KR101702572B1 - Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same - Google Patents

Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same Download PDF

Info

Publication number
KR101702572B1
KR101702572B1 KR1020140109982A KR20140109982A KR101702572B1 KR 101702572 B1 KR101702572 B1 KR 101702572B1 KR 1020140109982 A KR1020140109982 A KR 1020140109982A KR 20140109982 A KR20140109982 A KR 20140109982A KR 101702572 B1 KR101702572 B1 KR 101702572B1
Authority
KR
South Korea
Prior art keywords
active material
mol
aqueous solution
concentration
metal salt
Prior art date
Application number
KR1020140109982A
Other languages
Korean (ko)
Other versions
KR20160023496A (en
Inventor
고형신
최승우
목덕균
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Priority to KR1020140109982A priority Critical patent/KR101702572B1/en
Publication of KR20160023496A publication Critical patent/KR20160023496A/en
Application granted granted Critical
Publication of KR101702572B1 publication Critical patent/KR101702572B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질에 관한 것이다.
본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법은 공침법에 의하면서 첨가되는 M 원소를 공침 초기부터 동시에 공침시킴으로써 이에 따라 제조되는 입자의 내부뿐만 아니라 표면에 M 이 균일하게 도핑되어 수명 특성이 향상되는 효과를 나타낸다.
The present invention relates to a process for producing a non-cobalt concentration gradient cathode active material and a non-cobalt concentration gradient cathode active material produced thereby.
According to the method of the present invention, the element M added in the coprecipitation method is co-precipitated simultaneously from the beginning of coprecipitation, so that not only the inside of the particles thus produced but also the surface of the element is uniformly doped with M, And exhibits an improved effect.

Description

무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질{MANUFACTURING METHOD OF COBALT FREE CONCENTRATION GRADIENT CATHOD ACTIVE MATERIAL AND COBALT FREE CONCENTRATION GRADIENT CATHOD ACTIVE MATERIAL MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cobalt-free gradient cathode active material and a cobalt-free gradient cathode active material,

본 발명은 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질에 관한 것이다.
The present invention relates to a process for producing a non-cobalt concentration gradient cathode active material and a non-cobalt concentration gradient cathode active material produced thereby.

비수전해질 이차전지, 혹은 리튬 이온 이차전지는, 휴대 전화나 노트북 컴퓨터 등의 휴대 기기용 전원으로서 널리 사용되고 있다. 비수전해질 이차전지는, 오늘날의 유비쿼터스 네트워크 사회에 필수불가결하고, 향후에도 고용량화가 더욱 절실히 요망되고 있다. 최근에는, 파워툴용 전원으로서도 비수전해질 이차전지가 채택되고 있다. 장래에는, 하이브리드 자동차용 전원 등에도 비수전해질 이차전지의 용도가 확대될 것으로 기대되고 있다.BACKGROUND ART A nonaqueous electrolyte secondary battery or a lithium ion secondary battery is widely used as a power source for a portable device such as a cellular phone or a notebook computer. The non-aqueous electrolyte secondary battery is indispensable to today's ubiquitous network society, and the capacity of the non-aqueous electrolyte secondary battery is urgently required in the future. In recent years, a non-aqueous electrolyte secondary battery has been adopted as a power tool power source. In the future, the use of non-aqueous electrolyte secondary batteries is expected to be extended to power sources for hybrid vehicles and the like.

1991년에 리튬 이온 이차전지가 양산화되고 나서 오늘날까지, 전지의 에너지 밀도는 280Wh/L로부터 580Wh/L로 2 배로 증가했다. 그동안, 양극활물질에 LiCoO2, 음극에 그라파이트를 이용한다고 하는 기본적인 설계는 변경되지 않았다. 그러나, 전지 구조의 개량이나 고밀도화의 기술은, 이미 한계에 가깝고, 고용량, 고성능 및 높은 안전성을 가진 새로운 재료의 개발이 기대되고 있다.Since the lithium ion secondary battery was mass produced in 1991, to date, the energy density of the battery has doubled from 280 Wh / L to 580 Wh / L. Meanwhile, the basic design of using LiCoO 2 for the cathode active material and graphite for the cathode has not been changed. However, the technology of improving the cell structure and increasing the density is already close to the limit, and development of a new material having high capacity, high performance and high safety is expected.

이러한 배경 속에서, LiCoO2를 대신할 유망한 재료로서, 니켈, 망간 및 코발트의 3원소를 함유한 3원계 "리튬 니켈 망간 코발트 산화물(LMNCO)"의 연구가 활발하게 이루어지고 있다. In this background, as a promising material to replace LiCoO 2 , tribological "lithium nickel manganese cobalt oxide (LMNCO)" containing three elements of nickel, manganese and cobalt has been actively studied.

"리튬 니켈 망간 코발트 산화물(LMNCO)"의 예는 Li1 + xM1 -x02(여기서, M=Mn 1/3Ni1/3Co1/3O2)가 잘 알려져 있다. "리튬 니켈 망간 코발트 산화물(LMNCO)"은 매우 활성이 있고, 제조하기 용이하며, 상대적으로 적은 함량의 코발트를 가지므로 일반적으로 비용이 적게 드는 경향이 있다. 그러나, 이 화합물은 가역 용량(reverseble capacity)이 상대적으로 낮다는 단점을 가지고 있다. 일반적으로, 4.3 V 내지 3.0 V 사이에서 용량은 약 160 mAh/g 이하이며, 리튬 니켈 산화물계 양극활물질(LNO)의 용량이 185-195 mAh/g 인 것과 비교된다. 리튬 니켈 산화물계 양극활물질(LNO)와 비교하여 "리튬 니켈 망간 코발트 산화물" 양극활물질(LNMCO)의 단점은 상대적으로 낮은 결정학적 밀도(crystallographic density)에 있으며, 이는 부피 용량(volumetric capacity)이 또한 적고; 상대적으로 전기전도성(electronic conductivity)이 낮다는 점이다.An example of "lithium nickel manganese cobalt oxide (LMNCO)" is Li 1 + x M 1 -x 0 2 where M = Mn 1/3 Ni 1/3 Co 1/3 O 2 . "Lithium nickel manganese cobalt oxide (LMNCO)" is highly active, easy to manufacture, and generally has a low cost because it has a relatively low content of cobalt. However, this compound has a disadvantage that the reverseble capacity is relatively low. Generally, between 4.3 V and 3.0 V, the capacity is less than about 160 mAh / g, and the capacity of lithium nickel oxide based cathode active material (LNO) is compared to 185-195 mAh / g. The disadvantage of the "lithium nickel manganese cobalt oxide" cathode active material (LNMCO) compared to the lithium nickel oxide based positive electrode active material (LNO) is the relatively low crystallographic density, which also has a small volumetric capacity ; And relatively low electronic conductivity.

리튬 니켈 망간 코발트 산화물 양극활물질(LNMCO)은 리튬 니켈 산화물계 양극활물질(LNO)과 비교하여 높은 온도에서 전해질과 반응하려는 경향이 낮고 고유 용량은 훨씬 높다(이는 통상 Mn의 용해에 의해 특징화된다). 일반적으로, 염기 함량이 증가하고, 안전성 성능은 Ni:Mn 비율이 증가함에 따라서 열화되는 경향이 있다. 한편, 높은 Mn 함량은 안전성을 향상시키는데 도움을 주는 것으로 알려져 있다.Lithium nickel manganese cobalt oxide cathode active material (LNMCO) has a low propensity to react with electrolytes at higher temperatures and a much higher intrinsic capacity (which is typically characterized by dissolution of Mn) compared to lithium nickel oxide based cathode active material (LNO) . In general, the base content increases and safety performance tends to deteriorate with increasing Ni: Mn ratio. On the other hand, high Mn content is known to help improve safety.

높은 염기 함량은 수분 민감도와 관련이 있다. 이와 관련하여, 리튬 니켈 망간 산화물 양극활물질(LMNO)는 리튬 니켈 산화물계 양극활물질(LNO)보다 수분 민감도는 떨어지지만, 리튬 니켈 망간 코발트 산화물 양극활물질(LMNCO)보다는 더 민감하다. 제조한 직후에, 잘 제조된 리튬 니켈 망간 산화물 양극활물질(LMNO) 시료는 상대적으로 낮은 표면 염기 함량을 가지며, 잘 제조되었다면 대부분의 표면 염기는 Li2C03 타입 염기가 아니다. 그러나, 수분의 존재하에서 공중(airborn) CO2 또는 유기 라디칼이 LiOH 타입 염기와 반응하여 Li2C03 타입 염기를 형성한다. 유사하게, 소비된 LiOH가 벌크(bulk)로부터의 Li에 의해서 천천히 재형성되므로, 전체 염기량(전체 염기= Li2C03 + LiOH 타입 염기의 몰)이 증가한다. 동시에 수분(ppm H20)이 증가한다. 따라서, 상기 과정은 전지 제조에 있어서 매우 좋지 않다. Li2C03 및 수분은 심각한 팽창을 일으키고 슬러리 안정성을 떨어뜨린다고 알려져 있다. High base content is associated with moisture sensitivity. In this regard, the lithium nickel manganese oxide cathode active material (LMNO) is less sensitive than the lithium nickel oxide based cathode active material (LNO) but is more sensitive than the lithium nickel manganese cobalt oxide cathode active material (LMNCO). Immediately after the preparation, a well prepared lithium nickel manganese oxide cathode active material (LMNO) sample has a relatively low surface base content and, if well-prepared, most surface bases are not Li 2 CO 3 type bases. However, in the presence of moisture, airborne CO 2 or organic radicals react with LiOH-type bases to form Li 2 CO 3 type bases. Similarly, since the consumed LiOH is slowly reformed by Li from bulk, the total amount of base (total base = Li 2 CO 3 + moles of LiOH-type base) increases. At the same time, moisture (ppm H 2 O) increases. Therefore, the above process is not very good for battery production. Li 2 CO 3 and water are known to cause serious swelling and poor slurry stability.

이에 따라 무코발트 리튬 니켈 망간 산화물계 양극활물질의 특성을 개선하기 위한 연구가 필요한 실정이다.
Accordingly, there is a need for research to improve the properties of the non-cobalt lithium nickel manganese oxide cathode active material.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 새로운 무코발트 리튬 니켈 망간 산화물계 양극활물질의 제조 방법을 제공하는 것을 목적으로 한다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a novel method for preparing a non-cobalt lithium nickel manganese oxide cathode active material.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 무코발트 리튬 니켈 망간 산화물계 양극활물질을 제공하는 것을 목적으로 한다.
The present invention also aims to provide a non-cobalt lithium nickel manganese oxide cathode active material produced by the production method of the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

망간 화합물, 니켈 화합물, M 함유 화합물(M 은 알루미늄, 마그네슘 및 티탄으로 이루어진 그룹에서 선택되는 1 이상임)을 함유하는 중심부 형성용 제 1 금속염 수용액, 및 표면부 형성용 제 2 금속염 수용액을 준비하는 단계; Preparing a first metal salt aqueous solution for forming a center portion and a second metal salt aqueous solution for forming a surface portion containing a manganese compound, a nickel compound and an M-containing compound (M is at least one selected from the group consisting of aluminum, magnesium and titanium) ;

상기 제 1 금속염 수용액에 대한 제 2 금속염 수용액의 비율을 0 v% 에서 100 v% 로 증가시키면서 혼합하여 반응기로 도입하고, 염기성 화합물을 혼합하여 공침법으로 전이금속 수산화물 입자를 제조하는 단계; Introducing the second metal salt aqueous solution to the first metal salt aqueous solution while increasing the proportion of the second metal salt aqueous solution from 0 v% to 100 v%, introducing the mixture into the reactor, and mixing the basic compounds to prepare transition metal hydroxide particles by coprecipitation;

상기 수산화물과 리튬 화합물을 혼합하는 단계; 및 Mixing the hydroxide and the lithium compound; And

상기 혼합물을 소성하는 단계; Calcining the mixture;

를 포함하는 무코발트 농도 구배 양극활물질의 제조 방법을 제공한다.
Cobalt < / RTI > concentration gradient cathode active material.

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 중심부 형성용 제 1 금속염 수용액의 니켈의 농도는 0.8 mol% 내지 0.95 mol% 이고, 망간의 농도는 0.05 mol% 내지 0.2 mol% 인 것을 특징으로 한다. The concentration of nickel in the aqueous solution of the first metal salt for forming the center portion is preferably 0.8 mol% to 0.95 mol%, the concentration of manganese is 0.05 mol% to 0.2 mol% .

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 표면부 형성용 제 2 금속염 수용액의 니켈의 농도는 0.4 mol% 내지 0.6 mol% 이고, 망간의 농도는 0.4 mol% 내지 0.6 mol% 인 것을 특징으로 한다. The concentration of nickel in the second metal salt aqueous solution for forming the surface portion is 0.4 mol% to 0.6 mol%, the concentration of manganese is 0.4 mol% to 0.6 mol% .

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 중심부 형성용 제 1 금속염 수용액의 M 금속의 농도는 0.001 내지 0.1 mol% 인 것을 특징으로 한다. 본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법은 공침 반응시에 M 화합물을 상기 중심부 형성용 제 1 금속염 수용액 및 상기 표면부 형성용 제 2 금속염 수용액에 일정 농도로 포함시킴으로써 니켈 망간과 동시에 공침시키는 것을 특징으로 한다. In the method for producing a cathode-free, cobalt-free slurry cathode active material according to the present invention, the concentration of M metal in the first metal salt aqueous solution for forming the center portion is 0.001 to 0.1 mol%. The method for producing a non-cobalt concentration gradient cathode active material according to the present invention is characterized in that at the time of the coprecipitation reaction, the M compound is contained in the aqueous solution of the first metal salt for forming the center portion and the aqueous solution of the second metal salt for forming the surface portion at a constant concentration, .

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 표면부 형성용 제 2 금속염 수용액의 M 금속의 농도는 0.001 내지 0.1 mol% 인 것을 특징으로 한다. In the method for producing a positive electrode active material of a non-cobalt concentration gradient according to the present invention, the M metal concentration of the second metal salt aqueous solution for forming the surface portion is 0.001 to 0.1 mol%.

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 M 화합물은 설페이트염, 수산화염인 것을 특징으로 한다. In the method for producing a cobalt-free concentration gradient cathode active material according to the present invention, the M compound is a sulfate salt or an oxalate salt.

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법에 있어서, 상기 혼합물을 소성하는 단계에서는 700 내지 900℃ 에서 8시간 내지 12시간 동안 열처리 하는 것을 특징으로 한다. In the method for producing a cobalt-free gaseous cathode active material according to the present invention, in the step of firing the mixture, heat treatment is performed at 700 to 900 ° C for 8 to 12 hours.

본 발명은 또한, 본 발명에 의한 제조 방법에 의하여 제조되고, 입자 중심으로부터 표면까지 니켈 및 망간의 농도가 구배를 나타내며, 입자 전체에서의 평균 농도가 아래 화학식 1로 표시되는 무코발트 농도 구배 양극활물질을 제공한다. The present invention also provides a non-cobalt-concentration gradient cathode active material, which is produced by the production method according to the present invention and has a concentration gradient of nickel and manganese from the center of grains to the surface thereof, .

<화학식 1> LixNiaMnbM1-a-bO2&Lt; Formula 1 > LixNiaMnbM1-a-bO2

(상기 화학식 1에서 0.9≤X≤1.1, 0.5≤a≤1.0, 0≤b≤0.5, 0≤1-a-b≤0.01 임)
(Wherein 0.9? X? 1.1, 0.5? A? 1.0, 0? B? 0.5, 0? 1-ab?

본 발명에 의한 무코발트 농도 구배 양극활물질의 제조 방법은 니켈 망간 외에 첨가되는 M 원소를 공침 초기 단계에서부터 혼합하여 니켈 망간과 동시에 공침시킴으로써 이에 따라 제조되는 입자의 내부 뿐만 아니라 표면에 M 이 균일하게 도핑되어 수명 특성이 향상되는 효과를 나타낸다.
The method of producing a cobalt-free cathode active material according to the present invention is characterized in that M element added in addition to nickel manganese is mixed with nickel manganese simultaneously from the initial stage of coprecipitation so that M is uniformly doped into the surface of the thus- And the lifetime characteristics are improved.

도 1 은 본 발명의 일 실시예에 의하여 제조된 무코발트 농도 구배 양극활물질의 SEM 사진을 나타낸다.
도 2 내지 도 4 는 본 발명의 일 실시예에 의하여 제조된 무코발트 농도 구배 양극활물질을 포함하는 전지의 초기 충방전 특성을 측정한 결과를 나타낸다.
도 5 내지 도 7 는 본 발명의 일 실시예에 의하여 제조된 무코발트 농도 구배 양극활물질을 포함하는 전지의 C-rate 특성을 측정한 결과를 나타낸다.
도 8 내지 도 10 은 본 발명의 일 실시예에 의하여 제조된 무코발트 농도 구배 양극활물질을 포함하는 전지의 수명 특성을 측정한 결과를 나타낸다.
1 is a SEM photograph of a cobalt-doped gradient cathode active material prepared according to an embodiment of the present invention.
FIGS. 2 to 4 show the results of measurement of initial charging / discharging characteristics of a battery including a non-cobalt concentration gradient cathode active material manufactured according to an embodiment of the present invention.
FIGS. 5 to 7 show the results of measurement of the C-rate characteristics of a battery including a non-cobalt concentration gradient cathode active material manufactured according to an embodiment of the present invention.
FIGS. 8 to 10 illustrate results of measurement of lifetime characteristics of a battery including a non-cobalt concentration gradient cathode active material manufactured according to an embodiment of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 더욱 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 1>

망간 화합물, 니켈 화합물, M 화합물로서 마그네슘 설페이트 화합물을 각각 10 mol%, 89.995 mol% 및 0.005 mol% 함유하는 중심부 형성용 제 1 금속염 수용액, 및 50 mol%, 49.995 mol% 및 0.005 mol% 함유하는 표면부 형성용 제 2 금속염 수용액을 준비하였다. A first metal salt aqueous solution containing 10 mol%, 89.995 mol% and 0.005 mol% of a magnesium sulfate compound as a M compound, and a second metal salt aqueous solution containing 50 mol%, 49.995 mol% and 0.005 mol% A second aqueous metal salt solution for forming part was prepared.

공침 반응기(용량 50L, 회전모터의 출력 1.0 KW)에 증류수 14리터를 넣은 뒤 질소가스를 반응기에 5리터/분의 속도로 공급함으로써, 용존 산소를 제거하고 반응기의 온도를 50 ℃로 유지시키면서 600 rpm으로 교반하였다.14 liters of distilled water was placed in a coprecipitation reactor (capacity 50 L, output of a rotary motor 1.0 KW), nitrogen gas was supplied to the reactor at a rate of 5 liters / minute to remove dissolved oxygen and the temperature of the reactor lt; / RTI &gt;

상기 중심부 형성용 제 1 금속염 수용액과 상기 표면부 형성용 제 2 금속염 수용액을 일정 비율로 혼합하면서 0.9 리터/시간으로 투입하였다. 또한, 14M 농도의 암모니아 용액을 0.09 리터/시간으로 반응기에 연속적으로 투입하였다. 또한, pH 조정을 위해 4M 농도의 NaOH 수용액을 공급하여 반응기 내의 pH를 11로 유지되도록 하였다. The first metal salt aqueous solution for forming the center portion and the second metal salt aqueous solution for forming the surface portion were mixed at a constant ratio and charged at a rate of 0.9 liter / hour. Further, an ammonia solution having a concentration of 14M was continuously introduced into the reactor at 0.09 liter / hour. In order to adjust the pH, a 4M aqueous NaOH solution was supplied to maintain the pH in the reactor at 11.

이어서, 반응기의 임펠러 속도를 600 rpm으로 조절하여, 얻어지는 침전물의 지름이 8~9 ㎛ 가 될 때까지 공침 반응을 수행하였다. 이때 유량을 조절하여 용액의 반응기 내의 평균 체류 시간은 18 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상 상태 지속시간을 주어 좀 더 밀도가 높은 공침 화합물을 얻도록 하였다. 상기 화합물을 여과하고, 물로 세척한 다음, 110 ℃의 온풍 건조기에서 10 시간 동안 건조시켜, 활물질 전구체를 얻었다.Then, the impeller speed of the reactor was adjusted to 600 rpm, and the coprecipitation reaction was performed until the diameter of the obtained precipitate became 8 to 9 탆. At this time, the flow rate was adjusted so that the average residence time of the solution in the reactor was about 18 hours. After the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense coprecipitated compound. The compound was filtered, washed with water, and then dried in a hot air dryer at 110 DEG C for 10 hours to obtain an active material precursor.

상기 얻어진 활물질 전구체에 리튬염으로서 Li2CO3를 Li/M 의 비율이 1.01 이 되도록 혼합한 후에 2.5 ℃/min의 승온 속도로 가열한 후 880 ℃에서 10시간 동안 유지시켜 최종 활물질 입자를 얻었다.
Li 2 CO 3 as a lithium salt was mixed with the active material precursor to obtain Li / M ratio of 1.01, followed by heating at a heating rate of 2.5 ° C / min and holding at 880 ° C for 10 hours to obtain final active material particles.

<< 실시예Example 2 내지 10>  2 to 10>

상기 실시예 1 에서 중심부 형성용 제 1 금속염 수용액, 및 표면부 형성용 제 2 금속염 수용액 내에서의 M 금속의 종류 및 수산화물에 대해 첨가되는 리튬염의 비율을 아래 표 1에서와 같이 조절하는 것을 제외하고는 상기 실시예 1 과 동일하게 하여 실시예 2 내지 10 의 활물질 입자를 제조하였다.
Except that the ratio of the lithium salt to be added to the first metal salt aqueous solution for forming the center portion and the M metal species and the hydroxide in the second metal salt aqueous solution for forming the surface portion in Example 1 was adjusted as shown in Table 1 The active material particles of Examples 2 to 10 were produced in the same manner as in Example 1 above.

Figure 112014080018747-pat00001
Figure 112014080018747-pat00001

<< 실험예Experimental Example 1>  1> SEMSEM 사진 측정 Photo measurement

상기 실시예 1 내지 9 에서 제조된 양극활물질의 SEM 사진을 측정하고 그 결과를 도 1에 나타내었다.
SEM photographs of the cathode active materials prepared in Examples 1 to 9 were measured and the results are shown in FIG.

<< 실험예Experimental Example 2> 입자 특성 측정 2> Measurement of particle characteristics

상기 실시예 1 내지 9 에서 제조된 양극활물질의 D50. 탭밀도 및 BET 표면적을 측정하고 그 결과를 아래 표 2에 나타내었다. The D50 values of the cathode active materials prepared in Examples 1 to 9 were measured. Tap density and BET surface area were measured and the results are shown in Table 2 below.

Figure 112014080018747-pat00002
Figure 112014080018747-pat00002

<< 실험예Experimental Example 3>  3> 충방전Charging and discharging 용량, 및 사이클 특성 측정 Capacity, and cycle characteristics

상기 실시예 1 내지 9 에서 제조된 각 활물질과 상기 비교예 에서 제조된 활물질들을 이용하여 양극을 제조하고, 이를 원통형 리튬 이차 전지에 적용하였다. 상기 실시예 1 내지 9 에서 제조된 활물질을 이용한 전지에 대하여 초기 충방전 특성, 수명 특성 및 C-rate 특성을 측정하였으며, 그 결과를 도 2 내지 도 11 에 나타내었다. Each of the active materials prepared in Examples 1 to 9 and the active materials prepared in the above Comparative Examples were used to prepare a positive electrode and applied to a cylindrical lithium secondary battery. The initial charge-discharge characteristics, life characteristics, and C-rate characteristics of the battery using the active materials prepared in Examples 1 to 9 were measured, and the results are shown in FIGS. 2 to 11.

도 2 내지 도 4에서 보는 바와 같이 본 발명에 의하여 제조된 활물질을 이용한 전지의 초기 충방전 특성은 비교예에 비하여 개선되지 못하였으나, 도 5 내지 도 7 및 도 8 내지 도 10 에서 보는 바와 같이 C-rate 특성 및 수명 특성은 크게 개선되는 것을 확인할 수 있다. As shown in FIGS. 2 to 4, the initial charge and discharge characteristics of the battery using the active material prepared according to the present invention were not improved as compared with the comparative example. However, as shown in FIGS. 5 to 7 and 8 to 10, -rate characteristics and life characteristics are greatly improved.

Claims (8)

망간 화합물, 니켈 화합물, M 함유 화합물(M 은 알루미늄, 마그네슘 및 티탄으로 이루어진 그룹에서 선택되는 1 이상임)을 함유하고, M 금속의 농도가 동일한 중심부 형성용 제 1 금속염 수용액, 및 표면부 형성용 제 2 금속염 수용액을 준비하는 단계;
상기 중심부 형성용 제 1 금속염 수용액에 대한 표면부 형성용 제 2 금속염 수용액의 비율을 0 v% 에서 100 v% 로 증가시키면서, 혼합하여 반응기로 도입하고, 염기성 화합물을 혼합하여 공침법으로 전이금속 수산화물 입자를 제조하는 단계;
상기 수산화물과 리튬 화합물을 혼합하는 단계; 및
상기 혼합물을 소성하는 단계;를 포함하고,
입자 중심으로부터 표면까지 니켈 및 망간의 농도가 구배를 나타내며, 입자 전체에서의 평균 농도가 아래 화학식 1로 표시되고,
중심부로부터 표면부까지 입자 전체에서 M 의 농도가 일정한 무코발트 농도 구배 양극활물질의 제조 방법.
<화학식 1> LiXNiaMnbM1-a-bO2
(상기 화학식 1에서 0.9≤X≤1.1, 0.5≤a≤1.0, 0≤b≤0.5, 0≤1-a-b≤0.01 임)
A first metal salt aqueous solution for forming a center portion containing a manganese compound, a nickel compound, an M-containing compound (M is at least one selected from the group consisting of aluminum, magnesium and titanium) Barium salt aqueous solution ;
The ratio of the aqueous solution of the second metal salt for forming the surface portion to the aqueous solution of the first metal salt for forming the central portion was increased from 0 v% to 100 v%, and the mixture was introduced into the reactor. The basic compounds were mixed, Producing particles;
Mixing the hydroxide and the lithium compound; And
And firing said mixture,
The concentration of nickel and manganese in the range from the center of grains to the surface is graded, and the average concentration in the entire grains is represented by the following formula 1,
Wherein the concentration of M is constant throughout the particles from the center portion to the surface portion.
&Lt; Formula 1 > Li X Ni a Mn b M 1-ab O 2
(Wherein 0.9? X? 1.1, 0.5? A? 1.0, 0? B? 0.5, 0? 1-ab ?
제 1 항에 있어서,
상기 중심부 형성용 제 1 금속염 수용액의 니켈의 농도는 0.8 mol% 내지 0.95 mol% 이고, 망간의 농도는 0.05 mol% 내지 0.2 mol% 인 것을 특징으로 하는 무코발트 농도 구배 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the concentration of nickel in the first metal salt aqueous solution for forming the center portion is 0.8 mol% to 0.95 mol%, and the concentration of manganese is 0.05 mol% to 0.2 mol%.
제 1 항에 있어서,
상기 표면부 형성용 제 2 금속염 수용액의 니켈의 농도는 0.4 mol% 내지 0.6 mol% 이고, 망간의 농도는 0.4 mol% 내지 0.6 mol% 인 것을 특징으로 하는 무코발트 농도 구배 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the concentration of nickel in the second metal salt aqueous solution for surface part formation is 0.4 mol% to 0.6 mol%, and the concentration of manganese is 0.4 mol% to 0.6 mol%.
제 1 항에 있어서,
상기 중심부 형성용 제 1 금속염 수용액의 M 금속의 농도는 0.001 내지 0.1 mol% 인 것을 특징으로 하는 무코발트 농도 구배 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the M metal concentration of the first metal salt aqueous solution for forming the center portion is 0.001 to 0.1 mol%.
제 1 항에 있어서,
상기 M 화합물은 설페이트염, 수산화염 인 것을 특징으로 하는 무코발트 농도 구배 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the M compound is a sulfate salt or an oxalate salt.
삭제delete 제 1 항에 있어서,
상기 혼합물을 소성하는 단계에서는 700 내지 900℃ 에서 8시간 내지 12시간 동안 열처리 하는 것을 특징으로 하는 무코발트 농도 구배 양극활물질의 제조 방법.
The method according to claim 1,
Wherein the heat treatment is performed at 700 to 900 DEG C for 8 to 12 hours in the step of firing the mixture.
삭제delete
KR1020140109982A 2014-08-22 2014-08-22 Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same KR101702572B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140109982A KR101702572B1 (en) 2014-08-22 2014-08-22 Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140109982A KR101702572B1 (en) 2014-08-22 2014-08-22 Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same

Publications (2)

Publication Number Publication Date
KR20160023496A KR20160023496A (en) 2016-03-03
KR101702572B1 true KR101702572B1 (en) 2017-02-13

Family

ID=55535467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140109982A KR101702572B1 (en) 2014-08-22 2014-08-22 Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same

Country Status (1)

Country Link
KR (1) KR101702572B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195524A1 (en) 2020-03-27 2021-09-30 Board Of Regents, The University Of Texas System Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516459B1 (en) 2016-04-08 2023-04-04 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
CN109415224B (en) * 2016-04-08 2022-04-01 汉阳大学校产学协力团 Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
WO2017175977A1 (en) * 2016-04-08 2017-10-12 한양대학교 산학협력단 Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same
CN107346824B (en) * 2017-05-27 2020-06-09 山东玉皇新能源科技有限公司 Preparation method and application of gradient ternary cathode material
EP3933983A4 (en) * 2019-02-28 2023-01-11 SM Lab Co., Ltd. Positive active material, method for manufacturing same and lithium secondary battery comprising positive electrode comprising positive active material
CN109970106B (en) * 2019-03-28 2021-06-25 广东迈纳科技有限公司 Large-scale preparation method of high-nickel cobalt-free precursor and positive electrode material
CN111916697B (en) * 2020-07-14 2021-09-21 蜂巢能源科技有限公司 Cobalt-free cathode material, preparation method thereof, lithium ion battery cathode and lithium battery
CN112786834A (en) * 2021-01-26 2021-05-11 蜂巢能源科技有限公司 Positive pole piece and lithium ion battery comprising same
CN113363461A (en) * 2021-06-07 2021-09-07 四川启睿克科技有限公司 Bimetallic ion co-doped cobalt-free precursor, positive electrode material and preparation method thereof
CN113308736B (en) * 2021-06-26 2022-12-06 山东硅纳新材料科技有限公司 Preparation method of doped cobalt-free single crystal lithium-rich manganese-based positive electrode material
CN114031127B (en) * 2021-12-20 2023-10-24 金驰能源材料有限公司 Mg-Ti co-doped high-nickel cobalt-free precursor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (en) * 2006-06-29 2007-08-29 한양대학교 산학협력단 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
JP2014505334A (en) 2011-01-05 2014-02-27 漢陽大学校産学協力団 Positive electrode active material for lithium secondary battery having total particle concentration gradient, method for producing the same, and lithium secondary battery including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (en) * 2006-06-29 2007-08-29 한양대학교 산학협력단 Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
JP2014505334A (en) 2011-01-05 2014-02-27 漢陽大学校産学協力団 Positive electrode active material for lithium secondary battery having total particle concentration gradient, method for producing the same, and lithium secondary battery including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195524A1 (en) 2020-03-27 2021-09-30 Board Of Regents, The University Of Texas System Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries
US11233239B2 (en) 2020-03-27 2022-01-25 Board Of Regents, The University Of Texas System Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries

Also Published As

Publication number Publication date
KR20160023496A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
KR101702572B1 (en) Manufacturing method of cobalt free concentration gradient cathod active material and cobalt free concentration gradient cathod active material made by the same
US10446830B2 (en) High-voltage ternary positive electrode material for lithium-ion battery and preparation method thereof
US10329162B2 (en) Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element
CN107567666B (en) Anode active material and secondary battery including the same
CN108886142B (en) Method for manufacturing anode active material for lithium secondary battery and anode active material for lithium secondary battery manufactured thereby
JP2020109771A (en) Positive-electrode active material for lithium secondary battery and lithium secondary battery having the same
CN102983326B (en) Spherical lithium-nickel-cobalt composite oxide positive electrode material preparation method
CN104037401B (en) Nickel-cobalt-lithium manganate ternary anode material suitable for application under high voltage
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
CN106784795B (en) Single-crystal spherical lithium manganate material, preparation method thereof and positive electrode material
JP5813277B1 (en) Spinel-type lithium cobalt manganese-containing composite oxide
KR101440241B1 (en) NCA cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
KR20160075404A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN115917792A (en) Positive active material containing spinel composite solid solution oxide, method for preparing same, and lithium secondary battery containing same
KR20140102195A (en) Method for manufacturing cathode active material for lithium secondary battery
KR101583125B1 (en) NCA cathode active materials with high capacity by iron doping and safety and their preparing method for lithium secondary batteries
KR20150080219A (en) Cathode active material and lithium secondary batteries comprising the same
KR101134474B1 (en) Anode material with high rate-capability and high Capacity for Lithium secondary battery and Process for synthesizing the same
CN114956209A (en) Medium-low nickel cobalt-free cathode material with single crystal structure and preparation method and application thereof
CN113387401B (en) Preparation method of scandium-tungsten doped anode material precursor
CN112582587A (en) Core-shell structure high-nickel cathode material with single crystal as core and preparation method thereof
CN106410185A (en) Preparation method for lithium ion battery manganese-based cathode materials of egg yolk-egg shell structure
KR20060122452A (en) Manganese oxides by co-precipitation method, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
Xiang et al. An improved carbonate precipitation method for the preparation of Li 1.2 Ni 0.12 Co 0.12 Mn 0.56 O 2 cathode material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 4