KR101525844B1 - Co₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템 - Google Patents

Co₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템 Download PDF

Info

Publication number
KR101525844B1
KR101525844B1 KR1020137009205A KR20137009205A KR101525844B1 KR 101525844 B1 KR101525844 B1 KR 101525844B1 KR 1020137009205 A KR1020137009205 A KR 1020137009205A KR 20137009205 A KR20137009205 A KR 20137009205A KR 101525844 B1 KR101525844 B1 KR 101525844B1
Authority
KR
South Korea
Prior art keywords
stream
ammonia
regenerator
flue gas
heated
Prior art date
Application number
KR1020137009205A
Other languages
English (en)
Other versions
KR20130056329A (ko
Inventor
조셉 피. 나우모비츠
미카엘 코흐
Original Assignee
알스톰 테크놀러지 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US38220510P priority Critical
Priority to US61/382,205 priority
Priority to US13/196,172 priority patent/US8728209B2/en
Priority to US13/196,172 priority
Application filed by 알스톰 테크놀러지 리미티드 filed Critical 알스톰 테크놀러지 리미티드
Priority to PCT/US2011/049493 priority patent/WO2012036878A1/en
Publication of KR20130056329A publication Critical patent/KR20130056329A/ko
Application granted granted Critical
Publication of KR101525844B1 publication Critical patent/KR101525844B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

CO2 포획 시스템(300)의 에너지 요구량을 감소시키기 위한 방법은 연도 가스 스트림(140)을 흡수기(130)에 있는 CO2 희박 흡수성 스트림(150)과 접촉시켜서, 상기 연도 가스(140)로부터 CO2를 제거하고 CO2 농후 흡수성 스트림(152)을 제공하는 단계; 상기 CO2 농후 흡수성 스트림(152)의 제 1 부분을 상기 CO2 희박 흡수성 스트림(150)으로부터의 열을 사용하여 가열하고, 상기 CO2 농후 흡수성 스트림(152)의 가열된 상기 제 1 부분(204)을 재생기(160)에 제공하는 단계; 및 상기 CO2 농후 흡수성 스트림(152)의 제 2 부분(202)을 상기 재생기에 제공하는 단계로서, 상기 가열된 제 1 부분(204)은 상기 제 2 부분(202)보다 고온이고 상기 가열된 제 1 부분(204)은 상기 제 2 부분(202)의 고도에 대한 상기 재생기(160)의 낮은 고도(elevation)에서 상기 재생기에 제공되는 상기 제공 단계를 포함한다.

Description

CO₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템{METHOD AND SYSTEM FOR REDUCING ENERGY REQUIREMENTS OF A CO₂ CAPTURE SYSTEM}
본 특허 출원은 2010년 9월 13일자 출원된 공동 계류중인 미국 가출원 번호 61/382,205호에 대한 우선권을 주장한다.
본원은 연도 가스 스트림으로부터 이산화탄소(C02)를 제거하기 위한 시스템 및 방법에 관한 것이다.
화력 발전소와 같은 연소 플랜트에서의 석탄, 오일, 토탄, 폐기물 등과 같은 연료의 연소 시에, 종종 연도 가스로 칭하고, 다른 성분들 중에서 이산화탄소 CO2를 함유하는 고온 프로세스 가스가 발생된다. 대기로 방출되는 이산화탄소의 부정적인 환경 영향은 널리 인식되어 있으며, 결과적으로 상술한 연료들의 연소에서 발생되는 고온 프로세스 가스로부터 이산화탄소를 제거하기 위한 시스템 및 프로세스가 개발되었다.
CO2 제거를 위한 여러 시스템/방법들에서, 흡수 용기가 제공되고, 상기 흡수 용기 내에서 이온 용액이 역류 유동에서 CO2를 함유하는 연도 가스 스트림과 접촉한다. 이전에 공개된 하나의 시스템 및 프로세스는 차후-연소 연도 가스 스트림으로부터 CO2의 제거를 위한 단일 스테이지 냉각 암모니아 기반 시스템 및 방법이다. 이러한 시스템 및 프로세스는 본원에서 전체적으로 합체된 발명의 명칭이 "CO2의 제거를 포함하는 연소 가스의 울트라 클리닝(Ultra Cleaning)"인 미국 특허 출원 공보 2008/0072762호에 제안되고 개시되어 있다. 냉각 암모니아 시스템에서, 이온 용액은 예로서 물 및 암모니아 이온들, 중탄산염 이온들, 탄산염 이온들 및/또는 카르바민산염(carbamate) 이온들로 조성된다. 다른 시스템에서, 이온 용액은 아민일 수 있다는 것을 고려해야 한다. 또한 이온 용액은 효소(예로서, 탄산무수화 효소(carbonic anhydrase)) 또는 아민(예로서, 피페라진(piperazine))에 의해서 촉진될 수 있다는 것도 역시 고려해야 한다.
흡수 용기는 예로서 화석 연료 발화 보일러의 연소실에서 발생하는 연도 가스 스트림(FG)을 수용하도록 구성된다. 또한 흡수 용기는 재생 시스템으로부터 CO2 희박 이온 용액 공급량을 수용하도록 구성된다. 희박 이온 용액은 액체 분배 시스템을 통해서 용기 안으로 도입되고, 연도 가스 스트림(FG)은 또한 연도 가스 입구를 통해서 흡수 용기에 의해서 수용된다.
이온 용액은 대량 전달을 위해 사용되고 흡수 용기 안에 그리고 연도 가스 스트림이 그 유입구로부터 흡수 용기의 저부 부분에 있는 입구를 통해서 흡수 용기의 상단 부분에 있는 출구로 이동하는 경로 내에 위치한 가스-액체 접촉 디바이스[이하, 대량 전달 디바이스(mass transfer device), MTD]를 통해서 연도 가스 스트림과 접촉한다. MTD는 예로서 일반적으로 공지된 하나 이상의 구조화된 또는 임의로 패킹된 재료 또는 그 조합체일 수 있다.
이온 용액은 MTD의 상단에 도입되고 MTD를 통해서 그리고 아래로 떨어져서 MTD를 통해서 상향으로(이온 용액의 방향에 반대되는) 상승하는 연도 가스 스트림(FG)과 접촉한다.
일단 연도 가스 스트림과 접촉하면, 이온 용액은 연도 가스 스트림으로부터 CO2를 흡수하도록 작용하고, 따라서 이온 용액을 CO2(농후 용액)을 갖는 "농후"로 만든다. 농후 이온 용액은 대량 전달 디바이스를 통해 아래로 계속해서 유동하고 그때 흡수 용기의 저부에 수집된다. 농후 이온 용액은 연도 가스 스트림으로부터 이온 용액에 의해서 흡수된 CO2를 방출하기 위하여 재생 시스템을 통해서 재생된다. 이온 용액으로부터 방출된 CO2는 그때 저장 또는 다른 소정 용도/목적을 위해서 출력될 수 있다. 일단 CO2가 이온 용액으로부터 방출되면, 이온 용액은 "희박"으로 칭한다. 희박 이온 용액은 그때 다시 연도 가스 스트림으로부터 CO2를 즉시 흡수하고 액체 분배 시스템으로 다시 안내되어서 흡수 용기 안으로 다시 도입된다.
CO2 포획 시스템은 동력 발생으로부터 생성되는 CO2를 제거하기에 효과적이지만, 이 과정에서 다른 곳에서 사용되어야 하는 동력을 소비하게 된다. 다시 말해서, CO2 포획 시스템은 동력 발생 플랜트에서 "기생 부하(parasitic load)"를 부가할 수 있다. 따라서, CO2 포획 시스템이 동력 발생 시스템에 부가하는 기생 부하를 감소시킬 필요가 있다.
본원에 제시된 형태에 따라서, CO2 포획 시스템의 에너지 요구량을 감소시키기 위한 방법이 제공되며, 이 방법은 연도 가스 스트림을 흡수기 내에서 CO2 희박 흡수성 스트림과 접촉시켜서, 상기 연도 가스로부터 CO2를 제거하고 CO2 농후 흡수성 스트림을 제공하는 단계; 상기 CO2 희박 흡수성 스트림으로부터의 열을 사용하여 상기 CO2 농후 흡수성 스트림의 제 1 부분을 가열하고, 상기 CO2 농후 흡수성 스트림의 가열된 상기 제 1 부분을 재생기에 제공하는 단계; 및 상기 CO2 농후 흡수성 스트림의 제 2 부분을 상기 재생기에 제공하는 단계로서, 상기 가열된 제 1 부분은 상기 제 2 부분보다 고온이고, 상기 가열된 제 1 부분은 상기 재생기 내에서 상기 제 2 부분이 제공되는 위치의 고도보다 낮은 고도(elevation)를 갖는 위치에서 상기 재생기에 제공되는 단계를 포함한다.
일 실시예에서, 상기 방법은 상기 가열된 제 1 부분을 상기 재생기에 제공하기 전에 상기 가열된 제 1 부분으로부터 가스성 CO2를 분리하는 단계; 및 상기 가스성 CO2를 압축하고 압축된 상기 가스성 CO2를 상기 재생기 내에서 액체 부분의 표면의 고도보다 낮은 고도를 갖는 위치에서 상기 재생기에 제공하는 단계를 추가로 포함한다. 다른 형태에서, 상기 가열된 제 1 부분으로부터 상기 가스성 CO2를 분리한 후에 그리고 상기 제 1 부분을 상기 재생기에 제공하기 전에, 상기 CO2 희박 흡수성 스트림으로부터의 열을 사용하여 상기 제 1 부분이 추가로 가열된다. 또다른 형태에서, 상기 방법은 상기 흡수기를 떠나는 상기 연도 가스 스트림으로부터 잔류 흡수체를 세척하는 단계; 상기 잔류 흡수체로부터 CO2를 박리(strip)하여 오버헤드 CO2 증기들을 제공하는 단계; 및 상기 가스성 CO2를 압축하기 전에 오버헤드 CO2 증기들을 상기 가스성 CO2와 조합하는 단계를 추가로 포함한다.
상술한 형태 및 기타 형태들은 다음 도면 및 상세한 설명에 의해서 예시된다.
예시적인 실시예들을 도시하고 유사 요소들에 대해서 유사 도면부호를 지정한 도면을 참조하시오.
도 1은 연도 가스 스트림에서 CO2의 양을 감소시키기 위하여 사용되는 시스템의 개략도.
도 2는 도 1에 도시된 시스템에 사용되는 흡수 시스템의 일 실시예를 도시한 도면.
도 3은 도 1에 도시된 시스템에 사용되는 세척 용기의 일 실시예를 도시하는 도면.
도 4는 다중-공급 재생기 배열체를 포함하는 시스템의 일 실시예를 도시하는 도면.
도 5는 고압 다중 공급 재생기 배열체를 포함하는 도 4의 시스템의 일 실시예를 도시하는 도면.
도 6은 도 5의 시스템의 일 실시예를 도시하는 도면.
도 1에 도시된 바와 같이, 연도 가스 스트림에 제공된 이산화탄소(CO2)의 양을 감소시키기 위한 시스템(100)은 노(122)에서 연료의 연소에 의해서 발생된 연도 가스 스트림(120)으로부터 다양한 오염물들을 제거하기 위한 여러 디바이스들 및 프로세스들을 포함한다. 도 1의 시스템은 본원에서 전체적으로 참고로 합체되고, 발명의 명칭이 "물 세척 시스템을 갖는 냉각 암모니아 기반 CO2 포획 시스템"인 2009년 9월 9일자 출원된 미국 특허 출원 12/556,043호에 기재되어 있다. 도 1에 도시된 바와 같이, 시스템(100)은 연도 가스 스트림(120) 및 일 실시예에서 냉각된 연도 가스 스트림(140)으로부터 CO2를 흡수하는 흡수 시스템(130)을 포함한다.
냉각된 연도 가스 스트림(140)은 노(122)에 있는 연료의 연소에 의해서 발생된 연도 가스 스트림(120)을 냉각 시스템(142)으로 통과시킴으로써 발생된다. 냉각 시스템(142)으로의 도입 이전에, 연도 가스 스트림(120)은 오염물을 제거하는 처리, 예로서 연도 가스 탈황 프로세스 및 미립자 수집(도시생략)과 같은 처리를 겪을 수 있다.
냉각 시스템(142)은 냉각된 연도 가스 스트림(140)을 생성하는 임의의 시스템일 수 있고, 연도 가스 스트림(120)을 세척(wash) 및/또는 스크러빙(scrub)하고, 오염물을 포획하고, 및/또는 연도 가스 스트림의 습기 함량을 낮추는, 도 1에 도시된 바와 같이, 직접 접촉식 쿨러(cooler; 144), 하나의 이상의 냉각 타워(146) 및 하나 이상의 칠러(chiller; 148)를 포함할 수 있다. 그러나, 냉각 시스템(142)은 도 1에 도시된 것보다 많거나 적은 수의 디바이스들을 포함할 수 있다는 것을 고려해야 한다.
일 실시예에서, 냉각된 연도 가스 스트림(140)은 주위 온도보다 낮은 온도를 가진다. 일 예에서, 냉각된 연도 가스 스트림(140)은 약 섭씨 0도 내지 약 섭씨 20도(0℃ 내지 20℃)의 온도를 가질 수 있다. 다른 실시예에서, 냉각된 연도 가스 스트림(140)은 약 섭씨 0도 내지 약 섭씨 10도(0℃ 내지 10℃)의 온도를 가질 수 있다.
도 1에 도시된 바와 같이, 냉각 시스템(142)은 흡수 시스템(130)과 교통한다. 냉각 시스템(142)은 흡수 시스템(130)과 직접 교통할 수 있다는 것, 즉 냉각 시스템과 흡수 시스템 사이의 추가 프로세스들 또는 디바이스들이 없다는 것을 예상할 수 있다. 대안으로, 냉각 시스템(142)은 흡수 시스템(130)과 간접 교통할 수 있다., 즉 냉각 시스템과 흡수 시스템 사이에는 미립자 수집기들, 안개 제거기 등을 포함하지만, 이들에 국한되지 않는 추가 프로세스 또는 디바이스들이 있을 수 있다.
흡수 시스템(130)은 냉각된 연도 가스 스트림을 암모니아 용액 또는 슬러리[CO2 희박 스트림](150)과 접촉시킴으로써 냉각된 연도 가스 스트림(140)으로부터 CO2의 흡수를 용이하게 한다. 암모니아 용액 또는 슬러리(150)는 수용액에서 용해된 암모니아 및 CO2 종들을 포함하고 또한 탄화수소 암모늄(ammonium bicarbonate)의 침전된 고형물들을 포함할 수 있다.
일 실시예에서, 흡수 시스템(130)은 제 1 흡수기(132) 및 제 2 흡수기(134)를 포함한다. 그러나, 흡수 시스템(130)은 도 1에 도시된 바와 같이, 다소의 흡수기들을 포함할 수 있다는 것을 고려해야 한다. 추가로, 제 1 흡수기(132) 및/또는 제 2 흡수기(134)는 냉각된 연도 가스 스트림(140)으로부터 CO2를 흡수하기 위하여 내부에 하나 이상의 스테이지들을 가질 수 있다는 것을 고려해야 한다.
흡수 시스템(130)에 도입된 암모니아 용액 또는 슬러리(150)는 재생 타워(160)에 의해 재순환되고 및/또는 제공될 수 있다. 도 1에 도시된 바와 같이, 암모니아 용액 또는 슬러리(150)는 제 1 흡수기(132) 내의 위치에서 흡수 시스템(130)으로 도입될 수 있지만, 암모니아 용액 또는 슬러리는 제 2 흡수기(134) 또는 흡수 시스템(130) 내에 제공된 임의의 흡수기들 내의 위치에 도입될 수 있다는 것을 고려해야 한다. 재생 타워(160)는 흡수 시스템(130)과 직접 또는 간접 교통한다.
도 2에 더욱 상세하게 도시된 바와 같이, 암모니아 용액 또는 슬러리(150)는 냉각된 연도 가스 스트림(140)의 유동(B)에 반대 방향인 방향 "A"로 흡수 시스템(130), 예로서 제 1 흡수기(132) 또는 제 2 흡수기(134)로 도입된다. 암모니아 용액 또는 슬러리(150)가 냉각된 연도 가스 스트림(140)과 접촉할 때, 냉각된 연도 가스 스트림에 제공된 CO2는 흡수되어 그로부터 제거되어서 CO2 농후 스트림(152)을 형성한다. 결과적인 CO2 농후 스트림(152)의 적어도 일 부분은 흡수 시스템(130)에서 재생 타워(160)로 운송된다.
CO2 농후 스트림(152)의 일 부분 또는 모든 부분이 재생 타워(160)로 전달될 수 있다는 것을 고려해야 한다. 도 1에 도시된 바와 같이, CO2 농후 스트림(152)의 적어도 일 부분은 재생 타워(160)로 도입되기 전에 버퍼 탱크(162), 고압 펌프(164) 및 열교환기(166)를 통과할 수 있다. 일 실시예에서, CO2 농후 스트림(152)의 분리된 부분은 흡수 시스템(130)에서 열교환기(168)를 통해 통과할 수 있고, 상기 열교환기에서 흡수 시스템으로 복귀되기 전에 냉각된다. 열교환기(168)는 냉각 시스템(169)과 교통한다. 도 1에 도시된 바와 같이, 냉각 시스템(169)은 직접 접촉식 칠러(169a) 뿐 아니라 냉각 타워(169b)를 가질 수 있지만; 냉각 시스템(169)은 본원에 도시된 것보다 많거나 적은 수의 디바이스들을 가질 수 있다는 것을 인식해야 한다. CO2 농후 스트림(152)은 암모니아 용액 또는 슬러리(150)와 함께 흡수 시스템(130)에 도입되기 전에 냉각된다.
추가로, 도 1 또는 도 2에는 도시되지 않았지만, 또한 CO2 농후 스트림(152)의 일 부분은 버퍼 탱크(162), 고압 펌프(164) 및 열교환기(166)를 통과하지 않고 재생 타워(160)로 직접 전달될 수 있다는 것을 고려해야 한다.
재생 타워(160)는 흡수 시스템(130)으로 도입되는 암모니아 용액 또는 슬러리(150)를 형성하기 위하여 CO2 농후 스트림(152)을 재생시킨다. 재생 타워(160)는 사용된 암모니아 용액 또는 슬러리의 재생, 즉 흡수 시스템(130)를 통과하여 CO2를 제거한 CO2 농후 스트림(152)의 재생을 용이하게 한다. 재생은 재생 타워(160)의 저부에 열을 제공함으로써 실행된다. CO2 농후 스트림(152)의 재생은 또한 높은 압력에서 실행된다.
냉각된 연도 가스 스트림(140)으로부터 CO2를 흡수하는 암모니아 용액 또는 슬러리(150)의 용량은 예로서, 암모니아 용액 또는 슬러리에 있는 암모니아의 농도, NH3/C02 몰비 및 흡수 시스템(130)의 온도 및 압력에 의존한다. 일 실시예에서, CO2 흡수를 위한 NH3/C02 몰비는 약 1.0 내지 약 4.0 사이에 있다. 다른 실시예에서, CO2 흡수를 위한 NH3/C02 몰비는 약 1.0 내지 약 3.0 사이에 있다. 추가로, 일 실시예에서, 흡수 시스템(130)은 저온에서 작동하고, 특히 약 섭씨 20도(20℃)보다 낮은 온도에서 작동한다. 일 실시예에서, 흡수 시스템(130)은 약 0 ℃ 내지 약 20 ℃ 사이의 온도에서 작동한다. 다른 실시예에서, 흡수 시스템(130)은 약 0 ℃ 내지 약 10 ℃ 사이의 온도에서 작동한다.
도 1 및 도 2에 도시되고 상술한 바와 같이, 냉각된 연도 가스 스트림(140)이 암모니아 용액 또는 슬러리(150)와 접촉한 후에, 암모니아-함유 연도 가스 스트림(170) 뿐 아니라, CO2 농후 스트림(152)이 형성된다. 통상적으로, 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 농도는 시스템, 흡수 시스템(130)에 도입된 암모니아 용액 또는 슬러리(150)의 양, 및 냉각된 연도 가스 스트림(140)에 제공된 CO2의 양에 따라서 변화되고, 따라서 암모니아-함유 연도 가스 스트림은 임의의 농도의 암모니아를 함유할 수 있다. 일 실시예에서, 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 농도는 약 500 ppm 내지 30,000 ppm일 수 있다.
암모니아-함유 연도 가스 스트림(170)에 제공된 암모니아의 농도는 측정될 수 있다는 것을 고려해야 한다. 예로서, 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 농도는 예로서 드래거 튜브(dragger tube) 또는 푸리에 변환 적외선 분광학[Fourier transform infrared spectroscopy (FTIR)]에 의해서 측정될 수 있다. 도시되지 않았지만, 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 농도의 양은 세척 용기(180)에 도입되기 전에 임의의 지점에서 측정될 수 있다. 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 농도 또는 양을 측정하는 것은 시스템(100)의 작업자가 암모니아-함유 연도 가스 스트림에 있는 암모니아의 양을 제거하거나 또는 감소시키는 것을 보조할 수 있다.
도 1에 도시된 바와 같이, 암모니아-함유 연도 가스 스트림(170)은 세척 용기(180)로 도입된다. 일 실시예에서, 세척 용기(180)는 암모니아-함유 연도 가스 스트림(170)에 제공된 암모니아의 양을 감소시키고 감소된 암모니아-함유 연도 가스 스트림(190)를 형성한다. 그러나, 세척 용기(180)는 암모니아 함유 연도 가스 스트림을 발생시키는 다른 시스템 및 방법과 연계하여 사용될 수 있다는 것, 즉 세척 용기는 흡수 시스템(130) 및/또는 냉각 시스템(142)을 수용하지 않는 시스템에서 사용될 수 있다는 것을 고려해야 한다.
감소된 암모니아-함유 연도 가스 스트림(190)은 주변환경으로 방출될 수 있다. 감소된 암모니아-함유 연도 가스 스트림(190)은 세척 용기(180)로부터 주변환경으로 직접 방출될 수 있다. 그러나, 감소된 암모니아-함유 연도 가스 스트림은 주변환경으로 방출되기 전에 추가로 처리될 수 있다는 것, 예로서 오염물 함량을 추가로 감소시키기 위하여 산성 용액으로 세척될 수 있다는 것을 고려해야 한다. 추가로, 그리고 도 1에 도시되지 않았지만, 감소된 암모니아-함유 연도 가스 스트림(190)에 제공된 암모니아의 양은 감소된 암모니아-함유 연도 가스 스트림이 세척 용기(180)를 빠져나간 후에 측정될 수 있다는 것을 고려해야 한다.
일 실시예에서, 세척 용기(180)는 암모니아-함유 연도 가스 스트림(170)을 수용하도록 구성된다. 도 3에 도시된 바와 같이, 세척 용기(180)는 암모니아-함유 연도 가스 스트림(170)이 세척 용기 안으로 유동할 수 있게 하는 세척 용기의 저부에 있는 개방부(182)를 가질 수 있다. 개방부(182)가 세척 용기(180)의 저부에 도시되는 한편, 개방부는 세척 용기 내의 임의의 지점에 있고, 적용에 따라 시스템에서 시스템으로 변화될 수 있다는 것을 고려해야 한다.
세척 용기(180)는 암모니아-함유 연도 가스 스트림(170)으로부터 암모니아를 흡수하기 위하여, 일반적으로 도면부호 "181"로 도시된 하나 이상의 흡수 스테이지들을 가질 수 있다. 일 실시예에서, 도 3에 도시된 바와 같이, 세척 용기(180)는 2개의 흡수 스테이지들, 즉 제 1 흡수 스테이지(181a) 및 제 2 흡수 스테이지(181b)를 가질 수 있다. 세척 용기가 다소의 흡수 스테이지들을 가질 수 있다는 것을 고려해야 하기 때문에, 세척 용기(180)는 상기 관점에 국한되지 않는다. 각 흡수 스테이지들(181), 예로서, 제 1 흡수 스테이지(181a) 및 제 2 흡수 스테이지(181b)는 대량 전달 디바이스(184), 스프레이 헤드 시스템(186) 및 액체 전달 경로(188)를 포함할 수 있다.
대량 전달 디바이스(184)는 예로서, 랜덤 패킹(random packing), 친수성 패킹(hydrophilic packing), 및/또는 구조적 패킹과 같은 패킹을 포함할 수 있다. 랜덤 패킹은 당기술에서 일반적으로 공지되어 있으며 비조직 패션에서 흡수 스테이지로 도입된 패킹 재료를 지칭한다. 랜덤 패킹의 예들은 상이한 크기의 플라스틱, 금속 및/또는 세라믹 패킹 재료, 예로서 가변 직경들, 예로서 약 2.5 cm 내지 약 7.6 cm(약 1인치 내지 약 3인치)의 직경들을 갖는 재료를 포함하지만, 이들에 국한되지 않는다. 랜덤 패킹 재료는 Jaeger Products Inc.(미국 텍사스 휴스톤; Houston, Texas, United States)를 포함하지만, 이들에 국한되지 않는 다수의 공급자들로부터 구매가능하다. 랜덤 패킹 재료는 또한 목재를 포함한다. 친수성 패킹은 폴리프로필렌 백(polypropylene bag)을 포함하지만, 이들에 국한되지 않는다.
구조적 패킹(Structural packing)은 당기술에서 일반적으로 공지되어 있으며 특정 방식으로 배열되거나 또는 조직되는 패킹 재료를 지칭한다. 통상적으로, 구조적 패킹은 유체들을 복잡한 경로들을 취하도록 압송하는 방식으로 배열되어서, 액체 및 가스 사이에 접촉하기 위한 큰 표면적을 생성한다. 구조적 패킹은 금속, 플라스틱, 목재 등으로 제조된 구조를 포함하지만, 이들에 국한되지 않는다. 상이한 패킹 재료는 세척 용기(180) 안으로 액체의 상이한 유동 속도에서 암모니아 제거 또는 감소를 용이하게 한다는 것을 고려해야 한다. 추가로, 상이한 패킹 재료는 더욱 적당한 압력 하강을 제공할 수 있다는 것을 고려해야 한다.
일 실시예에서, 세척 용기(180)의 흡수 스테이지들(181)중 하나는 대량 전달 디바이스(184)로서 랜덤 패킹 재료를 포함하고 세척 용기(180)의 흡수 스테이지들(181)중 다른 하나는 대량 전달 디바이스로서 구조적 패킹을 포함한다. 예로서, 제 1 흡수 스테이지(181a)는 대량 전달 디바이스(184)로서 랜덤 패킹 재료를 포함하고 제 2 흡수 스테이지(181b)는 대량 전달 디바이스로서 구조적 패킹 재료를 포함할 수 있다. 암모니아-함유 연도 가스 스트림(170)은 세척 용기(180) 안으로 들어가서 제 1 흡수 스테이지(181a)를 통과하기 전에 제 2 흡수 스테이지(181b)를 통과한다는 것을 고려해야 한다.
도 3에 도시된 바와 같이, 각 흡수 스테이지들(181)에서, 대량 전달 디바이스(184)는 스프레이 헤드 시스템(186) 밑에 위치한다. 세척 용기(180)에 있는 각각의 스프레이 헤드 시스템(186)은 액체(187)를 흡수 스테이지들(181) 안으로 분무한다. 액체(187)는 액체 전달 경로(188)를 경유하여 스프레이 헤드 시스템(186)으로 운송된다. 액체 전달 경로(188)는 액체(187)를 스프레이 헤드 시스템(186)으로 운송하는 도관이다. 액체(187)는 암모니아-함유 연도 가스 스트림(170)으로부터 암모니아의 제거를 용이하게 하기에 적합한 임의의 액체일 수 있다. 액체(187)의 예는 물이고, 이 물은 암모니아와 물 사이의 상호작용을 통해서 암모니아를 흡수, 즉 용해시키는 것으로 알려져 있다.
하나의 특정 실시예에서, 제 1 흡수 스테이지(181a)로 도입된 액체(187)는 예로서 박리 칼럼(stripping column; 194)에 의해서 제공된 액체(187a)이다. 제 2 흡수 스테이지(181b)에 제공된 액체(187)는 액체(187b)이고, 이 액체는 세척 용기(180)의 저부로부터 재순환되고 열교환기(189)를 통과하는 저농도의 암모니아 및 CO2를 함유하는 물이다.
액체(187)는 각 흡수 스테이지들(181)의 상단에 도입되고, 예로서 액체(187a)는 제 1 흡수 스테이지(181a)의 상단에 제공되고 액체(187b)는 세척 용기(180)의 제 2 흡수 스테이지(181b)의 상단에 제공된다. 액체(187)는 세척 용기(180)의 길이(L)를 방향 "C"를 향해 아래로 이동하고, 상기 방향 "C"는 암모니아-함유 연도 가스 스트림(170)이 세척 용기(180)의 길이(L)를 상향으로 이동하는 방향 "D"에 반대 방향이다. 이해되는 바와 같이, 액체(187)는 중력에 의해서 방향 "C"로 이동하고, 암모니아-함유 연도 가스 스트림(170)은 세척 용기(180) 내의 압력 강하를 포함하는 여러 요소들에 의해서 방향 "D"로 이동한다.
액체(187)가 방향 "C"로 이동할 때, 액체는 각 흡수 스테이지들(181)에서 대량 전달 디바이스(184)를 통과한다. 마찬가지로, 암모니아-함유 연도 가스 스트림(170)이 방향 "D"로 이동할 때, 암모니아-함유 연도 가스 스트림은 각 흡수 스테이지들(181)에서 대량 전달 디바이스(184)를 통과한다.
액체(187)가 세척 용기(180)의 길이(L)를 방향 "C"를 향해 아래로 이동할 때, 액체 내의 암모니아 농도는 증가하여서 암모니아 농후 액체(192)를 형성한다. 반대로, 암모니아-함유 연도 가스 스트림(170)이 세척 용기(180)의 길이, 예로서 길이(L)를 방향 "D"를 향해 상향으로 이동할 때, 암모니아-함유 연도 가스 스트림에서 암모니아 농도는 감소하여서 감소된 암모니아-함유 연도 가스 스트림(190)을 형성한다.
예로서, 액체(187a)는 제 1 흡수 스테이지(181a)에 대해 스프레이 헤드 시스템(186)을 통해서 세척 용기(180)의 상단에 도입되고 세척 용기의 길이(L)를 방향 "C"를 향해 아래로 이동한다. 액체는 세척 용기의 길이(L)를 방향 "D"를 향해 상향으로 이동하는 암모니아-함유 연도 가스 스트림(170)과 접촉하여 암모니아를 흡수하므로, 제 1 흡수 스테이지(181a)를 빠져나오는 액체(187a)에 제공된 암모니아의 농도는 제 1 흡수 스테이지(181a)를 들어가는 액체(187a)의 암모니아 농도보다 높다. 본 실시예에서, 저부에서 세척 용기(180)로 들어가는 암모니아-함유 연도 가스 스트림이 처리되지 않고 가장 큰 농도의 암모니아를 가지므로, 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 더 큰 비율은 제 1 흡수 스테이지(181a)로부터 제 2 흡수 스테이지(181b)로 유동하는 액체(187a) 뿐 아니라 제 2 흡수 스테이지로 제공된 액체(187b)에 의해서 흡수된다.
암모니아-함유 연도 가스 스트림(170)으로부터 제거된 암모니아의 양은 한 시스템에 따라 그리고 적용에 따라 변화된다는 것을 이해해야 한다. 상기 시스템은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 농도가 낮고 액체의 암모니아의 증기 압력에 대한 가스 내의 암모니아의 평행 농도에 근접하는 방식으로 설계되는 것을 고려해야 한다. 연도 가스 스트림(170) 내의 암모니아의 평형 농도는 10 ppm 미만으로 낮을 수 있고 통상적으로 약 0 ppm 내지 약 200 ppm의 범위에 있을 수 있다. 일 실시예에서, 감소된 암모니아-함유 연도 가스 스트림(190)은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 수준과 비교할 때 적어도 약 70% 미만의 암모니아를 함유한다. 다른 실시예에서, 감소된 암모니아-함유 연도 가스 스트림(190)은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 수준과 비교할 때 적어도 약 75% 미만의 암모니아를 함유한다. 또다른 실시예에서, 감소된 암모니아-함유 연도 가스 스트림(190)은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 수준과 비교할 때 적어도 약 80% 미만의 암모니아를 함유한다. 또다른 실시예에서, 감소된 암모니아-함유 연도 가스 스트림(190)은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아 수준과 비교할 때 적어도 약 85% 미만의 암모니아를 함유한다. 감소된 암모니아-함유 연도 가스 스트림(190)은 암모니아-함유 연도 가스 스트림(170)에 있는 암모니아의 수준보다 적은 약 90%, 95%, 99% 또는 99.5%일 수 있다는 것을 이해해야 한다.
연도 가스에 있는 암모니아의 양을 감소시키는데 적합한 액체(187)의 유동 속도는 시스템에 따라 변화된다. 일 실시예에서, 유동 속도는 연도 가스에서 평형 농도에 근접한 양 그리고 통상적으로 200 ppm 미만의 양으로 암모니아의 양을 감소시키는데 적합할 수 있다. 다른 실시예에서, 유동 속도는 약 2000 ppm에서 70 내지 100 ppm 사이로 연도 가스에 있는 암모니아의 양을 감소시키는데 적합할 수 있다. 또다른 실시예에서, 액체(187)의 유동 속도는 연도 가스의 1000 cfm(분당 입방 피트; cubic feet per minute) 당 약 1.8 lpm[분당 리터; liters per minute) 또는 분당 약 0.5 갤런(gallons)] 내지 약 7.5 lpm[또는 분당 2 갤런] 사이에 있다.
도 3에 있어서, 액체(187)는 세척 용기(180)의 저부로 떨어지고 암모니아-농후 액체(192)로서 그로부터 제거된다. 도 3에 도시된 바와 같이, 일 실시예에서, 암모니아-농후 액체(192)의 일 부분은 액체(187)로서 세척 용기(180)로 재순환되고 암모니아-농후 액체의 일 부분은 박리 칼럼(194)으로 보내진다(도 1에 도시됨). 예로서, 암모니아-농후 액체(192)의 일 부분은 열교환기(189)에서 냉각되고 액체(187b)로서 제 2 흡수 스테이지(181b)로 재순환된다. 도시되지 않았지만, 암모니아-농후 액체(192)의 일 부분은 세척 용기(180)의 저부로부터 제 1 흡수 스테이지(181a)로 액체(187a)로서 재순환될 수 있다는 것을 고려해야 한다. 추가로, 도시되지 않았지만, 암모니아-농후 액체(192)의 전체 양은 박리 칼럼(194)으로 보내지고 그때 액체(187a)로서 세척 용기(180)로 복귀할 수 있다는 것을 고려해야 한다.
도 3에 있어서, 박리 칼럼(194)으로 보내진 암모니아-농후 액체(192)의 일 부분은 제 1 흡수 스테이지(181a)에 있는 스프레이 헤드 시스템(186)을 경유하여 도입되는 액체(187a)를 형성하기 위하여 재생된다. 박리 칼럼(194)에서, 암모니아 뿐 아니라 CO2와 같은 다른 오염물들은 암모니아-농후 액체(192)로부터 제거되어서 액체(187a)를 형성하기 위해 제거되고, 상기 액체는 물이거나 또는 예로서 암모니아의 소량의 오염물일 수 있다. 이러한 방식으로 도입될 때, 제 1 흡수 스테이지(181a)로 도입되는 액체(187a)는 세척 용기(180)의 저부로부터 재순환되지 않은 "세정 액체"이므로, "1회용 액체(once through liquid)"로 칭한다.
일 실시예에서, 박리 칼럼(194)은 세척 용기(180)로 도입될 액체(187)를 형성하기 위하여 암모니아-농후 액체(192)로부터 암모니아 뿐 아니라 다른 오염물들을 제거하기 위하여 증기를 사용한다. 그러나, 박리 칼럼(194)은 암모니아-농후 액체(192)로부터 암모니아 및 다른 오염물들을 제거하기 위하여 다른 기술 또는 기법을 사용할 수 있다는 것을 고려해야 한다. 일 실시예에서, 박리 칼럼(194)은 박리 칼럼에서 사용되는 증기의 온도를 감소시키기 위하여 진공 상태에서 작동할 수 있다.
도 1에는 도시되지 않았지만, 암모니아-농후 액체(192)로부터 제거된 암모니아는 시스템(100) 내에서 재사용될 수 있다는 것을 고려해야 한다. 예로서, 암모니아는 암모니아 용액 또는 슬러리(150)로서 흡수 시스템(130)에 도입될 수 있다. 그러나, 암모니아는 시스템(100)의 내측 및 외측의 다른 지점들에서 사용될 수 있다는 것을 고려해야 한다.
주변환경으로 방출된 암모니아의 양은 암모니아-함유 연도 가스 스트림을 세척 용기(180)를 통과시킴으로써 감소되거나 또는 실질적으로 제거된다. 여러 흡수 스테이지들(181)로 도입된 액체(187), 예로서 제 1 흡수 스테이지(181a)에 도입된 액체(187a) 및 제 2 흡수 스테이지(181b)로 도입된 액체(187b)의 양은 예로서, 세척 용기로 도입된 연도 가스의 양 또는 유동, 시스템(100)으로부터의 방출량에서 측정된 오염물 수준 등에 따라서 작업자에 의해서 연속적으로 또는 소정 시간 주기로 임의의 정도까지 제어될 수 있다. 시스템에 사용되는 물의 양을 제어하는 능력은 자원의 절약을 촉진하고 작업 비용을 감소시킬 수 있다.
도 4는 연도 가스 스트림에 제공된 CO2의 양을 감소시키기 위한 시스템(200)을 도시한다. 시스템(200)은 도 1에 도시된 시스템(100)의 형태를 포함하고, 두 도면에서 유사 요소들은 유사 도면부호로 지정된다. 시스템(200)에서, 이온 용액은 예로서 물 및 암모니아 이온, 중탄산염 이온, 탄산염 이온 및/또는 카르바민산염 이온을 포함할 수 있고, 시스템(200)은 냉각 암모니아 시스템일 수 있다. 이온 용액은 아민일 수 있다는 것을 고려해야 한다. 어느 한 경우에 있어서, 이온 용액은 효소(예로서, 탄산무수화 효소) 또는 아민(예로서, 피페라진)에 의해서 촉진될 수 있다는 것도 추가로 고려해야 한다.
시스템(200)에서, 도면부호 "204"로 표시된 흡수기(132)(및/또는 134)로부터의 CO2 농후 스트림(152)의 제 1 부분은 열교환기(166)에서 가열된 후에 재생 용기(160)로 제공되고, 도면부호 "202"로 표시된 CO2 농후 스트림(152)의 제 2 부분은 열교환기(166)를 우회하면서 재생기(160)로 직접 제공된다. 부분(202)은 열교환기(166) 주위를 우회하므로, 열교환기(166)를 통과하는 CO2 농후 스트림(152)의 양은 도 1의 장치와 비교하여 감소한다. 열교환기(166)를 통해 유동하는 CO2 농후 스트림(152)의 양의 감소는 스트림(202)과 비교할 때 스트림(204)의 온도를 증가시킨다. 온도가 높을 수록 재생기(160)에 도달하기 전에 CO2 농후 스트림(152)으로부터 방출(분출)될 CO2의 양을 증가시킬 수 있다. 스트림(204)보다 차가운 스트림(202)은 CO2가 압축기(208)로 방출되는 재생기(160)의 상단 인근에 도입되고, 비교적 고온인 스트림(204)은 재생기(160)의 저부에 더욱 인접하게 도입된다. 이러한 배열은 리보일러(206)가 CO2 농후 스트림을 재생시키기 위해 열을 제공하고, 따라서 리보일러의 열 부하를 감소시키는, 재생기의 저부 인근의 온도 증가를 도모한다.
도 5는 도 4의 시스템(200)과 실질적으로 유사한 연도 가스 스트림에 제공된 CO2의 양을 감소시키기 위한 시스템(300)을 도시하며, 유사 요소에 대해서 유사 도면부호로 지정된다. 시스템(300)은 CO2 농후 스트림(204)의 액체 부분으로부터 분출하는 CO2 가스를 분리하는 플래시 드럼(flash drum)(가스/액체 분리기)(301)을 포함한다. 302로 지정된 CO2 가스 스트림은 압축기(304)에 제공되고, 상기 압축기는 재생기(160) 내의 압력을 상회하는[예로서, 약 10 bar 내지 약 21 bar] 압력으로 CO2 농후 스트림(302)을 압축한다. 압축기(304)로 인하여 온도가 증가하는 CO2 농후 스트림(302)은 재생기의 저부 인근에 도입되고, 여기서 재생기(160)의 저부에 수집된 CO2 농후 흡수체를 가열하는 작용을 한다.
스트림(204)의 액체 부분은 스트림(306)으로서 플래쉬 드럼(301)을 떠나서 열교환기(308)로 도입되고, 여기서 스트림(204)은 재생기(160)로 도입되기 전에 CO2 희박 스트림(150)에 의해서 가열된다. 스트림(302)은 스트림(306 및 200)보다 상대적으로 고온이고, 스트림(306)은 스트림(200)보다 상대적으로 고온이라는 것을 이해할 수 있다. 결과적으로, 이러한 배열은 리보일러(206)가 CO2 농후 스트림을 재생시키기 위해 열을 제공하고, 따라서 리보일러의 열 부하를 감소시키는, 재생기(160)의 저부 인근의 온도 증가를 추가로 도모한다. 열교환기(166 및 308)의 열 뿐 아니라 압축기(304)에 의해서 부여된 열을 사용하면, 시스템(300)의 기생 부하에서 7 내지 8% 지점까지 감소시킨다.
도 6은 도 5의 시스템(300)과 실질적으로 유사한 연도 가스 스트림에 제공된 CO2의 양을 감소시키기 위한 시스템(400)을 도시하며, 유사 요소에 대해서 유사 도면부호로 지정된다. 시스템(400)은 재생기(160)의 저부에 제공된 압축 스트림의 온도를 추가로 증가시키기 위해, 박리체(194)(도 1)로부터 제거된 오버헤드 CO2 증기들을 스트림(302) 이외에 압축기(304)에 제공한다.
본원에서 용어 "제 1", "제 2" 등은 임의의 순서, 수량 또는 중요성을 지시하는 것이 아니고, 한 요소를 다른 요소와 구분하는데 사용된다. 단수 용어는 수량의 제한을 지시하는 것이 아니고 기준 항목의 적어도 하나의 존재를 지시하는 것이다.
본 발명은 여러 예시적인 실시예를 참조하여 기술되었지만, 당업자는 본 발명의 범주 내에서 여러 변화가 행해질 수 있고 그 요소들을 등가물로 대체할 수 있다는 것을 이해할 것이다. 또한, 본 발명의 핵심 범주 내에서 본 발명의 개시에 따라서 특정 상황 또는 재료를 적응시키도록 많은 수정이 이루어질 수 있다. 따라서, 본 발명은 본 발명을 실행하도록 구성된 최상의 방식으로 이루어진 특정 실시예에 국한되지 않고, 본 발명은 첨부된 청구범위의 범주 내의 모든 실시예를 포함하는 것으로 의도된 것이다.

Claims (7)

  1. CO2 포획 시스템의 에너지 요구량을 감소시키기 위한 방법으로서,
    연도 가스 스트림을 흡수기 내에서 CO2 희박(lean) 흡수성 스트림과 접촉시켜서, 상기 연도 가스로부터 CO2를 제거하고 CO2 농후(rich) 흡수성 스트림을 제공하는 단계;
    상기 CO2 희박 흡수성 스트림으로부터의 열을 사용하여 상기 CO2 농후 흡수성 스트림의 제 1 부분을 가열하고, 상기 CO2 농후 흡수성 스트림의 가열된 상기 제 1 부분을 재생기에 제공하는 단계;
    상기 CO2 농후 흡수성 스트림의 제 2 부분을 상기 재생기에 제공하는 단계로서, 상기 가열된 제 1 부분은 상기 제 2 부분보다 고온이고, 상기 가열된 제 1 부분은 상기 재생기 내에서 상기 제 2 부분이 제공되는 위치의 고도보다 낮은 고도(elevation)를 갖는 위치에서 상기 재생기에 제공하는 단계;
    상기 가열된 제 1 부분을 상기 재생기에 제공하기 전에 상기 가열된 제 1 부분으로부터 가스성 CO2를 분리하는 단계; 및
    상기 가스성 CO2를 압축하고 압축된 상기 가스성 CO2를 상기 재생기 내에서 액체 부분의 표면의 고도보다 낮은 고도를 갖는 위치에서 상기 재생기에 제공하는 단계를 포함하는 에너지 요구량 감소 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 가열된 제 1 부분으로부터 상기 가스성 CO2를 분리한 후에 그리고 상기 제 1 부분을 상기 재생기에 제공하기 전에, 상기 CO2 희박 흡수성 스트림으로부터의 열을 사용하여 상기 제 1 부분을 추가로 가열하는 단계를 추가로 포함하는 에너지 요구량 감소 방법.
  4. 제 1 항에 있어서,
    상기 흡수기를 떠나는 상기 연도 가스 스트림으로부터 잔류 흡수체(residual absorbent)를 세척하는 단계;
    상기 잔류 흡수체로부터 CO2를 박리(strip)하여 오버헤드(overhead) CO2 증기들을 제공하는 단계; 및
    상기 가스성 CO2를 압축하기 전에 오버헤드 CO2 증기들을 상기 가스성 CO2와 조합하는 단계를 추가로 포함하는 에너지 요구량 감소 방법.
  5. CO2 포획 시스템의 에너지 요구량을 감소시키기 위한 시스템으로서,
    CO2를 갖는 가스 스트림을 흡수기 내에서 CO2 희박 흡수성 스트림과 접촉시켜서, 상기 가스 스트림으로부터 CO2를 제거하고 CO2 농후 흡수성 스트림을 제공하는 흡수기;
    상기 CO2 희박 흡수성 스트림으로부터의 열을 사용하여 상기 CO2 농후 흡수성 스트림의 제 1 부분을 가열하기 위한 열교환기;
    상기 CO2 농후 흡수성 스트림의 가열된 상기 제 1 부분과 상기 가열된 제 1 부분보다 더 차가운 상기 CO2 농후 흡수성 스트림의 제 2 부분을 수용하는 재생기;
    상기 가열된 제 1 부분을 상기 재생기에 제공하기 전에 상기 가열된 제 1 부분의 액체 부분으로부터 가스성 CO2를 분리하기 위한 가스/액체 분리기; 및
    상기 분리된 가스성 CO2를 상기 가열된 제 1 부분으로부터 압축하기 위한 압축기를 포함하고;
    상기 압축된 가스성 CO2는 상기 재생기 내에서 상기 가열된 제 1 부분의 상기 분리된 액체 부분이 제공되는 위치의 고도보다 낮은 고도를 갖는 위치에서 상기 재생기에 제공되고, 상기 가열된 제 1 부분의 상기 분리된 액체 부분은 상기 재생기 내에서 상기 제 2 부분이 제공되는 위치의 고도보다 낮은 고도를 갖는 위치에서 상기 재생기에 제공되는 에너지 요구량 감소 시스템.
  6. 제 5 항에 있어서,
    상기 재생기에 제공되기 전에 상기 가열된 제 1 부분의 액체 부분을 가열하기 위한 제 2 열교환기 추가로 포함하는 에너지 요구량 감소 시스템.
  7. 제 5 항에 있어서,
    상기 흡수기를 떠나는 상기 가스 스트림으로부터 잔류 흡수체를 세척하기 위한 세척 용기; 및
    상기 잔류 흡수체로부터 CO2를 박리(strip)하여 오버헤드 CO2 증기들을 제공하기 위한 박리 칼럼(stripping column)을 추가로 포함하고;
    상기 오버헤드 CO2 증기들은 상기 가스성 CO2를 압축하기 전에 상기 가스성 CO2와 조합되는 에너지 요구량 감소 시스템.
KR1020137009205A 2010-09-13 2011-08-29 Co₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템 KR101525844B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US38220510P true 2010-09-13 2010-09-13
US61/382,205 2010-09-13
US13/196,172 US8728209B2 (en) 2010-09-13 2011-08-02 Method and system for reducing energy requirements of a CO2 capture system
US13/196,172 2011-08-02
PCT/US2011/049493 WO2012036878A1 (en) 2010-09-13 2011-08-29 Method and system for reducing energy requirements of a co2 capture system

Publications (2)

Publication Number Publication Date
KR20130056329A KR20130056329A (ko) 2013-05-29
KR101525844B1 true KR101525844B1 (ko) 2015-06-05

Family

ID=44584678

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137009205A KR101525844B1 (ko) 2010-09-13 2011-08-29 Co₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템

Country Status (9)

Country Link
US (1) US8728209B2 (ko)
EP (1) EP2616160B1 (ko)
JP (1) JP2013538127A (ko)
KR (1) KR101525844B1 (ko)
CN (1) CN103209751B (ko)
AU (1) AU2011302516B2 (ko)
CA (1) CA2812085C (ko)
TW (1) TWI436815B (ko)
WO (1) WO2012036878A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529857B2 (en) 2011-03-31 2013-09-10 Basf Se Retention of amines in the removal of acid gases by means of amine absorption media
JP5805296B2 (ja) * 2011-03-31 2015-11-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アミン吸収剤を用いて酸性ガスを除去する際のアミンの保持
US8764883B2 (en) * 2011-10-06 2014-07-01 Kellogg Brown & Root Llc Apparatus and methods for saturating and purifying syngas
US9162177B2 (en) 2012-01-25 2015-10-20 Alstom Technology Ltd Ammonia capturing by CO2 product liquid in water wash liquid
US20130259780A1 (en) * 2012-03-30 2013-10-03 Alstom Technology Ltd Method for controlling solvent emissions from a carbon capture unit
CN103446848B (zh) * 2012-05-30 2015-09-16 株式会社东芝 二氧化碳回收系统及其操作方法
JP6157912B2 (ja) * 2012-05-30 2017-07-05 株式会社東芝 二酸化炭素回収システムおよびその運転方法
WO2014031678A1 (en) 2012-08-20 2014-02-27 Sabic Innovative Plastics Ip B.V. Real-time online determination of caustic in process scrubbers using near infrared spectroscopy and chemometrics
AU2015243729A1 (en) * 2014-04-07 2016-09-29 Siemens Aktiengesellschaft Device and method for separating carbon dioxide from a gas stream, in particular from a flue gas stream, comprising a cooling water system
US10413860B2 (en) * 2014-06-13 2019-09-17 Sintef Tto As Absorbent system and method for capturing CO2 from a gas stream
US9598993B2 (en) * 2015-06-19 2017-03-21 Saudi Arabian Oil Company Integrated process for CO2 capture and use in thermal power production cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118795A1 (en) * 2005-04-29 2006-11-09 Fluor Technologies Corporation Configurations and methods for acid gas absorption and solvent regeneration
WO2010086039A1 (de) * 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossilbefeuerten kraftwerksanlage

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB271852A (en) 1926-05-28 1927-11-10 Ig Farbenindustrie Ag Improvements in and means for the extraction of carbon dioxide from gaseous mixtures
DE469840C (de) 1926-08-11 1928-12-29 Linde Eismasch Ag Absorption von Kohlendioxyd aus Gasen
BE414069A (ko) 1934-12-20
US2106734A (en) 1935-02-27 1938-02-01 Koppers Co Inc Gas purification process
US2487576A (en) 1945-11-13 1949-11-08 Phillips Petroleum Co Process for the removal of acidic material from a gaseous mixture
US2608461A (en) 1949-03-26 1952-08-26 Fluor Corp Prevention of amine losses in gas treating systems
US2878099A (en) 1955-07-22 1959-03-17 Ruhrstahl Ag Fa Method of deacidifying gases
LU36973A1 (ko) 1958-03-28
GB899611A (en) 1959-04-15 1962-06-27 Gas Council Process for separating gases
BE617822A (ko) 1961-05-19
SU512785A1 (ru) 1970-07-03 1976-05-05 Предприятие П/Я Р-6603 Способ очистки газа от двуокиси углерода
US3923955A (en) 1973-08-02 1975-12-02 Ciba Geigy Corp Process for deodorising waste or exhaust gases
US4152217A (en) * 1978-06-30 1979-05-01 Exxon Research & Engineering Co. Amine regeneration process
DE2832493A1 (de) 1978-07-24 1980-02-07 Albert Lammers Verfahren und vorrichtung zur waermerueckgewinnung und reinigung von abgasen
DE3247876C2 (ko) 1982-12-23 1988-03-17 Linde Ag, 6200 Wiesbaden, De
US4977745A (en) 1983-07-06 1990-12-18 Heichberger Albert N Method for the recovery of low purity carbon dioxide
FR2589142B1 (fr) 1985-10-25 1988-01-08 Air Liquide Procede et installation de production d'anhydride carbonique a partir d'un gaz disponible a une pression voisine de la pression atmospherique
DE3614385C2 (ko) 1986-04-28 1989-11-09 Qualmann, Horst, 2090 Winsen, De
DE3633690A1 (de) 1986-10-03 1988-04-14 Linde Ag Verfahren und vorrichtung zur entfernung von sauren gasen, wie so(pfeil abwaerts)2(pfeil abwaerts), so(pfeil abwaerts)3(pfeil abwaerts), h(pfeil abwaerts)2(pfeil abwaerts)s, co(pfeil abwaerts)2(pfeil abwaerts) und/oder cos, aus heissen gasgemischen
SU1567251A1 (ru) 1987-08-12 1990-05-30 Предприятие П/Я А-3732 Способ концентрировани диоксида углерода из газов
DE3828227A1 (de) 1988-08-19 1990-02-22 Basf Ag Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und gegebenenfalls h(pfeil abwaerts)2(pfeil abwaerts) aus gasen
ZA8909705B (en) 1989-01-26 1990-09-26 Aeci Ltd Purification of gases
NL8902490A (nl) 1989-10-06 1991-05-01 Leonardus Mathijs Marie Nevels Werkwijze voor het reinigen van rookgassen.
DK0502596T4 (da) 1991-03-07 1999-12-27 Mitsubishi Heavy Ind Ltd Apparat og fremgangsmåde til fjernelse af carbondioxid fra forbrændingsafgangsgas
US5137550A (en) 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Cascade acid gas removal process
DE69318433T2 (de) 1992-01-17 1998-12-17 Kansai Electric Power Co Verfahren zur Behandlung von Verbrennungsabgasen
DE4217921A1 (de) 1992-05-30 1993-12-02 Huels Chemische Werke Ag Verfahren zur Rückgewinnung von Ammoniak und organischen Verbindungen aus mit organischen Stoffen, Kohlendioxid und Ammoniak beladenen Abgasen
JP2895325B2 (ja) 1992-09-16 1999-05-24 三菱重工業株式会社 燃焼排ガス中の二酸化炭素を除去する方法
DE4240196C2 (de) 1992-11-30 1996-06-13 Voest Alpine Ind Anlagen Verfahren zur Kühlung und Reinigung von ultrafeine Partikel enthaltendem Gas, insbesondere Gichtgas oder Generatorgas und Vorrichtung zu seiner Durchführung
TW279137B (en) 1993-06-01 1996-06-21 Babcock & Wilcox Co Method and apparatus for removing acid gases and air toxics from a flue gas
JP2912145B2 (ja) 1993-11-16 1999-06-28 住友重機械工業株式会社 硫黄酸化物含有ガスの浄化方法
NO180520C (no) 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
US5462583A (en) 1994-03-04 1995-10-31 Advanced Extraction Technologies, Inc. Absorption process without external solvent
JP3233802B2 (ja) 1994-12-15 2001-12-04 三菱重工業株式会社 燃焼排ガス中の炭酸ガスと窒素酸化物を除去する方法
JP3626796B2 (ja) 1995-10-03 2005-03-09 三菱重工業株式会社 高圧天然ガス中の高濃度炭酸ガスを除去する方法
US5772709A (en) 1996-04-18 1998-06-30 Graham Corporatiom Apparatus for removing ammonia and carbon dioxide gases from a steam
US5700311A (en) 1996-04-30 1997-12-23 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
FR2757423B1 (fr) 1996-12-19 1999-01-29 Inst Francais Du Petrole Procede et dispositif de traitement d'un gaz par refrigeration et mise en contact avec un solvant
JP3364103B2 (ja) 1997-01-27 2003-01-08 三菱重工業株式会社 脱炭酸設備の吸収液の制御方法
US6077491A (en) 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
CA2330138A1 (en) 1997-04-23 1998-10-29 Enviro-Energy Products, Inc. Heat recovery and pollution abatement device
US7022296B1 (en) 1997-07-10 2006-04-04 University Of Cincinnati Method for treating flue gas
JP3217742B2 (ja) 1997-11-11 2001-10-15 三菱重工業株式会社 二酸化炭素吸収液の制御方法及びその装置
FR2771022B1 (fr) 1997-11-19 1999-12-17 Inst Francais Du Petrole Procede de desacidification d'un gaz a tres forte teneur en gaz acides
US6348088B2 (en) 1999-01-29 2002-02-19 Taiwan Semiconductor Manufacturing Company, Ltd System and method for recovering cooling capacity from a factory exhaust gas
US6210467B1 (en) 1999-05-07 2001-04-03 Praxair Technology, Inc. Carbon dioxide cleaning system with improved recovery
EP1072301B1 (en) 1999-07-29 2009-11-18 National Institute Of Advanced Industrial Science and Technology Method and apparatus for separating and recovering carbon dioxide from combustion exhaust gas
JP4370038B2 (ja) 2000-04-17 2009-11-25 三菱重工業株式会社 排ガス冷却システム
US6458188B1 (en) 2000-07-14 2002-10-01 Timothy D. Mace Method and means for air filtration
NL1015827C2 (nl) 2000-07-27 2002-02-01 Continental Engineering B V Winning van zuiver CO2 uit rookgassen.
JP3969949B2 (ja) 2000-10-25 2007-09-05 三菱重工業株式会社 アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
US6497852B2 (en) 2000-12-22 2002-12-24 Shrikar Chakravarti Carbon dioxide recovery at high pressure
DE10122546B8 (de) 2001-05-09 2006-06-01 Uhde Gmbh Verfahren zur Reinigung von Kokereigas
US6667347B2 (en) 2001-09-14 2003-12-23 Chevron U.S.A. Inc. Scrubbing CO2 from methane-containing gases using an aqueous stream
US6720359B2 (en) 2001-09-14 2004-04-13 Chevron U.S.A. Inc. Scrubbing CO2 from a CO2-containing gas with an aqueous stream
ES2316734T3 (es) 2002-01-14 2009-04-16 Shell Internationale Research Maatschappij B.V. Procedimiento para separar dioxido de carbono de mezclas de gas.
JP3814206B2 (ja) 2002-01-31 2006-08-23 三菱重工業株式会社 二酸化炭素回収プロセスの排熱利用方法
AU2002307364C1 (en) 2002-04-15 2008-07-10 Fluor Technologies Corporation Configurations and methods for improved acid gas removal
NL1020560C2 (nl) 2002-05-08 2003-11-11 Tno Methode voor absorptie van zure gassen.
FI116521B (fi) 2002-05-21 2005-12-15 Preseco Oy Menetelmä eloperäisen materiaalin käsittelemiseksi
US6759022B2 (en) 2002-06-05 2004-07-06 Marsulex Environmental Technologies Flue gas desulfurization process and apparatus for removing nitrogen oxides
ES2316817T3 (es) 2002-07-03 2009-04-16 Fluor Corporation Equipo divisor de flujo mejorado.
US7101415B2 (en) 2002-08-30 2006-09-05 Matheson Tri-Gas, Inc. Methods for regenerating process gas purifier materials
CN1331563C (zh) 2002-09-17 2007-08-15 弗劳尔公司 除去酸性气体的设备和方法
ITVE20020030A1 (it) 2002-10-01 2004-04-02 Valerio Tognazzo Processo ed impianto per effettuare la ultradepurazione di fumi o gas con recupero totale degli inquinanti di risulta. -
US7637987B2 (en) 2002-12-12 2009-12-29 Fluor Technologies Corporation Configurations and methods of acid gas removal
MXPA05006242A (es) 2002-12-17 2005-08-19 Fluor Corp CONFIGURATIONS AND METHODS FOR THE REMOVAL OF GAS ACID AND POLLUTANTS WITH EMISSION ALMOST NULL.
EP1648590A1 (en) 2003-07-22 2006-04-26 Dow Global Technologies Inc. Regeneration of acid gas-containing treatment fluids
US7255842B1 (en) 2003-09-22 2007-08-14 United States Of America Department Of Energy Multi-component removal in flue gas by aqua ammonia
NO321817B1 (no) 2003-11-06 2006-07-10 Sargas As Renseanlegg for varmekraftverk
US7083662B2 (en) 2003-12-18 2006-08-01 Air Products And Chemicals, Inc. Generation of elevated pressure gas mixtures by absorption and stripping
FR2863910B1 (fr) 2003-12-23 2006-01-27 Inst Francais Du Petrole Procede de capture du dioxyde de carbone contenu dans des fumees
JP4690659B2 (ja) * 2004-03-15 2011-06-01 三菱重工業株式会社 Co2回収装置
FI20045086A (fi) 2004-03-18 2005-09-19 Cuycha Innovation Oy Lähes palautuva prosessi hiilidioksidin erottamiseksi savu- tai tuotekaasusta
US7128777B2 (en) 2004-06-15 2006-10-31 Spencer Dwain F Methods and systems for selectively separating CO2 from a multicomponent gaseous stream to produce a high pressure CO2 product
US7641717B2 (en) 2004-08-06 2010-01-05 Eig, Inc. Ultra cleaning of combustion gas including the removal of CO2
JP4745682B2 (ja) 2005-02-23 2011-08-10 三菱重工業株式会社 Co2回収装置および方法
DE102005033837B4 (de) 2005-07-20 2019-02-28 Basf Se Verfahren zum Entfernen von sauren Gasen und Ammoniak aus einem Fluidstrom
JP5021917B2 (ja) 2005-09-01 2012-09-12 三菱重工業株式会社 Co2回収装置及び方法
KR100703999B1 (ko) 2006-02-24 2007-04-04 한국에너지기술연구원 암모니아수를 이용한 혼합가스에서 이산화탄소 회수 방법및 장치
US8703082B2 (en) 2006-12-15 2014-04-22 Sinvent As Method for capturing CO2 from exhaust gas
US7867322B2 (en) 2007-01-31 2011-01-11 Alstom Technology Ltd Use of SO2 from flue gas for acid wash of ammonia
JP5345954B2 (ja) 2007-02-20 2013-11-20 リチャード ジェイ ハンウィック 二酸化炭素隔離プロセス、ガス流から二酸化炭素を隔離するためのシステム
JP5722031B2 (ja) 2007-05-29 2015-05-20 ユニヴァーシティ オブ レジャイナ ガス流からガス成分を回収するための方法及び吸収剤組成物
US7981196B2 (en) 2007-06-04 2011-07-19 Posco Apparatus and method for recovering carbon dioxide from flue gas using ammonia water
US8182577B2 (en) 2007-10-22 2012-05-22 Alstom Technology Ltd Multi-stage CO2 removal system and method for processing a flue gas stream
US20090155889A1 (en) 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution
US20090282977A1 (en) 2008-05-14 2009-11-19 Alstom Technology Ltd Gas purification system having provisions for co2 injection of wash water
US7846240B2 (en) * 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system
US8404027B2 (en) 2008-11-04 2013-03-26 Alstom Technology Ltd Reabsorber for ammonia stripper offgas
US8845789B2 (en) 2009-03-31 2014-09-30 Alstom Technology Ltd Process for CO2 capture with improved stripper performance
US7789945B2 (en) * 2009-09-25 2010-09-07 Uop Llc Maintaining low carbon monoxide levels in product carbon dioxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118795A1 (en) * 2005-04-29 2006-11-09 Fluor Technologies Corporation Configurations and methods for acid gas absorption and solvent regeneration
WO2010086039A1 (de) * 2009-01-28 2010-08-05 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossilbefeuerten kraftwerksanlage

Also Published As

Publication number Publication date
TWI436815B (zh) 2014-05-11
EP2616160B1 (en) 2017-05-03
CN103209751B (zh) 2015-11-25
AU2011302516A1 (en) 2013-05-02
CA2812085A1 (en) 2012-03-22
CN103209751A (zh) 2013-07-17
EP2616160A1 (en) 2013-07-24
US8728209B2 (en) 2014-05-20
KR20130056329A (ko) 2013-05-29
TW201228712A (en) 2012-07-16
CA2812085C (en) 2016-12-13
JP2013538127A (ja) 2013-10-10
AU2011302516B2 (en) 2014-11-06
US20120060689A1 (en) 2012-03-15
WO2012036878A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
KR101525844B1 (ko) Co₂ 포획 시스템의 에너지 요구량을 감소시키기 위한 방법 및 시스템
KR101253488B1 (ko) 냉각된 암모니아 기반 co₂포획 시스템 및 물 세척 방법
KR101216579B1 (ko) 다단 co₂제거 시스템 및 연도 가스 스트림을 처리하기 위한 방법
CN102325579A (zh) 一种用于控制胺排放的方法及装置
AU2012326392B2 (en) Chilled ammonia based CO2 capture system with wash system and processes of use
KR20120066659A (ko) 세척 용기 내에 사용된 용액을 재생하기 위한 방법 및 시스템
EP2675549A1 (en) Process and system for cleaning a gas stream
Naumovitz et al. Method and system for reducing energy requirements of a CO 2 capture system
Dube et al. Single absorber vessel to capture CO2

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee