertreatment system of an internal combustion engine
CN108131189B (en) * 2018-01-31 2019-06-04 安徽江淮汽车集团股份有限公司 After-treatment technics test macro
KR102068334B1 (en) * 2018-11-01 2020-01-20 한국기계연구원 System for processing NOx by using pyrolysis of reducing agent
KR20200055524A (en) 2018-11-13 2020-05-21 현대자동차주식회사 Urea mixing device of SCR system
CN110080863A (en) * 2019-03-29 2019-08-02 哈尔滨工程大学 A kind of heating system improving marine diesel low pressure SCR system cryogenic property

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277518B1 (en) * 2013-04-09 2013-06-21 포항공과대학교 산학협력단 Scr/sncr combined de-nox system for reducing yellow plume and nox
KR101445038B1 (en) * 2013-06-28 2014-09-26 두산엔진주식회사 System for selective catalytic reuction and catalytic regeneration

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0141726B1 (en) 1995-01-09 1998-07-01 구자홍 Hermetic Rotary Compressor
JP3751962B2 (en) 2003-09-05 2006-03-08 日産ディーゼル工業株式会社 Engine exhaust purification system
US7275366B2 (en) 2004-09-14 2007-10-02 Advanced Cleanup Technologies, Inc. High thermal efficiency Selective Catalytic Reduction (SCR) system
JP4646934B2 (en) * 2007-03-01 2011-03-09 株式会社日立ハイテクノロジーズ Engine exhaust treatment apparatus and engine exhaust treatment method using the same
EP2065578A1 (en) 2007-11-28 2009-06-03 International Engine Intellectual Property Heating system for chemical used in exhaust purification system
JP2009209840A (en) * 2008-03-05 2009-09-17 Nissan Motor Co Ltd Exhaust emission control device for engine
DE102008033984B4 (en) * 2008-07-21 2016-03-24 Friedrich Boysen Gmbh & Co. Kg exhaust system
JP2010190049A (en) * 2009-02-16 2010-09-02 Toyota Motor Corp Control device for internal combustion engine with superchargers
KR20100132310A (en) 2009-06-09 2010-12-17 현대중공업 주식회사 The scr system of a ship for nitrogen oxide(nox) reduction using fine urea powder
KR101367114B1 (en) 2009-12-08 2014-02-26 대우조선해양 주식회사 De-NOx system for treating exhaust gas
JP2011144766A (en) 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
JP2013002355A (en) * 2011-06-16 2013-01-07 Ihi Corp Denitration device
KR101300706B1 (en) 2011-07-27 2013-08-26 대우조선해양 주식회사 Exhaust gas cleaning apparatus and method in ship or marine structure
JP2013139733A (en) 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd Method of controlling internal combustion engine with denitration catalyst, internal combustion engine with denitration catalyst, and ship with the same
KR101366937B1 (en) * 2012-06-25 2014-02-25 두산엔진주식회사 Power plant for ship with selective catalytic reuction system and auxiliary power generation system
KR101417296B1 (en) * 2012-06-25 2014-07-08 두산엔진주식회사 Power plant for ship with selective catalytic reuction system for internal combustion engine
KR101367024B1 (en) * 2012-06-28 2014-02-24 두산엔진주식회사 Urea hydrolysis apparatus using fuel cell and selective catalytic reuction system with the same
KR101818262B1 (en) 2012-09-27 2018-02-21 현대중공업 주식회사 SCR catalytic cleaning system using the exhaust gas
KR20140046651A (en) 2012-10-09 2014-04-21 현대중공업 주식회사 Urea injection device for scr reactor of large-size marine diesel engine and it's control method
KR101273551B1 (en) 2013-01-02 2013-06-17 삼건세기(주) The purifying system of exhaust gas
KR101402375B1 (en) 2013-04-24 2014-06-03 현대중공업 주식회사 Urea supply device in selective catalytic reduction system and working method thereof
KR101461337B1 (en) * 2013-09-09 2014-11-13 두산엔진주식회사 Selective catalytic reduction system
KR101497828B1 (en) 2013-09-30 2015-03-02 두산엔진주식회사 System for selective catalytic reuction and method for selective catalytic reuction
KR101497831B1 (en) * 2013-10-07 2015-03-02 두산엔진주식회사 Power plant with selective catalytic reuction system
KR101496043B1 (en) * 2013-10-31 2015-02-25 현대중공업 주식회사 SCR System for Diesel Engine
KR20160109977A (en) * 2015-03-13 2016-09-21 현대중공업 주식회사 Scr system and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277518B1 (en) * 2013-04-09 2013-06-21 포항공과대학교 산학협력단 Scr/sncr combined de-nox system for reducing yellow plume and nox
KR101445038B1 (en) * 2013-06-28 2014-09-26 두산엔진주식회사 System for selective catalytic reuction and catalytic regeneration

Also Published As

Publication number Publication date
KR20160110003A (en) 2016-09-21
KR101722834B1 (en) 2017-04-18
KR102182935B1 (en) 2020-11-25
KR102204688B1 (en) 2021-01-19
KR20160110002A (en) 2016-09-21
KR20160109996A (en) 2016-09-21
KR20160109995A (en) 2016-09-21
KR20160109978A (en) 2016-09-21
KR101722839B1 (en) 2017-04-03
KR20160110000A (en) 2016-09-21
KR20160109979A (en) 2016-09-21
KR20160109977A (en) 2016-09-21
KR20160110017A (en) 2016-09-21
KR20160109999A (en) 2016-09-21
KR102172147B1 (en) 2020-10-30
KR102227207B1 (en) 2021-03-12
KR20160110010A (en) 2016-09-21
KR102204687B1 (en) 2021-01-19
KR20160109983A (en) 2016-09-21
KR20160109984A (en) 2016-09-21
KR20160109982A (en) 2016-09-21
KR20160109998A (en) 2016-09-21
KR20160110001A (en) 2016-09-21
KR20160109981A (en) 2016-09-21
KR101739183B1 (en) 2017-05-23
KR20160110005A (en) 2016-09-21
KR20160109994A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105339620B (en) Selective catalytic reduction and catalyst regeneration system
JP6622968B2 (en) Internal combustion engine
KR20160119250A (en) Method and system for controlling nitrogen oxide emissions from a combustion engine
US8250859B2 (en) Exhaust emission control device
KR20150096329A (en) Method for purifying diesel engine exhaust gases
JP3718208B2 (en) Engine exhaust purification system
EP2860369B1 (en) System and device for reducing reductant deposit formation in exhaust aftertreatment systems
US8061123B2 (en) Method and system of thermal management in an exhaust system
JP4195383B2 (en) Continuous-variable adjustment method of pollution reducing agent for combustion source
CN101737128B (en) Cold-start engine loading for accelerated warming of exhaust aftertreatment system
US20100024379A1 (en) Gas Turbine Combustor Exhaust Gas Spray Cooling for NOx Control Using Selective Catalytic Reductions
JP6114305B2 (en) Exhaust aftertreatment system and method for operating the system
US20050072140A1 (en) Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US8327631B2 (en) Air pollution control system for ocean-going vessels
CN101994556B (en) System and methods for controlling selective catalytic reduction systems
JP3883974B2 (en) Exhaust purification device
US7673446B2 (en) Dual path exhaust emission control system
KR101509689B1 (en) System for purifying exhaust gas and exhaust system having the same
EP1975381A1 (en) Method of denitrification of exhaust gas and apparatus therefor
JP2004197746A (en) Advanced ammonia feed control for selective catalytic reduction
CN103790679A (en) Catalyst system and method for restoring effluent in gasoline engine efflux
KR20160110017A (en) Power plant system for a ship
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
US7874147B2 (en) Method and apparatus for a non-catalytic NOx reduction
CN102733909A (en) Compression ignition engine system with diesel particulate filter coated with nox reduction catalyst and stable method of operation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant