KR101387041B1 - 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들 - Google Patents

송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들 Download PDF

Info

Publication number
KR101387041B1
KR101387041B1 KR1020127003012A KR20127003012A KR101387041B1 KR 101387041 B1 KR101387041 B1 KR 101387041B1 KR 1020127003012 A KR1020127003012 A KR 1020127003012A KR 20127003012 A KR20127003012 A KR 20127003012A KR 101387041 B1 KR101387041 B1 KR 101387041B1
Authority
KR
South Korea
Prior art keywords
data
frames
transmitter
null
interval
Prior art date
Application number
KR1020127003012A
Other languages
English (en)
Other versions
KR20120039691A (ko
Inventor
비자야라크쉬미 알. 라빈드란
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20120039691A publication Critical patent/KR20120039691A/ko
Application granted granted Critical
Publication of KR101387041B1 publication Critical patent/KR101387041B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/40Arrangements for broadcast specially adapted for accumulation-type receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • H04H20/426Receiver side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/38Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space
    • H04H60/41Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/49Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations
    • H04H60/51Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations of receiving stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • H04H20/423Transmitter side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/76Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet
    • H04H60/78Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by source locations or destination locations
    • H04H60/80Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by source locations or destination locations characterised by transmission among terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence

Abstract

일 양상에서, 방법은, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조하는 단계, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하는 단계, 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신기를 통해 송신하는 단계; 및 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 송신기를 블랭킹하는 단계를 포함하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다.

Description

송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들{CODING LATENCY REDUCTIONS TO ALLOW TRANSMITTER QUIETING}
본 출원은 하기의 미국 가특허출원들 각각에 대해 우선권의 이익을 주장하며:
2009년 7월 2일 출원된 미국 가특허출원 61/222,845;
2009년 7월 17일 출원된 미국 가특허출원 61/226,601;
2010년 1월 15일 출원된 미국 가특허출원 61/295,479; 및
2010년 3월 2일 출원된 미국 가특허출원 61/309,511,
상기 가출원들 각각의 전체 내용들은 본 명세서에 참조로 통합되었다.
본 출원은 네트워크에 걸친 데이터의 송신에 관한 것이다.
최근, 무선 HDMI(High-Definition Multimedia Interface)와 같은 멀티미디어 데이터의 무선 디스플레이를 위한 다수의 솔루션들이 개발되고 있다. 이 솔루션들의 주요한 의도는 특정한 컴포넌트(예를 들어, 셋톱 박스, 디지털 다기능 디스크(DVD) 플레이어, 계산 디바이스)와 디스플레이 디바이스 사이에서 HDMI를 대체하는 것이다.
특정한 제공자들은, 압축되지 않은 비디오의 송신을 위한 사유(proprietary) 방법들을 이용하는 솔루션들을 개발해 왔다. 다른 솔루션들은 고객 전자 디바이스들(예를 들어, 게임 콘솔들 또는 DVD 플레이어들)을 타겟으로 할 수 있고, 호스트 및 클라이언트 측 모두에 전용 하드웨어를 요구할 수 있다. 이러한 전용 디바이스들에 대한 전력 소모는 매우 클 수 있다. 또한, 특정한 솔루션들에서 압축되지 않은 비디오의 송신은 더 높은 해상도의 데이터 송신을 지원하기 위한 임의의 확장 능력들을 제한할 수 있다.
일반적으로, 본 명세서는, 송신기 침묵(qiueting)(또한 블랭킹으로도 지칭됨)이 수행되는 다수의 기술들, 디바이스들 및 시스템들을 설명한다. 다수의 기술들은 또한, 송신기 블랭킹이 발생하는 경우 데이터가 손실되지 않도록 송신기 블랭킹 인터벌에 대응하는 널 인터벌(null interval)들의 생성에 대해 설명된다. 다수의 예들에서, 송신기 침묵 동안 센싱(sensing)이 수행된다.
일 양상에서, 방법은, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조하는 단계, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하는 단계, 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신기를 통해 송신하는 단계; 및 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 송신기를 블랭킹하는 단계를 포함하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다.
다른 예에서, 디바이스는 인코더 및 변조기를 포함하고, 인코더 및 변조기는, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조하고, 인코더 및 변조기는, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조한다. 이 디바이스는 또한, 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신하는 송신기를 포함하고, 송신기는 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 블랭킹하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다.
다른 예에서, 디바이스는, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조하기 위한 수단, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하기 위한 수단, 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신기를 통해 송신하기 위한 수단; 및 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 송신기를 블랭킹하기 위한 수단을 포함하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다.
다른 예에서, 컴퓨터 판독가능 저장 매체는, 실행될 때 하나 이상의 프로세서들로 하여금, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조하게 하고, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하게 하고, 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신기를 통해 송신하게 하고, 그리고, 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 송신기를 블랭킹하게 하는 명령들을 포함하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다.
추가된 예들에서, 본 명세서는 지오-로케이션 기반 백색 공간(white space) 센싱을 위한 기술들, 시스템들 및 디바이스들을 고려한다. 이러한 일예에서, 방법은, 디바이스와 연관된 지리적 좌표들을 결정하는 단계, 디바이스의 지리적 좌표들에 기초하여 백색 공간에서 이용가능한 하나 이상의 특정한 주파수들을 결정하는 단계, 하나 이상의 특정한 주파수들이 이용가능한지 여부를 결정하기 위해, 디바이스의 지리적 좌표들에 기초하여 하나 이상의 특정한 주파수들에서 백색 공간 센싱을 수행하는 단계, 및 하나 이상의 특정한 주파수들이 이용가능하다는 결정에 따라 하나 이상의 특정한 주파수들에서 송신기를 통해 데이터를 송신하는 단계를 포함한다.
다른 예에서, 디바이스는, 디바이스와 연관된 지리적 좌표들을 결정하고, 디바이스의 지리적 좌표들에 기초하여 백색 공간에서 이용가능한 하나 이상의 특정한 주파수들을 결정하고, 하나 이상의 특정한 주파수들이 이용가능한지 여부를 결정하기 위해, 디바이스의 지리적 좌표들에 기초하여 하나 이상의 특정한 주파수들에서 백색 공간 센싱을 수행하는 센싱 유닛, 및 하나 이상의 특정한 주파수들이 이용가능하다는 결정에 따라 하나 이상의 특정한 주파수들에서 송신기를 통해 데이터를 송신하는 송신기 유닛을 포함한다.
다른 예에서, 디바이스는, 디바이스와 연관된 지리적 좌표들을 결정하기 위한 수단, 디바이스의 지리적 좌표들에 기초하여 백색 공간에서 이용가능한 하나 이상의 특정한 주파수들을 결정하기 위한 수단, 하나 이상의 특정한 주파수들이 이용가능한지 여부를 결정하기 위해, 디바이스의 지리적 좌표들에 기초하여 하나 이상의 특정한 주파수들에서 백색 공간 센싱을 수행하기 위한 수단, 및 하나 이상의 특정한 주파수들이 이용가능하다는 결정에 따라 하나 이상의 특정한 주파수들에서 송신기를 통해 데이터를 송신하기 위한 수단을 포함한다.
다른 예에서, 컴퓨터 판독가능 저장 매체는, 실행될 때 하나 이상의 프로세서들로 하여금, 디바이스와 연관된 지리적 좌표들을 결정하게 하고, 디바이스의 지리적 좌표들에 기초하여 백색 공간에서 이용가능한 하나 이상의 특정한 주파수들을 결정하게 하고, 하나 이상의 특정한 주파수들이 이용가능한지 여부를 결정하기 위해, 디바이스의 지리적 좌표들에 기초하여 하나 이상의 특정한 주파수들에서 백색 공간 센싱을 수행하게 하고, 그리고, 하나 이상의 특정한 주파수들이 이용가능하다는 결정에 따라 하나 이상의 특정한 주파수들에서 송신기를 통해 데이터를 송신하게 하는 명령들을 포함한다.
하나 이상의 양상들의 세부사항들이 첨부된 도면들 및 하기 설명에서 기술된다. 다른 특징들, 목적들 및 이점들은 설명 및 도면들로부터, 그리고 청구항들로부터 명백할 것이다.
도 1은 무선 네트워크를 통해 데이터 수신기에 통신가능하게 연결되는 통신 시스템의 일예를 도시하는 블록도이다.
도 2는 무선 네트워크를 통해 하나 이상의 멀티미디어 수신기들 및 하나 이상의 멀티미디어 출력 디바이스들에 통신가능하게 연결되는 통신 시스템의 일예를 도시하는 블록도이다.
도 3은 무선 네트워크를 통해 하나 이상의 디지털 텔레비젼(TV) 수신기들 및 하나 이상의 디스플레이 디바이스들에 통신가능하게 연결되는 통신 시스템의 일예를 도시하는 블록도이다.
도 4는 디지털 TV 내에 포함될 수 있는 디지털 TV 수신기 및 디스플레이 디바이스에 통신가능하게 연결되는 모바일 통신 디바이스의 일예를 도시하는 블록도이다.
도 5는 도 2 및/또는 도 3에 도시된 통신 디바이스로서 이용될 수 있는 통신 디바이스의 일예를 도시하는 블록도이다.
도 6은 도 5에 도시된 통신 디바이스와 같은 통신 디바이스 내에 구현될 수 있는, 채널 식별기와 결합되는 디지털 TV 변환 유닛/송신기의 일예를 도시하는 블록도이다.
도 7은 도 5에 도시된 통신 디바이스와 같은 통신 디바이스 내에 구현될 수 있는, 채널 식별기와 결합되는 디지털 TV 변환 유닛/송신기의 다른 예를 도시하는 블록도이다.
도 8은 스펙트럼 센싱 동안 송신기 침묵을 수행하기 위해, 도 1 내지 5에 도시된 통신 디바이스들 중 하나 이상의 통신 디바이스와 같은 통신 디바이스에 의해 수행될 수 있는 방법의 일예를 도시하는 흐름도이다.
도 9는 스펙트럼 센싱을 수행하기 위해, 도 1 내지 5에 도시된 통신 디바이스들 중 하나 이상의 통신 디바이스와 같은 통신 디바이스에 의해 수행될 수 있는 방법의 일예를 도시하는 흐름도이다.
도 10은 도 1 내지 5의 통신 디바이스들 중 하나에 대한 것과 같은, 예시적인 데이터 송신 및 채널 센싱 듀티 사이클들을 도시하는 타이밍도이다.
도 11은 도 1 내지 5의 통신 디바이스들 중 하나에 대한 것과 같은, 예시적인 데이터 송신 및 채널 센싱 듀티 사이클들의 다른 예를 도시하는 타이밍도이다.
도 12는 통신 디바이스에 의해 송신될 수 있는 예시적인 데이터 송신 듀티 사이클 및 대응하는 데이터 스트림을 도시하는 개념도이다.
도 13은 잡다한(miscellaneous) 데이터에 의해 분리되는 다수의 영상 그룹들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림을 도시하는 도면이며, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다.
도 14는 잡다한 데이터에 의해 분리되는 다수의 씬(scene)들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림을 도시하는 도면이며, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다.
도 15는 잡다한 데이터에 의해 분리되는 다수의 데이터의 프레임들을 포함하는 예시적인 데이터의 스트림을 도시하는 도면이며, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다.
도 16은 잉여(redundant) 프레임 데이터에 의해 분리되는 다수의 데이터의 프레임들을 포함하는 예시적인 데이터의 스트림을 도시하는 도면이며, 여기서, 잉여 프레임 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다.
도 17은 본 명세서에서 설명되는 다양한 적응형 인코딩 기술들의 애플리케이션에 적합할 수 있는 멀티미디어 통신 시스템을 도시하는 블록도이다.
도 18은 ATSC 아키텍쳐를 갖는 예시적인 멀티미디어 통신 시스템에서의 타이밍을 도시하는 블록도이다.
도 19는 ATSC 아키텍쳐를 갖는 예시적인 멀티미디어 통신 시스템에서의 데이터 플로우를 도시하는 블록도이다.
도 20은 도 19의 TS MUX 유닛의 출력을 수신하는 ATSC 변조기 내의 데이터 플로우를 추가로 도시하는 블록도이다.
도 21은 ATSC 데이터 레이트들을 도시하는 타이밍도이다.
도 22는 적응형 비디오 인코딩을 이용하는 송신기 침묵의 일예를 도시하는 타이밍도이다.
도 23은 적응형 비디오 인코딩을 이용하는 송신기 침묵의 다른 예를 도시하는 타이밍도이다.
도 24는 송신 침묵 인터벌들과 동기화된 잡다한 데이터에 의해 분리되는 다수의 영상 그룹들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림을 도시하는 도면이다.
도 25는 송신 침묵 인터벌들과 동기화된 잡다한 데이터에 의해 분리되는 다수의 씬들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림을 도시하는 도면이다.
도 26은 침묵 트리거 펄스에 응답하여 변조기에 의한 널 바이트들의 삽입의 일예를 도시하는 타이밍도이다.
도 27은 미디어 통신 시스템에서 스펙트럼 센싱, 인코딩 및 변조의 조정된 동기화를 도시하는 블록도이다.
도 28은 본 명세서에 부합하는 기술을 도시하는 흐름도이다.
도 29는 본 명세서에 부합하는 디바이스를 도시하는 블록도이다.
도 30 내지 34는 본 명세서에 부합하는 다른 기술들을 도시하는 흐름도들이다.
도 1은, 무선 네트워크(7)를 통해 데이터 수신기(9)에 통신가능하게 연결되는 통신 시스템(1)의 일예를 도시하는 블록도이다. 통신 시스템(1)은 데이터 수신기(9)에 데이터를 전송할 수 있다. 몇몇 경우들에서, 데이터는 오디오 데이터, 비디오 데이터, 텍스트 데이터, 스피치 데이터 및 그래픽스 데이터 중 적어도 하나를 포함하는 멀티미디어 데이터를 포함할 수 있다. 도 1의 예에서, 통신 시스템(1)은 무선 네트워크(7)를 통해 오직 하나의 데이터 수신기(9)에 데이터를 전송하는 것으로 도시되었지만, 통신 시스템(1)은 또한, 몇몇 경우들에서, 무선 네트워크(7)를 통해 데이터 수신기(9)를 포함하는 하나 이상의 데이터 수신기들에 데이터를 전송 또는 브로드캐스팅할 수 있다.
몇몇 예들에서, 무선 네트워크(7)는, 오직 몇몇 예를 든다면, ATSC(Advanced Television Systems Committee) 포맷, DVB(Digital Video Broadcasting) 포맷, T-DMB(Terrestrial Digital Multimedia Broadcasting) 포맷, ISDB-T(Integrated Services Digital Broadcasting Terrestrial) 포맷, 또는 International Standard ISO/IEC 13818-1에 의해 제공되는 MPEG-TS(Moving Picture Experts Group Transport Stream) 포맷과 같은 디지털 브로드캐스트 포맷에 대해 스펙트럼에 걸친 통신들에 대한 지원을 제공하는 네트워크를 포함할 수 있으며, 이는 더 상세히 후술할 것이다. ATSC 표준들은 디지털 텔레비젼 송신을 위한 어드밴스드 텔레비젼 시스템 위원회(Advanced Television Systems Committee)에 의해 개발된 표준들의 세트이다. DVB 표준들은 국제적으로 수용되는, 디지털 텔레비젼을 위한 일 세트의 개방 표준들이고, ETSI(European Telecommunications Standards Institute), CENELEC(European Committee for Electrotechnical Standardization), 및 EBU(European Broadcasting Union)의 JTC(Joint Technical Committee)에 의해 공표되어 있다. DMB는 멀티미디어 데이터를 모바일 디바이스들로 전송하기 위한 디지털 무선 송신 기술이다. ISDB는 디지털 텔레비젼 및 디지털 라디오를 위한 일본 표준이다. 본 명세서의 교시로부터 이점이 있을 수 있는 다른 무선 표준들은, ATSC M/H(Advanced Television Systems Committee - Mobile/Handheld), FO EV, DVB-H(Digital Multimedia Broadcast-handheld), DVB-SH(Digital Multimedia Broadcast-satellite services to handheld), 및 차세대 모바일 브로드캐스트 표준들과 같은 모바일 브로드캐스트 표준들을 포함한다. 또한, NTSC 표준들 및 차세대 NTSC(National Television System Committee) 표준들은 본 명세서의 교시로부터 이점이 있을 수 있다. 또한, 3세대(3G) 표준들, 3세대 멀티미디어 브로드캐스트 멀티캐스트 서비스(3G MBMS), BCMCS(Broadcast and Multicast Services), 롱 텀 에볼루션 브로드캐스트 (LTE(브로드캐스트)) 또는 다수의 다른 표준들과 같은 표준들이 또한 이점이 있을 수 있다. 이 표준들 및 다른 표준들에서, 본 명세서의 블랭킹 기술들은 센싱 동안 뿐만 아니라 다른 요인들에 대해 이용될 수 있다.
디지털 브로드캐스트 포맷은, 어떠한 특수하거나 특정한 수신지가, 송신된 데이터에 제공되거나 송신된 데이터에 의해 특정되지 않는 브로드캐스트 포맷일 수 있다. 예를 들어, 디지털 브로드캐스트 포맷은, 브로드캐스팅된 데이터 패킷 또는 유닛의 헤더가 어떠한 수신지 어드레스도 포함하지 않는 포맷을 포함할 수 있다.
통신 시스템(1)은, 특정한 위치에서 데이터를 송신 또는 수신하는 하나 이상의 디바이스들의 고정 시스템 또는 하나 이상의 디바이스들의 모바일 시스템을 포함할 수 있다. 각각의 디바이스는 하나 이상의 프로세서들을 포함할 수 있다. 통신 시스템(1)은 하나 이상의 독립형 디바이스들을 포함하거나, 더 큰 시스템의 일부일 수 있다. 예를 들어, 통신 시스템(1)은, 무선 통신 디바이스(예를 들어, 무선 모바일 핸드셋 또는 디바이스), 디지털 카메라, 디지털 텔레비젼(TV), 비디오 카메라, 비디오 전화, 디지털 멀티미티어 플레이어, 개인 휴대 정보 단말(PDA), 비디오 게임 콘솔, 개인용 컴퓨터 또는 랩탑 디바이스 또는 다른 비디오 디바이스를 포함하거나, 이들의 일부일 수 있다.
특정한 예들에서, 통신 시스템(1)은 비디오 게임 또는 게이밍 애플리케이션들에 이용될 수 있다. 이 예들에서, 통신 시스템(1)의 하나 이상의 사용자들은, 통신 시스템(1)으로의 네트워크 접속(예를 들어, 무선 네트워크 접속)을 통해 다른 사용자들과 임의의 인터랙티브(interactive) 게임들을 포함하는 하나 이상의 게임들을 플레이할 수 있다. 실시간 정보를 포함하는, 게임들에 대한 그래픽스 및/또는 비디오 데이터는 데이터 수신기들(9)에 제공될 수 있고, 다음으로, 데이터 수신기들(9)에 연결된 개별 디스플레이 디바이스(예를 들어, 고해상도 텔레비젼 또는 디스플레이 디바이스) 상에 디스플레이될 수 있다. 이 방식으로, 사용자는 이 개별 디스플레이 디바이스 상에서 게임 애플리케이션에 대한 디스플레이 데이터를 볼 수 있다.
통신 시스템(1)은 또한, 다른 디바이스들과 무선으로 통신하는 주변 디바이스들을 포함하는 하나 이상의 주변 디바이스들(예를 들어, 키보드들)을 포함할 수 있다. 몇몇 경우들에서, 통신 시스템(1)은, 앞서 설명된 디바이스들의 일부 또는 전부에 이용될 수 있는, 하나 이상의 집적 회로들, 칩들, 또는 칩셋들 내에 포함되는 컴포넌트들을 포함할 수 있다.
도 1에 도시된 바와 같이, 통신 시스템(1)은, 채널 식별기(5)에 연결되는 데이터 변환 유닛/송신기(3)를 포함할 수 있다. 데이터 변환 유닛/송신기(3) 및 채널 식별기(5)는 하나 이상의 디바이스들에 물리적으로 포함되거나 그 일부일 수 있다. 예를 들어, 몇몇 경우들에서, 데이터 변환 유닛/송신기(3) 및 채널 식별기(5) 중 하나 또는 둘 모두는 개별 디바이스에 연결되는 주변 디바이스 내에 포함될 수 있다. 따라서, 데이터 변환 유닛/송신기(3) 및 채널 식별기(5)는 통신 시스템(1) 내의 하나 이상의 디바이스들의 일부일 수 있다.
통신 시스템(1)은 데이터를 수신, 프로세싱, 생성 및 송신할 수 있다. 예를 들어, 통신 시스템(1)은, 셀룰러, 로컬 무선, 또는, 예를 들어, ATSC, DVB, ISDB-T또는 T-DMB를 포함하는 브로드캐스트 네트워크들을 포함하는 임의의 다수의 가능한 라디오 또는 무선 액세스 네트워크들을 통해 데이터를 수신할 수 있다. 몇몇 예들에서, 통신 시스템(1)은 유선 인터페이스를 통해 또는 하나 이상의 내장된 인터페이스들을 통해 데이터를 수신할 수 있다. 데이터는 또한, 카메라 또는 다른 캠코더 애플리케이션들을 위한 이미지/비디오 센서들을 통해 수신되는 데이터와 같은 압축되지 않은 포맷의 데이터를 포함할 수 있다. 몇몇 예들에서, 데이터는 오디오 데이터, 비디오 데이터, 이미지 데이터, 그래픽스 데이터, 텍스트 데이터, 스피치 데이터 또는 메타데이터 중 하나 이상을 포함할 수 있다.
통신 시스템(1)은 추가로, 무선 네트워크(7)를 통해 데이터 수신기(9)와 같은 하나 이상의 다른 디바이스들에 데이터를 브로드캐스팅 또는 그렇지 않으면 송신할 수 있다. 데이터 변환 유닛/송신기(3)는 데이터를 특정한 디지털 브로드캐스트 포맷으로 변환할 수 있다. 예를 들어, 데이터 변환 유닛/송신기(3)는 특정한 디지털 브로드캐스트 포맷(예를 들어, ATSC, DVB, ISDB-T, T-DMB, MPEG-TS)에 부합하는 데이터를 인코딩할 수 있고, 변조할 수 있고, 다음으로 인코딩된 데이터를 송신할 수 있다.
채널 식별기(5)는 스펙트럼의 적어도 하나의 이용가능한 채널을 식별할 수 있고, 여기서, 통신 시스템(1)의 하나 이상의 디바이스들은 적어도 하나의 이용가능한 채널의 식별에 관여될 수 있다. 예를 들어, 적어도 하나의 이용가능한 채널의 식별은 통신 시스템(1)의 하나 이상의 디바이스들에 의해 개시될 수 있다. 몇몇 예들에서, 채널 식별기(5)는 디지털 텔레비젼 브로드캐스트 스펙트럼과 같은 브로드캐스트 스펙트럼의 미사용 및/또는 미허가 부분에서 적어도 하나의 이용가능한 채널을 식별할 수 있다.
몇몇 예들에서, 적어도 하나의 이용가능한 채널은 텔레비젼 대역 백색 공간을 포함할 수 있다. 2008년 11월 4일 연방 통신 협회(FCC; Federal Communications Commission)에 의해 채택되고 2008년 11월 14일에 FCC Order 09-260으로 공표된 "Second Report and Order and Memorandum Opinion and Order"에 특정된 바와 같이, 미국에 의해 감독되는 "백색 공간"은, 허가된 서비스들에 의해 현재 이용되지 않고 따라서 미허가된 무선 송신기들에 의해 이용될 수 있는, 브로드캐스트 텔레비젼 스펙트럼의 미사용 부분들 또는 위치들을 포함할 수 있다. 백색 공간의 유사한 유형들이 다른 국가들, 지역들, 또는 미국 외의 관할지들에 존재할 수 있고, 이러한 영역들에 존재할 수 있는 통신 규제 당국에 종속된다.
몇몇 예들에서, 이용가능한 채널은 현재 미점유된 채널을 포함할 수 있다. 일예에서, 이용가능한 채널은, 예를 들어, FCC에 의해 허가된 사용자들과 같은, 어떠한 인가되거나 허가된 사용자들에 의해 현재 이용되고 있지 않은 채널을 포함할 수 있다. 일예에서, 이용가능한 채널은, 예를 들어, 다른 백색 공간 채널 사용자들과 같은 미허가된 사용자들에 의해 또는 허가된 사용자들에 의해 현재 이용되지 않는 채널을 포함할 수 있다. 몇몇 경우들에서, 이용가능한 채널은, 또 다른 허가된 사용자로부터 2차 허가를 획득할 때 사용자에 의해 이용될 수 있는 채널을 포함할 수 있다.
채널 식별기(8)는, 통신 시스템(1)의 하나 이상의 디바이스들 상에서 실행되거나 그에 의해 구현되는 애플리케이션들 또는 서비스들의 임의의 특정한 요건들 또는 요구들에 기초하여 데이터 브로드캐스트에 대해 요구될 수 있는 하나 이상의 이용가능한 채널들을 식별할 수 있다. 하나 이상의 이용가능한 채널들의 식별 시에, 변환 유닛/송신기(3)는 적어도 하나의 식별된 이용가능한 채널을 이용하여, 무선 네트워크(7)를 통해 데이터 수신기(9)에 데이터(예를 들어, 인코딩되거나 변조되거나 그렇지 않으면 변환된 데이터)를 송신할 수 있다. 특정한 경우들에서, 통신 시스템(1)은, 통신 시스템(1) 내에서 국부적으로 실행되는 하나 이상의 서비스들 또는 애플리케이션들의 실행에 기초하여, 사용자 입력에 응답하여 또는 자동으로, 전술한 동작들(예를 들어, 채널 식별 및 데이터 송신) 중 하나 이상을 수행할 것이다. 데이터 수신기(9)는 통신 시스템(1)으로부터 수신된 브로드캐스트 데이터를 복조 및/또는 디코딩하기 위한 기능을 포함할 수 있다. 몇몇 경우들에서, 변환 유닛/송신기(3)는 적어도 하나의 식별된 이용가능한 채널을 이용하여, 무선 네트워크(7)를 통해 데이터를, 데이터 수신기(9)를 포함하는 다수의 데이터 수신기들에 브로드캐스팅할 수 있다.
전술한 바와 같이, 채널 식별기(5)는 특정한 디지털 브로드캐스트 포맷에 대한 브로드캐스트 스펙트럼의 적어도 하나의 이용가능한 채널을 식별할 수 있다. 일예에서, 채널 식별기(5)는, 브로드캐스트 스펙트럼 내의 하나 이상의 채널 범위들 또는 대역들 내에서 신호 정보를 센싱함으로써 적어도 하나의 이용가능한 채널을 식별하기 위해 이용되는 스펙트럼 센서를 포함할 수 있다. 일예로, 채널 식별기(5)는 적어도 하나의 이용가능한 채널을 식별하기 위해 데이터베이스(예를 들어, 도 6에 도시된 바와 같은 디지털 TV 대역 데이터베이스)에 액세스할 수 있다.
도 1에 도시된 바와 같이, 데이터 변환 유닛/송신기(3)는 송신기 침묵 유닛(2)을 포함한다. 채널 식별기(5)가 스펙트럼 센싱 기능을 포함하면, 송신기 침묵 유닛(2)은 송신 침묵 인터벌들을 제공할 수 있다. 침묵은 본 명세서에서는 대안적으로 블랭킹으로 지칭될 수 있다. 더 상세하게는, 구문 "송신기를 블랭킹하는 것(또는 침묵시키는 것)"은 일반적으로, 송신기가 시간 기간 동안 데이터를 송신하는 것을 억제하는 프로세스를 지칭하며, 시간 기간은 다른 구현들에서 매우 다양할 수 있다. 송신 침묵 인터벌들(즉, 송신기 블랭킹) 동안, 데이터 변환 유닛/송신기(3)는 무선 네트워크(7)를 통해 데이터 수신기(9)에 데이터를 송신하는 것을 억제한다. 예를 들어, 데이터 변환 유닛/송신기(3)는 자신의 데이터 송신 기능들을 일시적으로 디스에이블시키거나 심지어 일시적으로 턴오프시킴으로써, 데이터를 송신하는 것을 억제할 수 있다. 일예에서, 채널 식별기(5)는 적어도 하나의 시간 인터벌 동안, 스펙트럼의 적어도 하나의 채널(예를 들어, 백색 공간 채널)이 이용가능한지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 송신기 침묵 유닛(2)은 데이터 수신기(9)에 임의의 데이터를 송신하는 것을 억제할 수 있고, 이것은, 데이터 송신과 스펙트럼 센싱 동작들 사이의 잠재적 간섭을 감소시킬 수 있다. 그러나, 이용가능한 채널들에 대한 백색 공간의 센싱에 부가하여, 본 명세서는, 다른 센싱 원인들, 또는 센싱과 무관한 다른 요인들에 대해서도 송신기 블랭킹을 고려한다. 따라서, 송신기 블랭킹은 백색 공간 센싱 동안 이용하도록 제한되지 않고, 다른 센싱 애플리케이션들 또는 다른 넌-센싱 애플리케이션들에 대해 넓은 적용성을 가질 수 있다.
백색 공간 센싱의 경우, 채널이 선택된 후에도, 그 채널의 이용이 다른 허가되거나 인가된 사용자들에 의한 이용과 간섭하지 않는 것을 검증하기 위해, 주기적 스펙트럼 센싱이 요구될 수 있다. 센싱이 수행되어야 하는 인터벌은 적용가능한 규칙들 또는 규제들에 의해 특정될 수 있다. 몇몇 경우들에서, 스펙트럼 센싱은 분 당 적어도 한번 요구될 수 있다. 예를 들어, 허가된 사용자들 또는 다른 인가된 사용자들과 같은, 스펙트럼의 사용자들에 의해 생성되는 더 낮은 전력 신호들의 검출을 허용하기 위해, 센싱은 매우 낮은 전력 레벨들에서 수행될 필요가 있을 수 있어서, 스펙트럼 센싱 동안의 송신기 침묵은 바람직할 수 있다. 전술한 FCC 규정, 또는 다른 적용가능한 규칙들 또는 규제들은, 그 스펙트럼 내의 채널들의 허가되거나 인가된 사용자들과의 간섭을 방지하기 위해, 특정한 인터벌들 및 특정한 전력 레벨들에서의 스펙트럼 센싱을 요구할 수 있다. 이러한 스펙트럼 센싱은, 다른 허가되거나 인가된 사용자들이 소정의 채널 또는 주파수에서 신호들을 송신하고 있는지 여부를 센싱하는 것을 수반할 수 있다. 더 낮은 전력 신호들은 근처 위치들의 낮은 전력 송신기들에 의해 생성될 수 있다. 대안적으로, 더 낮은 전력 신호들은 원격 또는 근처 위치들의 더 높은 전력 송신기들에 의해 생성될 수 있다. 그러나, 더 높은 전력 송신기들에 의해 생성되는 신호들은 연장된 거리들에 걸쳐 감쇠되거나 페이딩을 겪을 수 있다. 어떤 경우이든, 스펙트럼 센싱 동안 송신기가 인에이블되면, 송신 전력은 스펙트럼 센싱 회로로 누설될 수 있어서, 백색 공간 스펙트럼과 같은 스펙트럼의 더 낮은 전력 신호들의 센싱을 더욱 곤란하게 하는 잡음 또는 간섭을 생성할 수 있다.
몇몇 상황들에서, 채널 식별기(5)는 스펙트럼 내의 하나 이상의 채널들에서 채널 이용을 주기적으로 검출하거나, 이전에는 사용을 위해 이용가능했던 임의의 채널들이 더이상 이용가능하지 않은지 여부(예를 들어, 허가된 사용자가 특정한 채널을 이용하는 경우)를 결정할 필요가 있을 수 있다. 채널 식별기(5)는 이러한 검출 및/또는 결정 기능들을 수행하는 경우 스펙트럼 센싱을 위해 특정한 듀티 사이클을 구현할 수 있다. 아래에서 더 상세히 설명하는 바와 같이, 채널 식별기(5)는 다양한 상이한 스펙트럼 센싱 인터벌들 뿐만 아니라 스펙트럼 센싱을 위한 다양한 상이한 듀티 사이클들을 이용 또는 구현할 수 있다. 유사하게, 송신기 침묵 유닛(2)은 상이한 침묵 인터벌들 뿐만 아니라 송신 침묵을 위한 다양한 상이한 듀티 사이클들을 이용 또는 구현할 수 있다.
송신 침묵은 데이터 수신기(9)에 의해 수신되는 데이터에서 에러들 및/또는 불연속들을 잠재적으로 초래할 수 있기 때문에, 통신 시스템(1) 및/또는 데이터 수신기(9)는, 예컨대, 에러 복원, 에러 회복(resilience), 또는 심지어는 통신 시스템(1)에 의해 전송된 데이터의 변형의 구현을 통해, 이러한 에러들 또는 불연속들을 완화시키기 위한 특정한 기능을 포함할 수 있다. 몇몇 예들에서, 송신된 데이터는, 패킷들, 프레임들 또는 다른 유닛들로 배열될 수 있는 디지털 데이터를 포함할 수 있고, 인코딩된 데이터, 및 디코딩, 데이터 리어셈블 또는 에러 정정에 이용되는 다른 데이터를 포함할 수 있다. 몇몇 경우들에서, 송신기 침묵 유닛(2)은 데이터 송신에 대해 송신 침묵 인터벌들 및/또는 듀티 사이클들을 이용 또는 선택할 수 있고, 이들은, 데이터 수신기(9)로 하여금 수신된 데이터에 대해 에러 복원을 수행하게 하기 위한 센싱 인터벌들 및/또는 듀티 사이클들에 매칭한다.
이 특정한 예에서, 데이터 수신기(9)는 선택적으로 에러 정정 유닛(11)을 포함할 수 있고, 에러 정정 유닛(11)은 디코딩 프로세스 동안 표준 에러 복원 또는 정정을 수행하도록 구성될 수 있다. 그러나, 에러 정정 유닛(11)은 몇몇 예들에서 선택적일 수 있다. 에러 정정 유닛(11)은, 에러 체킹 및/또는 정정을 수행하기 위해 데이터 변환 유닛/송신기(3)에 의해 데이터에 삽입되었던 하나 이상의 에러 정정 코드들을 프로세싱할 수 있다. 몇몇 예들에서, 에러 정정 유닛(11)은 이 분야에 공지된 하나 이상의 종래의 에러 정정 기술들을 수행할 수 있다.
전술한 바와 같이, 채널 식별기(5) 및 송신기 침묵 유닛(2)은 스펙트럼 센싱 인터벌들을 송신 침묵 인터벌들과 상관시키기 위해 실질적으로 유사한 듀티 사이클들을 이용할 수 있다. 이 상황들에서, 통신 시스템(1)은, 채널 식별기(5)가 (예를 들어, 스펙트럼 센싱 인터벌들 동안) 스펙트럼 센싱 기능들을 수행하고 있는 경우, 송신기 침묵 유닛(2)이 (예를 들어, 송신 침묵 인터벌들 동안) 데이터 수신기(9)에 데이터를 송신하는 것을 억제하도록, 센싱 인터벌들을 침묵 인터벌들에 정렬시킬 수 있다.
또한, 몇몇 예들에서, 데이터 변환 유닛/송신기(3)는, 정의된 데이터가 송신 침묵 인터벌들에 기초하여 스트림의 특정 부분들 내에 포함되도록 데이터 송신 스트림들을 구성 또는 적응시킬 수 있다. 예를 들어, 데이터 스트림은 송신 침묵 인터벌들의 타이밍에 기초하여, 특정한 널 데이터, 패딩된(padded) 데이터, 잉여 데이터, 또는 데이터 수신기(9)에 실제로 송신되지는 않을 수 있는 다른 잡다한 데이터를 포함하도록 구성될 수 있다. 이러한 방식으로, 데이터 변환 유닛/송신기(3)는, 침묵 인터벌들 동안 송신되지 않은 데이터가 무선 네트워크(7)를 통한 데이터 송신의 수신 시에 데이터 수신기(9)에 의해 필수적으로 요구되지 않는 잡다한 (예를 들어, 비필수적 또는 널) 데이터를 포함하도록, 송신된 데이터 스트림들을 지능적으로 구성할 수 있다. 이러한 기능은 송신 침묵의 영향을 최소화하는 것을 도울 수 있고, 여기서, 이러한 침묵은 데이터 송신과 스펙트럼 센싱 동작들 사이의 잠재적 간섭을 회피하도록 수행될 수 있다. 이 개념들은 아래에서 더 상세히 설명될 것이다.
도 2는 통신 디바이스(4)의 일예를 도시하는 블록도이고, 통신 디바이스(4)는 채널 식별기(8) 및 변환 유닛/송신기(6)를 포함하고, 채널 식별기(8) 및 변환 유닛/송신기(6)는 무선 네트워크(10)를 통해 하나 이상의 통신 수신기들(12A-12N) 및 하나 이상의 멀티미디어 출력 디바이스들(14A-14N)에 통신가능하게 연결된다. 통신 디바이스(4)는 수신기들(12A-12N) 중 하나 이상에 데이터(예를 들어, 멀티미디어 데이터)를 전송할 수 있다. 몇몇 경우들에서, 데이터는, 오디오 데이터, 비디오 데이터, 이미지 데이터, 텍스트 데이터, 스피치 데이터 및 그래픽스 데이터 중 적어도 하나를 포함하는 멀티미디어 데이터를 포함할 수 있다. 몇몇 예들에서, 무선 네트워크(10)는, ATSC 표준에 부합하는 데이터 송신에 대한 지원을 제공하는 네트워크를 포함할 수 있다.
도 2의 특정한 예에서, 변환 유닛/송신기(6) 및 채널 식별기(8)는 하나의 특정한 디바이스, 즉, 통신 디바이스(4) 내에 포함된다. 그러나, 도 1에 대해 전술한 바와 같이, 변환 유닛들/송신기들 및 채널 식별기들은 일반적으로, 통신 시스템 내의 하나 이상의 주변 디바이스들을 포함하는 하나 이상의 디바이스들 내에 포함될 수 있다.
도 1의 무선 네트워크(7)와 유사하게, 무선 네트워크(10)는 몇몇 예를 들면, ATSC, DVB, T-DMB, ISDB-T, 또는 MPEG-TS와 같은 디지털 브로드캐스트 포맷을 위한 브로드캐스트 스펙트럼에 걸친 통신들에 대한 지원을 제공하는 네트워크를 포함할 수 있다. 통신 디바이스(4)는 특정한 위치에서 데이터를 송신 또는 수신하는 고정 디바이스 또는 모바일 디바이스를 포함할 수 있다. 통신 디바이스(4)는 독립형 디바이스일 수 있거나 더 큰 시스템의 일부일 수 있다. 예를 들어, 통신 디바이스(4)는 (무선 모바일 핸드셋과 같은) 무선 멀티미디어 통신 디바이스, 디지털 카메라, 디지털 TV, 비디오 카메라, 비디오 전화, 디지털 멀티미디어 플레이어, 개인 휴대 정보 단말(PDA), 비디오 게임 콘솔, 개인용 컴퓨터 또는 랩탑 디바이스 또는 다른 비디오 디바이스를 포함하거나 이들의 일부일 수 있다. 통신 디바이스(4)는 또한, 전술한 디바이스들의 일부 또는 전부에 이용될 수 있는, 하나 이상의 집적 회로들, 또는 칩들/칩셋들 내에 포함될 수 있다.
도 2에 도시된 바와 같이, 통신 디바이스(4)는, 채널 식별기(8)에 연결되는 변환 유닛/송신기(6)를 포함한다. 오직 도 2에서의 설명을 위해, 이 컴포넌트들(6, 8)이 통신 디바이스(4)의 일부인 것으로 가정할 것이다.
통신 디바이스(4)는 멀티미디어 데이터를 포함하는 데이터를 수신, 프로세싱 및 생성할 수 있다. 예를 들어, 통신 디바이스(4)는, 셀룰러, 로컬 무선, 또는 ATSC, DVB, ISDB-T 또는 T-DMB를 포함하는 브로드캐스트 포맷을 포함하는 임의의 다수의 가능한 라디오 또는 액세스 네트워크들을 통해 데이터를 수신할 수 있다.
통신 디바이스(4)는 추가로, 무선 네트워크(10)를 통해 멀티미디어 출력 디바이스들(14A-14N)과 같은 하나 이상의 다른 디바이스들에 데이터를 브로드캐스팅할 수 있다. 변환 유닛/송신기(6)는 데이터를 특정한 디지털 브로드캐스트 포맷으로 변환할 수 있다. 예를 들어, 디지털 변환 유닛/송신기(6)는, 특정한 디지털 브로드캐스트 포맷(예를 들어, ATSC, DVB, ISDB-T, T-DMB, MPEG-TS)에 부합하는 멀티미디어 데이터를 인코딩할 수 있고, 인코딩된 멀티미디어 데이터를 변조할 수 있다.
채널 식별기(8)는 스펙트럼의 적어도 하나의 이용가능한 채널을 식별할 수 있고, 여기서, 식별은 통신 디바이스(4)에 의해 개시된다. 몇몇 예들에서, 채널 식별기(8)는, 통신 디바이스(4) 상에서 실행되는 애플리케이션들 또는 서비스들의 임의의 특정한 요건들 또는 요구들에 기초하여 송신에 요구될 수 있는 다수의 이용가능한 채널들을 식별할 수 있다. 예를 들어, 몇몇 애플리케이션들 또는 서비스들은, 하나 이상의 수신기들에 데이터가 전송될 수 있는 다수의 채널들을 요구 또는 요청할 수 있다.
채널 식별기(8)에 의한 하나 이상의 이용가능한 채널들의 식별 시에, 변환 유닛/송신기(6)는 적어도 하나의 식별된 이용가능한 채널을 이용하여, 무선 네트워크(10)를 통해 멀티미디어 출력 디바이스들(14A-14N) 중 하나 이상에 그 변환(예를 들어, 인코딩, 변조)된 데이터를 송신할 수 있다. 특정한 경우들에서, 통신 디바이스(4)는 통신 디바이스(4) 상에서 국부적으로 실행되는 하나 이상의 서비스들 또는 애플리케이션들의 실행에 기초하여, 사용자 입력을 통해 또는 자동으로, 전술한 동작들 중 하나 이상을 수행할 수 있다.
일예에서, 애플리케이션은 무선 네트워크(10)를 통해 멀티미디어 출력 디바이스(14A)에만 특정한 멀티미디어 컨텐츠를 브로드캐스팅할 것을 결정할 수 있다. 수신기(12A)는 브로드캐스트 데이터를 수신할 수 있고, 통신 디바이스(4)로부터 데이터가 브로드캐스팅되고 있는 적절한 채널로 수신기(12A)를 튜닝시키는 튜너를 포함할 수 있다. 다음으로, 수신기(12A)는 프로세싱을 위해(예를 들어, 디스플레이를 위해) 그 수신된 데이터를 멀티미디어 출력 디바이스(14A)에 제공한다.
다른 예로, 애플리케이션은 멀티미디어 출력 디바이스들(14A-14N) 중 다수의 디바이스들에 특정한 멀티미디어 컨텐츠를 브로드캐스팅할 것을 결정할 수 있다. 이 경우, 수신기들(12A-12N)은 각각 브로드캐스팅된 데이터를 수신할 수 있고, 통신 디바이스(4)로부터 데이터가 브로드캐스팅되고 있는 적절한 채널(예를 들어, 주파수 또는 주파수 대역)로 튜닝하는 튜너를 각각 포함할 수 있다. 다음으로, 각각의 수신기(12A-12N)는 프로세싱을 위해 그 수신된 데이터를 자신의 대응하는 멀티미디어 출력 디바이스(14A-14N)에 제공한다.
몇몇 경우들에서, 수신기들(12A-12N)은 통신 디바이스(4)로부터 수신된 브로드캐스트 데이터를 복조 및/또는 디코딩하기 위한 기능을 포함할 수 있다. 몇몇 경우들에서, 멀티미디어 출력 디바이스들(14A-14N)이 이러한 기능을 포함할 수 있다. 멀티미디어 출력 디바이스들(14A-14N) 중 하나 이상은 자신의 대응하는 수신기(12A-12N)에 대한 외부 디바이스를 각각 포함할 수 있다. 몇몇 예들에서, 멀티미디어 출력 디바이스들(14A-14N) 중 하나 이상은, 자신의 대응하는 수신기(12A-12N)의 일부를 각각 포함하거나 그 내부에 통합될 수 있다.
전술한 바와 같이, 채널 식별기(8)는 특정한 디지털 브로드캐스트 포맷을 위한 브로드캐스트 스펙트럼의 적어도 하나의 이용가능한 채널을 식별할 수 있다. 일 예에서, 채널 식별기(8)는, 브로드캐스트 스펙트럼 내의 하나 이상의 채널 범위들, 또는 대역들 내에서 신호 정보를 센싱함으로써 적어도 하나의 이용가능한 채널을 식별하기 위해 이용되는 스펙트럼 센서를 포함할 수 있다. 일예에서, 채널 식별기(8)는 적어도 하나의 이용가능한 채널을 식별하기 위해 데이터베이스(예를 들어, 도 6에 도시된 바와 같은 디지털 TV 대역 데이터베이스)에 액세스할 수 있다.
예를 들어, 통신 디바이스(4)는 지오-로케이션(geo-location) 기능을 포함할 수 있고, 이에 의해, 통신 디바이스(4)는 예를 들어, 글로벌 측위 시스템(GPS) 또는 다른 유사한 컴포넌트, 파일럿 신호 또는 다른 위치 기술들을 이용함으로써 자신의 지리적 위치를 결정할 수 있다. 이 예에서, 통신 디바이스(4)는 이러한 위치 정보를 디지털 TV 대역 데이터베이스에 제공할 수 있다. 디지털 TV 대역 데이터베이스는, 위치에 기초하여 채널 정보와 파퓰레이팅될(populated) 수 있고, 통신 디바이스(4)에 의해 현재 점유된 지리적 영역 내의 임의의 이용가능한 채널들의 리스트를 통신 디바이스(4)에 제공할 수 있다.
몇몇 예들에서, 통신 디바이스(4)는 통신 디바이스(4)의 인터넷 프로토콜(IP) 어드레스를 이용하여, 위치 추정을 통해 자신의 지리적 위치를 결정할 수 있다. IP 어드레스에 의한 지오-로케이션은, 통신 디바이스(4)의 공개 IP 어드레스를 다른 전자적으로 이웃하는 서버들, 라우터들 또는 공지된 위치들을 갖는 다른 디바이스들의 IP 어드레스들과 비교함으로써, 통신 디바이스(4)의 지리적 위도, 경도, 및 또한 잠재적인 도시 및 국가를 결정하는 기술이다. 이 예들에서, 통신 디바이스(4)는 자신의 IP 어드레스를 (예를 들어, 무선 통신을 통해) 외부 서버에 제공할 수 있다.
외부 서버는 공지된 위치들을 갖는 다른 디바이스들의 IP 어드레스들을 포함하는 데이터베이스에 액세스할 수 있다. 외부 서버는, 통신 디바이스(4)의 IP 어드레스를, 데이터베이스 내의 공지된 위치들을 갖는 디바이스들의 IP 어드레스들과 비교함으로써 통신 디바이스(4)의 위치의 추정치를 획득하는 기술들을 이용할 수 있고, 다음으로, 이 추정된 위치를 통신 디바이스(4)에 다시 제공할 수 있다. 몇몇 경우들에서, 외부 서버는, 데이터베이스 내의 어떤 디바이스들이, 통신 디바이스(4)의 IP 어드레스에 가장 근접하게 매칭하는지 또는 유사한 IP 어드레스들을 갖는지 결정함으로써 이 비교를 수행할 수 있다.
통신 디바이스(4)로부터 멀티미디어 출력 디바이스들(14A-14N) 중 하나 이상으로의 데이터의 브로드캐스팅은 특정한 이점들을 제공할 수 있다. 예를 들어, 통신 디바이스(4)로부터 멀티미디어 출력 디바이스들(14A-14N)로의 로컬 브로드캐스트들은 분산된 송신기 네트워크와 유사하게 생성될 수 있다. 따라서, 일 시나리오에서, 사용자는 멀티미디어 데이터를 다른 동위치화된(collocated) 또는 동위치화되지 않은(non-collocated) 멀티미디어 출력 디바이스들(14A-14N)에 브로드캐스팅하기 위해 통신 디바이스(4)를 이용할 수 있다. 예를 들어, 사용자는 통신 디바이스(4)를 다른 디바이스들과 연결하기 위해 사용자 집의 무선 네트워크를 셋업할 수 있다. 일예에서, 통신 디바이스(4)는 개인용, 랩탑 또는 태블릿 컴퓨터, 또는 개인용 디지털 미디어 플레이어, 모바일 전화 핸드셋 등과 같은 핸드헬드 휴대용 컴퓨팅 디바이스를 포함할 수 있다.
사용자는 통신 디바이스(4)에 의해 프로세싱되는 멀티미디어 데이터(예를 들어, 개인용 프리젠테이션, 텔레비젼 쇼 또는 영화, 웹 컨텐츠, 스트리밍 비디오, 디지털 사진들 등)를 하나 이상의 출력 디바이스들(14A-14N)에 송신하기를 원할 수 있다. 출력 디바이스들(14A-14N)이 디스플레이를 포함하고, 수신기들(12A-12N) 중 하나가 그 디스플레이에 연결된 텔레비젼 튜너를 포함(여기서 이러한 튜너 및 디스플레이가 예를 들어, 텔레비젼을 포함)하면, 통신 디바이스(4)는, 이러한 멀티미디어 데이터를 텔레비젼에 브로드캐스팅하기 위한 하나 이상의 이용가능한 채널들을 식별하여, 임의의 배선들 또는 다른 물리적 접속들을 이용할 필요없이 컴퓨터로부터 텔레비젼(예를 들어, 대형 스크린 및/또는 고해상도 텔레비젼)으로 컨텐츠를 확장시키는 편리한 방법을 제공할 수 있다. 다양한 예들에서, 디스플레이 디바이스는, 평판 액정 디스플레이(LCD), 평판 플라즈마 디스플레이, 프로젝션 디스플레이 디바이스, 프로젝터 디바이스 등을 포함할 수 있다. 도 2에는 개별 디바이스들로 도시되었지만, 임의의 수신기들(12A-12N)은 대응하는 출력 디바이스들(14A-14N) 내에 포함되거나 이들의 일부일 수 있다.
데이터 변환 유닛/송신기(6)는 송신기 침묵 유닛(13)을 포함하고, 송신기 침묵 유닛(13)은 도 1에 도시된 송신기 침묵 유닛(2)과 유사하게 동작할 수 있다. 채널 식별기(8)가 스펙트럼 센싱 기능을 포함하면, 송신기 침묵 유닛(13)은, 예컨대, 데이터 변환 유닛/송신기(6)의 데이터 송신 기능들을 일시적으로 디스에이블시키거나 심지어 턴오프시킴으로써, 데이터 변환 유닛/송신기(6)가 무선 네트워크(10)를 통해 데이터를 송신하는 것을 억제하는 시간인 송신 침묵 인터벌들을 제공할 수 있다. 일예에서, 채널 식별기(8)는 적어도 하나의 시간 인터벌 동안, 스펙트럼의 적어도 하나의 채널이 사용을 위해 이용될 수 있는지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 송신기 침묵 유닛(13)은, 아래에서 더 상세히 설명되는 바와 같이, 임의의 데이터를 송신하는 것을 억제할 수 있다.
도 3은 통신 디바이스(16)의 일예를 도시하는 블록도이고, 통신 디바이스(16)는 디지털 TV 채널 식별기(20) 및 디지털 TV 변환 유닛/송신기(18)를 포함할 수 있고, 디지털 TV 채널 식별기(20) 및 디지털 TV 변환 유닛/송신기(18)는 무선 네트워크(22)를 통해 하나 이상의 디지털 TV 수신기들(24A-24N) 및 하나 이상의 디스플레이 디바이스들(26A-26N)에 통신가능하게 연결된다. 도 3에서, 통신 디바이스(16)의 디지털 TV 채널 식별기(20)는 도 2에 도시된 통신 디바이스(4)의 채널 식별기(8)와 같은 채널 식별기의 일예이다. 디스플레이 디바이스들(26A-26N)은 도 2에 도시된 멀티미디어 출력 디바이스들(14A-14N)과 같은 멀티미디어 출력 디바이스들의 예들이다.
도 3에서, 디지털 TV 변환 유닛/송신기(18) 및 디지털 TV 채널 식별기(20)는 동일한 통신 디바이스(16) 내에 포함되는 것으로 도시되어 있다. 그러나, 몇몇 대안적 예들에서, 이 컴포넌트들(18, 20)은, 하나 이상의 주변 디바이스들을 포함하는 하나 이상의 개별 디바이스들을 포함하는 통신 시스템 내에 포함될 수 있다.
통신 디바이스(16)는 멀티미디어 데이터를 수신, 프로세싱 및 생성할 수 있다. 통신 디바이스(16)는 무선 네트워크(22)를 통해 디스플레이 디바이스들(26A-26N)과 같은 하나 이상의 다른 디바이스들에 멀티미디어 데이터를 추가로 브로드캐스팅할 수 있다. 디지털 TV 변환 유닛/송신기(16)는, 이 인코딩된 멀티미디어 데이터를 변조하는 것과 같이, ATSC와 같은 특정한 디지털 브로드캐스트 TV 포맷에 부합하는 멀티미디어 데이터를 인코딩하고, 멀티미디어 데이터를 디지털 브로드캐스트 포맷으로 변환할 수 있다.
디지털 TV 채널 식별기(20)는 특정한 디지털 브로드캐스트 TV 포맷을 위한 브로드캐스트 TV 스펙트럼의 미사용 부분에서 적어도 하나의 이용가능한 TV 채널을 식별할 수 있고, 여기서, 이러한 식별은 통신 디바이스(16)에 의해 개시된다. 몇몇 경우들에서, 디지털 TV 채널 식별기(20)는, 통신 디바이스(16) 상에서 실행되는 애플리케이션들 또는 서비스들의 임의의 특정한 요건들 또는 요구들에 기초하여 멀티미디어 브로드캐스트에 요구될 수 있는 다수의 이용가능한 채널들을 식별할 수 있다.
하나 이상의 이용가능한 채널들의 식별 시에, 변환 유닛/송신기(18)는 적어도 하나의 식별된 이용가능한 채널을 이용하여, 무선 네트워크(22)를 통해 디스플레이 디바이스들(26A-26N) 중 하나 이상에 그 변환된 데이터(예를 들어, 인코딩되고, 변조된 멀티미디어 데이터)를 송신할 수 있다. 몇몇 경우들에서, 통신 디바이스(16)는 통신 디바이스(16) 상에서 국부적으로 실행되는 하나 이상의 서비스들 또는 애플리케이션들의 실행에 기초하여, 사용자 입력을 통해 또는 자동으로, 전술한 동작들 중 하나 이상을 개시할 것이다. 변환 유닛/송신기(18)에 의해 송신되는 컨텐츠는 오디오 컨텐츠, 비디오 컨텐츠 및 오디오와 비디오 컨텐츠의 조합들을 포함하는 매우 다양한 멀티미디어 컨텐츠를 포함할 수 있지만 이에 한정되는 것은 아니다.
디지털 TV 변환 유닛/송신기(18)는 또한 송신 침묵 유닛(19)을 포함한다. 채널 식별기(20)가 스펙트럼 센싱 기능을 포함하면, 송신 침묵 유닛(19)은, 예를 들어, 데이터 변환 유닛/송신기(18)의 데이터 송신 기능들을 일시적으로 디스에이블시키거나 심지어 턴오프시킴으로써, 변환 유닛/송신기(18)가 무선 네트워크(22)를 통해 데이터를 송신하는 것을 억제하는 시간인 송신 침묵 인터벌들을 제공할 수 있다. 일예에서, 채널 식별기(20)는 적어도 하나의 시간 인터벌 동안 스펙트럼의 적어도 하나의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 송신기 침묵 유닛(19)은, 아래에서 더 상세히 설명하는 바와 같이, 임의의 데이터를 송신하는 것을 억제할 수 있다.
도 4는, 디지털 TV 수신기(29) 및 디스플레이 디바이스(31)에 통신가능하게 연결되는 모바일 통신 디바이스(15)(예를 들어, 모바일 핸드셋, 랩탑 컴퓨터)의 일예를 도시하는 블록도이고, 디지털 TV 수신기(29) 및 디스플레이 디바이스(31)는 디지털 TV(27)(예를 들어, 고해상도 텔레비젼) 내에 포함될 수 있다. 모바일 통신 디바이스(15)는, 모바일 통신 핸드셋, 개인용 컴퓨터 또는 랩탑 컴퓨터, 디지털 멀티미디어 플레이어, 개인 휴대 정보 단말(PDA), 비디오 게임 콘솔, 또는 다른 비디오 디바이스와 같은 임의의 형태의 모바일 디바이스를 포함할 수 있다.
도 4에서, 디지털 TV 변환 유닛/송신기(17) 및 디지털 TV 채널 식별기(23)는 동일한 모바일 통신 디바이스(15) 내에 포함되는 것으로 도시되어 있다. 그러나, 몇몇 대안적 예들에서, 이 컴포넌트들(17, 23)은 하나 이상의 주변 디바이스들을 포함하는 하나 이상의 개별 디바이스들을 포함하는 통신 시스템 내에 포함될 수 있다.
모바일 통신 디바이스(15)는 멀티미디어 데이터를 수신, 프로세싱 및 생성할 수 있다. 모바일 통신 디바이스(15)는 디지털 TV 브로드캐스트 네트워크(25)를 통해 디지털 TV(27)에 멀티미디어 데이터를 추가로 브로드캐스팅할 수 있다. 디지털 TV 변환 유닛/송신기(17)는, 예를 들어, ATSC와 같은 특정한 디지털 브로드캐스트 TV 포맷에 부합하는 멀티미디어 데이터를 인코딩하고, 이 인코딩된 멀티미디어 데이터를 변조하는 것과 같이, 멀티미디어 데이터를 디지털 브로드캐스트 포맷으로 변환할 수 있다.
디지털 TV 채널 식별기(23)는 특정한 디지털 브로드캐스트 TV 포맷을 위한 브로드캐스트 TV 스펙트럼의 미사용 부분에서 적어도 하나의 이용가능한 TV 채널을 식별할 수 있고, 여기서, 이러한 식별은 모바일 통신 디바이스(15)에 의해 개시된다. 몇몇 경우들에서, 디지털 TV 채널 식별기(23)는, 모바일 통신 디바이스(15) 상에서 실행되는 애플리케이션들 또는 서비스들의 임의의 특정한 요건들 또는 요구들에 기초하여 멀티미디어 브로드캐스트에 요구될 수 있는 다수의 이용가능한 채널들을 식별할 수 있다.
하나 이상의 이용가능한 채널들의 식별 시에, 변환 유닛/송신기(17)는 적어도 하나의 식별된 이용가능한 채널을 이용하여, 브로드캐스트 네트워크(25)를 통해 디지털 TV 수신기(29)에 그 변환된 데이터(예를 들어, 인코딩되고, 변조된 멀티미디어 데이터)를 송신할 수 있다. 몇몇 경우들에서, 모바일 통신 디바이스(15)는 모바일 통신 디바이스(15) 상에서 국부적으로 실행되는 하나 이상의 서비스들 또는 애플리케이션들의 실행에 기초하여, 사용자 입력을 통해 또는 자동으로, 전술한 동작들 중 하나 이상을 개시할 것이다. 몇몇 경우들에서, 디지털 TV 수신기(29)는 디지털 TV(27) 내에 포함될 수 있다.
디지털 TV 변환 유닛/송신기(17)는 또한 송신 침묵 유닛(21)을 포함한다. 채널 식별기(23)가 스펙트럼 센싱 기능을 포함하면, 송신 침묵 유닛(21)은, 예를 들어, 데이터 변환 유닛/송신기(17)의 데이터 송신 기능들을 일시적으로 디스에이블시키거나 심지어 턴오프시킴으로써, 변환 유닛/송신기(17)가 브로드캐스트 네트워크(25)를 통해 데이터를 송신하는 것을 억제하는 시간인 송신 침묵 인터벌들을 제공할 수 있다. 일예에서, 채널 식별기(23)는 적어도 하나의 시간 인터벌 동안 스펙트럼의 적어도 하나의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 송신기 침묵 유닛(21)은 아래에서 더 상세히 설명하는 바와 같이, 임의의 데이터를 송신하는 것을 억제할 수 있다.
도 4에 도시된 바와 같이, 모바일 통신 디바이스(15)는, 멀티미디어 데이터를 모바일 통신 디바이스(15)로부터 디지털 텔레비젼(27)에 브로드캐스팅하기 위한 하나 이상의 이용가능한 채널들을 식별하여, 임의의 배선들 또는 다른 물리적 접속들을 이용할 필요없이 모바일 디바이스로부터 텔레비젼(예를 들어, 대형 스크린 및/또는 고해상도 텔레비젼)으로 컨텐츠를 확장시키는 편리한 방법을 제공할 수 있다. 다양한 예들에서, 디스플레이 디바이스(31)는, 평판 액정 디스플레이(LCD), 평판 플라즈마 디스플레이, 프로젝션 디스플레이 디바이스, 프로젝터 디바이스 등을 포함할 수 있다.
도 5는 도 2에 도시된 통신 디바이스(4) 및/또는 도 3에 도시된 통신 디바이스(16)로서 이용될 수 있는 통신 디바이스(30)의 일예를 도시하는 블록도이다. 몇몇 예들에서, 통신 디바이스(30)는 무선 통신 디바이스 또는 핸드셋과 같은 모바일 디바이스를 포함할 수 있다.
도 5의 예에 도시된 바와 같이, 통신 디바이스(30)는 다양한 컴포넌트들을 포함한다. 예를 들어, 특정한 예에서, 통신 디바이스(30)는 하나 이상의 멀티미디어 프로세서들(32), 디스플레이 프로세서(34), 오디오 출력 프로세서(36), 디스플레이(38), 스피커들(40), 디지털 TV 변환 유닛/송신기(42), 및 채널 식별기(44)를 포함한다. 멀티미디어 프로세서들(32)은 하나 이상의 비디오 프로세서들, 하나 이상의 오디오 프로세서들 및 하나 이상의 그래픽스 프로세서들을 포함할 수 있다. 멀티미디어 프로세서들(32) 내에 포함되는 이 프로세서들 각각은 하나 이상의 디코더들을 포함할 수 있다.
멀티미디어 프로세서들(32)은 디스플레이 프로세서(34) 및 오디오 출력 프로세서(36) 모두에 연결된다. 멀티미디어 프로세서들(32) 내에 포함된 비디오 및/또는 그래픽스 프로세서들은 추가적 프로세싱 및 디스플레이(38) 상에서의 디스플레이를 위해 디스플레이 프로세서(34)에 제공되는 이미지 및/또는 그래픽스 데이터를 생성할 수 있다. 예를 들어, 디스플레이 프로세서(34)는, 스케일링, 회전, 컬러 변환, 크로핑(cropping) 또는 다른 렌더링 동작들과 같은, 이미지 및/또는 그래픽스 데이터에 대한 하나 이상의 동작들을 수행할 수 있다. 멀티미디어 프로세서들(32) 내에 포함된 임의의 오디오 프로세서들은 추가적 프로세싱 및 스피커들(40)로의 출력을 위해 오디오 출력 프로세서(36)에 제공되는 오디오 데이터를 생성할 수 있다. 따라서, 통신 디바이스(30)의 사용자는 디스플레이(38) 및 스피커들(40)을 통해 멀티미디어 데이터의 표현들을 시청(view) 및 청취(hear)할 수 있다.
출력 멀티미디어 데이터를 디스플레이(38)에 제공하는 것에 부가하여, 디스플레이 프로세서(34)가 또한 자신의 출력을 디지털 TV 변환 유닛/송신기(42)에 제공할 수 있다. 또한 오디오 출력 프로세서(36)가 자신의 출력을 디지털 TV 변환 유닛/송신기(42)에 제공할 수 있다. 그 결과, 디지털 TV 변환 유닛/송신기(42)는 멀티미디어 데이터의 다수의 스트림들을 프로세싱할 수 있다. 몇몇 예들에서, 디스플레이 프로세서(34) 및/또는 오디오 출력 프로세서(36)는 대응하는 출력 멀티미디어 데이터를 하나 이상의 버퍼들에 저장할 수 있고, 다음으로, 버퍼들은 데이터를 리트리브(retrieve)하기 위해 디지털 TV 변환 유닛/송신기(42)에 의해 액세스된다. 디지털 TV 변환 유닛/송신기(42)는, 멀티미디어 데이터를 특정한 디지털 브로드캐스트 형태로 변환하고(예를 들어, 데이터를 인코딩, 변조하고), 그 변환된 데이터를 하나 이상의 식별된 이용가능한 채널들에서 무선 네트워크를 통해 다른 디바이스로 송신하기 위한 다양한 컴포넌트들을 포함할 수 있고, 이 컴포넌트들은 도 6을 참조하여 아래에서 더 상세히 설명된다. 디지털 TV 변환 유닛/송신기(42)는, 하나 이상의 안테나들을 포함할 수 있는 안테나 시스템(48)을 통해 데이터를 송신할 수 있다.
몇몇 경우들에서, 디지털 TV 변환 유닛/송신기(42)는, 디스플레이 프로세서(34) 및 오디오 출력 프로세서(36)로부터 수신된 멀티미디어 데이터의 다수의 스트림들을, 다수의 브로드캐스트 채널들을 통해 송신될 수 있는 개별적인 단일 프로그램 전송 스트림들로 변환 및/또는 캡슐화(encapsulate)할 수 있다. 몇몇 경우들에서, 멀티미디어 데이터의 다수의 스트림들은 동일한 전송 스트림에 캡슐화될 수 있고, 단일 채널에서 송신될 수 있다. 하나의 멀티미디어 스트림은, 멀티미디어 데이터에 대한 메타데이터 또는 보충 멀티미디어 정보를 포함하는 PIP(picture-in-picture) 데이터 경로로서 송신될 수 있다. 메타데이터는, 예를 들어, 텍스트, 통지 메시지들, 프로그램 가이드 정보 또는 메뉴 정보 중 하나 이상을 포함할 수 있다. 특정한 경우들에서, 디지털 TV 변환 유닛/송신기(42)는 멀티미디어 프로세서들(32)로부터 데이터를 직접 수신할 수 있다. 이 경우들에서, 디지털 TV 변환 유닛/송신기(42)는 멀티미디어 프로세서들로부터 직접 수신된 데이터를, 송신될 수 있는 전송 스트림들로 변환 및/또는 캡슐화할 수 있다.
통신 디바이스(30)가 무선 네트워크를 통해 하나 이상의 스트림들의 멀티미디어 데이터를 원격 디바이스에 브로드캐스팅 또는 그렇지 않으면 송신할 수 있게 하기 위해, 통신 디바이스(30)는 통신 디바이스(30)에 의한 개시 시에 스펙트럼의 미사용 부분에서 하나 이상의 이용가능한 채널들을 식별한다. 채널 식별기(44)는 이 하나 이상의 이용가능한 채널들을 식별할 수 있다.
채널 식별기(44)는 이용가능한 채널들을 하나 이상의 방법들로 식별할 수 있다. 예를 들어, 채널 식별기(44)는, 도 6 또는 도 7에 도시된 스펙트럼 센서와 같은 스펙트럼 센서를 이용할 수 있고, 스펙트럼 센서는 하나 이상의 주파수 대역들 내의 이용가능한 채널들을 안테나 시스템(48)을 통해 동적으로 센싱할 수 있다. 스펙트럼 센서는, 데이터 송신을 위한 스펙트럼 내의 임의의 이용가능한 채널들의 품질을 결정하기 위해, 센싱된 신호들에 대해 특정한 품질값들(예를 들어, 간섭 레벨들, 신호 대 잡음비들)을 할당할 수 있다. 센싱 알고리즘은 주기적으로 수행될 수도 있고, 프로세싱되고 있는 특정한 비디오 스트림의 포맷에 기초할 수도 있다.
채널 식별기(44)는 또한, 스펙트럼 센싱과 함께 또는 독립적으로, 지오-로케이션 기능을 이용할 수 있다. 지오-로케이션은, 일예에서, GPS 센서를 포함할 수 있는 (도 6에 도시된 바와 같은) 지오-로케이션 센서의 이용을 통해 자신의 지리적 좌표들을 결정할 수 있는 통신 디바이스(30)의 능력을 지칭한다. 채널 식별기(44)는 무선 통신을 통해 이용가능한 채널들의 리스트를 획득하기 위해, 외부 디지털 채널 데이터베이스(예를 들어, 도 6에 도시된 바와 같은, 디지털 TV 대역 데이터베이스)에 문의(query)할 수 있다. 통상적으로, 이러한 외부 데이터베이스는 하나 이상의 외부 디바이스들 또는 소스들에 의해 유지될 수 있지만, 통신 디바이스(30)와 같은 다양한 디바이스들로부터의 요청들 및 데이터 플로우에 기초하여 업데이트될 수 있다.
일예에서, 채널 식별기(44)는 예를 들어, 네트워크(예를 들어, 무선 네트워크) 접속을 통해, 통신 디바이스(30)의 위치에 관한 지오-로케이션 좌표들을 외부 디지털 채널 데이터베이스에 전송할 수 있다. 다음으로, 채널 식별기(44)는 지오-로케이션 좌표들에 의해 표시되는 것처럼, 통신 디바이스(30)의 위치와 연관된 지리적 영역에 대한 이용가능한 채널들의 리스트를 외부 데이터베이스로부터 수신할 수 있다. 다음으로, 채널 식별기(44)는 식별된 채널들 중 하나 이상을 이용을 위해 선택할 수 있고, 통신 디바이스(30)에 의한 이 주파수 채널들의 의도된 이용에 관한 데이터를 외부 데이터베이스에 다시 전송할 수 있다. 따라서, 외부 데이터베이스는 통신 디바이스(30)로부터 수신된 데이터에 기초하여 그에 따라 업데이트될 수 있다.
몇몇 경우들에서, 외부 데이터베이스가 업데이트되면, 채널들이 더이상 요구되지 않거나 이용되고 있지 않음을 표시하는 후속 메시지를 통신 디바이스(30)가 외부 데이터베이스에 전송할 때까지, 외부 데이터베이스는, 선택된 채널들이 통신 디바이스(30)에 의해 이용됨을 표시할 수 있다. 다른 경우들에서, 외부 데이터베이스는 선택된 채널들을 오직 정의된 시간 인터벌 동안에만 디바이스(30)를 위해 예비할 수 있다. 이 경우들에서, 통신 디바이스(30)는, 디바이스(30)가 선택된 채널들을 여전히 이용하고 있음을 표시하는 메시지를 정의된 시간 인터벌 내에서 외부 데이터베이스에 전송할 필요가 있을 수 있고, 이 경우, 외부 데이터베이스는 디바이스(30)에 의한 이용을 위해 제 2 시간 인터벌 동안 그 선택된 채널들의 예비를 갱신(renew)할 것이다.
몇몇 예들에서, 채널 식별기(44)는, 예를 들어, 실행 동안 멀티미디어 프로세서들(32) 중 하나 이상에 의해 표시되는 바와 같이, 통신 디바이스(30) 상에서 실행되는 임의의 서비스들 또는 애플리케이션들의 대역폭 요구들 또는 요구사항들(needs)에 기초하여, 사용을 위해 이용할 수 있는 채널들 중 하나 이상을 선택할 수 있다. 예를 들어, 특정한 멀티미디어 애플리케이션은, 각각 높은 대역폭 요구들을 갖는 다수의 브로드캐스트 스트림들을 요구할 수 있다. 이 상황에서, 채널 식별기(44)는 이 다수의 브로드캐스트 스트림들에 대한 대역폭 요건들을 수용하기 위해, 송신을 위해 이용할 수 있는 다수의 상이한 채널들을 할당할 수 있다.
몇몇 경우들에서, 채널 식별기(44)는 다수의 소스들로부터 수신된 정보에 기초하여 하나 이상의 이용가능한 채널들을 식별할 수 있다. 예를 들어, 채널 식별기(44)가 스펙트럼 센서 및 지오-로케이션 기능 모두를 이용하면, 채널 식별기(44)는 어떤 채널들이 사용을 위해 이용할 수 있는지를 결정할 때 이 소스들 모두로부터의 채널 정보를 프로세싱할 필요가 있을 수 있다. 상이한 채널들은 지오-로케이션에 따라, 사용을 위해 상이한 백색 공간 이용가능성을 가질 수 있다. 채널 식별기는, 임의의 소정의 시간에 통신 디바이스(30)의 지오-로케이션에 따라 상이한 채널들이 정의 및 탐색될 수 있도록, 채널들 및 지오-로케이션들의 연관들을 저장 또는 다운로드할 수 있다.
채널 식별기(44)에 의한 하나 이상의 이용가능한 송신 채널들의 식별 시에, 디지털 TV 변환 유닛/송신기(42)는 식별된 송신 채널(들)을 이용하여 네트워크를 통해 멀티미디어 컨텐츠 또는 데이터를 외부 디바이스에 브로드캐스팅하거나 그렇지 않으면 송신할 수 있다. 통신 디바이스(30)는 이러한 외부 디바이스로 직접 브로드캐스트 송신을 개시할 수 있다.
디지털 TV 변환 유닛/송신기(42)는 송신 침묵 유닛(43)을 포함한다. 채널 식별기(44)가 스펙트럼 센싱 기능을 포함하면, 송신 침묵 유닛(43)은, 예를 들어, 디지털 TV 변환 유닛/송신기(42)의 데이터 송신 기능들을 일시적으로 디스에이블시키거나 심지어 턴오프시킴으로써, 디지털 TV 변환 유닛/송신기(42)가 데이터를 송신하는 것을 억제하는 시간인 송신 침묵 인터벌들을 제공할 수 있다. 일예에서, 채널 식별기(44)는, 적어도 하나의 시간 인터벌 동안 스펙트럼의 적어도 하나의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 송신기 침묵 유닛(43)은 임의의 데이터를 송신하는 것을 억제할 수 있다.
도 6은 채널 식별기(44A)와 함께 디지털 TV 변환 유닛/송신기(42A)의 일예를 도시하며, 이들은 통신 디바이스(30A) 내에 구현될 수 있다. 도 6에서, 디지털 TV 변환 유닛/송신기(42A)는 도 5에 도시된 디지털 TV 변환 유닛/송신기(42A)의 일예일 수 있는 한편, 채널 식별기(44A)는 도 5에 도시된 채널 식별기(44)의 일예일 수 있다. 도 6의 특정한 예에서, 통신 디바이스(30A)는 특정한 디지털 브로드캐스트 포맷, ATSC에 따라 멀티미디어 데이터를 브로드캐스팅할 수 있다. 그러나, 통신 디바이스(30A)는 다른 포맷들 또는 표준들에 따라 브로드캐스팅하도록 구성될 수 있다. 따라서, ATSC의 설명은 예시를 위한 것이고 한정으로 고려되어서는 안된다.
통신 디바이스(30A)는 고해상도 또는 평판 텔레비젼과 같은 ATSC-가능(ATSC-ready) 외부 디바이스로의 저전력 송신을 용이하게 할 수 있다. 이 경우, ATSC-가능 디바이스는 도 2에 도시된 멀티미디어 출력 디바이스들(14A-14N) 중 하나를 포함할 수 있다. 몇몇 예들에서, ATSC-가능 디바이스는 디스플레이 디바이스 및 튜너/수신기 모두를 포함할 수 있다. 이 예들에서, ATSC-가능 디바이스는 디지털 TV 수신기들(24A-24N) 중 하나 및 대응하는 디스플레이 디바이스들(26A-26N) 중 하나를 포함할 수 있다.
도 6에 도시된 바와 같이, 디지털 TV 변환 유닛/송신기(42A)는 비디오 및/또는 오디오 인코더들(50A), 전송 인코더/멀티플렉서(52A), 에러 정정 인코더(54A), ATSC 변조기(56A), 무선 주파수(RF) 듀플렉서/스위치(58A), 및 송신기(59A)와 같은 다양한 컴포넌트들을 포함할 수 있다. 이 컴포넌트들은, ATSC 표준을 구현하는 스펙트럼을 통한 데이터 송신을 지원하는 것을 돕는다. ATSC 표준은, 비디오 인코딩, 오디오 인코딩, 전송 스트림들 및 변조를 위한 계층들을 제공하는 다중-계층의 표준이다. 일예에서, RF 듀플렉서/스위치(58A)는 극초단파(UHF) 듀플렉서/스위치를 포함할 수 있다. 듀플렉서는, 신호들이 센싱을 목적으로 수신되게 하고 통신을 목적으로 송신되게 할 수 있다. 예시적인 목적으로 ATSC 변조기(56A)가 예시되었지만, 다른 변조 표준들에 따른 다른 유형들의 변조기들이 또한 이용될 수 있다.
비디오/오디오 인코더들(50A)은 비디오 및/또는 오디오 데이터를 하나 이상의 스트림들로 인코딩하기 위해 하나 이상의 비디오 인코더들 및 하나 이상의 오디오 인코더들을 포함할 수 있다. 예를 들어, 비디오/오디오 인코더들(50A)은 비디오 데이터를 인코딩하기 위해, 동영상 전문가 그룹-2(MPEG-2) 인코더 또는 (전기통신 표준화 섹터, ITU-T로부터의) H.264 인코더를 포함할 수 있다. 비디오/오디오 인코더들(50A)은 또한 오디오 데이터를 인코딩하기 위해 돌비(Dolby) 디지털(Dolby AC-3) 인코더를 포함할 수 있다. ATSC 스트림은 하나 이상의 비디오 프로그램들 및 하나 이상의 오디오 프로그램들을 포함할 수 있다. 임의의 비디오 인코더들은 표준 해상도 비디오를 위한 주(main) 프로파일 또는 고해상도 비디오를 위한 높은 프로파일을 구현할 수 있다.
전송(예를 들어, MPEG-2 전송 스트림, 또는 TS) 인코더/멀티플렉서(52A)는 비디오/오디오 인코더들(50A)로부터 인코딩된 데이터 스트림들을 수신하고, 이 데이터 스트림들을 브로드캐스팅을 위해, 예를 들어, 하나 이상의 패킷화된 기본 스트림(PES)들로 어셈블링할 수 있다. 다음으로, 이 PES들은 개별 프로그램 전송 스트림들로 패킷화될 수 있다. 몇몇 예들에서, 전송 인코더/멀티플렉서(52A)는 선택적으로, 출력 전송 스트림들을 에러 정정 인코더(54A)(예를 들어, 리드-솔로몬(Reed-Solomon) 인코더)에 제공할 수 있고, 에러 정정 인코더(54A)는 전송 스트림들과 연관된 하나 이상의 에러 정정 코드들을 부가함으로써 에러 정정 인코딩 기능을 수행할 수 있다. 이 에러 정정 코드들은 에러 정정 또는 완화를 위해 데이터 수신기(예를 들어, 에러 정정 유닛(11)을 포함하는 데이터 수신기(9))에 의해 이용될 수 있다.
ATSC 변조기(56A)는 브로드캐스팅을 위해 전송 스트림들을 변조할 수 있다. 몇몇 예시적인 경우들에서, 예를 들어, ATSC 변조기(56A)는 브로드캐스트 송신을 위해 8 잔류 측파대(8VSB; 8 vestigial side band) 변조를 이용할 수 있다. 다음으로, RF 듀플렉서/스위치(58A)는 전송 스트림들을 듀플렉싱하거나 전송 스트림들을 위한 스위치로서 동작할 수 있다. 송신기(59A)는 채널 식별기(44A)에 의해 식별되는 하나 이상의 이용가능한 채널들을 이용하여 하나 이상의 외부 디바이스들에 하나 이상의 전송 스트림들을 브로드캐스팅할 수 있다.
채널 식별기(44A)는 데이터베이스 매니저(62), 채널 선택기(64A), 선택적 채널 선택 사용자 인터페이스(UI)(66A), 및 스펙트럼 센서(70A)를 포함한다. 채널 식별기(44A) 및 디지털 TV 변환 유닛/송신기(42A) 모두는, 하나 이상의 버퍼들을 포함할 수 있는 메모리(60A)에 연결된다. 채널 식별기(44A) 및 디지털 TV 변환 유닛/송신기(42A)는 정보를 직접 교환할 수 있거나, 또는 메모리(60A)를 통한 정보의 저장 및 리트리브를 통해 정보를 간접적으로 교환할 수도 있다.
채널 식별기(44A)는 스펙트럼 센서(70A)를 포함한다. 전술한 바와 같이, 스펙트럼 센서(70A)와 같은 스펙트럼 센서는 ATSC와 같은 특정한 디지털 TV 포맷을 위한 브로드캐스트 스펙트럼 내의 하나 이상의 주파수 대역들에서 신호들을 센싱할 수 있다. 스펙트럼 센서(70A)는 스펙트럼 내의 하나 이상의 이용된 채널들을 점유하는 임의의 데이터를 식별할 수 있는 자신의 능력에 기초하여 채널 이용가능성 및 신호 강도들을 결정할 수 있다. 다음으로, 스펙트럼 센서(70A)는, 현재 미사용되거나 이용가능한 채널들에 대한 정보를 채널 선택기(64A)에 제공할 수 있다. 예를 들어, 스펙트럼 센서(70A)는, 임의의 외부 개별 디바이스들에 의해 특정 채널을 통해 브로드캐스팅되고 있는 임의의 데이터를 검출하지 않으면, 그 특정 채널이 이용가능한 것으로 검출할 수 있다. 이 경우, 스펙트럼 센서(70A)는, 그 채널이 이용가능한 것을 채널 선택기(64A)에 표시할 수 있어서, 채널 선택기(64A)가 데이터 송신을 위해 채널을 선택하게 할 수 있다. 대안적으로, 데이터가 이 채널을 통해 브로드캐스팅되고 있음을 스펙트럼 센서(70A)가 검출하면, 스펙트럼 센서(70A)는 그 채널이 이용불가능하다는 것을 채널 선택기(64A)에 표시할 수 있다.
도 6에 도시된 바와 같이, 채널 선택기(64A)는 또한 네트워크(72) 및 데이터베이스 매니저(62)를 통해 디지털 TV 대역(지오-로케이션) 데이터베이스로부터 정보를 수신할 수 있다. 디지털 TV 대역 데이터베이스(74)는 통신 디바이스(30A)의 외부에 위치되고, ATSC와 같은 특정한 디지털 TV 포맷을 위한 브로드캐스트 스펙트럼 내에서 현재 이용중이거나 이용가능한 채널들에 관한 정보를 포함한다. 통상적으로, 디지털 TV 대역 데이터베이스(74)는, 채널들이 다른 디바이스들에 의해 이용가능해지거나 또는 다른 디바이스들에 의한 사용을 위해 공급됨에 따라 동적으로 업데이트된다. 몇몇 예들에서, 디지털 TV 대역 데이터베이스(74)는 지리적 위치/영역 또는 주파수 대역들(예를 들어, 낮은 VHF, 높은 VHF, UHF)에 의해 조직될 수 있다.
채널 식별기(44A)가 디지털 TV 대역 데이터베이스(74)로부터 채널 이용가능성 정보를 획득할 수 있게 하기 위해, 몇몇 경우들에서, 채널 식별기(44A)는 디지털 TV 대역 데이터베이스(74)로의 입력으로서 지오-로케이션 정보를 제공할 수 있다. 채널 식별기(44A)는 지오-로케이션 센서(73)로부터 지오-로케이션 정보 또는 좌표들을 획득할 수 있고, 이들은 특정한 시점에 통신 디바이스(30A)의 지리적 위치를 표시할 수 있다. 몇몇 예들에서, 지오-로케이션 센서(73)는 GPS 센서를 포함할 수 있다.
지오-로케이션 센서(73)로부터 지오-로케이션 정보의 수신 시에, 채널 선택기(64A)는 데이터베이스 매니저(62)를 통해 이러한 정보를 디지털 TV 대역 데이터베이스(74)에 입력으로서 제공할 수 있다. 데이터베이스 매니저(62)는 디지털 TV 대역 데이터베이스(74)에 대한 인터페이스를 제공할 수 있다. 몇몇 경우들에서, 데이터베이스 매니저(62)는 디지털 TV 대역 데이터베이스(74)의 선택된 컨텐츠들이 리트리브될 때 이들의 국부적 카피를 저장할 수 있다. 또한, 데이터베이스 매니저(62)는 지오-로케이션 정보와 같이, 채널 선택기(64A)에 의해 제공된 선택 정보를 디지털 TV 대역 데이터베이스(74)에 저장할 수 있다.
통신 디바이스(30A)와 관련된 지오-로케이션 정보를 전송하면, 채널 선택기(64A)는 디지털 TV 대역 데이터베이스(74) 내에 나열되어 제공되는 것처럼 하나 이상의 이용가능한 채널들의 세트를 디지털 TV 대역 데이터베이스(74)로부터 수신할 수 있다. 이용가능한 채널들의 세트는, 지오-로케이션 센서(73)에 의해 표시되는 바와 같이, 통신 디바이스(30A)에 의해 현재 점유된 지리적 영역 또는 위치에서 이용될 수 있는 채널들일 수 있다. 송신기(59A)의 블랭킹이 스펙트럼 센싱 동안 발생할 수 있다. 아래에서 더 상세히 서술되는 바와 같이, 송신 블랭킹 동안 데이터 손실이 발생하지 않도록, 블랭킹 인터벌 동안 비필수적(non-essential) 데이터가 비트스트림으로 인코딩 또는 삽입될 수 있다. 이 비필수적 데이터는 대안적으로 잡다한 데이터로 지칭될 수 있고, 잉여 데이터 또는 널 데이터를 포함할 수 있다. 비필수적 데이터는 비디오/오디오 인코더들(50A)에 의해 인코딩되거나, 비디오/오디오 인코더들(50A)의 임의의 멀티플렉서 다운스트림에 의해 삽입될 수 있다. 상이한 예들이 상이한 이점들을 제공할 수 있다. 아래에서 더 상세히 설명되는 바와 같이, 비필수적 데이터는 비디오/오디오 인코더들(예를 들어, 전송 인코더/멀티플렉서(52A))와 연관된 멀티플렉서에 의해 삽입되거나, ATSC 변조기(56A)(또는 다른 변조 표준들 또는 기술들에 대한 다른 변조기)와 연관된 멀티플렉서에 의해 삽입될 수 있다. 블랭킹 인터벌 동안 비필수적 데이터의 삽입을 위해 다른 멀티플렉서들이 또한 이용될 수 있다(또는 심지어 특정하게 정의될 수 있다). 몇몇 경우들에서, 임의의 삽입된 비필수적 데이터가, 변조된 물리 계층의 2개의 필드 동기화 마커들(예를 들어, 필드 동기들) 사이에서 적절하게 정렬하는 것을 보장하는 것, 즉, 데이터를 수신하는 복조기 및 디코더가 동기화를 상실하지 않는 것을 보장하는 것이 제기될 수 있다. 비필수적 데이터의 삽입에 대한 다수의 예시적인 구현들의 추가적 세부사항들은 아래에서 더 상세히 설명된다.
스펙트럼 센서(70A) 및 디지털 TV 대역 데이터베이스(74) 중 하나 또는 둘 모두로부터 이용가능한 채널 정보의 수신 시에, 채널 선택기(64A)는 채널 선택 UI(66A)를 통한 사용자 입력을 통해 또는 자동으로, 하나 이상의 이용가능한 채널들을 선택할 수 있다. 채널 선택 UI(66A)는 그래픽 사용자 인터페이스 내에 이용가능한 채널들을 제시할 수 있고, 서비스 또는 애플리케이션의 사용자는 이 이용가능한 채널들 중 하나 이상을 선택할 수 있다.
몇몇 예들에서, 채널 선택기(64A)는, 통신 디바이스(30A)에 의한 브로드캐스트 송신에 이용될 이용가능한 채널들 중 하나 이상을 자동으로 선택 또는 식별할 수 있다. 예를 들어, 채널 선택기(64A)는 브로드캐스트 송신을 위해 이용가능한 채널들 중 어떤 하나 이상의 채널을 식별할지를 결정하기 위해, 멀티미디어 프로세서들(32; 도 5) 중 하나 이상에 의해 제공되는 정보를 이용할 수 있다. 몇몇 경우들에서, 채널 선택기(64A)는 실행되고 있는 서비스들 또는 애플리케이션들의 요구들 또는 요구사항들에 기초하여 다수의 채널들을 선택할 수 있다. 이 서비스들 또는 애플리케이션들과 연관된 하나 이상의 전송 스트림들은 식별된 채널들 중 하나 이상을 통해 송신기(59A)에 의해 브로드캐스팅될 수 있다.
몇몇 경우들에서, 데이터베이스(74)가 업데이트되면, 채널들이 더이상 요구되지 않거나 이용되고 있지 않음을 표시하는 후속 메시지를 통신 디바이스(30A)가 데이터베이스(74)에 전송할 때까지, 데이터베이스(74)는, 그 선택된 채널들이 통신 디바이스(30A)에 의해 이용됨을 표시할 수 있다. 다른 경우들에서, 데이터베이스(74)는 선택된 채널들을 오직 정의된 시간 인터벌 동안에만 통신 디바이스(30A)를 위해 예비할 수 있다. 이 경우들에서, 통신 디바이스(30A)는, 디바이스(30A)가 그 선택된 채널들을 여전히 이용하고 있음을 표시하는 메시지를 정의된 시간 인터벌 내에서 데이터베이스(74)에 전송할 수 있고, 이 경우, 데이터베이스(74)는 통신 디바이스(30A)에 의한 이용을 위해 제 2 시간 인터벌 동안 그 선택된 채널들의 예비를 갱신할 것이다.
하나 이상의 클럭들(61A)이 통신 디바이스(30A) 내에 포함될 수 있다. 도 6에 도시된 바와 같이, 클럭들(61A)은 디지털 TV 변환 유닛/송신기(42A) 및 채널 식별기(44A)에 의해 이용되거나 이들의 동작을 구동시킬 수 있다. 클럭들(61A)은 통신 디바이스(30A)에 의해 구성되거나 설정될 수 있다. 몇몇 경우들에서, 클럭들(61A)은 디바이스(30A)의 외부에 있는 클럭에 의해 구성되거나 그에 동기화될 수 있다. 예를 들어, 디바이스(30A)는 외부 디바이스로부터 (예를 들어, 지오-로케이션 센서(73)를 통해) 클럭 또는 타이밍 정보를 수신할 수 있고, 수신된 정보에 기초하여 클럭들(61A)을 구성 또는 동기화할 수 있다.
예를 들어, 몇몇 시나리오들에서, 통신 디바이스(30A)는, 수신 디바이스(이를 테면, 예를 들어, 도 1의 데이터 수신기(9))와 공통된 클럭 기능을 구현할 수 있다. 이 시나리오들에서, 통신 디바이스(30A) 및 수신 디바이스 모두는 외부 디바이스로부터 클럭 또는 타이밍 정보를 수신할 수 있고, 수신된 정보에 기초하여 그들 자신의 내부 클럭들을 동기화할 수 있다. 이러한 방식으로, 통신 디바이스(30A) 및 수신 디바이스는 공통 클럭을 이용하여 효과적으로 동작할 수 있다.
디지털 TV 변환 유닛/송신기(42A) 및 채널 식별기(44A)는 또한 특정한 동작들을 동기화 또는 정렬시키기 위해 클럭들(61A)을 이용할 수 있다. 예를 들어, 아래에서 더 상세히 설명하는 바와 같이, 간섭 문제들을 최소화하기 위해, 스펙트럼 센서(70A)가 스펙트럼의 하나 이상의 채널들을 스캐닝하고 있을 때 송신기(59A)가 데이터를 송신하는 것을 억제하도록, 침묵 유닛(57A) 및 스펙트럼 센서(70A)가 송신 침묵 동작들을 스펙트럼 센싱 동작들과 동기화 또는 정렬시키기 위해 (클럭들(61A)의) 공통 클럭을 이용할 수 있다.
또한 도 6에 도시된 바와 같이, 송신기(59A)는 선택적으로 침묵 유닛(57A)을 포함한다. 침묵 유닛(57A)은, 예를 들어, 송신기(59A)를 일시적으로 디스에이블시키거나 심지어 턴오프시킴으로써, 디지털 TV 변환 유닛/송신기(42A)가 데이터를 송신하는 것을 억제하는 시간인 송신 침묵 인터벌들을 제공할 수 있다. 일예에서, 채널 식별기(44A)는 적어도 하나의 시간 인터벌 동안 스펙트럼의 적어도 하나의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다. 이 적어도 하나의 시간 인터벌 동안, 침묵 유닛(57A)은 송신기(59A)가 임의의 데이터를 송신하는 것을 억제시킬 수 있다.
몇몇 예들에서, 침묵 유닛(57A)은 디지털 TV 변환 유닛/송신기(42A) 내의 다른 기능 블록에 포함되거나 그 일부일 수 있다. 예를 들어, 침묵 유닛(57A)은 송신기(59A)의 일부가 아니라, 변조기(56A)의 일부일 수 있다. 이 예에서, 침묵 유닛(57A)은 송신 침묵 인터벌들 동안 변조기(56A)를 일시적으로 턴오프하거나 디스에이블시킬 수 있다. 아래에서 더 상세히 설명하는 바와 같이, 다수의 경우들에서, 송신 침묵 인터벌들은 시간에 따라 정적 또는 동적으로 정의된 주파수로 발생할 수 있다. 송신 침묵 인터벌들의 지속기간은 동일하거나 시간에 따라 변할 수 있다. 몇몇 예들에서, 송신 침묵 인터벌들의 주파수 및 지속기간은, 아래에서 더 상세히 설명되는 바와 같이, 스펙트럼 센서(70A)에 의해 구현되는 스펙트럼 센싱 인터벌들의 대응하는 주파수 및 지속기간에 기초할 수 있다.
도 7은 채널 식별기(44B)와 함께 디지털 TV 변환 유닛/송신기(42B)의 또 다른 예를 도시하는 블록도이고, 이들은 통신 디바이스(30B) 내에 구현될 수 있다. 도 7에서, 디지털 TV 변환 유닛/송신기(42B)는 도 5에 도시된 디지털 TV 변환 유닛/송신기(42A)의 일예일 수 있는 한편, 채널 식별기(44B)는 도 5에 도시된 채널 식별기(44)의 일예일 수 있다. 디지털 TV 변환 유닛/송신기(42B) 및 채널 식별기(44B)는 각각 메모리 디바이스(60B)로부터의 정보를 각각 저장 및 리트리브할 수 있다. 디지털 TV 변환 유닛/송신기(42A)와 유사하게, 디지털 TV 변환 유닛/송신기(42B)는 하나 이상의 비디오/오디오 인코더들(50B), 전송 인코더/멀티플렉서(52B), 에러 정정 인코더(54B), ATSC 변조기(56B), RF 듀플렉서/스위치(58B) 및 송신기(59B)를 포함하고, 송신기(59B)는 선택적으로 침묵 유닛(57B)을 포함한다. 몇몇 예들에서, 침묵 유닛(57B)은 변조기(56B)의 일부일 수 있다. 하나 이상의 클럭들(61B)이 디지털 TV 변환 유닛/송신기(42B) 및 채널 식별기(44B) 모두에 의해 이용될 수 있다. 예시의 목적으로 ATSC 변조기(56B)가 도시되었지만, 다른 변조 표준들에 따라 다른 유형들의 변조기들이 또한 이용될 수 있다.
채널 식별기(44B)가, 디지털 TV 대역 데이터베이스와 인터페이싱하는 데이터베이스 매니저를 포함하지 않는다는 점에서, 도 7의 채널 식별기(44B)는 도 6의 채널 식별기(44A)와는 상이하다. 도 7에서, 채널 식별기(44B)는 오직 스펙트럼 센서(70B)만을 포함한다. 도 7의 예에서는 어떠한 지오-로케이션 기능도 구현되지 않기 때문에, 통신 디바이스(30B)는 지오-로케이션 센서를 포함하지 않는다. 채널 선택기(64B)는 스펙트럼 센서(70B)로부터 수신된 입력에 기초하여 브로드캐스트 송신들을 위한 하나 이상의 이용가능한 채널들을 식별한다. 채널 선택기(64B)는 또한 채널 선택 UI(66B)를 통해 이용가능한 채널들의 리스트로부터 사용자 선택 채널을 수신할 수 있다. 이용가능한 채널들의 리스트는 스펙트럼 센서(70B)에 의해 제공되는 센싱된 신호 정보에 기초하여 채널 선택 UI(66B)에 제시될 수 있다.
도 8은, 스펙트럼 센싱 동안 송신기 침묵을 수행하기 위해(송신기 침묵은 본 출원에 따라 다른 센싱 또는 넌-센싱 요인들에 대해 수행될 수도 있음), 도 1 내지 5에 도시된 통신 디바이스들 중 하나 이상과 같은 통신 디바이스에 의해 수행될 수 있는 방법의 일예를 도시하는 흐름도이다. 도 8에 대한 아래의 설명에서는 오직 예시의 목적들로, 도 8의 방법이 도 5에 도시된 통신 디바이스(30)에 의해 수행될 수 있는 것으로 가정한다.
통신 디바이스(30)는, 예를 들어, 데이터 송신과 스펙트럼 센싱 동작들 사이에서 잠재적인 신호 간섭을 최소화 또는 회피하는 것을 돕기 위해, 적어도 하나의 시간 인터벌 동안 통신 디바이스로부터 임의의 데이터를 송신하는 것을 억제할 수 있다(80). 통신 디바이스(30)는 적어도 하나의 시간 인터벌 동안, 스펙트럼의 임의의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다(82). 적어도 하나의 시간 인터벌 동안, 통신 디바이스는 스펙트럼에서 적어도 하나의 이용가능한 채널을 식별할 수 있다. 스펙트럼 센싱이 수행되는 하나의 시간 인터벌에 후속하여, 또는 스펙트럼 센싱이 수행되는 시간 인터벌들 사이에서, 통신 디바이스(30)는 적어도 하나의 식별된 이용가능한 채널에서 디지털 브로드캐스트 포맷의 데이터를 송신할 수 있다(84). 도 10 및 11은 이 특징들의 추가적인 예시적 세부사항들을 도시하고, 아래에서 더 상세히 설명될 것이다.
통신 디바이스(30)는 멀티미디어 능력들을 갖는 멀티미디어 통신 디바이스를 포함할 수 있고, 데이터는 오디오 데이터, 비디오 데이터, 텍스트 데이터, 스피치 데이터 및 그래픽스 데이터 중 적어도 하나를 포함하는 멀티미디어 데이터를 포함할 수 있다. 몇몇 예들에서, 다양한 다른 디지털 포맷들이 또한 이용될 수 있지만, 디지털 브로드캐스트 포맷은, (오직 몇몇 예를 들면) ATSC 포맷, T-DMB 포맷, DVB 포맷, ISDB-T 포맷 또는 MPEG-TS 포맷일 수 있다. 디바이스(30)는, 멀티미디어 데이터를 변환하는 경우, 하나 이상의 변조기들/듀플렉서들/스위치들과 함께, 하나 이상의 비디오 및/또는 오디오 인코더들(예를 들어, 도 6에 도시된 비디오/오디오 인코더들(50A) 또는 도 7에 도시된 비디오/오디오 인코더들(50B)) 및/또는 멀티플렉서들을 이용할 수 있다. 멀티미디어 데이터를 변환하는 것은 멀티미디어 데이터를 디지털 브로드캐스트 포맷에 부합하도록 인코딩하는 것 및 인코딩된 멀티미디어 데이터를 변조하는 것을 포함할 수 있다.
디바이스(30)는 (예를 들어, 도 5의 채널 식별기(44)와 같은 채널 식별기를 이용하여) 스펙트럼의 적어도 하나의 이용가능한 채널을 식별할 수 있다. 몇몇 경우들에서, 이러한 식별은 디바이스(30)에 의해 개시될 수 있다. 예를 들어, 디바이스(30)는, 적어도 하나의 이용가능한 채널을 식별하기 위해, 스펙트럼 센서(예를 들어, 도 6의 스펙트럼 센서(70A) 또는 도 7의 스펙트럼 센서(70B)) 및/또는 디지털 TV 대역 데이터베이스(예를 들어, 도 6의 디지털 TV 대역 데이터베이스(74))로부터 액세스되는 정보를 이용할 수 있다. 몇몇 경우들에서, 디바이스(30)는 브로드캐스트 텔레비젼 스펙트럼과 같은 브로드캐스트 스펙트럼의 미사용 부분에서 적어도 하나의 이용가능한 채널을 식별할 수 있다. 몇몇 경우들에서, 적어도 하나의 이용가능한 채널은 텔레비젼 대역 백색 공간을 포함할 수 있다. 디지털 브로드캐스트 포맷은, 오직 몇몇 비제한적인 예들을 들면, ATSC 포맷, T-DMB 포맷, DVB 포맷, ISDB-T 포맷 또는 MPEG-TS 포맷을 포함할 수 있다.
몇몇 예들에서, 디바이스(30)는, 적어도 하나의 이용가능한 채널이 (예를 들어, 허가된 사용자에 의해) 점유되면, 후속적인 데이터의 송신 및/또는 브로드캐스팅을 위해 적어도 하나의 다른 이용가능한 채널을 식별하기 위해 채널 식별기를 이용할 수 있다. 몇몇 경우들에서, 디바이스(30)는 적어도 하나의 후속적인 시간 인터벌 동안, 적어도 하나의 식별된 이용가능한 채널이 여전히 이용가능한지 또는 다른 사용자에 의해 점유되었는지 여부를 검출하기 위해 채널 식별기를 이용할 수 있다. 몇몇 경우들에서, 디바이스(30)는, 스펙트럼의 임의의 채널 또는 채널들이 이용가능한지 여부에 대해 지오-로케이션에 기초하여 결정할 경우, 스펙트럼 센서를 이용하고 그리고/또는 지오-로케이션 데이터베이스에 액세스할 수 있다. 즉, 이용가능성에 대해 스캐닝되는 주파수들이 디바이스(30)의 지오-로케이션에 기초하여 결정될 수 있다.
따라서, 일예에서, 디바이스(30)는, 디바이스(30)와 연관된 지리적 좌표들을 결정하고, 디바이스(30)의 지리적 좌표들에 기초하여 백색 공간에서 이용가능한 하나 이상의 특정한 주파수들을 결정하고, 그 하나 이상의 특정한 주파수들이 사용을 위해 이용가능한지 여부를 결정하기 위해 디바이스(30)의 지리적 좌표들에 기초하여 하나 이상의 특정한 주파수들에서 백색 공간 센싱을 수행하고, 하나 이상의 특정한 주파수들이 사용을 위해 이용가능하다는 결정에 따라(subject to) 하나 이상의 특정한 주파수들에서 송신기를 통해 데이터를 송신한다. 디바이스(30)는, 본 명세서에서 설명되는 바와 같이, 백색 공간 센싱을 수행할 때 자신의 송신기를 블랭킹할 수 있다.
일 예에서, 디바이스(30)는 디바이스(30)의 지리적 좌표들을 결정하기 위한 지오-로케이션 센서(예를 들어, 도 6의 지오-로케이션 센서(73))를 포함할 수 있다. 다음으로, 디바이스(30)는 디지털 TV 대역 데이터베이스로의 입력으로서 지리적 좌표들을 제공할 수 있다. 몇몇 경우들에서, 이용가능한 채널들이 지리적으로 정의될 수 있고, 따라서, 백색 공간 센싱은 이와 유사하게, 임의의 소정의 시간에 디바이스(30)와 연관된 지리적 좌표들에 기초할 수 있다.
디바이스(30)가 스펙트럼 센서를 이용하는 경우, 디바이스(30)는 채널들의 제 1 그룹과 연관된 검출된 신호들의 품질들에 기초하여, 채널들의 제 1 그룹에 하나 이상의 품질값들을 할당할 수 있다. 품질값들은 잡음 레벨들, (예를 들어, 외부 신호들 또는 미인가/미허가된 사용자들로부터의) 간섭 또는 다른 요인들에 기초할 수 있다. 예를 들어, 디바이스(30)는 정의된 주파수 범위 또는 대역 내에서, 채널들과 연관될 수 있는 간섭 레벨들 또는 신호 대 잡음비들과 같은, 각각의 개별적으로 센싱된 채널에 대한 특정한 품질값들을 획득하기 위해 스펙트럼 센서를 이용할 수 있다.
디바이스(30)는 각각의 채널의 품질(예를 들어, 낮은 품질, 중간 품질, 높은 품질)을 평가하기 위해 이 품질값들에 의해 제공되는 메타 정보를 이용할 수 있다. 예를 들어, 채널이 적은 양의 간섭을 갖는 높은 신호 대 잡음비를 가질 것으로 이용가능한 채널에 대한 품질 값들이 표시하면, 디바이스(30)는 이 채널이 높은 품질 채널일 수 있다고 결정할 수 있다. 반대로, 채널이 낮은 신호 대 잡음비를 갖거나 많은 양의 간섭을 가질 것으로 이용가능한 채널에 대한 품질 값들이 표시하면, 디바이스(30)는 이 채널이 낮은 품질 채널일 수 있다고 결정할 수 있다.
디바이스(30)가 적어도 하나의 이용가능한 채널을 식별한 후, 디바이스(30)는 그 적어도 하나의 식별된 이용가능한 채널에서, (예를 들어, 도 6의 송신기(59A) 또는 도 7의 송신기(59B)를 통해) 변환된 데이터를 (예를 들어, 하나 이상의 개별 외부 디바이스들로) 송신할 수 있다. 예를 들어, 디바이스(30)의 요청 시에, 디바이스(30)는 텔레비젼 디바이스들과 같은 하나 이상의 외부 멀티미디어 출력 디바이스들로의 브로드캐스트 송신을 개시할 수 있다.
전술한 바와 같이, 디바이스(30)는 채널들의 제 1 그룹과 연관된 검출된 신호들의 품질들에 기초하여, 채널들의 제 1 그룹에 하나 이상의 품질값들을 할당할 수 있다. 몇몇 예들에서, 디바이스(30)는 적어도 제 1 시간 인터벌 동안, 채널들의 제 1 그룹이 사용을 위해 이용가능한지 여부를 검출하고, 제 2의 후속하는 시간 인터벌 동안, 채널들의 제 2 그룹이 사용을 위해 이용가능한지 여부를 검출하기 위해 자신의 채널 식별기를 이용할 수 있고, 여기서, 채널들의 제 2 그룹은 채널들의 제 1 그룹의 서브세트를 포함한다. 디바이스(30)는 채널들의 제 1 그룹에 할당된 품질값들에 기초하여 채널들의 제 2 그룹을 선택할 수 있다. 도 9는 이러한 채널 선택과 관련된 추가적 세부사항들 및 예시들을 도시한다.
몇몇 예들에서, 디바이스(30)는 다수의 개별 시간 인터벌들 동안, 스펙트럼의 임의의 채널이 사용을 위해 이용가능한지 여부를 검출하고, 그 다수의 개별 시간 인터벌들 각각 동안, 디바이스(30)로부터 임의의 데이터를 송신하는 것을 (예를 들어, 도 6 또는 도 7에 도시된 바와 같은 침묵 유닛을 이용하여) 억제할 수 있다. 다수의 개별 시간 인터벌들은 동일한 시간 지속기간을 갖거나 갖지 않을 수 있다. 예를 들어, 다수의 개별 시간 인터벌들 중 적어도 2개는 상이한 지속기간일 수 있다. 또한, 디바이스(30)는 검출이 발생하는 빈도를 변경할 수 있다. 몇몇 예들에서, 통신 디바이스(30)는 적어도 하나의 시간 인터벌 동안 통신 디바이스의 송신 기능을 턴오프시키거나 디스에이블시킬 수 있다.
몇몇 예들에서, 디바이스(30)는, 송신 데이터 및 잡다한 데이터를 포함하는 데이터 스트림을 생성할 수 있고, 적어도 하나의 시간 인터벌(예를 들어, "침묵 시간") 동안, 데이터 스트림의 잡다한 데이터를 송신하는 것을 억제할 수 있다. 아래에서 더 상세히 설명되는 바와 같이, 특정한 예들에서, 잡다한 데이터는 아래에서 더 설명되는 바와 같이, 널 데이터, 패딩된 데이터 또는 심지어 잉여 데이터를 포함하는 비필수적 데이터를 포함할 수 있다. 일반적으로, 이러한 데이터는, 송신 데이터에 의해 전달되는 멀티미디어 데이터를 디코딩하기 위해 디코더에 의해 요구되지 않는 데이터라는 점에서 비필수적이다. 디바이스(30)는, 적어도 하나의 다른 시간 인터벌 동안, 스펙트럼의 임의의 채널이 사용을 위해 이용가능한지 여부를 검출하는 것을 억제할 수 있고, 그 적어도 하나의 다른 시간 인터벌 동안, 데이터 스트림의 송신 데이터를 송신할 수 있다.
몇몇 경우들에서, 통신 디바이스(30)는 아래에서 더 상세히 설명되는 바와 같이, 데이터 스트림의 송신 데이터에서 씬 변경 또는 획득 포인트(예를 들어, 하나 이상의 인트라 코딩된 프레임들) 이전에 발생할 적어도 하나의 시간 인터벌을 선택할 수 있다. 몇몇 경우들에서, 통신 디바이스(30)는, 송신 데이터의 수신 시에, 데이터 수신기(예를 들어, 도 1의 데이터 수신기(9))에 의해 이용될 데이터 스트림의 송신 데이터에, 하나 이상의 에러 정정 코드들을 삽입할 수 있다.
도 9는 스펙트럼 센싱을 수행하기 위해, 도 1 내지 5에 도시된 통신 디바이스들 중 하나 이상과 같은 통신 디바이스에 의해 수행될 수 있는 방법의 일예를 도시하는 흐름도이다. 도 9에 대한 아래의 설명에서는 오직 예시의 목적들로, 도 9에 도시된 방법이 도 5에 도시된 통신 디바이스(30)에 의해 수행되는 것으로 가정한다.
초기 상태 동안, 통신 디바이스(30)는 송신을 위한 하나 이상의 이용가능한 채널들을 식별하기 위한 노력으로 채널들의 초기 세트를 스캐닝할 수 있다(90). 예를 들어, 통신 디바이스(30)는 채널들의 초기 세트를 스캐닝하고 그 세트 내의 하나 이상의 이용가능한 채널들을 식별하기 위해, 스펙트럼 센서(예를 들어, 도 6의 스펙트럼 센서(70A) 또는 도 7의 스펙트럼 센서(70B))를 포함하는 자신의 채널 식별기(44)를 이용할 수 있다. 예를 들어, 채널 식별기(44)는 초기화 시에, 특정한 주파수 대역 또는 범위에서 모든 채널들을 스캐닝하거나, 이전에 수신되거나 미리 프로그래밍된 정보에 기초하여 채널 식별기가 이용할 수 있는 것으로 결정한 모든 채널들을 스캐닝할 수 있다. 예를 들어, 채널 식별기(44)는 이 초기 상태에서 채널들의 정의된 그룹을 스캐닝하도록 미리 프로그래밍될 수 있다. 다른 상황들에서, 채널 식별기(44)는, 어떤 채널들이 이용되어야 하는지 또는 이용할 수 있을지를 특정하는 지오-로케이션 데이터베이스(예를 들어, 도 6의 지오-로케이션 데이터베이스(74))로부터 정보를 수신할 수도 있다.
채널들의 초기 세트를 스캐닝한 후, 통신 디바이스(30)는 스캐닝된 채널들에 품질값들을 할당할 수 있다(92). 예를 들어, 통신 디바이스(30)는 스캐닝된 채널들 각각에 특정한 품질값을 할당할 수 있다. 품질값들은, 신호 레벨들, 잡음 레벨들, 신호 대 잡음 레벨들, 수신된 신호 강도 표시(RSSI), (예를 들어, 외부 신호들 또는 미인가/미허가된 사용자들로부터의) 간섭 또는 다른 요인들에 기초할 수 있다. 예를 들어, 통신 디바이스(30)는 정의된 주파수 범위 또는 대역 내에서, 스캐닝된 채널들과 연관될 수 있는 간섭 레벨들 또는 신호 대 잡음비들과 같은, 각각의 개별적으로 스캐닝된 채널에 대한 특정한 품질값들을 할당하기 위해 자신의 스펙트럼 센서를 이용할 수 있다.
후속하여, 정상-상태 동작 동안, 통신 디바이스(30)는 채널들의 서브세트를 식별할 수 있다(94). 예를 들어, 통신 디바이스(30)는 채널 이용가능성 및/또는 채널들에 할당된 품질값들과 같은 하나 이상의 기준에 기초하여 채널들의 서브세트를 식별할 수 있다. 몇몇 경우들에서, 통신 디바이스(30)는, 이용가능한 것으로 이전에 식별된 임의의 채널들을 채널들의 서브세트 내에 포함시킬 수 있다. 몇몇 경우들에서, 통신 디바이스(30)는 채널들에 이전에 할당되었던 품질값들에 기초하여 채널들을 서브세트 내에 포함시킬 수 있다. 예를 들어, 통신 디바이스(30)는, 예를 들어, 채널들에 대한 낮은 간섭 레벨들 또는 높은 신호 대 잡음비들에 기초하여, 초기화 동안, 다른 채널들에 비해 높은 품질값들을 할당받은 채널들을 포함시킬 수 있다. 하나의 특정한 시나리오에서, 통신 디바이스(30)는 높은 품질 값들을 갖는 채널들의 다른 그룹 및 이전에 식별된 이용가능한 채널을 채널들의 서브세트로 선택할 수 있다.
채널들의 서브세트의 식별 시에, 다음으로 통신 디바이스(30)는 예를 들어, 스펙트럼 센서를 이용함으로써 이 서브세트 내의 그 채널들을 스캐닝할 수 있다(96). 다음으로, 디바이스(30)는 채널들의 스캐닝된 서브세트의 채널들 각각에 새로운 품질값들을 할당할 수 있고(98), 그에 따라, 업데이트된 스펙트럼 센싱 정보에 기초하여 채널들의 품질값들을 업데이트할 수 있다. 정상-상태 동작 동안, 통신 디바이스는 스펙트럼 센싱을 수행하기 위해, 도 9에 도시된 바와 같이, 이 동작들을 반복할 수 있다.
따라서, 도 9에 도시된 바와 같이, 통신 디바이스(30)는 스펙트럼 센싱 동작들을 수행하기 위해 상이한 포인트들에서 채널들의 다양하고 상이한 그룹들을 스캐닝할 수 있다. 스캐닝되는 실제 채널들은 변할 수 있다. 도시된 예에서, 통신 디바이스(30)는 초기화 동안 채널들의 초기 세트를 스캐닝할 수 있지만, 정상-상태 동안 채널들의 더 작은 서브세트를 스캐닝할 수 있다. 아래에서 더 상세히 설명되는 바와 같이, 통신 디바이스(30)는, 다양한 반복들에 걸쳐 스펙트럼 센싱을 수행하는 시간 길이를 변경할 수 있고, 또한 마찬가지로 스펙트럼 센싱을 수행하는 빈도를 변경할 수 있다.
도 10은 예시적인 데이터 송신 및 스펙트럼 센싱 듀티 사이클들을 도시하는 타이밍도이다. 예시적인 스펙트럼 센싱 듀티 사이클(102)은, 스펙트럼 센싱 동작들이 턴온 또는 턴오프될 수 있는 시점, 또는 이러한 동작들이 인에이블 또는 디스에이블되는 시점을 표시한다. 도 10에 도시된 바와 같이, 스펙트럼 센싱 동작들은 정상 상태 동작 동안에서와 같이, 정의된 시간 인터벌들 동안 턴온("ON")될 수 있고, 또한 정의된 시간 인터벌들 동안 턴오프("SENSOR OFF")될 수 있다. 통신 디바이스의 스펙트럼 센서(예를 들어, 도 6의 스펙트럼 센서(70A), 도 7의 스펙트럼 센서(70B))는 스펙트럼 센싱 동작들을 수행할 때 이러한 스펙트럼 센싱 듀티 사이클(102)을 이용 또는 구현할 수 있다. 그 결과, 스펙트럼 센서는, 특정한 시간 길이들에 대한, 예를 들어, 초기화 또는 정상 상태 동안, 채널들의 그룹들을 스캐닝할 수 있다. 채널들이 스캐닝되는 시간의 길이 또는 인터벌, 및 스캐닝이 발생하는 빈도는 시간에 따라 변할 수 있고, 듀티 사이클(102)에 의해 정의될 수 있다.
예시적인 데이터 송신 듀티 사이클(100)은 데이터 송신 동작들이 턴온되거나 턴오프될 수 있는 경우, 또는 이러한 동작들이 인에이블되거나 디스에이블되는 경우를 표시한다. 도 10에 도시된 바와 같이, 데이터 송신 동작들은 정의된 시간 인터벌들 동안 턴온("Tx ON")될 수 있고, 또한 정의된 시간 인터벌들 동안 턴오프("Tx OFF")될 수 있다. 통신 디바이스의 송신기는 데이터 송신 동작들을 수행하는 경우 이러한 예시적인 데이터 송신 듀티 사이클(100)을 이용 또는 구현할 수 있다. 예를 들어, 침묵 유닛(57A; 도 6) 또는 침묵 유닛(57B; 도 7)은 데이터 송신 듀티 사이클(100)과 같은 송신 듀티 사이클에 기초하여 데이터의 송신을 턴오프 또는 디스에이블시킬 수 있다. 침묵이 발생하는 시간의 길이 또는 인터벌 및 침묵이 발생하는 빈도는 시간에 따라 변할 수 있고 듀티 사이클(100)을 정의할 수 있다.
도 10의 예에 도시된 바와 같이, 통신 디바이스는, 통신 디바이스가 스펙트럼 센싱을 수행하는 동안 데이터 송신 동작들을 턴오프시키거나 디스에이블시키도록, 스펙트럼 센싱과 송신 침묵 동작들을 동기화시키거나 그렇지 않으면 정렬시킬 수 있다. 도 10에서, 스펙트럼 센싱이 턴온되거나 인에이블되는 동안, 데이터 송신 기능은 턴오프되거나 디스에이블(예를 들어, 침묵)된다. 반대로, 스펙트럼 센싱이 턴오프되거나 디스에이블되는 동안, 데이터 송신은 턴온되거나 인에이블된다. 이러한 방식으로, 통신 디바이스는 잠재적인 간섭 문제들을 회피하기 위해 스펙트럼 센싱을 수행하는 동안 데이터를 송신하지 않는다.
스펙트럼 센싱과 송신 침묵 동작들을 동기화 또는 정렬시키기 위해, 공통 클럭이 이용될 수 있다. 예를 들어, 도 6에 도시된 바와 같이, 침묵 유닛(57A) 및 스펙트럼 센서(70A)는 동작 동안 클럭(61A)을 이용할 수 있다. 유사하게, 도 7에 도시된 바와 같이, 침묵 유닛(57B) 및 스펙트럼 센서(70B)는 동작 동안 클럭(61B)을 이용할 수 있다.
통신 디바이스는 도 10에 도시된 듀티 사이클들(100 및 102)을 시간에 따라 변경 또는 구성할 수 있다. 예를 들어, 디바이스는, 도 11의 예에 도시된 바와 같이, 스펙트럼 센싱 및 송신 침묵이 발생하는 시간의 길이 또는 인터벌을 변경할 수 있고, 또한, 이러한 동작들이 수행되는 빈도를 변경할 수 있다.
하나의 예시적인 시나리오에서, 통신 디바이스는 ATSC 포맷에 따라 하나 이상의 이용가능한 채널들을 이용하여 데이터 수신기에 데이터를 송신 또는 브로드캐스팅할 수 있다. 이 시나리오에서, 통신 디바이스는, 정적으로 또는 동적으로 구성될 수 있는 특정한 빈도에서 및 특정한 시간 간격들 동안 허가된 이용을 위한 신호들을 검출하기 위해 스펙트럼 센서를 이용할 수 있다. ATSC에 의해 지원되는 최대 프레임 레이트는 대략 초 당 30 프레임들일 수 있고, 이것은, 대략 프레임 당 33 밀리초에 이른다. 통신 디바이스가 10 밀리초의 침묵 인터벌들을 이용하면, 전송되는 스트림에 도입되는 임의의 에러들은, 프레임 레이트에 관한 침묵 인터벌들의 지속기간을 고려할 때, 데이터 수신기(예를 들어, 도 1의 데이터 수신기(9))에서 표준 에러 복원 및/또는 은닉 기술들을 통해 복원가능할 수 있다. 통신 디바이스는 데이터 수신기에 의한 이용을 위해 브로드캐스트 스트림에 추가적 에러 정정 코드들을 삽입 또는 부가할 수 있다. "Tx Off" 및 센서 "ON"에 대응하는 인터벌들(또는 다른 시간 인터벌들)은 또한 전이 기간들, 또는 센서 및 송신기가 온 또는 오프되는, 소위 소프트 기간들을 포함할 수 있다.
도 11은 데이터 송신 및 스펙트럼 센싱 듀티 사이클들의 다른 예를 도시하는 타이밍도이다. 이 예에서, 스펙트럼 센싱 듀티 사이클(122)은 다양한 상이한 시간 인터벌들을 포함한다. 제 1 시간 인터벌("t1") 동안, 스펙트럼 센서는 하나 이상의 이용가능한 채널들을 스캐닝하기 위해 스펙트럼 센싱을 수행할 수 있다. 후속하는 제 2 시간 인터벌("t2") 동안, 센서는 스펙트럼 센싱을 다시 수행할 수 있다. 이 예에서, 제 2 시간 인터벌은 제 1 시간 인터벌보다 작아서, 이 특정되고 비제한적인 예에서, 스펙트럼 센서가 제 2 시간 인터벌 동안 이용가능한 채널들을 스캐닝하는데 더 짧은 시간 인터벌이 소요되는 것을 표시한다. 또한, 스펙트럼 센서는 이 인터벌들 동안 채널들의 동일하거나 상이한 그룹을 스캐닝할 수 있다. 예를 들어, 센서는 제 1 시간 인터벌 동안에는 채널들의 제 1 세트를 스캐닝할 수 있지만, 제 2 시간 인터벌 동안에는 채널들의 제 2 세트를 스캐닝할 수 있다. 제 1 및 제 2 세트들에는 특정한 채널들이 포함될 수 있지만, 채널들의 제 2 세트는 제 1 세트보다 더 적은 채널들을 포함할 수 있다.
일반적으로, 도 11은, 센싱이 수행되는 시간 인터벌들이 시간에 따라 변할 수 있음을 도시하도록 의도된다. 또한, 이 인터벌들 동안 스캐닝되는 채널들 역시 변할 수 있다. 예를 들어, 전술한 바와 같이, 초기화 동안, 채널들의 더 큰 그룹이 먼저 스캐닝될 수 있다. 그러나, 후속하는 정상 상태 동작 동안에는, 스펙트럼 센싱 동작들 동안 채널들의 더 작은 그룹이 스캐닝될 수 있다. 통신 디바이스는 시간 과정 동안 스펙트럼 센싱을 수행하는 경우 임의의 수의 상이한 인터벌들을 이용하도록 구성되거나 선택할 수 있다.
도 11은, 송신 듀티 사이클(120)에 도시된 바와 같이, 이 동일한 2개의 시간 인터벌들 "t1" 및 "t2" 동안, 데이터 송신 동작들이 침묵될 수 있는 것을 나타낸다. 따라서, 스펙트럼 센싱 인터벌들과 유사하게, 송신 침묵 인터벌들 또한 시간에 따라 변할 수 있다.
또한, 도 11은 스펙트럼 센싱 및 송신 침묵이 발생하는 빈도가 또한 시간에 따라 변할 수 있음을 나타낸다. 도 11은 제 3 시간 인터벌("t3")은 연속적인 센싱/침묵 이벤트들 사이에 발생한다. 제 4 시간 인터벌("t4")은 연속적인 센싱/침묵 이벤트들의 또 다른 그룹 사이에서 발생하며, 여기서, 제 4 시간 인터벌은 제 3 시간 인터벌보다 길다. 이 예에서, 스펙트럼 센싱 및 송신 침묵이 발생하는 빈도는 감소된다. 일반적으로, 도 11은 이러한 빈도가 시간에 따라 어떻게 변할 수 있는지의 일예를 도시한다. 몇몇 예들에서, 시간에 따라 다양한 센싱 샘플들을 획득하기 위해, 스펙트럼 센싱이 발생하는 시간의 길이(예를 들어, 센싱 인터벌들) 및/또는 센싱이 수행되는 빈도를 변경시키는 것이 바람직할 수 있다.
통신 디바이스는 센싱 또는 침묵의 다양한 시간 인터벌들, 또는 이 이벤트들이 발생하는 빈도들을 선택 또는 결정하도록 구성될 수 있다. 몇몇 상황들에서, 통신 디바이스는 시간 과정 동안 하나 이상의 요인들에 기초하여 이 시간 인터벌들 또는 빈도들을 동적으로 변경시킬 수 있다. 예를 들어, 다양한 수의 채널들이 스캐닝되도록 요구되는 경우, 센싱이 발생하는 시간 인터벌들은 변경될 수 있다. 또한, 몇몇 경우들에서, 통신 디바이스에 의해 실행되는 애플리케이션들의 요구사항들 또는 요구들에 기초하여, 센싱/송신의 시간 인터벌들은 이러한 요구사항들 또는 요구들을 충족시키도록 동적으로 변경될 수 있다. 특정한 상황들에서, 다양한 채널들이 낮은 품질값들을 갖는 것으로 디바이스가 결정한 경우, 더 높은 품질값들을 가질 수 있는 채널들을 후속적으로 식별 및 선택하기 위한 목적으로, 디바이스는 스펙트럼 센싱을 더 빈번하게 수행하기를 원할 수 있다.
그러나, 다양한 시간 인터벌들 동안 송신기가 침묵될 수 있기 때문에, 데이터 수신기(예를 들어, 도 1의 데이터 수신기(9))가, 잠재적으로 데이터 플로우에 갭들을 포함시킬 수 있는 데이터의 불연속적 스트림을 수신하게 되는 것이 가능할 수 있다. 특정한 경우들에서, 데이터 수신기는, 이 불연속적 데이터 플로우에 기초하여, 에러 정정 또는 은닉을 순서대로 수행하기 위한 에러 정정 유닛을 포함할 수 있다. 이 경우들에서, 송신기를 포함하는 통신 디바이스는, 수신기에서 이러한 에러 정정 유닛에 의해 이용될 수 있는 추가적 에러 코드들을 포함할 수 있다. 그러나, 몇몇 예들에서, 통신 디바이스는 자신의 송신기와 함께, 도 12에 도시된 바와 같은 침묵 인터벌들을 고려함으로써 송신된 데이터 스트림을 실제로 생성 또는 엔지니어링(engineer)할 수 있다.
도 12는, 예시적인 데이터 송신 듀티 사이클(160), 및 도 1 내지 5에 도시된 통신 디바이스들 중 하나와 같은 통신 디바이스에 의해 송신될 수 있는 대응하는 데이터 스트림(140)을 도시하는 개념도이다. 송신 듀티 사이클(160)은 다양한 상이한 침묵 인터벌들("Tx OFF")을 나타낸다. 데이터 스트림(140)은, 다양한 송신 데이터(142, 146, 150 및 154)를 포함하는 데이터의 연속적 스트림을 포함한다. 데이터 스트림(140)은 또한 송신 데이터(142, 146, 150 및 154) 사이에 배치되는 잡다한 데이터(144, 148 및 152)를 포함한다. 특정한 경우들에서, 잡다한 데이터(144, 148 및 152)는 널 데이터, 패딩된 데이터, 잉여 데이터, 또는 송신 데이터(142, 146, 150 및 154)를 디코딩 및 프로세싱하기 위해 데이터 수신기에 의해 필수적으로 요구되지는 않는 다른 데이터를 포함할 수 있다.
도 12에 도시된 바와 같이, 데이터 스트림(140)은, 통신 디바이스의 송신기가 듀티 사이클(160)에 따라 침묵(예를 들어, 턴오프, 디스에이블)될 수 있는 시간 인터벌에 걸쳐 통신 디바이스의 송신기에 의해 전송될 수 있다. 송신기가 온인 경우, 송신기는 먼저, 데이터 스트림(140)의 일부인 데이터(142)를 송신한다. 다음으로, 송신기가 침묵되면, 송신기는 스트림(140)의 데이터(142)와 데이터(146) 사이에 포함된 잡다한 데이터(144)를 송신하지 않을 것이다. 몇몇 예들에서, 잡다한 데이터는 널 데이터를 포함할 수 있다. 몇몇 예들에서는, 아래에서 더 설명되는 바와 같이, 잡다한 데이터는 데이터 스트림(140)을 디코딩하기 위해 필수적이거나 요구되지는 않을 수 있는 잉여 데이터, 또는 패드 데이터를 포함할 수 있다.
침묵 인터벌들의 타이밍에 기인하여 스트림(140) 내에 포함된 특정한 데이터가 실제로는 송신되지 않을 것임을 통신 디바이스가 알기 때문에, 통신 디바이스는, 스트림(140)으로부터 관련 데이터를 디코딩하거나 그렇지 않으면 프로세싱하기 위해서 데이터 수신기에 의해 요구되지는 않을 수 있는 잡다한 데이터를 스트림(140)에 지능적으로 삽입할 수 있다. 잡다한 데이터(144, 148 및 152)의 길이 또는 사이즈는, 침묵 인터벌들의 지속기간, 및 스트림(140) 내의 데이터가 송신되는 레이트에 기초할 수 있다.
일예로, 비디오/오디오 인코더들(50A; 도 5 또는 50B; 도 7) 및/또는 전송 인코더/멀티플렉서(52A 또는 52B)는 스트림(140) 내에 포함될 정보를 생성할 수 있다. 따라서, 특정한 경우들에서, 스트림(140)의 엔지니어링 또는 생성은 애플리케이션 또는 전송 레벨에서 수행될 수 있고, 이 경우, 송신 데이터(142, 146, 150 및 154)는 더 작은 사이즈의 물리 데이터 단위들로 더욱 세분화될 수 있다. 스트림(140) 내에 포함될 임의의 데이터를 저장하기 위한 패킷 버퍼들이 (예를 들어, 도 6의 메모리(60A) 또는 도 7의 메모리(60B) 내에서) 이용될 수 있다. 비디오/오디오 인코더들(50A 또는 50B) 및/또는 전송 인코더/멀티플렉서(52A 또는 52B)는 송신 및 다른 잡다한 패킷들의 사이즈를 제어하기 위해 이 버퍼들에 액세스할 수 있고, 또한 침묵 시간 인터벌들 및 빈도들에 기초하여, 스트림(140) 내의 데이터가 프로세싱되는 타이밍을 제어할 수 있다.
스트림(140)은 멀티플렉싱된 데이터를 포함할 수 있다. 예를 들어, 스트림(140)은 오디오, 비디오, 그래픽스, 텍스트, 스피치 및 다른 데이터의 하나 이상의 패킷화된 스트림들을 포함할 수 있다. 전송 인코더/멀티플렉서(52A 또는 52B)는 오디오 및 비디오 스트림들을 포함하는 다양한 데이터 스트림들을 멀티플렉싱할 수 있다. 전송 인코더/멀티플렉서(52A 또는 52B)는 스트림(140) 내에 포함될 멀티플렉싱된 데이터를 형성하기 위해, 잡다한(예를 들어, 널) 데이터를 전송 스트림 데이터와 추가로 멀티플렉싱할 수 있다.
예를 들어, 디지털 TV 변환 유닛/송신기(예를 들어, 도 6의 변환 유닛/송신기(42A), 도 7의 변환 유닛/송신기(42B))는, 송신 데이터(142, 146, 150 및 154)를 프로세싱하기 위해 데이터 수신기에 의해 요구되지 않는, 데이터 스트림(140) 내의 식별된 위치에서, 잡다한 데이터(144, 148 및 152)를 데이터 스트림(140)에 선택적으로 삽입할 수 있다. 따라서, 데이터 송신 듀티 사이클(160) 및 표시된 침묵 인터벌들에 기초하여, 변환 유닛/송신기는 데이터(142, 146, 150 및 154)를 송신할 수 있지만, 잡다한 데이터(144, 148 및 152)를 송신하지는 않을 것이다. 다양한 예들에서, 잡다한 데이터는 널 데이터, 패딩된 데이터, 잉여 데이터 또는 송신 데이터(142, 146, 150 및 154)를 디코딩하거나 그렇지 않으면 프로세싱하기 위해 요구되지는 않는 다른 비필수적 데이터를 포함할 수 있다. 잡다한 데이터는 멀티미디어 인코더에 의해 비트스트림에 인코딩되거나, 인코더로부터 다운스트림에 수개의 가능한 멀티플렉서들 중 하나에 의해 삽입될 수 있다. 몇몇 경우들에서는 데이터를 삽입하기 위해 애플리케이션 계층 멀티플렉서가 이용되고, 다른 경우들에서는 물리 전송 계층 멀티플렉서가 이용된다. 예를 들어, 비디오 및 오디오 데이터를 포함하는 멀티플렉싱된 전송 스트림에 잡다한 데이터를 삽입하기 위해, MPEG-2 전송 스트림(TS)을 생성하는 멀티플렉서가 이용될 수 있다. 이 상이한 예들은 아래에서 논의되고, 상이한 특징들, 이점들 및 결점들을 가질 수 있다.
변환 유닛/송신기는, 송신 레이트, 데이터 송신 및/또는 센싱 듀티 사이클 정보 및 침묵 인터벌/지속기간 정보와 같은 일반적인 데이터 송신과 관련된 정의된 정보에 기초하여 데이터 스트림(140)을 정확하게 엔지니어링 또는 생성할 수 있다. 이러한 정보에 기초하여, 변환 유닛/송신기는 도 12에 도시된 예시적인 데이터 스트림(140)을 생성할 수 있고, 잡다한 데이터(144, 148 및 152)는 데이터(142, 146, 150 및 154) 사이에 배치된다.
예를 들어, 하나의 예시적인 시나리오에서, 데이터(142)는 990 밀리초 상당의 송신될 실질적 데이터를 포함할 수 있고, 잡다한 데이터(144)는, 송신 듀티 사이클(160)에 도시된 대응하는 침묵 인터벌에 기인하여 송신되지 않을, 10 밀리초 상당의 널 비디오 및 오디오 패킷들을 포함할 수 있다. 패킷 데이터(142)는 비디오 및/또는 오디오 프레임 패킷 헤더들에서 코딩된 프레임 레이트에 대응하는 타임스탬프들을 포함할 수 있다.
다른 예시적인 시나리오에서, 잡다한 데이터(144)는 사용자-정의 비디오 객체 계층 데이터와 같은 패딩된 데이터를 포함할 수 있다. 대안적으로, 잡다한 데이터(144)는 널 데이터 대신에 잉여 데이터(예를 들어, 에러 복원을 위한 최고 엔트로피 데이터에 기초한 잉여 슬라이스 데이터)를 포함할 수 있다. 몇몇 예들에서, 오디오 패킷들에는, 사용자 정의 헤더들에 캡슐화된 널 데이터가 첨부될 수 있다. 잡다한 데이터(148 및 152)는 잡다한 데이터(144)와 유사한 데이터를 포함할 수 있다.
통신 디바이스는 침묵 인터벌 동안 잡다한 데이터(144, 148 및 152)를 포함시키는 것에 의해 송신의 영향을 최소화하기 위한 다양한 예들에서, 데이터 스트림(140)을 생성 또는 이용할 수 있다. 예를 들어, 데이터를 원격의 데이터 수신기에 전송할 경우, 통신 디바이스 및 원격의 데이터 수신기는 공통 클럭에 동기화되지 않거나 그렇지 않으면 공통 클럭에 따라 동작하지 않는 것이 가능하다. 이 경우, 통신(즉, 송신) 디바이스는 그 자신의 내부 클럭, 및 알려진 침묵 인터벌들 및 빈도들을 포함하는 듀티 사이클(160)에 기초하여 송신을 위한 스트림(140)을 생성할 수 있다. 그 결과, 통신 디바이스는, 잡다한 데이터(144, 148 및 152)가 원격의 데이터 수신기에 전송되지 않도록, 침묵 인터벌들의 타이밍에 기초하여 잡다한 데이터(144, 148 및 152)를 스트림(140)에 지능적으로 삽입할 수 있다.
도 12에 도시된 바와 같이, 송신 데이터(예를 들어, 송신 데이터(154) 또는 다른 데이터 엘리먼트들)는 선택적으로, 추가적 에러 정정 데이터(155)를 포함할 수 있다. 에러 정정 데이터(155)는 패킷화된 데이터와 함께 송신되는 하나 이상의 추가적 에러 코드들을 포함할 수 있다. 에러 정정 인코더(예를 들어, 도 6의 에러 정정 인코더(54A), 도 7의 에러 정정 인코더(54B))는 이러한 추가적 에러 정정 코드들을 에러 정정 데이터(155)에 삽입할 수 있다. 이 에러 정정 코드들은, 송신 침묵의 영향을 최소화하는 에러 정정 또는 은닉 기술들을 수행하기 위해, 스트림(140)을 수신하는 디바이스(예를 들어, 도 1의 데이터 수신기(9))에 의해 이용될 수 있다. 몇몇 예들에서, 송신하는 통신 디바이스는, 잡다한 데이터(144, 148 및 152)와 같은 잡다한 데이터를 포함하지 않고, 데이터 스트림 내에 에러 정정 데이터를 포함할 수 있다.
도 13은, 잡다한 데이터에 의해 분리되는 영상들의 다수의 그룹들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림(170)을 도시하는 도면이고, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다. 이 예에서, 영상들의 그룹(GOP) 컨텐츠는, 몇몇 경우들에서, I(인트라, 또는 인트라 코딩된) 프레임들, P(예측) 프레임들, 및 B(양방향 예측) 프레임들을 포함하는 다수의 데이터 프레임들을 포함할 수 있다. 몇몇 예들에서, GOP는 하나의 I 프레임과 그에 후속하는 다수의 P 또는 B 프레임들을 포함할 수 있지만, 특정한 경우들에서, 임의의 개별 GOP는 2개 이상의 I 프레임을 포함할 수 있다. 이 분야의 당업자들에게 공지된 바와 같이, I 프레임들, P 프레임들 및 B 프레임들은, 예를 들어, 도 1에 도시된 데이터 수신기(9)와 같은 데이터 수신기에 송신될 수 있는 인코딩된 비디오를 포함할 수 있다.
도 13의 예에 도시된 바와 같이, 각각의 GOP는 스트림(170) 내의 잡다한 데이터에 의해 분리된다. 도 12에 도시된 잡다한 데이터와 유사하게, 도 13의 스트림(170) 내의 잡다한 데이터는 송신 침묵 인터벌들의 타이밍에 기인하여 (도 12의 듀티 사이클(160)과 같은 송신 듀티 사이클에 따라) 데이터 수신기에 송신되지 않을 수 있다. 다양한 예들에서, 잡다한 데이터는 널 데이터, 패딩된 데이터, 또는 스트림(170) 내에서 수신된 GOP 컨텐츠를 디코딩하거나 그렇지 않으면 프로세싱하기 위해 데이터 수신기에 의해 요구되지 않는 잉여 데이터를 포함할 수 있다.
몇몇 예들에서, 각각의 GOP는 비디오 인코딩을 위한 고정 GOP 길이를 포함할 수 있고, 각각의 GOP의 시작에는 I 프레임이 있다. 예를 들어, 하나의 특정한 시나리오에서, 통신 디바이스는 침묵 인터벌과의 정렬을 위해, 각각의 정의된 시간 인터벌의 시작에(예를 들어, 각 초의 시작에) I 프레임을 포함시키고 각각의 정의된 시간 인터벌의 마지막에(예를 들어, 각 초의 마지막에) 널 데이터와 같은 잡다한 데이터를 삽입시키시도록 애플리케이션 또는 전송 레벨 코딩을 이용할 수 있다. 잡다한 데이터의 길이는 침묵 인터벌들의 지속기간, 및 스트림(170) 내의 데이터가 송신되는 레이트에 기초할 수 있다.
통신 디바이스는, 데이터 스트림의 송신 시에 데이터 스트림(170)을 수신하는 원격 디바이스와 동기화 또는 정렬되는 클럭에 따라, 정의된 시간 인터벌을 결정할 수 있다. 통신 디바이스(즉, 송신 디바이스) 및 원격 수신 디바이스 모두가 공통 클럭(예를 들어, 글로벌 측위 위성 클럭 소스)에 정렬되기 때문에, 통신 디바이스는 I 프레임들 및 잡다한 데이터를 정의된 시간 인터벌들에 삽입할 수 있고, 이들은 그 후 원격 수신 디바이스에 의해 적절히 프로세싱될 수 있다. 예를 들어, 원격 디바이스는 GOP 컨텐츠를 디코딩할 수 있고, 잡다한(예를 들어, 널) 데이터를 무시할 수 있다.
이 시간 인터벌들은 통신 디바이스에 의해 결정 또는 프로그래밍될 수 있다. 몇몇 경우들에서, 통신 디바이스는 시간 인터벌들의 지속기간을 초기 데이터 통신에서 동적으로 원격 디바이스에 통신할 수 있다. 다른 경우들에서, 원격 디바이스는, 송신하는 통신 디바이스에 미리 프로그래밍된 미리 정의된 시간 인터벌들에 따라 동작하도록 또한 미리 프로그래밍될 수 있다.
송신하는 통신 디바이스는, GOP 컨텐츠의 사이에 또는 획득 포인트들 직전에 송신 침묵을 제공하기 위해, 데이터 스트림(예를 들어, 스트림(170)) 내에 포함된 정보의 순서 및 컨텐츠와 함께 센싱 및 송신 듀티 사이클들을 구성하거나 심지어 동적으로 변경할 수 있다. GOP 컨텐츠 사이에 잡다한 데이터를 삽입함으로써, 통신 디바이스는 코딩/디코딩 시스템 클럭을 동작가능하게(operational) 유지할 수 있고, 스트림(170)의 임의의 타이밍 지터(jitter)를 최소화하는 것을 도울 수 있어서, 스트림(170)의 GOP 컨텐츠의 수신 시에 데이터 수신기에서의 더 끊김없는 동작을 허용할 수 있다. 따라서, 통신 디바이스는, 도 14에 도시된 바와 같이, 획득 포인트, 새로운 GOP 컨텐츠, 또는 심지어 씬 변경 이전에 침묵 인터벌들이 전략적으로 정렬되도록 침묵 듀티 사이클을 정적으로 또는 동적으로 구성할 수 있다.
도 14는 잡다한 데이터에 의해 분리된 다수의 씬들에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림(172)을 도시하는 도면이고, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다. 도 14는, 씬 변경(예를 들어, 멀티미디어 또는 비디오 씬 변경) 직전에 송신 침묵을 제공하기 위해, 통신 디바이스가, 데이터 스트림(예를 들어, 스트림(172)) 내에 포함된 정보의 순서 및 컨텐츠와 함께 센싱 및 송신 듀티 사이클들을 구성하거나 심지어 동적으로 변경할 수 있는 예를 도시한다.
도 14는 잡다한 데이터에 의해 분리되는 상이한 씬들(예를 들어, 제 1 씬과 연관된 데이터, 제 2 씬과 연관된 데이터)을 도시한다. 잡다한 데이터의 배치 및 사이즈는 송신 듀티 사이클의 침묵 인터벌들, 및 침묵 인터벌들이 발생하는 빈도에 기초할 수 있다. 도 14의 예에서, 제 1 씬의 데이터가 송신되고, 제 2 씬의 데이터는 침묵 인터벌 이후에 후속적으로 송신된다. 스트림(172) 내의 잡다한 데이터는 데이터 수신기에 송신되지 않는다.
따라서, 송신하는 통신 디바이스는, 씬 변경 직전에 송신 침묵을 제공하기 위해, 데이터 스트림(예를 들어, 스트림(172)) 내에 포함된 정보의 순서 및 컨텐츠와 함께 센싱 및 송신 듀티 사이클들을 구성하거나 심지어 동적으로 변경할 수 있다. 그 결과, 듀티 사이클들은 송신될 데이터의 실제 컨텐츠에 기초하여 변형될 수 있다. 또한, 통신 디바이스는 잡다한 데이터를 선택 포인트들에서 스트림(172)에 삽입할 수 있다. 잡다한 데이터의 길이 또는 사이즈는, 침묵 인터벌, 및 스트림(172) 내의 데이터가 송신되는 레이트에 기초할 수 있다.
도 15는 잡다한 데이터에 의해 분리되는 다수의 데이터 프레임들을 포함하는 예시적인 데이터의 스트림(180)을 도시하는 도면이고, 여기서, 잡다한 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다. 이 예에서, 프레임들 중 하나 이상의 GOP를 포함할 수 있다. 도 15에 도시된 바와 같이, 프레임들의 제 1 그룹은 I 프레임을 포함하고, 그에 후속하여 하나 이상의 P 또는 B 프레임들을 포함할 수 있고, 이들은 총괄적으로 제 1 GOP를 구성한다. 제 2 GOP는 또 다른 I 프레임을 포함하고, 이에 후속하여 하나 이상의 P 또는 B 프레임들을 포함할 수 있다. 이 예에서, 송신되지 않는 잡다한 데이터는 획득 포인트 직전(예를 들어, I 프레임 직전)에 위치될 수 있다.
몇몇 경우들에서, GOP는 2개 이상의 I 프레임을 포함할 수 있지만, 다수의 GOP들은 오직 하나의 I 프레임을 포함할 수 있다. 잡다한 데이터는 널 또는 잉여 데이터를 포함할 수 있다. 예를 들어, 잉여 데이터는 하나 이상의 잉여 I, P 또는 B 프레임들을 포함할 수 있다. 몇몇 경우들에서, 잉여 데이터는 개별 GOP들 내의 최고 엔트로피 데이터에 기초할 수 있다.
몇몇 예들에서, 송신하는 통신 디바이스는, 침묵 인터벌과의 정렬을 위해, 각각의 정의된 시간 인터벌의 시작에(예를 들어, 각 초의 시작에) I 프레임을 포함시키고 각각의 정의된 시간 인터벌의 마지막에(예를 들어, 각 초의 마지막에) 널 데이터와 같은 잡다한 데이터를 삽입시키시도록 애플리케이션 또는 전송 레벨 코딩을 이용할 수 있다. 잡다한 데이터의 길이는 침묵 인터벌들의 지속기간, 및 스트림(180) 내의 데이터가 송신되는 레이트에 기초할 수 있다. 송신 디바이스는, 그의 동작 클럭이, 스트림(180)을 수신하는 디바이스의 동작 클럭과 동기화되거나 그렇지 않으면 정렬되는 특정한 경우들에서, 이러한 알고리즘을 구현할 수 있다.
도 16은 잉여 프레임 데이터에 의해 분리되는 다수의 데이터 프레임들을 포함하는 예시적인 데이터의 스트림(182)을 도시하는 도면이고, 여기서, 잉여 프레임 데이터는 송신 침묵 인터벌들 동안 송신되지 않을 수 있다. 스트림(182)은 도 15에 도시된 스트림(180)의 특정한 예이다. 스트림(182)에서, GOP 컨텐츠를 분리시키는 잡다한 데이터는 완전하거나 부분적인 I 프레임 데이터와 같은 잉여 I 프레임 데이터를 포함한다. 몇몇 경우들에서, 이러한 잉여 데이터는, 예를 들어, 데이터 스트림(182) 내의 최고 엔트로피 데이터에 기초할 수 있는 잉여 슬라이스 데이터를 포함할 수 있다.
본 명세서는, 백색 공간 스펙트럼과 같은 스펙트럼의 하나 이상의 이용가능한 채널들의 신뢰할 수 있는 센싱을 증진시키기 위해 데이터 송신을 침묵시키기 위한 다양한 추가적 기술들을 제시한다. 이 추가적 기술들은 독립적으로 이용되거나, 서로의 또는 본 출원의 다른 부분에서 설명되는 기술들과의 다양한 조합들로 이용될 수 있다. 몇몇 구현들에서, 이러한 기술들은, 스펙트럼 센싱을 위해 송신기 침묵 동작들이 수행되는 경우, 미디어 품질, 감소된 레이턴시, 효율적인 대역폭 이용, 및/또는 사용자들에 대한 전반적 경험 품질을 증진시키는 것을 도울 수 있다.
송신기 침묵 동작들은 일반적으로 짧은 시간 인터벌들 동안 송신기를 턴오프시키는 것을 수반한다. 송신기 침묵 인터벌 동안, 송신기는 오디오 및/또는 비디오 데이터와 같은 멀티미디어 데이터를 수신기에 송신하지 않는다. 송신기 침묵 동작들은, 예를 들어, 애플리케이션 계층에서, 에러들의 생성, 데이터의 손실 및/또는 증가된 레이턴시를 초래할 수 있다. 대안적으로 또는 부가적으로, 송신기 침묵 동작들은, 예를 들어, 물리 계층에서 동기화의 상실을 초래할 수 있다.
본 명세서에서 설명되는 추가적 기술들은, 적응형 비디오 인코딩, 감소된 레이턴시, 동기식 변조, 및/또는 비디오 코딩, 센싱 및/또는 변조의 조정된 제어를 위한 기술들을 포함할 수 있다. 이 기술들의 예들은 도 17 내지 27을 참조한 몇몇 경우들에서 후술된다. 몇몇 예들에서, 이 기술들은, 예를 들어, 적응형 비디오 인코딩을 이용하는 ATSC 시스템에서, 실시간 동작 및 성능(예를 들어, 레이턴시, 오디오-비디오(AV) 품질, 경험 품질, 및/또는 대역폭 효율)에의 감소된 영향과 함께 송신기 침묵을 위한 낮은 레이턴시 설계를 지원할 수 있다. 그러나, 아래에서 ATSC 시스템은 예시의 목적으로 설명된다. 본 명세서에서 설명되는 기술들은 다른 변조 시스템들에 적용될 수 있다.
일예로 ATSC 시스템에서, 서비스 멀티플렉서(MUX)는 인코딩된 비디오 패킷들, 인코딩된 오디오 패킷들, 및 보조 데이터 패킷들을 멀티플렉싱하여 MPEG-2 전송 스트림(TS)을 형성한다. 보조 데이터는 청각 장애자를 위한 폐쇄 자막 데이터, 프로그램 및 시스템 정보 프로토콜(PSIP) 데이터 또는 다른 데이터를 포함할 수 있다. ATSC 변조기는 전송 스트림을 수신하고, 필요하다면, 데이터의 비트 레이트를 19.4 Mbps로 증가시킨다. 이 비트 레이트는 ATSC 변조기의 컴포넌트들이 적절하게 기능하기 위해 필요할 수 있다. ATSC에 대한 참조는 일예이다. 설명되는 개념들 및 방법들은 다른 브로드캐스트 기술들에도 확장 및 적용될 수 있다.
채널이 현재 이용가능한지 또는 이용가능하게 유지되는지 여부를 결정하기 위한 스펙트럼 센싱은 주기적으로 수행될 수 있다. 스펙트럼 센싱은 또한, 시스템 내의 다양한 동작들에 정렬된 적절한 시간에 발생할 수 있는 임의의 인스턴스들에서 수행될 수 있다. 예를 들어, 스펙트럼 센싱은, 임의의 시간들에서 그리고 상이한 지속기간들 동안, 간섭 레벨들이 높은 경우, 또는 컨텐츠가 어둡게 되는(black fades) 동안 수행될 수 있다. 몇몇 경우들에서, 스펙트럼 센싱은 분 당 적어도 한번 수행될 수 있다. 스펙트럼 센싱 동작 동안, 송신기가 침묵되거나, 다른 말로는, 블랭킹되기 때문에, 수신기에 의한 송신 패킷들의 손실이 존재할 수 있다. 애플리케이션 계층에서 송신 패킷들의 손실은 전술한 바와 같이 데이터 에러들 및 레이턴시를 생성할 수 있다.
물리 계층에서, 수신기는 위상 고정 루프(PLL), 또는 송신된 데이터 스트림에서 동기화 신호들에 래치하는 다른 하드웨어를 갖도록 설계될 수 있다. 스펙트럼 센싱을 위한 송신기 침묵 인터벌 동안 송신기가 침묵되는 경우, 즉, 턴오프되는 경우, 동기화 신호들(예를 들어, ATSC의 필드 동기화 신호)은 이용불가능할 수 있다. 따라서, 스펙트럼 센싱 동안 송신기의 침묵은, 수신기가 동기화를 상실하기에 충분할 정도의 다수의 동기화 신호들의 손실을 초래할 수 있다.
동기화의 상실은, 송신기 침묵 인터벌의 종료 이후에 송신기가 다시 활성화된 후 수신기가 동기화를 수행할 것을 요구할 수 있다. 재동기화는 어느 정도의 시간을 요구하여 데이터의 손실을 초래하거나, 시스템에 지연들을 부가하여 큰 레이턴시들을 초래할 수 있다. 데이터의 손실은 데이터 에러들 및 레이턴시를 유발시킬 수 있고, 이것은, 수신기 측에서 사용자들에 대한 감소된 경험 품질을 초래할 수 있다. 따라서, 재동기화를 완화하거나 회피하는 것이 바람직할 수 있다.
변조기에 의해 수신된 전송 데이터 스트림의 부분들 및 송신 침묵 인터벌들에 의한 조정된 방식으로, 널 데이터의 배치를 제어하기 위해 적응형 멀티미디어 코딩 기술들이 적용될 수 있다. 널 데이터는, 제로 값의 비트들과 같은 널 데이터 또는 다른 잡다한 데이터를 각각 포함하는 널 패킷들을 포함할 수 있다. 널 데이터의 다른 예들은, 완전하거나 부분적인 I 프레임 데이터와 같은 잉여 I 프레임 데이터, 잉여 슬라이스 데이터 또는 다른 데이터를 포함할 수 있다. 따라서, 널 패킷들은 제로 값의 데이터를 포함할 수 있지만, 본 명세서에서 설명되는 바와 같이, 잉여 데이터, 패드 데이터 등과 같은 다른 유형들의 잡다한 데이터를 포함할 수 있다. 잡다한 데이터는, 멀티미디어 데이터를 재생하기 위해 디코더에 의해 요구되지 않는 관점에서 비필수적일 수 있다. 전술한 바와 같이, 널 패킷들은, 송신기 침묵 인터벌들과 실질적으로 일치하는 인터벌들에서 데이터 스트림 내에 배치될 수 있다. 변조기에 의한 널 패킷들의 제어되지 않은 배치는 성능을 방해할 수 있다.
송신기 침묵을 지원하기 위한 적응형 비디오 코딩의 일예에서, 영상들의 그룹(GOP) 또는 (하나 이상의 프레임들 또는 프레임의 일부와 같은) 다른 유형의 레이트 제어 단위와 같은 일련의 비디오 프레임들에 걸쳐 감소된 비트 레이트를 적용하기 위해, 애플리케이션 계층에 비디오 인코더가 구성될 수 있다. 비디오 데이터에 대한 감소된 코딩 레이트는 코딩된 비디오 데이터에서 코딩 "헤드룸(headroom)"을 제공하기 위해 GOP의 프레임들(즉, 영상들)에 걸쳐 분산될 수 있다. 몇몇 예들에서, 감소된 코딩 레이트는 대안적으로 또는 추가적으로 오디오 데이터 적용될 수 있다. 그러나, 비디오 데이터에 대한 감소된 코딩 레이트의 적용이 충분할 수 있고, 오디오 품질의 열화를 회피시킬 수 있다.
코딩된 비디오 데이터는, 멀티플렉스 계층과 같은 몇몇 경우들에서, 코딩된 오디오 데이터 뿐만 아니라 보조 코딩 데이터 및 프로그램/제어 데이터와 결합될 수 있다. 멀티플렉싱된 데이터는 ATSC 변조기와 같은 변조기에 의한 변조를 위해 데이터의 전송 스트림을 제공한다. 변조기의 다양한 컴포넌트들 또는 회로가 입력 전송 데이터 스트림을 적절히 변조하여 출력 변조 데이터 스트림을 생성할 수 있도록, 변조기는 입력 전송 스트림에 대한 고정 비트 레이트 요건을 가질 수 있다. 통상적인 동작에서, 변조기는 요구되는 비트 레이트의 데이터 스트림을 생성하기 위해 전송 스트림에 널 패킷들을 삽입할 수 있다. 그러나, 본 명세서에서 설명되는 몇몇 예들에서, 적응형 비디오 인코딩은, 송신 침묵 인터벌의 활성화에 대응하는 위치에서 널 패킷들(또는 다른 잡다한 또는 비필수적인 데이터)의 제어된 배치를 위한 공간이 전송 스트림에 제공될 수 있도록, 인코딩된 비디오의 비트 레이트를 의도적으로 감소시키기 위해 적용될 수 있다.
예를 들어, 애플리케이션 계층에 감소된 비트 레이트를 적용하는 적응형 비디오 코딩(및/또는 적응형 오디오 코딩) 프로세스의 적용의 결과로서, 전송 스트림이 감소된 비트 레이트를 가지면, 변조기가, 그 요구되는 비트 레이트에 부합하는 입력 데이터 스트림 또는 적절한 변조기 동작을 위한 출력 데이터 레이트를 생성할 수 있도록, 변조기는 전송 스트림에 널 바이트들을 추가할 수 있다. 그러나, 이와 동시에, 비디오 인코더에 의해 적용되는 감소된 비트 레이트는, 송신기 침묵 인터벌에 대응하는 위치에서, 변조기에 의한 널 바이트들의 적어도 일부의 제어된 삽입을 허용하는 헤드룸을 생성시킨다.
즉, 변조기는 공간을 채우기 위해 변조된 데이터 스트림의 다양한 위치들에 널 바이트들을 배치시키도록 구성되어, 전술한 바와 같이 유효 비트 레이트를 증가시킬 수 있다. 따라서, 인코딩된 비디오의 헤드룸은 변조기에 의한 널 패킷들의 삽입을 위한 공간을 생성한다. 또한, 변조기는, 송신기 침묵 인터벌이 적용될 데이터 스트림 내의 위치에 널 바이트들의 일부를 배치하도록 특정하게 구성될 수 있다. 이 방식으로, 널 바이트들의 적어도 일부가 송신기 침묵 인터벌과 일치하도록 배치될 수 있어서, 송신기 침묵 인터벌은 성능에 악영향을 덜 주게 될 것이다.
몇몇 예들에서, 널 바이트들은, 송신기 침묵 인터벌의 길이 이상의 길이를 갖는 시간 인터벌을 점유할 수 있다. 감소된 코딩 레이트가 GOP의 다수의 비디오 프레임들에 걸쳐 균등하게 또는 균등하지 않게 분산되면, 각각의 프레임은 전송 스트림에 널 바이트들의 삽입을 위한 공간을 생성할 수 있다. 변조기는, 송신기 침묵이 대략 초 당 한번 수행되도록, 초 당 한번의 클럭 신호 펄스와 같은 클럭 신호에 응답하여 송신기 침묵 인터벌을 트리거링할 수 있다. 이 클럭 펄스는 침묵 트리거링 펄스로 지칭될 수 있다.
예시되는 바와 같이, 전송 스트림 패킷들이 데이터 세그먼트들로 변환되고, 데이터 세그먼트들이, 필드 동기들로 지칭될 수 있는 필드 동기화 마커들에 의해 분리된 데이터 필드들로 분할되면, 변조기는 널 바이트들의 일부를 배치할 수 있고, 예를 들어, ATSC 구현에서 서로에 대해 각각 대략 24.02 밀리초(ms)만큼 떨어진 42개의 필드 동기들에 의해 측정되는 바와 같이, 송신기 침묵 인터벌을 대략 초 당 한번 트리거링할 수 있다. 즉, 침묵 트리거링 펄스는 42개의 필드 동기들의 카운팅에 응답하여 생성될 수 있다. 대안적으로, 송신기 침묵은 덜 빈번하거나 더 빈번하게 수행될 수 있을 뿐만 아니라, 규칙적인 주기적 인터벌들, 불규칙적인 인터벌들, 또는 사용자 입력, 컨텐츠 유형들 또는 채널 조건들에 기초하거나 시간에 따라 변하는 인터벌들로 수행될 수 있다.
적응형 비디오 인코딩에 대한 이 예시적인 기술에서, 필요하다면, 각각의 프레임이 널 바이트들의 삽입을 위한 공간을 제공하도록, GOP의 프레임들의 전부 또는 대부분에 대한 비트 레이트를 감소시키는 것이 유리할 수 있다. 몇몇 경우들에서, 변조기에서의 전송 스트림의 패킷들 및 GOP의 프레임들은 용이하거나 쉽게 동기화되거나 정렬되지 않을 수 있다. 모든 프레임들에 대한 비트 레이트를 감소시킴으로써, 널 바이트들은 전송 스트림을 따라 다양한 포인트들 중 임의의 포인트에 배치될 수 있다. 이 포인트들은 다양한 프레임들 중 임의의 프레임에 대응하는 데이터와 일치할 수 있고, 이들 각각은 변조기에 의한 널 바이트들을 위한 공간을 제공한다. 이 방식으로, 변조기에서 프로세싱되는 전송 스트림 패킷들 또는 세그먼트들과 비디오 프레임들 중 하나 사이에서 정렬 또는 동기화를 가질 필요가 없다. 대신에, 널 바이트들은 변조기에 의해 임의적으로 배치될 수 있고, 변조기에 의한 널 바이트들의 삽입을 위한 빈 공간을 제공하기 위해 감소된 비트 레이트에서 프레임들 전부가 인코딩되기 때문에, 널 바이트들은 프레임들 중 하나에 대한 빈 공간과 여전히 정렬할 수 있다.
이 접근방식은 GOP의 프레임들의 전부 또는 대부분에 대한 비트 레이트의 감소를 포함할 수 있지만, 변조기와 비디오 인코더 사이의 동기화에 대한 요구없이, 전송 스트림을 따라 임의의 다양한 포인트들에 널 바이트들 및 대응하는 송신기 침묵 인터벌을 배치하기 위해, 센서에 의해 구동되거나 요구되는 변조기에 대해 유연성을 제공한다. 몇몇 예들에서, GOP 내의 비디오 프레임들의 전부 또는 대부분에 대해 비트 레이트가 감소될 수 있지만, GOP의 초기 I 프레임이 GOP의 P 및 B 프레임들보다 더 높은 비트 레이트로 우선적으로 인코딩될 수 있다. 따라서, 시간적 예측(P 및 B) 프레임들 모두는 감소된 비트 레이트로 인코딩될 수 있고, 비트 레이트에서의 감소는 이 프레임들 각각에 대해 동일하거나 상이할 수 있다. I 프레임은 인코딩 비트 레이트에서 감소되거나 감소되지 않을 수 있지만, P 및/또는 B 프레임들보다 더 많은 비트들을 할당받을 수 있다.
예시로서, GOP의 복수의 비디오 프레임들 각각이 변조기의 정규의 비트 레이트 요건들을 지원하기 위해 X의 비트 레이트로 이상적으로 코딩되면, 변조기에 의한 널 바이트들의 삽입을 위한 공간 또는 헤드룸을 제공하기 위해, X 마이너스 델타의 비트 레이트에서 비디오 프레임들을 대신 코딩하도록 적응형 비디오 코딩이 적용될 수 있다. 델타는, 각각의 프레임에 할당되는 비트 레이트로부터, 고정된 균등한 양으로 감산될 수 있다. 대안적으로, 몇몇 프레임들은 상이한 델타량의 비트 레이트 감소를 할당받거나, 동일한 델타지만 상이한 초기 X 비트 레이트 레벨들을 할당받을 수 있다. 다시, 몇몇 예들에서, I 프레임은 GOP의 P 또는 B 프레임들보다 더 많은 비트 레이트를 할당받을 수 있다. 또한, 몇몇 예들에서, I 프레임으로부터 시간적으로 더 이격된(remote) 몇몇 P 또는 B 프레임들은 I 프레임에 시간적으로 더 근접한 프레임들보다 더 많은 비트들을 할당받을 수 있다. 그러나, 각각의 경우, GOP의 프레임들에 대한 비트 레이트의 의도적 감소는, 송신기 침묵 인터벌과 일치하는 제어된 방식으로 데이터 스트림의 비트 레이트 레벨을 요구되는 레벨까지 증가시키기 위해 필요한 널 바이트들의 적어도 일부를 삽입하도록 변조기에 의해 이용될 수 있는 헤드룸 또는 "슬랙(slack)"을 초래할 수 있다.
다시, 송신기 침묵 인터벌 및 널 바이트들에 대한 삽입 포인트는 클럭 신호에 응답하여 변조기에 의해 제어된 방식으로 선택될 수 있다. 일예에서, 클럭 신호는 대략 1 초와 동일한 42개의 필드 동기들의 카운팅에 의해 트리거링될 수 있다. 비디오 스트림의 각각의 프레임은 감소된 비트 레이트로 인코딩될 수 있다. 이 예에서, 일반적으로 비디오 인코더와 변조기 사이에는 조정 또는 타이밍에 대한 필요성이 존재하지 않을 수 있다. 대신에, 변조기는, 변조기에 대해 요구되는 비트 레이트를 지원하는데 필요한 것보다 작은 비트 레이트를 갖는 전송 스트림을 멀티플렉서로부터 수신한다. 변조기는, 이 감소된 비트 레이트 전송 스트림을 제공받는 경우, 일반적으로 비디오 인코더의 동작과는 독립적으로 널 바이트들을 삽입할 수 있어서, 송신기 침묵 인터벌들을 지원하기 위한 널 바이트들의 통합을 위한 간단한 솔루션을 제공할 수 있다.
변조기는 공간을 채우기 위해 다양한 포인트들에서 널 바이트들을 삽입할 수 있지만, 널 바이트들의 적어도 일부를 포함하는 세그먼트는 송신기 침묵 인터벌에 대응하는 위치에 지능적으로 배치될 수 있다. 널 바이트들의 길이는 송신기 침묵 인터벌의 길이보다 약간 클 수 있다. 변조기는, 송신기가 이러한 인터벌들 동안 침묵되도록, 전송 스트림에 규칙적이거나 불규칙적인 인터벌들로 널 바이트들을 삽입할 수 있다. 더 상세하게는, 변조된 출력 데이터 스트림 내의 널 바이트들의 존재 시에, 송신기는 턴오프되어 송신기 침묵 인터벌을 제공할 수 있다. 스펙트럼 센싱은 널 바이트들에 의해 제공되는 송신기 침묵 인터벌들의 일부 또는 전부에서 수행될 수 있다. 이 방식으로, 변조기는 널 데이터가 존재하는 데이터 스트림의 포인트에서 송신기를 침묵시킬 수 있어서, 감소된 에러들 및 데이터 손실을 달성할 수 있다.
송신기 침묵 인터벌들을 형성하는 널 바이트 세그먼트들의 길이는, 효과적인 스펙트럼 센싱을 위해 충분히 길도록, 그러나, 수신기가 동기화를 상실하지 않도록 충분히 짧게 선택될 수 있다. GOP는 통상적으로 대략 1 초 길이이고 30개의 프레임들을 포함한다. 비트 레이트 감소를 GOP의 다수의 프레임들에 걸쳐 분산시킴으로써, 전송 스트림에 널 바이트들을 추가하기 위한 몇개의 상이한 기회들이 존재할 수 있다. 그러나, 변조기는, 스펙트럼 센싱에 적합한 길이의 송신기 침묵 인터벌을 지원하기에 충분한 널 바이트 세그먼트를 형성하기 위해, 예를 들어, GOP를 포함하는 전송 스트림에 대해 널 바이트들의 적어도 일부를 함께 그룹화하도록 구성될 수 있다. 이 방식으로, 널 바이트 세그먼트는 전송 스트림에 대략 GOP 당 한번 삽입될 수 있고, 이것은, 예를 들어, 전술한 바와 같은, 42개의 필드 동기 신호들마다 생성된 침묵 트리거링 펄스(또는 42개 필드 동기 신호들마다 한번의 인자(factor))에 응답하는 대략 초 당 한번에 대응할 수 있다. 결과적 전송 스트림은 높은 유효 비트 레이트를 제공하고, 그 후, 요구되는 비트 레이트를 갖는 출력 변조 데이터 스트림을 생성하도록 변조될 수 있다.
몇몇 예들에서, 송신기 침묵 인터벌의 길이는, 예를 들어, PCR(프로그램 클럭 레퍼런스) 제약들의 위반 또는 수신기에 의한 동기화의 상실을 방지하기 위해, 대략 10 밀리초의 길이 이하일 수 있다. 또한 몇몇 예들에서, 송신기 침묵 인터벌의 길이는, 예를 들어, 수행될 신뢰할 수 있는 스펙트럼 센싱을 위한 충분한 시간을 제공하기 위해, 대략 6 밀리초 이상인 것이 바람직할 수 있다. 대략 6 내지 10 밀리초 동안 송신기 침묵(즉, "블랭킹")을 지원하기 위해, 변조기와 연관된 인터리버(interleaver)를 플러시(flush)하기 위한 충분한 수의 리딩(leading) 널 바이트들, 예를 들어, 4 밀리초의 널 바이트들을 배치하고, 후속하여 송신기 침묵을 위한 대략 6 내지 10 밀리초의 널 바이트들을 배치하는 것이 바람직할 수 있다. 침묵 지속기간 및 빈도는, 컨텐츠의 송신을 위해 상이한 변조 방법이 이용되면 변할 수 있다.
몇몇 예들에서, 널 바이트들의 리딩 세그먼트에 부가하여, 송신기 침묵 인터벌 이후, 예를 들어, 4 밀리초, 8 밀리초 또는 12 밀리초의 널 바이트들의 트레일링(trailing) 세그먼트를 삽입하는 것이 바람직할 수 있지만, 이것은 필수적인 것은 아니다. 전송 스트림으로부터의 데이터는, 송신기 침묵 인터벌 이후 데이터의 복원을 허용하도록 송신기 침묵 인터벌에 대한 널 바이트들 삽입 직전에 버퍼링될 수 있다. 몇몇 예들에서, 송신기 침묵 인터벌에 선행하는 널 바이트들의 삽입과 버퍼로부터의 데이터의 복원 사이의 시간 길이는, 데이터에 대한 프로그램 클럭 레퍼런스(PCR)가 위반되지 않도록 충분히 짧아야 한다.
상기 적응형 비디오 코딩의 예에서, 비디오 인코더는, 송신기 침묵 인터벌을 수용하기 위한 다양한 위치들 중 임의의 위치에 변조기가 널 바이트들을 도입하는 것을 허용하기 위해, GOP의 프레임들의 전부 또는 대부분에 감소된 비트 레이트를 의도적으로 적용하도록 구성될 수 있다. 이러한 관점에서, 비디오 인코더는 변조기 데이터 스트림에 송신기 침묵 인터벌을 수용하기 위해 전송 스트림에 빈 공간을 간접적으로 부여하도록 구성된다. 변조기는, 전술한 예의 비디오 인코더와 널 바이트들의 생성을 반드시 조정할 필요는 없지만, 비디오 인코더에 의해 생성된 감소된 비트 레이트의 비디오 코딩 스트림으로부터 산출되는 감소된 비트 레이트 전송 스트림에 대해 반응하고, 송신기 침묵 인터벌에 대한 널 바이트들을 지능적으로 배치하기 위해 주기적인 송신기 침묵 펄스에 대해 반응한다. 이 예에서, 변조기와 연관된 멀티플렉서(예를 들어, 물리 계층 멀티플렉서)는 물리 전송 계층 비트스트림에 비필수적 데이터(예를 들어, 널 데이터 또는 잉여 데이터와 같은 잡다한 데이터)를 추가하도록 이용될 수 있다.
다른 예에서, 비디오 인코더는 코딩된 비디오 비트스트림의 타겟팅된 위치들에 빈 공간을 더 직접적으로 제공하도록 구성될 수 있다. 더 상세하게는, 비디오 인코더는 GOP의 프레임들의 전부 또는 대부분 대신에, GOP의 프레임들의 하나의 프레임 또는 적은 수의 프레임들에 감소된 비트 레이트를 할당할 수 있다. 변조기와 비디오 인코더가 상대적으로 비동기화되는 적응형 비디오 인코딩의 제 1 예와는 반대로, 제 2 예에서는, 전송 스트림에서 비디오 인코더에 의해 생성된 빈 공간에 대응하는 특정한 위치 또는 위치들에 변조기가 널 바이트들의 세그먼트들을 삽입하도록, 변조기 및 비디오 인코더가, 예를 들어, 침묵 트리거링 펄스에 의해 동기화될 수 있다. 이 경우, 프레임들의 전부 또는 대부분 대신에, GOP의 하나 또는 몇몇 프레임들이 감소된 비트 레이트로 선택적으로 코딩될 수 있다.
예를 들어, 비디오 인코더는, GOP의 선택된 프레임이 다른 프레임들에 비해 비트 레이트 감소의 모든 부분 또는 상당 부분을 수신하도록, GOP에 코딩 비트들을 선택적으로 할당하도록 구성될 수 있다. 이 경우, 비디오 인코더와 변조기 사이의 동기화에 의해, 오직 변조기보다는 비디오 인코더가 변조기에 의한 널 바이트들의 삽입을 위한 위치를 능동적으로 선택할 수 있다. 널 바이트들은 선택된 비디오 프레임에 적용되는 감소된 비트 레이트에 의해 생성된 빈 공간에 삽입될 수 있다. 예시로서, GOP의 마지막 프레임이 GOP의 다른 프레임들에 비해 감소된 비트 레이트로 코딩될 수 있어서, 그 마지막 프레임에, 송신 침묵 인터벌의 적용을 지원하기 위한 널 바이트들의 삽입을 위한 공간을 생성할 수 있다. 몇몇 예들에서, 마지막 프레임은 다음 GOP의 다음 I 프레임에 선행할 수 있기 때문에, 마지막 프레임의 선택이 바람직할 수 있다. 이 예에서, 인코더와 연관된 멀티플렉서(예를 들어, 애플리케이션 계층 멀티플렉서)가 애플리케이션 계층 비트스트림에 비필수적 데이터(예를 들어, 널 데이터 또는 잉여 데이터)를 추가하기 위해 이용될 수 있다. 다시, 이것은, 송신기 블랭킹이 발생할 때 침묵 인터벌에 대응하기 위해, 애플리케이션 계층의 비필수적 데이터가 물리 계층에 적절하게 정렬되도록 몇몇 동기화를 요구할 수 있다.
일반적으로, 이 제 2 적응형 비디오 인코딩 기술의 경우, GOP의 프레임들 중 다수는 감소된 비트 레이트보다는 통상적인 비트 레이트로 코딩될 수 있어서, 애플리케이션 계층 멀티플렉서는 전송 스트림에 의도적으로 도입된 헤드룸을 보상하기 위해 다수의 프레임들에 널 바이트들을 삽입할 필요가 없다. 오히려, GOP의 마지막 프레임과 같은 선택된 프레임의 감소된 비트 레이트의 결과로서 빈 공간이 제공될 수 있다. 다음으로, 애플리케이션 계층 멀티플렉서는 전송 스트림의 생성 시에 널 바이트들을 삽입할 수 있고, 선택된 비디오 프레임의 빈 공간에 대응하는 위치에 널 바이트들을 삽입할 수 있어서, 그에 따라, 널 바이트들에 의해 데이터 스트림에 생성된 빈 공간과 일치하거나 그 영역 내에 있는 송신기 침묵 인터벌의 배치를 지원할 수 있다.
이 제 2 예에서, GOP와 같은 레이트 제어 단위의 다양한 프레임들에 코딩 비트 레이트를 선택적으로 할당하기 위해 프레임 레벨 레이트 제어가 이용될 수 있다. 예를 들어, 적어도 하나의 선택된 프레임이 감소된 비트 레이트 프레임일 것이라는 인식에 의해, GOP에 대한 비트 버짓(budget)이 GOP의 일련의 프레임들에 걸쳐 할당될 수 있다. 감소된 비트 레이트 프레임은, 비디오 데이터를 감소된 비트 레이트로 전달하고 빈 데이터를 위한 공간을 제공하는 짧은 프레임일 수 있다. 비디오 인코더는 감소된 비트 레이트를 할당하기 위해, 프레임에 더 높은 레벨의 양자화를 할당할 수 있다. 비디오 코딩을 위해 소정의(given) 프레임에 할당된 비트 레이트는 대략 그 프레임에 포함될 널 데이터의 양만큼 감소될 수 있다.
전술한 제 1 적응형 비디오 인코딩 기술 및 제 2 적응형 비디오 인코딩 기술에 적용되는 레이트 제어 기술들은, 채널 조건들, 비디오 텍스쳐, 모션, 서비스 품질, 또는 다른 채널 또는 비디오 특성들에 기초하여, GOP들 또는 개별 프레임들에 할당되는 비트 레이트를 제어하는 다른 레이트 제어 기술들과 관련하여 동작할 수 있다. 널 데이터의 양은 실질적으로 송신 침묵 인터벌에 대응할 수 있는 스펙트럼 센싱 인터벌의 함수로서 선택될 수 있다. 이 방식으로, 비디오 인코더는, 실제로, 송신기가 턴오프되고 채널 이용가능성을 결정하기 위해 스펙트럼이 센싱되는 송신 블랭킹 인터벌 동안, 채널 손실의 알려진 인스턴스, 즉, 계획된 송신 채널 중단(outage)을 수용하기 위해 패킷 형상화를 적용하도록 구성될 수 있다.
제 1 예의 기술에서는, 동기화 없이, 변조기가, 송신 침묵 인터벌에 대응하는 원하는 위치에 배치된 널 바이트들을 포함하는 널 바이트들을 지능적으로 추가함으로써, 멀티플렉서로부터의 전송 스트림에서 비디오 인코더에 의해 생성된 감소된 비트 레이트에 반응한다. 비디오 인코딩 및 변조 사이에 동기화를 포함하는 제 2 예의 기술에서는, 비디오 인코더가, 송신기 침묵 인터벌에 대응하는 전송 스트림의 원하는 위치에서 애플리케이션 계층 멀티플렉서에 의해 배치될 널 바이트들을 위한 빈 공간을 선택적으로 제공하기 위해 프레임을 지능적으로 인코딩한다.
몇몇 경우들에서, 감소된 비트 레이트는, 제 1 비동기식 예 또는 제 2 동기식 예에 따른 적응형 코딩을 이용하는 비디오 데이터에 부가하여 또는 그에 대한 대안으로 오디오 데이터에 적용될 수 있다. 비필수적 데이터를 삽입하기 위해 애플리케이션 계층 멀티플렉서가 이용되면, 멀티플렉서로부터의 전송 스트림은 전체 이용가능한 비트 레이트를 이용할 수 있지만, 물리 계층 멀티플렉서가 이용되면, 애플리케이션 계층 멀티플렉서의 출력은 비디오 및/또는 오디오 인코더로부터의 빈 공간을 포함할 수 있어서, 변조기와 연관된 멀티플렉서에 의한 데이터 스트림에 널 바이트들의 삽입을 위한 공간을 제공할 수 있다. 다음으로, 변조기는 RF 송신기를 구동하기 위해 데이터 스트림을 변조한다.
비디오 인코더와 변조기 사이의 동기화는, 전술한 침묵 트리거링 펄스와 같은 공통 클럭 신호에 기초할 수 있다. 예를 들어, GOP 경계를 변조기 데이터 스트림의 필드 동기와 정렬시키기 위해 클럭 신호가 이용될 수 있다. 침묵 트리거링 펄스를 형성하기 위해 이용되는 클럭 신호는 변조된 전송 스트림의 필드 동기 신호들로부터 유도되는, 대략 초 당 한번의 펄스일 수 있다. 전술한 바와 같이, 클럭 펄스는, 널 바이트들의 세그먼트를 삽입하고 송신기 침묵 인터벌을 활성화시키도록 변조기를 트리거링하기 위해, 그리고 GOP를 변조된 전송 스트림에 대해 정렬시키기 위해 42개의 필드 동기마다 생성될 수 있다. 예를 들어, 비디오 인코더는, 인코딩된 비디오 및 오디오가 전송 스트림에서 결합되고 변조기에 대한 데이터 스트림으로 변환될 때, GOP의 마지막 프레임이 트리거 인터벌과 실질적으로 동시에 발생하도록, 각각의 GOP를 송신기 침묵 인터벌과 정렬시킬 수 있다. 몇몇 예들에서, 송신기 침묵 인터벌 동안 변조기에 의해 삽입될 널 바이트들과 마지막 프레임의 빈 공간을 동기화시키기 위해, GOP 경계로부터의 시간 오프셋들이 이용될 수 있다.
GOP는 비디오 컨텐츠의 1 초에 대응하고, 42개의 필드 동기는 비디오 컨텐츠의 대략 1 초에 대응한다. 필드 동기들 사이의 각각의 데이터 필드는 실제로 24.02 밀리초이기 때문에, 필드 동기 신호들에 대한 의존은 GOP의 1 초 길이에 대한 시간에 걸친 드리프트를 생성할 수 있다. 더 상세하게는, 시간에 따라, 전송 스트림의 필드 동기들은 GOP 경계와 정확하게 정렬(line up)되지 않을 수 있다. 그러나, 필요하다면, GOP는, 1 초의 GOP를 초 당 한번의 침묵 트리거링 펄스로 재교정하기 위해, 주기적으로 또는 산발적으로 재정렬될 수 있다. GOP를 필드 동기 기반 침묵 트리거링 펄스에 정렬시킴으로써, GOP의 마지막 프레임과 같은, 선택된 인코딩된 비디오 프레임의 빈 공간은 변조기에 의해 삽입된 널 바이트들 및 송신기 침묵 인터벌과 정렬될 수 있다.
송신기 침묵 인터벌을 지원하는 적응형 비디오 코딩의 제 3 예에서, 비디오 인코더 및 변조기는, 비디오 인코더가 프레임들을, 인코딩된 오디오 보조 데이터 및 PSIP 데이터와 멀티플렉싱될 때, 변조기 동작에 요구되는 비트 레이트에 근접하기에 충분한 전송 스트림을 생성하기 위해 필요한 비트 레이트에 더 근접하게 매칭되는 비트 레이트로 인코딩하도록 설계될 수 있다. 이 예에서, 변조기에 의한 널 바이트들의 비동기식 배치를 지원하기 위해 GOP의 프레임들의 전부 또는 대부분의 비트 레이트를 감소시키는 것 대신에, 그리고, 변조기에 의한 널 바이트들의 배치를 지원하기 위해 변조와 비디오 코딩을 동기화시키는 것 대신에, 비디오 인코더는 인코딩 비디오 데이터 스트림의 널 바이트들을 인코딩할 수 있다. 이 경우, 비디오 인코더 및 변조기는, 예를 들어, 전술한 바와 같이, 필드 동기들로부터 생성된 침묵 트리거링 펄스를 이용하여, 여전히 동기화될 수 있다. 그러나, 적응형 비디오 코딩의 이 제 3 예에서, 비디오 인코더는 인코더의 멀티플렉서 또는 변조기의 멀티플렉서를 통해 널 바이트들을 삽입하는 것 대신에 널 바이트들을 인코딩함으로써 널 바이트들을 직접 삽입한다. 이 경우, 송신기 침묵 인터벌과 일치하는 시간에, 변조기는, 전송 스트림으로부터 널 바이트들의 세그먼트를 수신하고, 이들을 다른 전송 스트림 데이터와 유사하게 단순히 변조하여, 널 바이트들의 세그먼트에서 송신기 침묵 인터벌을 생성한다. 따라서, 널 데이터가 송신기에 의해 수신될 수 있는 한, 인코딩된 데이터는 송신기를 필수적으로 침묵으로 구동시켜, 데이터가 널이기 때문에 송신기가 침묵하게 한다.
도 17은, 본 명세서에서 설명되는 다양한 적응형 비디오 인코딩 기술들의 적용에 적합할 수 있는 멀티미디어 통신 시스템(190)을 도시하는 블록도이다. 도 17의 시스템(190)은 ATSC 표준을 참조하여 설명될 것이다. 그러나, 본 명세서에서 설명되는 기술들은 다른 표준들에 적용될 수 있다. ATSC 시스템은 연속적 송신을 위해 설계될 수 있다. ATSC는 DTV 브로드캐스트 애플리케이션들에 적합한 양호하게 구축된 아키텍쳐 및 설계 프레임워크를 표현한다. 도 17에 도시된 바와 같이, 시스템(190)은, 대안적으로 비디오 인코더로 지칭될 수 있는 비디오 소스 코딩 및 압축 유닛(194)("비디오 소스 코딩 및 압축(194)")을 포함하는 비디오 서브시스템(192)을 포함할 수 있다. 시스템(190)은 또한, 대안적으로 오디오 인코더로 지칭될 수 있는 오디오 소스 코딩 및 압축 유닛(198)("오디오 소스 코딩 및 압축(198)")을 포함하는 오디오 서브시스템(196)을 포함할 수 있다. 비디오 및 오디오 서브시스템들(192, 196)은 MPEG-2 코딩 프로세스들을 지원하도록 구성될 수 있고, MPEG-2 코딩 프로세스들은 예시의 목적으로 설명될 것이지만, ITU-T H.264와 같은 다른 유형들의 코딩 프로세스들에 대한 제한이 아니다. 비디오 및 오디오 서브시스템들(192, 196)은 서비스 멀티플렉스 및 전송 서브시스템(206)("서비스 멀티플렉스 및 전송(204)")으로의 전달을 위해, 각각 인코딩된 비디오 데이터(200) 및 오디오 데이터(202)를 생성한다.
도 17에 추가로 도시된 바와 같이, 서비스 멀티플렉스 및 전송 서브시스템(204)은 서비스 멀티플렉스 유닛(206)("서비스 멀티플렉스(206)") 및 전송 유닛(207)("전송(207)")을 포함할 수 있다. 서비스 멀티플렉스 유닛(206)은 코딩된 비디오 데이터(200) 및 코딩된 오디오 데이터(202)를 보조 데이터(208) 및 프로그램/제어 데이터(210)(예를 들어, PSIP 데이터)와 멀티플렉싱하여, 멀티플렉싱된 데이터(211)를 생성한다. 전송 유닛(207)은 멀티플렉싱된 데이터(211)를 수신하고, 전송 스트림(212)을 생성하며, 전송 스트림(212)은 일예로, MPEG-2 전송 스트림을 표현할 수 있다. MPEG-2 전송 스트림(TS)은 오디오, 비디오 및 다른 데이터를 멀티플렉싱하기 위한 통신 프로토콜에 의해 정의된다. 전송 스트림은 패킷화된 기본 스트림들(PES) 및 다른 데이터를 캡슐화한다. 본 명세서의 다른 부분에서 언급된 바와 같이, MPEG-2 TS는 MPEG-2, Part 1, Systems (ISO/IEC 표준 13818-1)에 정의되어 있다. 도 17을 더 참조하면, 시스템(190)은, 안테나에 연결된 송신기를 구동시키기 위한 출력 신호(220)를 생성하기 위해, 멀티플렉싱된 전송 스트림(212)을 각각 코딩 및 변조하는 채널 코딩 유닛(216)("채널 코딩(216)") 및 변조 유닛("변조(218)")을 포함할 수 있는 무선 주파수(RF)/송신 서브시스템(214)("RF/송신 서브시스템(214)")을 더 포함할 수 있다. RF/송신 서브시스템(214)에 의해 송신된 신호들을 수신하고, 오디오 및 비디오 데이터를 재생성하기 위해 이 신호들을 디코딩하고, 오디오 및 비디오 데이터를 오디오 및 비디오 출력 디바이스에 제공하기 위해, 텔레비전(222) 또는 다른 디바이스와 같은 수신기가 구비된다. 예를 들어, 도 17에 표현되고, 본 명세서의 다른 부분에서 설명되는 바와 같은 ATSC 시스템의 구조 및 동작은 일반적으로, FCC에 의해 채택된 ATSC DTV 표준(A/53)에 따를 수 있다. ATSC DTV 표준은, ATSC 아키텍쳐를 위해, 시스템들, PHY, 서비스 MUX 및 전송, 비디오 및 오디오 계층들을 정의한다. ATSC DTV 표준 A/53은 본 명세서에 그 전체가 참조로 통합되었다.
ATSC 또는 다른 아키텍쳐에서, 시스템들, 비디오 및 오디오는, 인코더로의 입력 신호로부터 디코더로부터의 신호 출력까지의 종단-대-종단 지연이 일반적으로 일정한 타이밍 모델을 갖는다. 이 지연은, 인코딩, 인코더 버퍼링, 멀티플렉싱, 통신 또는 저장, 디멀티플렉싱, 디코더 버퍼링, 디코딩 및 프리젠테이션 지연들의 합이다. 이 타이밍 모들의 일부로서, 비디오 영상들 및 오디오 샘플들은 정확하게 한번 제공된다. 다수의 기본 스트림들 사이의 동기화는, 전송 스트림들의 프리젠테이션 타임 스탬프들(PTS)에 의해 달성된다. 타임스탬프들은 일반적으로 90 kHz 단위들이지만, 시스템 클럭 레퍼런스(SCR), 프로그램 클럭 레퍼런스(PCR) 및 선택적인 기본 스트림 클럭 레퍼런스(ESCR)는 27 MHz의 해상도로 확장을 갖는다.
도 18은 ATSC 아키텍쳐를 갖는 예시적인 멀티미디어 통신 시스템(224)에서의 타이밍을 도시하는 블록도이다. 도 18에 도시된 바와 같이, 주파수 분배 네트워크(226)는 27 MHz의 클럭 신호(227("f27MHz(228)")를 수신하고, 이를 분배하여, 아날로그 비디오 신호(234)("Video In(234)") 및 아날로그 오디오 신호(236)("Audio In(236)")를 대응하는 디지털 신호들(238, 240)로 변환하기 위해 제공되는 아날로그-디지털(A/D) 변환기들(232A, 232B)("A/D(232A)" 및 "AD(232B)")로의 적용을 위해, 비디오 클럭 신호(228)(도 18에 제공된 다음의 수식: nv/mv*27 MHz 에 따라 유도되는 "fv(228)") 및 오디오 클럭 신호(230)(도 18의 예에 도시된 다음의 수식: na/ma*27 MHz 에 따라 유도되는 "fa(230)")을 생성한다. 프로그램 클럭 레퍼런스(PCR) 유닛(242)("프로그램 클럭 레퍼런스(242)")은 27 MHz의 클럭 신호(227)를 수신하고, 적응 헤더 인코더 유닛(248)("적응 헤더 인코더(248)")에 제공되는 program_clock_reference_base 클럭 신호(244)("program_clock_reference_base( 244)") 및 program_clock_reference_extension 클럭 신호(246)("program_clock_reference_extension(246)")를 생성한다. 이 신호들(244, 246)은 총괄적으로 "PCR"로 지칭될 수 있다. 몇몇 예들에서는, 신호들(244, 246) 중 하나가 "PCR"로 지칭될 수 있다. 어떤 신호들(244, 246)이 PCR을 형성하는지와 무관하게, PCR은, 인코더의 시스템 시간 클럭의 샘플을 제공하는 주기적으로 송신되는 값을 표현한다. PCR은 전송 스트림으로부터의 패킷들을 디멀티플렉싱하고, 오디오 및 비디오를 적절하게 동기화시키는데 이용될 수 있다.
비디오 인코더(250) 및 오디오 인코더(252)는 PCR 기반 클럭 신호, 즉, 이 예에서는 program_clock_reference_base 클럭 신호(244), 및 디지털 비디오 및 오디오 신호들(238, 240)을 각각 수신한다. 도 18에 더 도시된 바와 같이, 비디오 및 오디오 인코더들(250, 252)은, 예를 들어, MPEG-2 TS 인코더와 같은 전송 인코더(258)에 적용되는 인코딩된 비디오 및 오디오 데이터(254, 256)를 각각 생성한다. 전송 인코더(258)는 적응 헤더 인코더 유닛(248)의 출력(260) 및 비디오 및 오디오 인코더들의 출력들(즉, 도 18의 예에서 인코딩된 비디오 데이터(254) 및 인코딩된 오디오 데이터(256))을 수신하고, 주파수 fTP에서 멀티플렉싱된 전송 스트림(262)을 생성한다. 따라서, 전송 인코더(258)는, 도 18의 예에서는 적응 헤더 인코더(248)로부터, 도 18의 예에서는 출력(260)으로 지칭되는 보조 데이터 및 프로그램/제어 데이터(예를 들어, PSIP 데이터)뿐만 아니라, 인코딩된 오디오 및 비디오 데이터(254, 256)를 결합시키는 멀티플렉스(MUX)를 포함할 수 있다. 순방향 에러 정정(FEC) 및 동기화(Sync) 삽입 유닛(264)("FEC 및 동기 삽입(264)")은 전송 스트림(262)에 FEC 데이터를 적용하고 동기화 마커들을 삽입하여, 주파수 fsym에서 출력 심볼 스트림(266)을 생성한다. 잔류 측파대(VSB; vestigial sideband) 변조기(268)("VSB 변조기(268)")는 동기화 유닛(264) 및 FEC에 의해 변형되는 전송 인코더의 출력을 수신하고, RF 출력 신호(270)("RF Out(270)")를 생성하여, 변조된 신호의 무선 송신을 위해 RF 송신기 및 안테나를 구동한다.
도 19는 ATSC 아키텍쳐를 갖는 예시적인 멀티미디어 통신 시스템(301)에서의 데이터 플로우를 도시하는 블록도이다. 멀티미디어 통신 시스템(301)은 인코딩 유닛으로 지칭될 수 있고, 이는 도 20에 도시되고 아래에서 설명되는 바와 같은 변조기 유닛에 인코딩된 출력을 제공한다. 도 19 및 20은 단지 ATSC의 예시이며, 다른 경우들에서, 비트레이트들, 데이터 레이트들, 동기 기간들, 및 다른 특징들은 이용되는 브로드캐스트 포맷 또는 표준에 따라 변할 수 있다. 도 19의 예에서, 소스 비디오 및 오디오 데이터(280), 즉, 이 예에서는 HDMI, DP 또는 VGA 데이터(280)("HDMI/DP/VGA(280)")는, 필요하다면, 디지털 포맷 변환기 및 스케일러 유닛(282)("디지털 포맷 변환기 및 스케일러(282)")에 의해 포맷 및 스케일링된다. 디지털 포맷 변환기 및 스케일러 유닛(282)은, (예를 들어, 1.493 Gbps에서의) 비디오 데이터(284), (예를 들어, 9.6 Mbps에서의) 오디오 데이터(286), 및 보조 데이터(288)를 생성한다. 이 예에서, MPEG-2 인코더(290)는 인코딩된 비디오 데이터(292)를 생성하기 위해 비디오 데이터(284)를 인코딩하고, 인코딩된 비디오 데이터(292)는 1 내지 6 Mbps인 표준 해상도(SD)의 인코딩된 비디오 데이터 또는 12 내지 18 Mbps에서 인코딩된 고해상도(HD)의 인코딩된 비디오 데이터를 표현할 수 있다. AC-3 인코더(294)는 32 내지 640 kbps에서 인코딩된 오디오 데이터(296)를 생성하기 위해 오디오 데이터(286)를 인코딩한다. 테이블들 및 섹션 생성기(298)는 전송 스트림에서의 통합을 위한 프로세싱된 보조 데이터(300)를 생성하기 위해 보조 데이터(288)를 프로세싱한다. 예시의 목적으로 MPEG-2 및 AC-3 인코딩이 설명되었지만, 다른 비디오 및/또는 오디오 인코딩 기술들이 이용될 수 있다. 도 19에 더 도시된 바와 같이, 프로그램 및 시스템 정보 프로토콜(PSIP) 생성기(302)("PSIP 생성기(302)")는 전송 스트림에서의 통합을 위한 프로세싱된 프로그램 정보(306)를 생성하기 위해 프로그램 정보(304)를 프로세싱하도록 제공될 수 있다. 각각의 패킷화된 기본 스트림/전송 스트림(PES/TS) 패킷 생성기(308A 내지 308D)("PES/TS 패킷 생성기들(308)")는 인입하는 인코딩된 비디오 데이터(292), 인코딩된 오디오 데이터(296), 프로세싱된 보조 데이터(300) 및 프로세싱된 프로그램 정보(306)를 프로세싱하여, 개별 전송 패킷들(310A 내지 310D)("전송 패킷들(310)")을 생성한다. 전송 스트림 멀티플렉서(TS MUX) 유닛(312)("TS/MUX(312)")은 PES/TX 패킷 생성기들(308)로부터의 전송 패킷들(310)을 멀티플렉싱하여, 19.39 Mbps의 레이트인 전송 스트림(TS) 패킷들(310)을 포함하는 전송 스트림(314)을 생성하고, 이 레이트는, ATSC 변조기의 컴포넌트들에 의해 이용되는 데이터 레이트이다. TX MUX 유닛(312)은 또한, 전송 스트림(314)을 형성하는 TS 패킷들(310)에 TX MUX 유닛(312)이 삽입 또는 인터리빙하는, 널 데이터 또는 잉여 데이터를 표현할 수 있는 비필수적 데이터(316)를 수신한다.
도 20은, 출력, 즉 도 19의 TS MUX 유닛(312)의, 이 예에서는 전송 스트림(314)을 형성하는 TS 패킷들(310)을 수신하는 ATSC 변조기(320) 내의 데이터 플로우를 추가로 도시하는 블록도이다. ATSC 변조기(320)는 또한 더 일반적으로 변조기 유닛으로 지칭될 수 있고, 여기서 설명되는 기술들은 ATSC 콘텍스트에서 이용되도록 제한되지 않고 다수의 상이한 무선 콘텍스트들에서 이용될 수 있다. 도 20에 도시된 바와 같이, ATSC 변조기(320)는, 19.39 Mbps에서 전송 스트림(TS) 패킷들(310)을 수신하는 데이터 랜덤화기(322), 랜덤화된 데이터(326)를 수신하고 순방향 에러 정정(FEC)을 위해 리드-솔로몬(Reed-Solomon) 인코딩을 적용하는 리드-솔로몬(RS) 인코더(324)("RS 인코더(324)"), 및 데이터의 인터리빙된 블록들(332)(이는 또한 "인터리빙된 데이터(332)"로도 지칭될 수 있음)을 생성하기 위해 리드-솔로몬 인코더(324)로부터 출력된 데이터(330)에 데이터 인터리빙을 적용하는 데이터 인터리버(328)를 포함할 수 있다. 인터리빙된 데이터(332)는 트렐리스(trellis) 인코더(334)에 적용되고, 트렐리스 인코더(334)는, 추후 32.28 Mbps의 변조된 출력 스트림을 생성하기 위해, 물리 계층 멀티플렉서(340)("MUX(340)")에 의해 세그먼트 동기 마커들(336) 및 필드 동기 마커들(338)과 결합되는 출력 데이터(335)를 생성한다. 멀티플렉서(340)는 또한, 멀티플렉서(340)가 출력 데이터(335)에 삽입하거나 인터리빙하는, 널 데이터 또는 잉여 데이터를 표현할 수 있는 비필수적 데이터(343), 세그먼트 동기 마커들(336) 및 필드 동기들(338)을 수신하여, 변조된 출력 스트림(310)을 형성한다. 파일럿 삽입 모듈(344)은 변조된 출력 스트림(342)에 대해 파일럿 삽입을 수행하여, 변형된 변조 출력 스트림(346)을 생성한다. 파일럿 삽입에 후속하여, 8SVSB 변조기(348)가 43.04 Mbps인 심볼 스트림(350)을 생성한다. 일반적으로, 8SVSB 변조기(348)는, 데이터 레이트가 변조기의 19.39 Mbps 데이터 레이트 요건에 매칭하는 것을 보장하기 위해, 데이터 스트림에 널 패킷들을 추가한다. 변조기(348)는 데이터 스트림을 길이 188 바이트들의 패킷들로 분할한다. 몇몇 예들에서, 리드-솔로몬 RS 코딩을 위한 각각의 세그먼트에 20개의 추가적 바이트들이 추가된다.
도 21은 ATSC 데이터 레이트들을 도시하는 타이밍도이다. 도 21의 예에 도시된 바와 같이, 인코딩된 비디오 데이터(360)는, 도 21의 예에서 문자 'N'으로 표기된 영상들의 그룹(GOP)(362A)에 배열되고, 19.4 Mbps 이하의 몇몇 레이트에서 인코딩되지만, 통상적으로 19.2 Mbps의 최대 레이트에 따른다. N은 제 1 GOP를 지정하고, N+1은 다음 GOP(362B)를 지정한다. GOP의 제 1 프레임은 통상적으로 I 프레임이고, 일련의 P 또는 B 프레임들이 후속한다. GOP들(362A, 362B)("GOPs(362)")을 포함하는 각각의 GOP는 복수의 프레임들을 포함하고, 여기서, 예를 들어, GOP(362A)는 비디오 프레임들(364F1 내지 364F2)("비디오 프레임들(364)")을 포함하고, 각각의 GOP에 코딩 비트 버짓이 할당될 수 있다는 관점에서 레이트 제어 단위로 고려될 수 있고, 다음으로, 비트 버짓의 부분들은 GOP 내에서 프레임들(364)과 같은 프레임들 사이에 분산될 수 있다. MPEG-2 구현의 경우, 초당 30개의 프레임들(fps)에서, GOP는 30 프레임들을 가질 수 있다. 따라서, 각각의 GOP는 대략적으로 비디오 컨텐츠의 1 초에 대응하고, 각각의 프레임은 대략적으로 비디오 컨텐츠의 33 밀리초에 대응한다. 오디오 데이터(366)는 448 Kbps 이하의 소정의 레이트에서 인코딩되고, 통상적으로 192 Kbps에서 인코딩된다. 도 21의 예에서, 오디오 프레임 레이트는 초당 23개 또는 24개의 프레임들로 가정된다. 오디오 프레임들(368F1 내지 368Fm+2)("오디오 프레임들(368)")은, 통상적으로 19.4 Mbps의 일정한 레이트인 MPEG-2 전송 스트림(TS)(370)을 생성하기 위해, 비디오 프레임들(364)로부터의 데이터와 멀티플렉싱된다. 각각의 멀티플렉싱 단위는 통상적으로 33 ms 길이이고, 여기서, 멀티플렉싱 단위들은 도 21의 예에서는 33 ms만큼 분리된 수직선들로 도시되어 있다. MUX 동작은 패킷 기본 스트림/전송 스트림(PES/TS) 캡슐화를 더 포함할 수 있다. 도 21에 추가로 도시된 바와 같이, 프리젠테이션 타임스탬프(PTS)를 갖는 PES 헤더(372)가, TS 멀티플렉서에 제공되는 각각의 코딩된 오디오/비디오 프레임에 추가될 수 있다. 다음으로, TS 멀티플렉서는 코딩된 오디오/비디오 프레임을 TS 패킷들로 분할하기 위해 전송 스트림 헤더들(374A 내지 374D)을 추가한다. 도 21의 예에서, 오디오 프레임 레이트는 대략 초당 23개 또는 24개의 프레임들일 수 있지만, 다른 프레임 레이트들이 본 명세서에 부합하도록 이용될 수 있다. PES/TS는 멀티플렉싱에서 캡슐화된다.
도 22는 적응형 비디오 인코딩을 이용하는 송신기 침묵의 일예를 도시하는 타이밍도이다. 도 22는, 애플리케이션 계층 MUX(예를 들어, 인코더와 연관된 MUX)가 인코딩되고 멀티플렉싱된 전송 비트스트림에 비필수적 데이터를 도입하는 시나리오에 부합할 수 있다. 도 22는, 스펙트럼 센싱 동작 동안 송신기를 블랭킹 또는 침묵시키기 위한, 18.8 Mbps에서의 비디오 인코딩, 192 kbps에서의 오디오 인코딩, 19.4 Mbps에서의 MPEG-2 TS, 32.28 Mbps의 심볼 레이트(Sym Rate)인 변조, 및 초당 8 밀리초의 ON/OFF 듀티 사이클인 송신기(TX)의 선택적 비활성화에 대한 타이밍을 도시한다. 일반적으로, 도 22는, 감소된 비트 레이트의 인코딩된 비디오 프레임에 생성된 빈 공간 내에 송신기 침묵 인터벌을 위한 널 바이트들(372)을 TX MUX(312)가 삽입할 수 있도록, 도 20의 예에 도시된 ATSC 변조기(320)와 같은 변조기 및 도 18의 예에 도시된 비디오 인코더(250)와 같은 비디오 인코더가 동기화될 수 있는, 전술한 제 2 적응형 비디오 인코딩 기술의 적용에 대응할 수 있다. 도 22의 예에서, 이 예에서는 GOP(362A')의 마지막 프레임인 프레임(364'F30)의 인코딩에 감소된 비트 레이트를 적용하기 위해 적응형 비디오 인코딩이 적용된다. 감소된 비트 레이트는 마지막 프레임 이외의 선택된 프레임에 적용될 수 있다.
GOP(362A')는, 초 당 30개의 프레임들에서 비디오가 인코딩되는 구현을 위해, 도 22의 예에서는 프레임들(364'F1 내지 364'F30)("프레임들(364)")로 도시된 30개의 프레임들 F'1 내지 F'30을 포함한다. 프레임들(364')은 도 21의 예에 도시된 프레임들(364)과 포맷 및 구조에서 유사할 수 있지만, 컨텐츠 또는 다른 양상들에서는 상이할 수 있다. 다른 구현들에서, 더 높거나(예를 들어, 60 또는 120 fps) 더 낮은(예를 들어, 15 fps) 프레임 레이트들이 제공될 수 있다. 몇몇 예들에서, 마지막 프레임(364'F30)이 GOP(362A') 경계에 가장 근접하기 때문에, 마지막 프레임(364'F30)을 이용하는 것이 바람직할 수 있다. 다음 GOP(362B')에서, I 프레임은 기존의 씬을 리프레시하거나 씬 변경을 제공할 것이다. 따라서, 마지막 프레임(364'F30)을 감소된 코딩 비트 레이트로 인코딩한 영향은 다른 프레임들(364')의 영향들보다 덜 현저할 수 있다. 그러나, 다른 프레임들(364')이 감소된 비트 레이트 인코딩을 위해 선택될 수 있다.
감소된 비트 레이트 인코딩을 위한 GOP 또는 다른 레이트 제어 단위의 마지막 프레임의 선택은 전술한 바와 같이 바람직할 수 있다. 몇몇 예들에서, 프레임은 이상적으로는 씬 변경 경계일 수 있다. 선택된 프레임은, TS MUX(312)에 의한 널 바이트들(372)과 같은 널 바이트들의 삽입을 위한 빈 공간을 제공하는데 요구되는 감소된 비트 레이트에 기인하여 비교적 열악한 품질을 가질 수 있지만, 단지 하나의 열악한 품질의 프레임의 존재는 시청자에게는 인지가능하지 않을 수 있다. 더 상세하게는, 인간의 시간적 인지의 경우, 시청자는 시간적으로 인접한 프레임들의 존재 시에 선택된 프레임의 품질 드롭(drop)을 쉽게 인식하지 못할 수 있다.
그러나, 인간의 공간적 인지는 더 예리한 경향이 있다. 그 결과, 시청자는 감소된 비트 레이트 프레임에서의 뭉침(blockiness)과 같은 공간적 산물을 인지할 수 있을 것이다. 이 때문에, 공간적 품질이 실질적으로 열화되면, 감소된 비트 레이트에서의 인코딩 대신에, 선택된 프레임을 다른 모드들로 인코딩하는 것이 바람직할 수 있다. 그 결과는, 송신기 침묵 인터벌을 지원하기 위해 널 바이트들의 빈 공간을 제공하는 관점에서 동일할 수 있다. 그러나, 공간 왜곡이 임계치를 초과하는 경우 상이한 코딩 모드들이 선택적으로 활성화될 수 있다.
예를 들어, 상당한 뭉침 또는 다른 공간 왜곡이 존재하면, 비디오 인코더(250)는 그 프레임을 인코딩하는 대신에, 그 선택된 프레임들에 다양한 대안적 코딩 모드들 중 임의의 모드를 적용할 수 있다. 대안적 코딩 모드들 또는 기술들의 예들은, 그 선택된 프레임을 큰 프레임으로 선언하는 것, 그 프레임을 드롭시키는 것, 그 프레임을 스킵된 프레임으로 지정하는 것 또는 그 프레임의 선택된 매크로블록들의 디코딩을 위해 스킵 모드들을 추가하는 것을 포함할 수 있다. 각각의 경우에서, 디코더는, 선택된 프레임을 대신할 프레임을 생성하기 위해, 프레임 반복, 프레임 레이트 상향변환(FRUC), 또는 다른 프레임 대체 기술들을 적용할 수 있다. 대안적으로, 선택된 프레임이 심지어 낮은 품질로 인코딩되면, 디코더는 그 프레임을 간단히 디코딩할 것이다.
GOP(362A')에 비트 레이트가 할당되면, 비디오 인코더는 GOP(362A')의 프레임들(364')에 비트 레이트의 부분들을 선택적으로 할당하여, GOP(362A')의 프레임들(364')에 대한 프레임 레벨 레이트 제어를 적용할 수 있다. 비디오 인코더(250)는, 마지막 프레임(364'F30)과 같은 하나의 선택된 프레임을 제외하고, 프레임들(364') 사이에 비교적 균등하게 코딩 비트 레이트의 양들을 할당할 수 있다. 다른 예외는 GOP(362A')의 P 프레임들에 비해 I 프레임에 추가적 비트들을 할당하는 것일 수 있다. 대안적으로, 다양한 비트 레이트 할당 방식들 중 임의의 방식에 따라, GOP(362A')의 프레임들(364')에 상이한 비트 레이트들이 할당될 수 있지만, 프레임들(364') 중 하나의 선택된 프레임은, 선택되지 않았다면 프레임들(364') 중 선택된 프레임에 할당되었을 비트 레이트를 오버라이드하는 감소된 비트 레이트로 선택적으로 인코딩될 수 있다.
예시로서, 비디오 인코더(250)는 프레임(364'F1)과 같은, GOP(362A')의 시작에 있는 I 프레임에 X 비트들을 할당할 수 있고, 선택된 프레임을 제외하고 GOP(362A')의 프레임들(364') 중 P 또는 B 프레임들 각각에 Y 비트들을 각각 할당할 수 있고, 선택된 프레임(예를 들어, 마지막 프레임(364'F30))에 Z 비트들을 할당할 수 있고, 여기서, Y는 X 미만이고, Z는 Y 미만이고, Z는 송신기 침묵 인터벌의 적용을 지원하기 위한 널 바이트들(372)의 삽입을 위해, 선택된 프레임(364'F30)에 빈 공간을 제공하도록 선택된다. 다른 예들에서, GOP(362A')의 프레임들(364') 중 P 또는 B 프레임들에 동일한 고정된 양들의 비트들을 적용하는 것 대신에, 전술한 바와 같이, 비디오 인코더는 예를 들어, 텍스쳐, 복잡도, 모션, 채널 조건들 등에 기초하여, 상이한 양들의 비트들을 할당하기 위해 다양한 프레임 레벨 레이트 제어 방식들 중 임의의 방식을 적용할 수 있다.
그러나, 각각의 경우, 전송 스트림(370)의 TS MUX(312)(또는 다른 애플리케이션 계층 MUX)에 의한 널 바이트들(372)의 삽입을 위한 빈 공간을 제공하기 위해, 프레임(364')의 적어도 하나는 프레임들(364')의 다른 프레임에 비해 감소된 비트 레이트를 갖도록 선택될 수 있다. 다시, 프레임들(364') 중 선택된 프레임은 GOP(362A')의 마지막 프레임(364'F30)이거나, GOP(362A')의 프레임들(364') 중 몇몇 다른 프레임일 수 있다. 다른 예들에서, 송신기 침묵 인터벌의 적용을 지원하기 위한 널 바이트들(372)의 삽입을 위한 공간의 누적량을 제공하기 위해, GOP(362A')의 프레임들(364') 중 다수의 프레임들이 감소된 코딩 레이트들을 가질 수 있다. 또한, 스펙트럼 센싱이 초 당 한번보다 많이 수행되는 것이 바람직하면, 널 바이트들(372)에 대한 빈 공간을 제공하기 위해, GOP(362A')의 프레임들(364') 중 다수의 프레임들은 감소된 비트 레이트로 인코딩될 수 있다. 다수의 경우들에, 초 당 오직 하나의 송신기 침묵 인터벌이 필요하도록, 초 당 한번의 스펙트럼 센싱 동작이 충분할 수 있다. 몇몇 예들에서, 스펙트럼 센싱은 매 초마다 수행되지 않을 수 있고, 오히려 n 초 인터벌들로 수행될 수 있으며, 여기서, n은 적용가능한 규정들에 의해 요구되는 바와 같이, 분 당 적어도 한번의 스펙트럼 센싱을 허용하도록 통상적으로 60 미만의 미리 결정된 수이다.
도 22를 더 참조하면, 도 22의 예에서 374A 내지 374T로 표기된 Sym Rate 스트림의 화살표들은, 예를 들어, RS, 인터리버 및 채널 코딩 동작들을 갖는 변조기에 대한 데이터 스트림의 데이터 필드들에 대한 필드 동기들(374A 내지 374T)("필드 동기들(374)")을 표시한다. 개별 필드 동기들(374)을 표기하기 위한 문자들의 이용은 필드 동기(374)의 실제 수를 표시하도록 의도되지 않는다. 즉, 필드 동기(374Q)가 17번째 필드 동기를 표시하는 것이 아닌 것처럼 필드 동기(374E)는 반드시 5번째 필드 동기를 표시하는 것이 아니다. 오히려, 본 명세서 전체에서, 문자들은 일반적으로 하나의 엘리먼트가 다른 엘리먼트로부터 구별될 수 있도록 사용된다. 결과적으로, 개별 엘리먼트들을 표기하기 위한 문자들의 사용은, 문맥에서 이러한 구성이 적절한 것으로 표시하지 않으면, 다른 유사하게 라벨링된 엘리먼트들에 대한 포지션 또는 위치를 표시하는 것으로 해석되어서는 안된다. 상이한 예들에서는 블랭킹 인터벌들을 위해 더 크거나 더 작은 지속기간들이 이용될 수 있다.
임의의 이벤트에서, 프레임(364')에는 빈 공간(376)(도 22의 예에서 말소(X-out) 영역으로 표시됨)이 후속하고, 빈 공간(376)은 멀티플렉싱된 MPEG-2 TS(370)로 전파되고 널 TS 패킷들(372)의 도입을 위한 공간을 제공한다. 더 상세하게는, 변조기(320) 및 비디오 인코더(250)는 전술한 바와 같이, 침묵 트리거링 펄스(378) 및 임의의 필요한 오프셋들에 의해 동기화될 수 있다. TX MUX(312)(또는 도 18의 전송 인코더(258))는 TS 데이터 스트림(370)에 널 TS 패킷들(372)("Null TS Pkts(372)")을 삽입함으로써 침묵 트리거링 펄스(378)에 응답할 수 있다. 널 TS 패킷들(372)은 비디오 인코더(250)로부터 멀티플렉서를 통해 전파된 빈 공간(376)과 일치한다.
TS(370)가 변조기(320)에 의해 요구되는 레이트를 지원하기에 충분한 레이트로 실행되고 있지 않으면, 전송 인코더(258) 또는 TS MUX(312)와 같은 애플리케이션 계층 MUX는 통상적인 과정으로 널 바이트들을 도입할 수 있다. 그러나, 이 예에서, 전송 인코더(258) 또는 TS MUX(312)는 제어된 방식으로 널 TS 패킷들(372)로서의 널 바이트들을 데이터 스트림의 비교적 정확한 위치에 삽입하고 있고, 이 위치는 인코딩된 비디오 데이터(360)의 빈 공간(376) 및 변조기(320)의 송신 침묵 인터벌 모두와 일치한다. 변조기(320)는 결과적 데이터 스트림을 변조하여 Sym 레이트 스트림(380)을 생성하고, 널 데이터(382)(도 22의 예에서는 Sym 레이트 스트림(380)에 도시된 말소 영역)는 전송 스트림(370)의 널 TS 패킷들(372)에 대응한다. 송신기는 8 밀리초/초의 듀티 사이클로 턴온 및 턴오프될 수 있다. 더 상세하게는, 송신기는 변조기(320)로부터의 Sym 레이트 데이터 스트림(380)의 널 데이터(282)에 대응하는 시간에 턴오프될 수 있다. 널 데이터는 또한, 잉여 데이터 또는 디코딩 프로세스에 비필수적인 다른 데이터와 같은 다른 유형들의 비필수적 데이터로 대체될 수 있다.
도 22에 더 도시된 바와 같이, 예를 들어, 8 ms를 초과하는, 송신기의 더 큰 OFF 지속기간들이 가능할 수 있다. 예를 들어, 6 ms 내지 10 ms 길이의 송신기 침묵 인터벌이 사용될 수 있다. 일반적으로, 이 예에서 비디오 버퍼링 검증기(VBV) 버퍼에 대한 현저한 변경들은 필요없을 수 있다. 또한, 다양한 예들에서, 이 적응형 비디오 인코딩 기술의 적용에 의해 레이턴시 영향이 거의 없거나 전혀 없고, 유효 데이터 손실이 없을 수 있다. 빈 공간은 송신기 침묵 인터벌 동안 널 바이트들 또는 데이터(382) 및 송신기 OFF 상태와 정렬된다. 그 결과, 스펙트럼 센싱 동작을 수행하기 위해 유효 데이터가 거의 희생되지 않거나 전혀 희생되지 않는다.
도 23은 적응형 비디오 인코딩을 이용하는 송신기 침묵의 다른 예를 도시하는 타이밍도이다. 도 23은, 물리 계층 MUX(예를 들어, 변조기와 연관된 MUX)가 비필수적 데이터를 도입하는 시나리오와 일치할 수 있다. 도 23은, 스펙트럼 센싱 동작 동안 송신기를 블랭킹 또는 침묵시키기 위한, 11 Mbps의 감소된 비트 레이트인 비디오 인코딩, 192 kbps인 오디오 인코딩, 12 Mbps의 감소된 비트 레이트인 MPEG-2 TS, 32.28 Mbps의 심볼 레이트(Sym Rate)인 변조, 및 초당 8 밀리초의 듀티 사이클인 송신기(TX)의 선택적 비활성화에 대한 타이밍을 도시한다. 일반적으로, 도 23은 도 22의 예와 유사하지만, 애플리케이션 계층 MUX보다는 물리 계층 MUX가 널 데이터 또는 다른 비필수적 데이터를 도입하는 시나리오를 도시한다. 이 예에서, 감소된 비트 레이트는 비디오 인코더에서 GOP(362A'')의 프레임들(364''F1 내지 364''F30)("프레임들(364)")의 전부 또는 대부분에 적용되어, 도 20의 예에 도시된 변조기(320)와 같은 변조기가 TS(370)의 다양한 위치들에 생성된 빈 공간 내에 송신기 침묵 인터벌을 위한 널 바이트들(382)을 삽입할 수 있다. 프레임들(364'')은 도 21의 예에 도시된 프레임들(364)과 포맷 및 구조에서 유사할 수 있지만, 컨텐츠 또는 다른 양상들에서 상이할 수 있다. 적응형 비디오 코딩 및 널 바이트들(382)은, 예를 들어, 스펙트럼 센싱 듀티 사이클에 따라, 모든 GOP(362A'', 362B'') 등(설명의 편의를 위해 도 23에 도시된 이 GOP들(362A'', 362B'') 뿐만 아니라 도 23에는 명시적으로 도시되지 않은 GOP들(362'') 모두를 캡쳐하기 위해 총괄적으로 GOP(362'')로 지칭될 수 있음)에 적용되거나 몇몇 GOP들(362'')에 선택적으로 적용될 수 있고, 다른 GOP들에는 적용되지 않을 수 있고, 스펙트럼 센싱 듀티 사이클은 모니터링되는 조건들 또는 시스템 파라미터들에 따라 또는 사용자 제어 하에서 시간에 따라 변할 수 있다.
도 23의 예에서, 적응형 비디오 인코딩은 모든 프레임들(364'')의 인코딩에 감소된 비트 레이트를 적용하도록 수행된다. 그 결과, GOP(362A'')의 각각의 프레임은 변조기(320)에 의한 널 패킷들(372)의 삽입을 위한 빈 공간을 생성한다. 일반적으로, 특정한 위치에 널 바이트들을 배치하기 위해, 도 18의 예에 도시된 비디오 인코더(250)와 같은 비디오 인코더와 변조기(320)를 동기화시킬 필요는 없다. 대신에, 프레임들(364'') 중 하나의 선택된 프레임 대신에 프레임들(364'') 중 다수의 프레임들이 TS 데이터 스트림에 빈 공간을 도입하기 때문에 널 바이트들의 삽입을 위해 다수의 위치들이 존재한다. 전술한 바와 같이, 감소된 비트 레이트 코딩은 GOP(362A'')의 모든 프레임들(364'') 또는 GOP(362A'')의 상당수의 프레임들(364'')에 적용될 수 있고, GOP(362A'')의 프레임들(364'')의 초기 I 프레임은 예외가 가능하다. 또한, 프레임들(364'')의 각각에 할당되는 비트 레이트의 양은 동일하거나 상이할 수 있다. 그러나, 프레임들(364'')의 전부 또는 대부분이 송신기 침묵을 위한 널 바이트들(382)의 삽입을 허용하기 위해 빈 공간의 적어도 최소량을 제공하는 것이 바람직할 수 있다.
도 22의 예에서와 같이, 도 23의 예는, 예를 들어, 8 ms를 초과하는, 송신기의 더 큰 OFF 지속기간들을 허용할 수 있다. 예를 들어, 6 ms 내지 10 ms 길이의 송신기 침묵 인터벌이 사용될 수 있다. 일반적으로, 이 예에서 비디오 버퍼링 검증기(VBV) 버퍼에 대한 현저한 변경들은 필요없을 수 있다. 또한, 다양한 예들에서, 이 적응형 비디오 인코딩 기술의 적용에 의해 레이턴시 영향이 거의 없거나 전혀 없고, 유효 데이터 손실이 없을 수 있다. 다시, 빈 공간은 공통 클럭을 통해, 송신기 침묵 인터벌을 위한 송신기 OFF 상태 및 널 바이트들과 정렬 또는 동기화되어, 스펙트럼 센싱 동작을 수행하기 위해 유효 데이터가 거의 희생되지 않거나 전혀 희생되지 않는다.
도 23에 도시된 제 1 적응형 비디오 코딩 기술은 데이터의 손실없이 송신기 침묵을 쉽게 지원할 수 있지만, 인코딩 비디오(360)의 감소된 데이터 레이트(예를 들어, 11 Mbps) 및 결과적인 TS(370)(예를 들어, 12 Mbps에서)는 비디오 품질의 관점에서 성능에 영향을 줄 수 있다. 감소된 비트 레이트들의 사용은 TS(370)에서의 통합을 위해 비디오 인코더(250)로부터의 데이터를 버퍼링할 필요성을 회피 또는 감소시킬 수 있다. 11 Mbps는 720P에서 HD 비디오를 지원하기 위한 대략적인 최소 레벨일 수 있지만, 인코딩된 비디오(360)를 위해 더 높은 비트 레이트를 제공하는 것이 바람직할 수 있다. 몇몇 예들에서, 비디오 인코더(250)와 같은 인코더의 입력 버퍼 깊이가 증가되면, 송신기 침묵에 기인한 데이터의 손실을 여전히 회피하면서 비디오 코딩 비트 레이트가 증가될 수 있다. 이 변형은 어느 정도의 레이턴시를 추가시킬 수 있지만, 침묵 기간을 1 데이터 필드(예를 들어, 연속적 필드 동기들에 의해 정의되는 24.02 초)보다 작은 널 바이트 세그먼트 내로 여전히 유지하면서 향상된 품질을 제공할 수 있다. 따라서, 예를 들어, 인코더에서, 2개, 3개 또는 그 이상의 프레임들을 수용하기 위한 증가된 버퍼 깊이는 더 높은 비디오 인코딩 비트 레이트들을 갖는 구현을 지원할 수 있다. 비디오 클립 재생(playback)의 경우, 추가된 레이턴시는 용인가능할 수 있다. 온라인 게임과 같은 더 인터랙티브(interactive)한 미디어 애플리케이션들의 경우, 추가된 레이턴시는 바람직하지 않을 수 있다. 따라서, 상이한 미디어 애플리케이션들에 대해, 및 그에 따라 적용될 수 있는 상이한 버퍼 깊이 세팅들에 대해, 레이턴시와 품질 사이에 상이한 트레이드오프들이 존재할 수 있다. 몇몇 경우들에서, 버퍼 깊이들 및 인코딩 파라미터들은 멀티미디어 복조, 디코딩 및 재생에서의 레이턴시를 제어하도록 조정될 수 있다. 몇몇 경우들에서, 버퍼 깊이들 및/또는 인코딩 파라미터들은 송신 블랭킹의 존재 시에도 원하는 레이턴시를 달성하도록 구성될 수 있다(또는 가능하게는 동적으로 조정될 수 있다). 예를 들어, 송신 블랭킹은 복조, 디코딩 및 재생에 추가적 레이턴시를 추가시킬 수 있고, 본 명세서의 기술들은, 레이턴시를 감소시키기 위해, 버퍼 깊이 세팅 및/또는 인코딩 파라미터들에서의 대응하는 변경들에 의해 이 추가적 레이턴시를 고려할 수 있다.
도 24는 송신 침묵 인터벌들(398A 내지 398C)과 동기화된 잡다한 데이터(396A, 396B)(이 예에서는 널 데이터)에 의해 분리되는 영상들의 다수의 그룹들(394A, 394B)에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림(390)을 도시하는 도면이다. GOP(394A) 및 잡다한 데이터(396A)의 하나의 특정한 예(399)가 또한 도시되어 있다. 잡다한 데이터가 도 24에 "널 데이터"로 라벨링되어 있지만, 잡다한 데이터는 본 명세서에서 설명되는 비필수적 데이터를 포함할 수 있다. 도 25는, 송신 침묵 인터벌들(398A 내지 398C)과 동기화된 잡다한 데이터(404A, 404B)에 의해 분리되는 다수의 씬들(402A, 402B)에 대한 데이터 컨텐츠를 포함하는 예시적인 데이터의 스트림(400)을 도시하는 도면이다. 도 24 및 25 각각은, 스펙트럼 센싱을 허용하기 위해 송신기가 턴오프(Tx OFF)되는 송신기 침묵 인터벌들(398A 내지 398C)과 실질적으로 동기화된 널 데이터(397)를 갖는 송신 데이터 스트림(390/400)을 생성하기 위해, 영상들의 그룹(394A, 394B/402A, 402B)에 대한 인코딩된 비디오 데이터(391/401)의, 전송 스트림 멀티플렉싱(393) 및 변조(395)를 통한 전파를 도시한다. 도 24의 예에서, 널 데이터(397)는 영상들의 그룹(GOP) 각각의 말단에 배치된다. 도 25의 예에서, 널 데이터(397)는 씬 변경 경계와 정렬된 각각의 영상들의 그룹(GOP)의 말단에 배치되어, 각각의 씬에 대한 GOP의 인코딩된 비디오 데이터(401)는 송신기 침묵을 지원하기 위한 널 데이터(397)에 의해 분리될 수 있다. 각각의 GOP는 다수의 P 또는 B 프레임들 및 널 데이터의 세그먼트가 후속하는 I 코딩된 프레임에 의해 특징지어질 수 있다.
일반적으로, 전술한 각각의 적응형 비디오 코딩 기술들의 경우, 변조기(320)와 같은 변조기는, 널 바이트들(382)과 같은 널 바이트들을 이용하여 송신기를 효과적으로 침묵 또는 블랭킹하기 위해, 도 22, 23의 예들에 도시된 필드 동기들(374)과 유사할 수 있는 필드 동기들(418) 및 인터리버 블록들을 트래킹하도록 구성될 수 있다. 도 26은, 침묵 트리거링 펄스(412)에 응답하여, 도 20의 예에 도시된 변조기(320)와 같은 변조기에 의한 널 바이트들(410A 내지 410C)(또한, "널 바이트들(410)" 또는 "널 데이터(410)"으로 지칭될 수 있음)의 삽입의 일예를 도시하는 타이밍도이다. 널 바이트들(410)은 널 바이트들(382)과 실질적으로 유사할 수 있다. 마찬가지로, 침묵 트리거링 펄스(412)는 도 21, 22의 예들에 도시된 침묵 트리거링 펄스(378)와 유사할 수 있다. 도 26에 도시된 바와 같이, 침묵 트리거링 펄스(412)에 응답하여, 변조기(320)는 버퍼(416)에서 전송 스트림 데이터(414)의 버퍼링을 시작할 수 있고, 변조기(320)의 데이터 인터리버(328)와 같은 인터리버를 플러시(flush)하기 위해, 대응하는 필드 동기(418) 이후의 널 데이터(410A)의 리딩 4 ms 세그먼트를 데이터 스트림(414)에 삽입할 수 있다. 인터리버(328)를 4 ms 널 세그먼트(410A)로 플러싱할 때, 변조기(320)는 예를 들어, 6 내지 10 ms(도 26의 예에서는 10 ms) 동안 송신기를 선택적으로 턴오프시킬 수 있다. 따라서, 이 예에서, 송신기 블랭킹은 물리 계층 동기화 마커들(예를 들어, 필드 동기들) 사이에서 발생하고, 이것은, 데이터 손실을 회피하게 하고, 복조기 및 디코더 측에서의 동기화의 상실을 회피하게 하고, 낮은 디코딩 및 복조 레이턴시를 유지하게 하기 위해 바람직하다.
변조기(320)는, 송신기로 하여금 송신기 침묵 인터벌(418) 동안 송신을 침묵시키도록 하기 위해, 제로 값의 비트들의 형태로 널 데이터(410B)를 송신기에 제공함으로써 송신기를 턴오프시킬 수 있다. 몇몇 예들에서, 변조기(320)는, 바람직하지 않을 수 있는, 송신기의 급격한 턴오프 및 RF의 순시 동작의 생성을 방지하기 위해, 레벨에서 점진적으로 감소되는 일련의 널 값들을 삽입할 수 있다. 다음으로, 송신기는 송신기 침묵 인터벌(418)의 지속기간 동안 턴오프될 수 있다. 송신기 침묵 인터벌(418) 동안, 어떠한 유효 데이터도 송신되지 않고, 식별된 데이터가 통신 시스템에 의한 사용을 위해 이용가능한지 여부를 결정하기 위해 스펙트럼 센싱이 활성화될 수 있다.
송신기 침묵 인터벌(418)(또한, 도 26의 예에서는 "TX OFF"로 도시되어 있음) 이후, 변조기(320)는 선택적으로, 널 데이터(410C)의 트레일링 세그먼트를 데이터 스트림에 삽입할 수 있다. 트레일링 널 세그먼트(410C)는, 예를 들어, 4 ms, 8 ms, 또는 12 ms 길이일 수 있다. 몇몇 예들에서, 트레일링 널 세그먼트(410C)는 송신기 침묵 인터벌(418)과 데이터의 재개(414) 사이에 가드 세그먼트를 제공할 수 있다. 그러나, 이 가드 세그먼트는 불필요할 수도 있다. 송신기 침묵 인터벌(418) 이후, 또는 선택적인 트레일링 널 세그먼트(410C) 이후, 변조기(320)는 버퍼로부터 버퍼링된 데이터(414)의 삽입을 재개할 수 있고, 전송 데이터 스트림의 프로세싱을 계속할 수 있다.
도 26에 도시된 바와 같이, 이 예에서, 송신기 침묵 동작은 2개의 연속적 필드 동기들(418) 사이의 데이터 필드, 즉, 대략 24.02 ms의 데이터 필드 내에서 달성될 수 있다. 다시, 침묵 트리거링 펄스의 생성을 위한 대략 1 초를 타이밍하기 위해 42개의 필드 동기들이 이용될 수 있다. 일반적으로, PCR 지터 공차를 온전하게 유지하는 것을 보장하기 위해, 소정의 최대 시간보다 작은 송신기 침묵 인터벌(418)을 이용하는 것이 바람직할 수 있다. ATSC 시스템에서, 송신기 침묵 인터벌(418)을 위한 최대 시간은 대략 10 ms일 수 있다. 이 방식으로, 송신기 침묵 인터벌(418)을 10 ms 미만으로 유지함으로써, 버퍼링된 데이터(414)는 진부하게 되지 않는다. 오히려, 이 제한된 시간 기간에 의해, 데이터(414)는 유효하게 유지되고 PCR 공차가 충족된다. 예를 들어, 도 26에서, PCR1과 PCR2와 연관된 패킷 타임스탬프들 사이의 갭은, PCR 공차의 위반을 회피하도록 충분히 작아서, 적절한 디코더 동작을 보장한다.
전술한 적응형 비디오 코딩 기술들에 부가하여, 본 명세서는, 스펙트럼 센싱을 위한 송신 침묵 동작들을 이용하게 하는 시스템에서 성능을 지원 또는 유지하기 위한 레이턴시 감소 기술들을 고려한다. 본 명세서에서 설명되는 바와 같은 통신 시스템의 종단간 레이턴시는 미디어 소스와 미디어 출력 디바이스 사이의 다양한 컴포넌트들의 기여(contribution)들에 의해 특징지어질 수 있다. 송신 침묵 인터벌이 주기적으로 추가되는 경우, 특히, 게임 또는 다른 인터랙티브 미디어 애플리케이션들과 같은 레이턴시-민감 애플리케이션들의 경우에 레이턴시는 성능에 대한 그의 영향의 관점에서 더 현저한 고려사항이 될 수 있다.
소스와 출력 사이의 레이턴시 기여들은 하기 컴포넌트들, 즉, 송신측에서의, 미디어 소스, 프론트-엔드 스케일링 및 포맷팅, 비디오 인코더, 멀티플렉서, 변조기 및 RF 송신기, 그리고 수신측에서의, RF 수신기, 복조기, 디멀티플렉서, 비디오 디코더, 후처리 유닛, 및 디스플레이 프로세싱 유닛에 의해 도입되는 지연들의 합일 수 있다. 변조기에서의 인터리빙 및 복조기에서의 디인터리빙은 각각 4 ms 지연을 도입시킬 수 있다. 인코더 및 디코더와 연관된 프레임 버퍼들은 추가적 지연을 도입시킬 수 있다. 상당한 버퍼 지연을 회피하기 위해, 인코더 및 디코더가 1 초 클럭에 동기화되게 하는 것이 바람직할 수 있다.
이 시스템에서 레이턴시를 감소시키기 위한 기술의 예는, 30 fps 인코딩 대신에, 초 당 60의 프레임(fps)(또는 그 이상)의 인코딩으로 스위칭하는 것일 수 있다. 이 경우, 비디오 인코더는 33 ms 프레임들 대신에 오직 17 ms 프레임들만을 버퍼링한다. 프레임 버퍼가, 더 큰 초 당 프레임의 레이트를 갖는 오직 하나의 데이터 프레임을 저장하도록 설계되면, 더 낮은 프레임 당 시간이 존재하여 개별 프레임들의 프로세싱 시에 레이턴시를 감소시킨다. 따라서, 레이턴시를 감소시키기 위한 기술로서, 비디오 인코더 및 디코더는 프레임들을 더 높은 프레임 레이트로 코딩하도록 구성될 수 있다. 이러한 레이턴시 감소들은 송신 블랭킹과 함께 수행될 수 있고, 적응형이거나 일정할 수 있다.
레이턴시를 감소시키기 위한 다른 예시적인 기술로서, 인코딩 프로세스가 모션 추정 및 다른 인코딩 프로세스들을 개시하기 위해 전체 프레임의 로딩을 대기할 필요가 없도록, 비디오 인코더는 1/2 프레임들 또는 다른 부분적(즉, 일부(fractional)) 프레임들을 인코딩하도록 구성될 수 있다. 비디오 인코더는, 레퍼런스 프레임 또는 프레임들의 대응 부분들에 관한, 코딩될 프레임의 일부 부분들에 대한 P 또는 B 코딩에 대한 모션 추정을 증분적으로 수행하기 위해 일부 프레임들을 이용할 수 있다. I 코딩은 또한, 전체 프레임들보다는 프레임들의 일부 부분들에 대해 적용될 수 있다. 슬라이스들이 프레임의 인접 부분들에 대응하도록 배열되면, 버퍼는 데이터의 슬라이스를 프레임의 일부 부분으로서 저장하도록 구성될 수 있다. 또한, 이러한 레이턴시 감소들은 송신 블랭킹과 함께 수행될 수 있고, 적응형이거나 일정할 수 있다.
또 다른 예시적인 기술로서, 비디오 인코더는, 인코더 영상 버퍼가 오직 단일 프레임만을 저장하게 제한하도록 구성될 수 있다. 이 방식으로, 소정의 프레임의 인코딩을 계속하기 전에 다수의 프레임들을 갖는 버퍼를 로딩할 필요가 없다. 이 변형에 의해, 양방향 예측 코딩, 즉, B 코딩을 제거하는 것이 바람직할 수 있다. 몇몇 예들에서, B 코딩의 제거는, 인코더 영상 버퍼가 오직 하나의 버퍼만을 포함하도록 변형되게 할 수 있어서, 레이턴시가 감소될 수 있다. 이 경우, I 및 P 코딩은 허용될 수 있지만, B 코딩은 제거될 수 있다. 몇몇 예들에서, 인코더가 스펙트럼 센싱 및 연관된 송신기 침묵 인터벌들을 요구하는 미디어 애플리케이션과 함께 이용되는 경우, 인코더는, B 코딩을 선택적으로 제거하고, 오직 I 및 P 코딩만을 이용하도록 구성될 수 있다. 대안적으로, 인코더는 B 코딩을 제거하는 고정 구성을 가질 수 있다.
본 명세서는, 본 명세서에서 설명되는 바와 같은 미디어 통신 시스템에서 스펙트럼 센싱, 인코딩 및 변조의 조정된 동기화를 위한 전략들을 추가로 고려한다. 도 27은 미디어 통신 시스템(420)에서 스펙트럼 센싱, 인코딩 및 변조의 조정된 동기화를 도시하는 블록도이다. 특히, 도 27은 스펙트럼 센서(422), 인코더(424), 변조기(426) 및 제어기(428)를 도시한다. 조정된 동기화를 지원하기 위해, 제어기(428)는, 스펙트럼 센서(422), 인코더(424) 또는 변조기(426) 중 임의의 것으로부터의 제어, 상태 및/또는 타이밍 신호들에 응답하도록 구성될 수 있다. 인코더(424)는, 비디오 인코더, 오디오 인코더, 이미지 인코더, 오디오와 비디오 인코더들의 조합들, 또는 임의의 멀티미디어 인코더 또는 이들의 조합들을 포함할 수 있다. 몇몇 예들에서, 제어기(428)는, 스펙트럼 센싱, 널 바이트 생성 및/또는 송신 침묵을 동기화시키기 위해, 예를 들어, 스펙트럼 센서(422), 인코더(424) 또는 변조기(426) 중 하나에 응답하여, 스펙트럼 센서(422), 인코더(424) 또는 변조기(426) 중 다른 것들을 제어하기 위해 대략 초 당 1 펄스를 생성할 수 있다.
예를 들어, 제어기(428)는, 스펙트럼 센서(422), 인코더(424) 또는 변조기(426)로부터의 이러한 신호들에 응답하여, 다른 유닛들(즉, 스펙트럼 센서(422), 인코더(424) 또는 변조기(426))에 통신하기 위한 제어, 상태 또는 타이밍 신호들(430)을 생성할 수 있다. 예시로서, 제어기(428)는, 인코더(424)로부터 신호들을 수신하고, 이 신호들에 응답하여, 변조기(426) 및 스펙트럼 센서(422)를 제어하기 위해 송신되는 신호들(430)을 생성하도록 (예를 들어, 정적으로 또는 프로그래밍가능하게) 구성될 수 있다. 이 경우, 제어기(428)가 인코더(424)에 응답한다는 점에서, 제어는 비디오- 또는 미디어-중심(centric)이다. 비디오 인코더(424)는 널 바이트들의 배치를 표시하는 제어, 상태 및/또는 타이밍 신호들(430)을 제공할 수 있다. 다음으로, 제어기(428)는, 인코더(424)로부터의 널 바이트들을 (변조기(426)에 제공된 멀티플렉싱된 전송 스트림을 통해) 변조기(426)의 변조된 데이터 스트림에 배치하는 타이밍과 실질적으로 일치하는 시간에, 송신 블랭킹 인터벌을 활성화시키고 스펙트럼을 센싱하기 위해 각각 변조기(426) 및 스펙트럼 센서(422)를 제어할 수 있다.
대안으로, 제어기(428)는, 예를 들어, 변조기(426)에 의해 적용될 송신 침묵 인터벌의 타이밍을 표시하는, 변조기(426)로부터의 신호들에 기초하여 인코더(424) 및 스펙트럼 센서(422)를 제어하는 점에서, 변조기-중심으로 구성될 수 있다. 또 다른 대안으로, 제어기(428)는, 예를 들어, 백색 공간 채널들을 센싱하도록 스펙트럼 센서(422)가 활성이 될 인터벌들의 타이밍을 표시하는, 스펙트럼 센서(422)로부터의 신호들에 응답하여, 인코더(424) 및 변조기(426)를 제어하는 점에서, 스펙트럼 센서-중심으로 구성될 수 있다. 각각의 경우, 전체 ATSC 동작은, 스펙트럼 센싱, 송신 침묵, 및 변조된 데이터 스트림으로, 인코더로부터의 널 바이트들의 전파의 타이밍을 조정하도록 동기화될 수 있다.
도 27의 미디어 통신 시스템은, 임의의 다양한 프로세싱 하드웨어를 포함할 수 있고, 프로세싱 하드웨어는 이러한 전략들에 따른 제어를 구현하기 위해 소프트웨어 또는 펌웨어에 의해 고정되거나 프로그래밍될 수 있다. 전술한 예들 중 몇몇에서, 변조기(426)로부터의 필드 동기들은 침묵 트리거링 펄스를 생성하기 위해 이용될 수 있다. 이 점에서, 센싱, 인코딩 및 변조의 동기화는 적어도 부분적으로 변조기-구동인 것으로 고려될 수 있다. 이 경우, 침묵 트리거링 펄스는 필드 동기들에 기초하여 주기적으로 생성될 수 있고, 인코더에서 GOP를 변조기(426)에서의 필드 동기에 대해 정렬시키기 위해, 그리고, 송신기 침묵 인터벌 동안의 시간에 스펙트럼 센싱의 활성화를 트리거링하기 위해, 변조기 및 송신기에서의 송신기 침묵 인터벌을 트리거링하도록 이용될 수 있다. 조정된 동기화는 하나 이상의 공통 클럭들 또는 유도된 클럭 신호들을 통해 달성될 수 있다.
다른 예들에서, 스펙트럼 센싱, 인코딩 및 변조의 동기화는 인코더-구동일 수 있다. 이 경우, 침묵 트리거링 펄스들을 생성하는데 이용된 클럭은 비디오 프레임 및 GOP 타이밍에 기초하여 생성될 수 있다. 예를 들어, 인코더(424)는, 비디오 데이터 스트림의 널 시간들에서의 더 최적인 또는 이상적인 포지셔닝에 기초하여, 레이트 제어, GOP 구조들, 씬 변경 경계들 등을 변경하고, 다음으로, 비디오 코딩 타이밍과 변조기 동작을 동기화시키는데 이용될 수 있는 타이밍 마커들을 생성하도록 구성될 수 있다. 특히, 널 바이트들은 인코딩된 비디오 데이터 스트림에 직접 배치될 수도 있고, 또는 성능 또는 품질에 대한 더 적은 방해의 관점에서 널 배치가 바람직할 수 있는 비디오 데이터 스트림의 부분들이 식별될 수 있다. 인코더(424)는, 널 바이트들의 삽입을 위한 빈 공간을 제공하기 위해 식별된 부분들을 선택적으로 인코딩하거나, 널 바이트들을 이 부분들에 직접 인코딩할 수 있다. 다음으로, 인코더(424)에 의해 선택되는 널 부분들은, 널 위치들에 대응하는 시간들에 송신기 침묵 인터벌의 적용을 위한 널 바이트들의 삽입을 트리거링하기 위해, 변조기(426)로의 통신을 위한 타이밍 마커들을 생성하는데 이용될 수 있다. 다음으로, 스펙트럼 센서(422)는 송신기 침묵 인터벌 동안 스펙트럼을 센싱하도록 트리거링될 것이다. 다른 예들에서, 비필수적 데이터(예를 들어, 널 데이터 또는 잉여 데이터)는, 인코더(424)에 의한 비트스트림에 인코딩되거나, 인코더(424)와 연관된 애플리케이션 계층 MUX를 통해 애플리케이션 계층 비트스트림에 삽입되거나, 또는 변조기(426)와 연관된 물리 계층 MUX를 통해 물리 계층 비트스트림에 삽입될 수 있다.
추가적 예들에서, 스펙트럼 센싱, 인코딩 및 변조의 동기화는 스펙트럼 센서(422)에 의해 구동될 수 있다. 이 경우, 침묵 트리거링 펄스들을 생성하는데 이용되는 클럭은, 미리 결정되거나 동적으로 생성되는 스펙트럼 센싱 활성화 시간들에 기초하여 생성될 수 있다. 스펙트럼 센서 타이밍으로부터 유도되는 이 침묵 트리거링 펄스들은 송신기 침묵 인터벌을 위한 널 바이트들의 삽입을 트리거링하도록 변조기(426)에(또는 인코더(424)에) 제공될 수 있다. 또한, 스펙트럼 센서 타이밍으로부터 유도되는 침묵 트리거링 펄스들은, 물리 계층에서 변조기(426)와 연관된 MUX에 의한, 또는 애플리케이션 계층에서 인코더(424)와 연관된 MUX에 의한 널 바이트들의 삽입을 위한 빈 공간을 제공하기 위해, 인코딩된 비디오 데이터 스트림의 대응하는 부분들을 선택적으로 인코딩하는 적응형 비디오 코딩에서의 이용을 위해 인코더(424)에 제공될 수 있다. 인코더(424) 및 변조기(426)는 스펙트럼 센서(422)와 동기화될 수 있다. 대안적으로, 인코더(424) 또는 변조기(426) 중 첫번째 것이 스펙트럼 센서(422)와 동기화될 수 있고, 인코더(424) 또는 변조기(426) 중 두번째 것은 인코더(424) 또는 변조기(426) 중 첫번째 것으로부터 동기화될 수 있다. 이 경우, 예를 들어, 인코더(424)는 스펙트럼 센서(422)로부터 동기화될 수 있고, 변조기(426)는 인코더(424)로부터 동기화될 수 있다. 대안적으로, 변조기(426)는 스펙트럼 센서(422)로부터 동기화될 수 있고, 인코더(424)는 변조기(426)로부터 동기화될 수 있다.
몇몇 예들에서, 상이한 파라미터들, 애플리케이션들 또는 조건들에 따라, 상이한 동기화 전력들(예를 들어, 인코더-구동, 스펙트럼 센서-구동, 또는 변조기-구동)이 선택적으로 활성화될 수 있다. 마찬가지로, 송신기(도 27에는 미도시)는 스펙트럼 센서(422)에 의해 수행되는 센싱 동작들 동안 송신기 블랭킹을 위해 동기화될 수 있다. 예를 들어, 소정의 애플리케이션 또는 사용자에 대해 비디오 품질이 가장 중요하면, 예를 들어, HD 영화들을 시청하는 경우, 예를 들어, 씬 변경 경계들, 또는 GOP의 말단과 같이 시퀀스의 다른 리프레시 포인트들에서, 인코더(424)가 널 바이트들을 위한 빈 공간을 비디오 시퀀스 내에 더 지능적으로 배치할 수 있도록, 인코더-구동 동기화 전략을 선택하는 것이 바람직할 수 있다. 예를 들어, 인터랙티브 비디오 게임을 지원하기 위해, 소정의 애플리케이션 또는 사용자에 대해 레이턴시가 가장 중요하면, 예를 들어, 과도한 버퍼링을 회피하기 위해 비디오의 감소된 레이트 코딩으로, 변조기-구동 동기화 전략을 이용하는 것이 바람직할 수 있다. 잡음 환경에 의해 센싱이 손상될 수 있다면, 보다 신뢰성 있게, 예를 들어 더 빈번할 수 있는 방식으로 스펙트럼 센싱이 수행될 수 있도록, 센서-구동 동기화 전략을 이용하는 것이 바람직할 수 있다.
다시, 본 명세서에 따라, 송신 블랭킹 인터벌에 대응하도록 널 데이터를 삽입하는 다수의 방식들이 존재한다. 일예에서, MPEG-2 인코더(290)와 같은 인코더는 널 데이터를 인코딩하도록 구성되고, 이 인코딩된 널 데이터는 물리 계층에서 널 인터벌에 대응하도록 타이밍될 수 있다. 다른 예에서, 애플리케이션 계층에서 (널 데이터 또는 잉여 데이터와 같은) 비필수적 데이터를 삽입하기 위해, (TS MUX(312) 또는 전송 인코더(258)와 같은) 애플리케이션 계층 MUX가 이용될 수 있고, 이 비필수적 데이터는 물리 계층에서의 널 인터벌에 대응하도록 타이밍될 수 있다. 비필수적 데이터가 변조기에서 물리 계층 경계에 동기화되는 한, (TS MUX(312) 또는 전송 인코더(258)와 같은) 애플리케이션 계층 MUX가 널 데이터를 삽입하기 위해 이용되는 경우는 본 명세서에서 동기화된 경우로 지칭된다.
다른 경우에서, 비필수적 데이터를 삽입하기 위해 (MUX(340)와 같은) 물리 계층 MUX가 이용될 수 있고, 이것은, 인코더가 인코더 유닛의 다운스트림에서 생성된 물리 계층 경계들과 비필수적 데이터를 동기화시킬 필요가 없는 한, 본 명세서에서는 비동기화된 경우로 지칭된다. 대신에, 변조기와 연관된 물리 계층 MUX는, 비필수적 데이터가 널 인터벌에 대응하는 것을 보장하기 위해, 비필수적 데이터를 필드 동기들 사이에 간단히 삽입할 수 있다.
TX MUX(312) 및 MUX(340) 모두가 비필수적 데이터의 삽입을 나타내지만, 비필수적 데이터의 삽입을 위한 TX MUX(312) 또는 MUX(340)의 이용은 대안적일 수도 있음을 유의해야 한다. 즉, 비필수적 데이터를 삽입하기 위해 애플리케이션 계층의 MUX(예를 들어, TX MUX(312))가 이용되거나, 비필수적 데이터를 삽입하기 위해 물리 계층 MUX(예를 들어, MUX(340))가 이용될 수 있다. 비필수적 데이터의 삽입은 통상적으로 TX MUX(312) 또는 MUX(340) 모두에서 발생하지는 않지만, TX MUX(312) 및 MUX(340) 모두에 의한 비필수적 데이터의 이러한 삽입 또한 가능하다.
이 상이한 예들은 상이한 이점들을 제공할 수 있다. 예를 들어, TX MUX(312)에 의한 비필수적 데이터의 삽입은 모든 프레임들에 대한 인코딩 레이트를 감소시킬 필요를 회피하게 함으로써 더 높은 품질의 인코딩을 제공할 수 있다. 한편, MUX(340)에 의한 비필수적 데이터의 삽입은, 이 경우, 물리 계층 경계들이 비필수적 데이터의 삽입 주위에 정의될 수 있기 때문에 구현하기에 더 용이할 수 있다. 또한, 또 다른 대안에서, 널 데이터를 인코딩하기 위해 (MPEG-2 인코더(290)와 같은) 인코더가 이용될 수 있고, 이 경우, TX MUX(312) 및 MUX(340)는 비필수적 데이터를 삽입하기 위해 필요하지 않을 수 있다. 또한, 또 다른 예에서, 비필수적 데이터를 삽입하기 위해 변조기(348)가 이용될 수 있고, 이 경우, 변조기(348)는 널 데이터를 추가하기 위해 멀티플렉서를 포함할 수 있다.
비필수적 데이터(잉여 데이터 또는 널 데이터)의 삽입을 위한 상이한 유닛들의 이용은 또한 도 7에서 인식될 수 있다. 이 예에서, 인코딩된 애플리케이션 계층에 널 데이터를 인코딩하거나 비필수적 데이터를 멀티플렉싱하기 위해 비디오/오디오 인코더들(50B)이 이용될 수 있다. 대안적으로, 비필수적 데이터를 삽입하기 위해 전송 인코더/멀티플렉서(52B) 또는 ATSC 변조기(56B)가 이용될 수 있다. 이 경우들은 도 19 및 20에 대해 논의된 경우들에 부합한다. 도 7은 또한 도 19 또는 20에 도시되지 않은 송신기(59B)를 도시한다. 몇몇 예들에서, 도 20의 출력은 도 7의 송신기(59B)와 유사한 송신기에 전달될 수 있다.
다시 도 27을 참조하면, 제어기(428)가 송신기 블랭킹을 조정할 수 있다. 제어기는, 스펙트럼 센서(422)가 무선 신호들을 센싱하는 경우 송신기가 자신의 통신을 블랭킹하는 것을 보장하기 위해, 제어 신호들(430)을 생성하여, 이를 스펙트럼 센서(422) 및 송신기(도 27에는 미도시)에 통신할 수 있다. 또한, 제어기(428)는, 송신기가 자신의 통신을 블랭킹하는 경우 비필수적 데이터가 널 인터벌에 대응하도록, 인코딩되고 변조된 비트스트림으로의 비필수적 데이터의 삽입을 조정하기 위해, 제어 신호들을 인코더(424) 및/또는 변조기(426)에 전송할 수 있다. 제어기(428)는 독립형 유닛일 수 있고, 또는 도 27에 도시된 임의의 유닛들의 일부 또는 송신기(도 27에는 미도시)의 일부로 구현될 수 있다.
적어도 하나의 시간 인터벌 동안, 송신기는 통신 디바이스로부터 임의의 데이터를 송신하는 것을 억제할 수 있고, 적어도 하나의 시간 인터벌 동안 스펙트럼 센서(422)는 스펙트럼의 임의의 채널이 사용을 위해 이용가능한지 여부를 검출할 수 있다. 이 송신기 블랭킹을 조정하기 위해, 제어기(428)는 송신기 블랭킹과 연관된 시간을 식별하는 제어 신호를 생성할 수 있다. 제어 신호에 응답하여, 송신기(도 27에는 미도시)는 통신 디바이스로부터 임의의 데이터를 송신하는 것을 억제할 수 있다.
도 28은 본 명세서의 기술에 부합하는 흐름도이다. 도 28에 도시된 바와 같이, 제어기(428)는 송신기 블랭킹과 연관된 시간 인터벌을 식별하기 위해 송신기(미도시)에 대한 제 1 제어 신호를 생성한다(502). 제어기(428)는 또한 비필수적 데이터의 삽입을 유발시키기 위해 변조기(426)에 대한 제 2 제어 신호를 생성할 수 있다(504). 제 2 제어 신호는, 시간 인터벌에 대응하는 시간에, 변조기(426)로 하여금 비필수적 데이터를 변조된 비트스트림에 삽입하게 할 수 있다. 대안적으로 또는 추가적으로, 제어기(428)는 제 3 제어 신호를 생성할 수 있고, 제 3 제어 신호는 인코더(424)에 대한 적어도 하나의 시간 인터벌을 식별한다(506). 송신기(도 27에는 미도시)는 시간 인터벌에 블랭킹될 수 있고(508), 제어기(428)로부터의 제어 신호들은, 비필수적 데이터가 송신기 블랭킹에 대응하는 시간 인터벌의 비트스트림에 삽입되는 것을 보장하기 위해 상이한 유닛들의 동작을 조정할 수 있다. 도 28의 단계들(502, 504 및 506)은 상이한 순서들로 발생할 수 있고, 단계들(502, 504 및 506) 중 2개 이상은 몇몇 예들에서는 또한 동시에 발생할 수도 있다.
따라서, 제어 신호들(430)을 생성하고 전달함으로써, 제어기(428)는, 스펙트럼 센서(422)가 무선 신호들을 센싱하는 경우 송신기가 자신의 통신을 블랭킹하는 것을 보장하기 위해, 스펙트럼 센서(422) 및 송신기(도 27에는 미도시)의 동작을 조정할 수 있다. 또한, 제어기(428)로부터의 제어 신호들은, 송신기가 자신의 통신을 블랭킹하는 경우 비필수적 데이터의 삽입이 인터벌에 따라 비필수적 데이터가 되도록 인코더(424) 및/또는 변조기(426)를 조정할 수 있다. 다시, 다른 경우들에서, 비필수적 데이터는, 이러한 데이터를 인코더(424)를 통해 인코딩함으로써, 애플리케이션 계층의 비필수적 데이터를 인코더(424)의 멀티플렉서를 통해 멀티플렉싱함으로써, 또는 물리 계층의 비필수적 데이터를 변조기(426)의 멀티플렉서를 통해 멀티플렉싱함으로써 삽입될 수 있다. 송신기 블랭킹과 비필수적 데이터의 삽입을 조정하기 위해 이용되는 제어 신호들은 이 상이한 경우들에 상이한 유닛들로 전송될 수 있다. 예를 들어, 비필수적 데이터가 인코더(424)에 의해 삽입되는 경우, 제어 신호들을 변조기(426)에 전송하는 것은 필수적이 아닐 수 있고, 비필수적 데이터가 변조기(426)에 의해 삽입되는 경우, 제어 신호들을 인코더(424)에 전송하는 것은 필수적이 아닐 수 있다. 시나리오에 따라, 도 27에 도시된 제어 신호들(430)은 예시적이고, 몇몇은 필수적이 아닐 수 있다.
도 29는 본 명세서의 기술들을 구현할 수 있는 예시적인 디바이스(450)를 도시하는 다른 블록도이다. 도 29는 본 명세서의 다수의 예들에 부합할 수 있다. 디바이스(450)는, 하나 이상의 오디오 인코더들, 하나 이상의 비디오 인코더들 및 애플리케이션 계층 MUX를 포함하는 멀티미디어 인코딩 유닛일 수 있는 멀티미디어 프로세싱 유닛(452)을 포함한다. 애플리케이션 계층 MUX는, 상이한 인코더들로부터의 데이터를 결합하고, 가능하게는 인코딩된 비트스트림에 비필수적 데이터를 추가하는데 이용될 수 있다. 일 예에서, 멀티미디어 프로세싱 유닛(452)은 도 19의 멀티미디어 통신 시스템(301)에 대응하지만, 다른 유닛들 또는 구성들 또한 본 명세서에 부합하도록 이용될 수 있다.
디바이스(450)는 또한 변조기 유닛(454)(또한 변조기로 지칭됨)을 포함한다. 변조기 유닛(454)은 물리 전송 스트림을 생성할 수 있고, 물리 계층 MUX를 포함할 수 있다. 변조기 유닛(454)의 이 물리 계층 MUX는, 예를 들어, 2개의 필드 동기들 사이에서 물리 계층 전송 스트림에 비필수적 데이터를 추가하도록 이용될 수 있다. 일예에서, 변조기 유닛(454)은 도 20의 변조기(320)에 대응하지만, 다른 유닛들 또는 구성들 또한 본 명세서에 부합하도록 이용될 수 있다. 도 29의 디바이스(450)는 또한 송신기 유닛(456)(또한 송신기로 지칭됨)을 포함하고, 송신기 유닛(456)은 본 명세서에 설명되는 바와 같은 무선 프로토콜들에 따라 통신하기 위한 무선 송신기 및 안테나를 포함할 수 있다. 또한, 도 29의 디바이스(450)는 블랭킹 제어 유닛(458)을 포함하고, 블랭킹 제어 유닛(458)은 비필수적 데이터의 삽입과 송신기 블랭킹을 조정하기 위한 제어 신호들을 전송할 수 있다. 센서 유닛(460)(또한 센서로 지칭됨)이 무선 신호들을 센싱하기 위해 이용될 수 있고, 송신기 유닛(456)은 센서 유닛(460)이 무선 신호들을 센싱하는 경우 블랭킹될 수 있다.
도 30은, 비트스트림에 비필수적 데이터를 삽입하기 위해 변조기 유닛(454)이 이용되는 경우에 부합하는 일 기술을 도시하는 흐름도이다. 이 경우, 물리 계층 MUX(물리 계층 MUX의 출력은 변조된 물리 계층 비트스트림임)가 비필수적 데이터를 삽입한다. 도 30은 또한, 변조기(320)(도 19 참조)의 MUX(340)가 비트스트림에 비필수적 데이터를 삽입하는 경우에 부합할 수 있다. 변조기(320)의 MUX(340)가 비필수적 데이터를 삽입하게 하기 위해, 멀티미디어 인코더(예를 들어, 도 19의 MPEG-2 인코더(290))는, 인코딩된 데이터가 궁극적으로 변조기(320)에 의해 출력되는 데이터 레이트보다 더 낮은 레이트 데이터가 되도록, 데이터를 감소된 레이트로 인코딩할 수 있다. 이 감소된 레이트의 인코딩은 또한 도 23에 개념적으로 도시되어 있고, 상세히 전술하였다.
도 30의 예에서, (도 29의 멀티미디어 프로세싱 유닛(452) 또는 도 19의 MPEG-2 인코더(290)와 같은) 멀티미디어 인코딩 유닛은 시간 기간에 걸쳐 프레임들의 세트를 인코딩하기 위한 인코딩 레이트를 정의할 수 있지만(512), 감소된 인코딩 레이트로 프레임들의 세트를 인코딩하는 것이, 이 시간 기간 동안 프레임들의 세트와 연관된 데이터가 인코딩되지 않는 하나 이상의 널 인터벌들을 정의하도록, 이 시간 기간에 걸쳐 프레임들의 세트를 감소된 인코딩 레이트로 인코딩할 수 있다(514). 다시, 이 감소된 인코딩은 도 23에 개념적으로 도시되어 있다. 인코딩된 프레임들은 송신기(456)를 통해 송신될 수 있고(516), 송신기(456)는 하나 이상의 널 인터벌들 동안 블랭킹될 수 있다(518). 변조기 유닛(454)은 송신기 유닛(456)에 의한 송신 이전에 그 인코딩된 데이터를 변조할 수 있다.
프레임들의 인코딩된 세트는 오디오 프레임들의 세트 또는 비디오 프레임들의 세트를 포함할 수 있다. 대부분의 경우들에서, 프레임들의 세트는 오디오 프레임들 및 비디오 프레임들의 결합된 세트를 포함한다. 이 경우, 변조기 유닛(454)의 MUX(또한 도 20의 변조기(320)의 MUX(340) 참조)가 하나 이상의 널 인터벌들 동안 비필수적 데이터를 인코딩 비트스트림에 삽입할 수 있다. 몇몇 경우들에서, 비필수적 데이터는 프레임들의 세트에 대한 잉여 데이터의 패킷들을 포함하지만, 다른 경우, 비필수적 데이터는 널 데이터를 포함한다. 후자의 경우, 널 데이터는 패킷들의 세트의 패킷 페이로드들 내에 모두 제로들을 갖는 패킷들의 세트를 포함할 수 있다. 널 데이터 패킷들은 또한 패킷 헤더들을 포함할 수 있다.
변조기(454)의 MUX는 물리 전송 스트림을 생성할 수 있고, 이 때, 물리 전송 스트림에 비필수적 데이터를 삽입할 수 있다. 이러한 비필수적 데이터를 삽입할 수 있는 능력은, 자신의 인코딩 레이트를 감소시키는 멀티미디어 프로세싱 유닛(452)에 기인하여 가능할 수 있다. 물리 전송 스트림을 생성할 때, 변조기 유닛(454)의 MUX는 비필수적 데이터를 프레임들의 인코딩된 세트와 멀티플렉싱할 수 있다. 송신기 유닛(456)은, 비필수적 데이터를 포함하는 물리 전송 스트림의 위치를 식별할 수 있고, 식별된 위치와 연관된 시간에 블랭킹할 수 있다. 블랭킹 제어 유닛(458)으로부터의 제어 신호들은 이러한 블랭킹을 조정할 수 있다.
하나 이상의 널 인터벌들 동안 블랭킹 송신 유닛(456)은 비필수적 데이터의 적어도 일부에 대응하는 시간들에 송신기를 블랭킹하는 것을 포함한다. 몇몇 예들에서, 이것은, 프레임들의 세트와 연관된 인코딩된 비트스트림의 하나 이상의 애플리케이션 계층 경계들을, 프레임들의 세트를 포함하는 물리 계층 전송 스트림의 물리 계층 경계들과 정렬시키는 것을 요구할 수 있다. 예를 들어, 하나 이상의 널 인터벌들은, 물리 계층 경계와 정렬되는 애플리케이션 계층 경계들 중 하나 이상에 바로(immediately) 선행하는 데이터 필드들을 포함할 수 있다. 이 경우, 애플리케이션 계층 경계들은 영상들의 그룹(GOP) 내에 프레임 경계들을 포함할 수 있고, 물리 계층 경계들은 물리 계층 전송 스트림의 필드 동기들에 대응할 수 있다.
도 30의 방법은, 하나 이상의 널 인터벌들 동안 송신기 유닛(456)을 블랭킹하면서 (예를 들어, 센서 유닛(460)을 통해) 센싱 동작을 수행하는 것(520)을 더 포함할 수 있다. 본 명세서로부터 인식될 수 있는 바와 같이, 센싱 동작은 특정한 주파수에서 다른 무선 신호들을 센싱하는 것 또는 특정한 주파수에서 허가된 신호를 센싱하는 것을 포함할 수 있다. 이러한 신호들이 센싱 유닛(460)에 의해 센싱되면, 송신기 유닛(456)은 상이한 주파수로 스위칭될 수 있다. 다른 말로, 특정한 주파수에서 다른 무선 신호를 센싱하면, 송신기 유닛(456)은, 송신기 유닛(456)이 특정한 주파수에서 간섭하지 않도록, 예를 들어, 블랭킹 제어 유닛(458)의 지시에 따라 상이한 주파수로 스위칭할 수 있다. 도 30의 방법은, 특정한 주파수의 미허가 이용에 대한 주기적 센싱을 요구하는 무선 통신 표준에 따라 주기적으로 반복될 수 있다.
또 다른 문제로서, 송신기 블랭킹을 요구하는 시스템에서 레이턴시가 고려될 수 있다. 특히, 프레임들의 세트를 디코딩 및 복조하는 것과 연관된 레이턴시 시간과 결합된 송신기 유닛(456)의 블랭킹이 사용자에게의 실시간 멀티미디어 프리젠테이션과 연관된 미리 정의된 지속기간 미만이 되도록, 프레임들의 세트의 인코딩 및 송신이 수행될 수 있다. 예를 들어, 프레임들의 세트를 디코딩 및 복조하는 것과 연관된 레이턴시를 100 밀리초 미만으로 감소시키는 것이 바람직할 수 있다. 그러나, 송신기 블랭킹으로부터의 (대략 40 밀리초와 같은) 추가적 레이턴시에 기인하여, 프레임들의 세트의 각각의 프레임을 디코딩 및 복조하는 것과 연관된 레이턴시를 60 밀리초 미만으로 감소시킬 필요가 있을 수 있다. 디코딩 및 복조 레이턴시가 멀티미디어 데이터의 실시간 전달을 보장할 있을 정도로 충분히 낮게 되는 것을 보장하기 위해, 매우 다양한 기술들이 이용될 수 있다. 예를 들어, B-프레임들은 비디오 시퀀스에서 나중에 발생하는 프레임들에 기초하여 종종 예측되기 때문에, 레이턴시를 감소시키기 위해 양방향 예측 프레임들(예를 들어, B-프레임들) 중 일부 또는 전부는 제거될 수 있다. 특히 송신기 블랭킹이 수행되는 경우, 레이턴시가 감소되는 것을 보장하기 위해, 예를 들어, 제한된 수의 레퍼런스 프레임들(또는 심지어 단일 또는 부분적 레퍼런스 프레임들)로부터 오직 프레임 예측이 가능하도록 입력 버퍼들이 또한 감소될 수 있다. 예를 들어, 인코딩이, 디코딩, 재구성 및 버퍼링, 또는 비디오 시퀀스에서 다수의 프레임들의 백워드 또는 포워드를 요구하지 않도록, 레퍼런스 영상 버퍼들은 단일 레퍼런스 프레임으로 제한될 수 있다. 이 기술들 및 다른 기술들은, 주파수들의 이용이 이러한 센싱을 요구하는 법규들 및 규정들에 부합하는 것을 보장하기 위해, 주기적 인터벌들로의 센싱(및 그에 따른 송신기 블랭킹)을 요구하는 주파수들에서 멀티미디어 데이터의 실시간 통신을 위해 매우 바람직할 수 있다.
도 31은 비트스트림에 비필수적 데이터를 삽입하기 위해 변조기 유닛(454)이 이용되는 경우에 부합하는 하나의 기술을 도시하는 또 다른 흐름도이다. 도 30은 또한, 변조기(320)(도 19 참조)의 MUX(340)가 비트스트림에 비필수적 데이터를 삽입하는 경우에 부합할 수 있다. 이 경우, 물리 계층 MUX(물리 계층 MUX의 출력은 변조된 물리 계층 비트스트림임)가 비필수적 데이터를 삽입한다. 도 31의 방법의 시연을 돕기 위해 도 26이 또한 이용될 수 있다.
도 31에 도시된 바와 같이, 변조기 유닛(454)이 인코딩된 멀티미디어 데이터를 수신하고(522), 이 인코딩된 멀티미디어를 변조하며, 변조는, 인코딩된 멀티미디어 데이터와 연관된 물리 계층 경계들에 동기화 신호들을 삽입하는 것을 포함한다(524). 예를 들어, 도 26에 도시된 바와 같이, 변조기는 물리 계층 경계들에 동기화 신호들(예를 들어, 필드 동기들)을 삽입할 수 있다. 변조된 데이터를 송신기 유닛(456)에 포워딩할 때, 송신기 유닛(456)은 인코딩된 멀티미디어를 송신한다(526). 그러나, 블랭킹 제어 유닛(458)이, 예를 들어, 동기화 신호들 중 2개의 연속적 신호들 사이에서, 동기화 신호들 중 2개 사이의 시간 간격 동안 송신기 유닛(456)을 블랭킹한다(528). 이 시간 인터벌은 도 26에 도시된 TX 침묵 인터벌(418)에 대응할 수 있다. 다음으로, 센서 유닛(460)은 송신기 유닛(456)이 블랭킹되는 동안 센싱 동작을 수행할 수 있다(530). 이 방식으로, 센싱은 송신기 블랭킹과 조정되고, 블랭킹 프로세스 동안 데이터가 손실되지 않고 동기화가 유지되도록 비필수적 데이터가 필드 동기들 사이의 블랭킹 인터벌과 연관된다.
도 26에 도시된 예에서, 변조기에서 수신되는 비필수적 데이터는, 인코딩된 멀티미디어 데이터의 변조기의 입력 버퍼들을 플러싱하기에 충분할 수 있고, (널(410A) 동안 도시되는 바와 같이) 이것은 인터리버를 플러싱할 수 있다. 동기화 신호들 중 2개 사이의 시간 인터벌 동안 입력 버퍼들을 플러싱한 후 송신기를 블랭킹시킴으로써, 유효 인코딩 데이터와 연관된 데이터 손실은 회피될 수 있다. 다시, 비필수적 데이터는, 인코딩된 멀티미디어 데이터에 대한 잉여 데이터 패킷들, 또는 패킷들의 세트의 패킷 페이로드들 내에 모두 제로들을 갖는 패킷들의 세트를 포함하는 널 데이터를 포함할 수 있다. 잉여 데이터의 이용은, 블랭킹이 비필수적 데이터의 세트 각각에 의해 항상 수행되지는 않는 경우에 바람직할 수 있다. 이 경우, 블랭킹이 수행되지 않으면, 비필수적 데이터는, 데이터 송신 동안 데이터 손실의 경우에 비디오의 품질을 개선시키기 위해, 다른 데이터(예를 들어, 잉여 I 프레임들)에 대한 리던던시를 제공할 수 있다.
도 32는, 비필수적 데이터를 비트스트림에 삽입하기 위해 멀티미디어 프로세싱 유닛(454)이 이용되는 경우에 부합하는 하나의 기술을 도시하는 흐름도이다. 이 경우, 애플리케이션 계층 MUX(애플리케이션 계층 MUX의 출력은 MPEG-2 또는 MPEG-4 비트스트림과 같은 애플리케이션 계층 비트스트림임)가 비필수적 데이터를 삽입한다. 더 상세하게는, 도 32의 경우, 프레임들의 세트 중 몇몇 프레임들은 프레임들의 세트 이후에 널을 생성하기 위해 감소된 레이트로 인코딩된다. 하나 이상의 프레임들(예를 들어, 마지막 프레임)의 감소된 레이트 인코딩은 또한 도 22에 개념적으로 도시되어 있고, 상세히 전술하였다. 도 32의 기술에서, 멀티미디어 프로세싱 유닛(452)의 멀티플렉서가 비필수적 데이터를 비트스트림에 삽입한다. 도 32의 기술은 또한, 인코딩 시스템(301)의 MUX(312)(하나의 예시적인 멀티미디어 프로세싱 유닛(454))가 비필수적 데이터를 삽입하는데 이용되는 경우에 부합할 수 있다.
도 32에 도시된 바와 같이, 멀티미디어 프로세싱 유닛(452)은 프레임들의 세트를 인코딩하기 위한 시간 기간을 정의하고(532), 이 시간 기간은 소위 "수퍼프레임"과 연관된 대략 1 초의 인터벌일 수 있다. 멀티미디어 프로세싱 유닛(452)은 멀티미디어 데이터의 프레임들의 세트 중 제 1 부분을 제 1 인코딩 레이트로 인코딩하고(534), 멀티미디어 데이터의 프레임들의 세트 중 제 2 부분을 제 2 인코딩 레이트로 인코딩하며(536), 제 2 인코딩 레이트는 이 시간 기간 동안 널 인터벌을 생성하기 위해 제 1 인코딩 레이트보다 작다. 인코딩된 프레임들을 변조기 유닛(454)을 통해 변조한 후, 송신기 유닛(456)은 프레임들의 인코딩된 세트를 송신한다(538). 그러나, 블랭킹 제어 유닛(458)은 송신기 유닛(456)으로 하여금 널 인터벌 동안 블랭킹하게 한다(540). 따라서, 센서 유닛(460)은 널 인터벌 동안 송신기가 블랭킹하는 동안 센싱 동작을 수행한다(542).
전술한 다른 예들과 마찬가지로, 센싱 동작은 특정한 주파수에서 다른 무선 신호들을 센싱하는 것 또는 특정한 주파수에서 허가 신호를 센싱하는 것을 포함할 수 있다. 이러한 신호들이 센서 유닛(460)에 의해 센싱되면, 송신기 유닛(456)은 상이한 주파수로 스위칭될 수 있다. 다른 말로, 특정한 주파수에서 다른 무선 신호를 센싱할 때, 송신기 유닛(456)은, 송신기 유닛(456)이 그 특정한 주파수에서 간섭하지 않도록, 예를 들어, 블랭킹 제어 유닛(458)의 지시에 따라 상이한 주파수로 스위칭할 수 있다. 도 32의 방법은, 특정한 주파수의 미허가 이용에 대한 주기적 센싱을 요구하는 무선 통신 표준에 따라 주기적으로 반복될 수 있다.
도 32에 부합하고 도 22의 개념도에 부합하는 일예에서, 더 느린 레이트로 인코딩된 프레임들의 세트 중 제 2 부분은 프레임들의 세트의 마지막 프레임을 포함할 수 있고, 제 1 부분은 프레임들의 세트 중 그 마지막 프레임을 제외한 모든 프레임들을 포함할 수 있다. 이 방법은, 프레임들의 세트 중 제 1 부분을 제 1 인코딩 레이트로 인코딩하는 것, 및 그 프레임들의 세트가 요구되는 블랭킹 인터벌과 중첩한다는 결정에 응답하여 프레임들의 세트 중 제 2 부분을 제 2 인코딩 레이트로 인코딩하는 것을 더 포함할 수 있다. 이 경우, 프레임들의 세트가 블랭킹 인터벌과 중첩하지 않으면, 널 인터벌이 불필요할 수 있기 때문에, 모든 프레임들은 더 빠른 인코딩 레이트로 인코딩될 수 있다.
프레임들의 인코딩된 세트는 오디오 프레임들의 세트 또는 비디오 프레임들의 세트를 포함할 수 있다. 대부분의 경우들에서, 프레임들의 세트는 오디오 프레임들 및 비디오 프레임들의 결합된 세트를 포함한다. 도 32의 예에서, 인코딩 유닛(452)의 MUX(또한 도 19의 시스템(301)의 TS-MUX(312) 참조)가 하나 이상의 널 인터벌들 동안 비필수적 데이터를 인코딩 비트스트림에 삽입할 수 있다. 몇몇 경우들에서, 비필수적 데이터는 프레임들의 세트에 대한 잉여 데이터의 패킷들을 포함하지만, 다른 경우, 비필수적 데이터는 널 데이터를 포함한다. 후자의 경우, 널 데이터는 패킷들의 세트의 패킷 페이로드들 내에 모두 제로들을 갖는 패킷들의 세트를 포함할 수 있다. 널 데이터 패킷들은 또한 패킷 헤더들을 포함할 수 있다. 인코딩 유닛(452)의 MUX(또한 도 19의 시스템(301)의 TS-MUX(312) 참조)는 비필수적 데이터와 오디오 프레임들 및 비디오 프레임들을 결합할 수 있다.
이 예에서, 비필수적 데이터가 애플리케이션 계층에 삽입되기 때문에, 프레임들의 세트와 연관된 인코딩된 비트스트림의 애플리케이션 계층 경계와, 프레임들의 세트를 포함하는 물리 계층 전송 스트림의 물리 계층 경계와의 정렬을 보장하는 것이 필요할 수 있다. 널 인터벌은 물리 계층 경계와 정렬되는 애플리케이션 계층 경계에 바로 선행하는 데이터 필드를 포함할 수 있다. 본 명세서에 부합하는 일예에서, 애플리케이션 계층 경계는 영상의 그룹(GOP) 경계를 포함하고, 물리 계층 경계는 전송 스트림의 필드 동기에 대응한다. 다른 예에서, 애플리케이션 계층 경계는 씬 경계를 포함하고, 물리 계층 경계는 전송 스트림의 필드 동기에 대응한다. 이 특정한 애플리케이션 경계들에 널 데이터를 삽입함으로써, 물리 계층 경계들(필드 동기들)이 (도 26에 도시된 바와 같은) 널 데이터와 정렬되는 것을 변조기가 보장하는 것이 용이할 수 있다. 따라서, 송신기 블랭킹은 데이터의 손실없이 수행될 수 있다.
본 명세서에 설명되는 다른 기술들에 대해, 도 32의 기술은 주기적으로 반복될 수 있다. 따라서, 다른 예에서, 프레임들의 세트는 프레임들의 제 1 세트를 포함할 수 있고, 시간 기간은 제 1 시간 기간을 포함할 수 있다. 이 예에서, 이 방법은, 멀티미디어 데이터의 프레임들의 제 2 세트를 인코딩하기 위한 제 2 시간 기간을 정의하는 것, 멀티미디어 데이터의 프레임들의 제 2 세트 중 제 1 부분을 제 1 인코딩 레이트로 인코딩하는 것, 멀티미디어 데이터의 프레임들의 제 2 세트 중 제 2 부분을 제 3 인코딩 레이트로 인코딩하는 것 ―제 3 인코딩 레이트는 제 2 시간 기간 동안 널 인터벌을 생성하기 위해 제 1 인코딩 레이트보다 작음―, 프레임들의 인코딩된 세트 중 제 2 세트를 송신기를 통해 송신하는 것, 및 제 2 시간 기간 내의 널 인터벌 동안 송신기를 블랭킹하는 것을 더 포함할 수 있다.
또한, 또 다른 예에서, 도 32의 기술은, 프레임들의 세트 중 제 2 부분의 감소된 인코딩이, 블랭킹 인터벌들에 대응하는 프레임들의 세트들(예를 들어, GOP들)에 대해서만 발생하도록, 적응될 수 있다. 따라서, 다른 예에서, 이 방법은, 멀티미디어 데이터의 프레임들의 제 2 세트를 인코딩하기 위한 제 2 시간 기간을 정의하는 것 ―제 2 시간 기간 동안 블랭킹은 발생하지 않음―, 프레임들의 제 2 세트를 제 1 인코딩 레이트로 인코딩하는 것, 및 인코딩된 프레임들의 제 2 세트를 송신기를 통해 송신하는 것을 더 포함할 수 있다.
또한, 다른 예들와 마찬가지로, 도 32의 기술들을 수행하는 시스템에서 레이턴시가 고려될 수 있다. 특히, 프레임들의 세트를 디코딩 및 복조하는 것과 연관된 레이턴시 시간과 결합된 송신기 유닛(456)의 블랭킹이 사용자에게의 실시간 멀티미디어 프리젠테이션과 연관된 미리 정의된 지속기간 미만이 되도록, 프레임들의 세트의 인코딩 및 송신이 수행될 수 있다. 예를 들어, 프레임들의 세트를 디코딩 및 복조하는 것과 연관된 레이턴시를 100 밀리초 미만으로 감소시키는 것이 바람직할 수 있다. 그러나, 송신기 블랭킹으로부터의 (대략 40 밀리초와 같은) 추가적 레이턴시에 기인하여, 프레임들의 세트의 각각의 프레임을 디코딩 및 복조하는 것과 연관된 레이턴시를 60 밀리초 미만으로 감소시킬 필요가 있을 수 있다.
전술한 바와 같이, 디코딩 및 복조 레이턴시가 멀티미디어 데이터의 실시간 전달을 보장할 있을 정도로 충분히 낮게 되는 것을 보장하기 위해, 매우 다양한 기술들이 이용될 수 있다. 예를 들어, 예측 프레임들(예를 들어, B-프레임들)은 비디오 시퀀스에서 나중에 발생하는 프레임들에 기초하여 종종 예측되기 때문에, 레이턴시를 감소시키기 위해 몇몇 유형들의 B-프레임들은 인코딩에 이용되지 않을 수 있다. 특히 송신기 블랭킹이 수행되는 경우, 레이턴시가 감소되는 것을 보장하기 위해, 예를 들어, 제한된 수의 레퍼런스 프레임들(또는 심지어 단일 또는 부분적 레퍼런스 프레임들)로부터 오직 프레임 예측이 가능하도록 예측 코딩에 대한 모션 추정에 이용되는 입력 레퍼런스 영상 버퍼들이 또한 감소될 수 있다. 이 기술들 및 다른 기술들은, 주파수들의 이용이 이러한 센싱을 요구하는 법규들 및 규정들에 부합하는 것을 보장하기 위해, 주기적 인터벌들에서의 센싱(및 그에 따른 송신기 블랭킹)을 요구하는 백색 공간 주파수들에서 멀티미디어 데이터의 실시간 통신을 위해 매우 바람직할 수 있다.
도 33은, 비트스트림에 비필수적 데이터를 삽입하기 위해 멀티미디어 프로세싱 유닛(454)이 이용되는 경우에 부합하는 기술을 도시하는 흐름도이다. 그러나, 멀티미디어 프로세싱 유닛(452)의 멀티플렉서가 비트스트림에 비필수적 데이터를 삽입하는 도 31의 경우와는 달리, 도 33의 기술에서는, 비트 스트림에 삽입되기보다는 널 데이터가 인코딩된다. 도 33은, 널 데이터를 인코딩하기 위해 인코딩 시스템(301)의 MPEG-2 인코더(290)(하나의 예시적인 멀티미디어 프로세싱 유닛(454)임)가 이용되는 경우에 부합할 수 있다. 이 경우, 널 데이터가 인코딩되고, 이러한 널 데이터가 송신기와 대면하는 경우, 송신기가 어떠한 것도 송신될 필요가 없다고 인식하도록 구성될 수 있는 한, 이러한 널 데이터는 블랭킹을 유발시킬 수 있다. 이 예에서, 널 데이터가 인코딩되고, 인코딩된 널 데이터는 유효 데이터의 부족에 기인한 송신기 블랭킹을 유발시킨다.
도 33에 도시된 바와 같이, 멀티미디어 프로세싱 유닛(452)은 멀티미디어 데이터의 프레임들의 세트를 인코딩하고(552), 멀티미디어 데이터의 프레임들의 세트에 후속하는 기간 동안 널 데이터를 인코딩한다(554). 변조기 유닛(454)은 프레임들의 인코딩된 세트 및 널 데이터를 변조하고, 널 데이터의 변조는 그 기간에 걸친 널 인터벌을 생성한다(556). 송신기 유닛(456)은 프레임들의 인코딩된 세트를 송신하고, 널 인터벌은 그 기간에 따라 송신기의 블랭킹 인터벌과 정렬된다(558). 몇몇 경우들에서, 널 데이터는 그 자체로, 널 데이터의 존재에 기인한 블랭킹 인터벌에 걸쳐 송신기를 블랭킹하게 할 수 있다. 어떠한 경우든, 센서 유닛(460)은 송신기가 블랭킹되는 경우 하나 이상의 센싱 동작들을 수행한다(560).
또한, 다른 예들과 마찬가지로, 프레임들의 인코딩된 세트는 오디오 프레임들의 세트 또는 비디오 프레임들의 세트를 포함할 수 있다. 대부분의 경우들에서, 프레임들의 세트는 오디오 프레임들 및 비디오 프레임들의 결합된 세트를 포함한다. 널 데이터는, 패킷들의 세트의 패킷 페이로드들 내에 모두 제로들을 갖는 패킷들의 세트를 포함할 수 있다. 널 데이터 패킷들은 또한 패킷 헤더들을 포함할 수 있다.
전술한 다른 예들과 마찬가지로, 센싱 동작은 특정한 주파수에서 다른 무선 신호들을 센싱하는 것, 또는 특정한 주파수에서 허가된 신호를 센싱하는 것을 포함할 수 있다. 이러한 신호들이 센싱 유닛(460)에 의해 센싱되면, 송신기 유닛(456)은 상이한 주파수로 스위칭될 수 있다. 다른 말로, 특정한 주파수에서 다른 무선 신호를 센싱할 때, 송신기 유닛(456)은, 송신기 유닛(456)이 특정한 주파수에서 간섭하지 않도록, 예를 들어, 블랭킹 제어 유닛(458)의 지시에 따라 상이한 주파수로 스위칭할 수 있다. 도 33의 방법은, 본 명세서에서 설명되는 다른 기술들과 유사하게, 특정한 주파수의 미허가 이용에 대한 주기적 센싱을 요구하는 무선 통신 표준에 따라 주기적으로 반복될 수 있다.
도 34는, 본 명세서에 부합하는 기술을 도시하는 다른 흐름도이다. 전술한 바와 같이, 레이턴시는 멀티미디어 데이터의 실시간 전달에 의한 문제이고, 멀티미디어 데이터를 복조 및 디코딩하는 것과 연관된 레이턴시가 고려사항일 수 있다. 비디오에서 100 밀리초보다 큰 레이턴시는 시청자에게 인지가능할 수 있고, 따라서, 멀티미디어 데이터의 인코딩 및 변조가 100 밀리초보다 큰 디코딩 및 복조 레이턴시를 초래하지 않도록 보장하는 것이 종종 바람직하다. 블랭킹은 추가적 레이턴시를 추가할 수 있고, 이 경우, 100 밀리초(또는 다른 유사한 시간 인터벌)보다 작은 전체 레이턴시를 유지하기 위해 상응하는 양만큼 디코딩 및 복조 레이턴시를 감소시키는 것이 바람직할 수 있다.
도 34는, 블랭킹이 수행되지 않는 동안 디코딩 및 복조 레이턴시가 프레임들의 세트들에 대한 완전한 실시간 인터벌(즉, 100 밀리초)까지 증가되는 것을 허용하는 적응형 기술을 도시한다. 그러나, 도 34의 기술에서, 디코딩 및 복조 레이턴시는 블랭킹 인터벌과 연관된 프레임들의 임의의 세트에 대해 감소될 수 있다. 이 방식으로, 블랭킹 인터벌과 연관되지 않은 프레임들의 세트들에 대한 비디오 품질을 개선시키기 위해, (허용된 임계치까지의) 추가된 레이턴시가 활용될 수 있다.
도 34에 도시된 바와 같이, 멀티미디어 프로세싱 유닛(452) 및 변조기 유닛(454)은, 프레임들의 제 1 세트를 복조 및 디코딩하는 것과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 프레임들의 제 1 세트를 인코딩 및 변조한다(572). 다음으로, 멀티미디어 프로세싱 유닛(452) 및 변조 유닛(454)은, 프레임들의 제 1 세트를 복조 및 디코딩하는 것과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록 프레임들의 제 2 세트를 인코딩 및 변조한다(574). 송신기 유닛(456)은 프레임들의 제 1 세트 및 프레임들의 제 2 세트를 송신한다(576). 블랭킹 제어 유닛(458)은, 프레임들의 제 2 세트의 전송과 연관된 널 인터벌 동안 송신기(456)가 자신의 통신을 블랭킹하게 하고, 널 인터벌 및 제 2 시간 인터벌은 제 1 시간 인터벌 이하이다(578). 센서 유닛(460)은 송신기(456)가 블랭킹되는 동안 센싱 동작을 수행한다(580).
제 1 시간 인터벌은 대략 100 밀리초 미만일 수 있고, 널 인터벌은 대략 40 밀리초일 수 있고, 제 2 시간 인터벌은 대략 60 밀리초 미만일 수 있다. 널 인터벌이 오직 10 밀리초이면, 제 2 시간 인터벌은 90 밀리초 미만일 수 있다. 이 예에서, 제 1 시간 인터벌은, 레이턴시가 제 1 시간 인터벌을 초과하지 않는 것을 보장하기 위해, 제 2 시간 인터벌과 널 인터벌의 합 이상일 수 있다.
도 34의 예에서, 프레임들의 제 2 세트의 인코딩 및 변조는, 널 인터벌을 고려하기에 충분한 양만큼 프레임들의 제 2 세트의 디코딩 레이턴시를 감소시키기 위해, 프레임들의 제 1 세트와는 상이하게 프레임들의 제 2 세트를 인코딩하는 것을 포함할 수 있다. 일예로, 프레임들의 제 1 세트는 I-프레임들, P-프레임들 및 B-프레임들을 포함하도록 인코딩될 수 있는 한편, B-프레임들은 디코딩 프로세스에 레이턴시를 추가시킬 수 있기 때문에, 프레임들의 제 2 세트는 임의의 B-프레임들없이 I-프레임들 및 P-프레임들을 포함하도록 인코딩될 수 있다.
또한, 디코딩 및 복조 레이턴시가 멀티미디어 데이터의 실시간 전달을 보장할 있을 정도로 충분히 낮은 보장하기 위해, 매우 다양한 기술들이 이용될 수 있고, 이 기술들은 널 인터벌이 프레임들의 세트와 연관되는지 여부에 따라 변할 수 있다. 프레임들의 세트의 송신 동안 송신기 블랭킹이 수행되는 경우, 디코딩 프로세스와 연관된 레이턴시가 감소되는 것을 보장하기 위해, 예를 들어, 레퍼런스 프레임들(또는 심지어 단일 또는 부분적 레퍼런스 프레임들)로부터 오직 제한된 수의 프레임 예측이 가능하도록 입력 버퍼 데이터의 양 또한 감소될 수 있다. 그러나, 프레임들의 임의의 소정 세트의 송신 동안 블랭킹이 수행되지 않으면 입력 버퍼들의 데이터는 확장될 수 있다. 이 기술들 및 다른 기술들은, 주파수들의 이용이 이러한 센싱을 요구하는 법규들 및 규정들에 부합하는 것을 보장하기 위해, 주기적 인터벌들에서의 센싱(및 그에 따른 송신기 블랭킹)을 요구하는 주파수들에서 멀티미디어 데이터의 실시간 통신을 위해 매우 바람직할 수 있다.
본 명세서에서 설명되는 기술들은 범용 마이크로프로세서, 디지털 신호 프로세서(DSP), 주문형 집적 회로(ASIC), 필드 프로그래머블 게이트 어레이(FPGA), 프로그래머블 로직 디바이스들(PLDs) 또는 다른 등가의 로직 디바이스들 중 하나 이상에서 구현될 수 있다. 따라서, 본 명세서에서 사용되는 바와 같은 용어들 "프로세서" 또는 "제어기"는 전술한 구조들 또는 본 명세서에서 설명되는 기술들의 구현에 적합한 임의의 다른 구조 중 임의의 하나 이상을 지칭할 수 있다.
본 명세서에 예시되는 다양한 컴포넌트들은 하드웨어, 소프트웨어, 펌웨어의 임의의 적절한 조합 또는 이들의 임의의 조합에 의해 실현될 수 있다. 도면들에서, 다양한 컴포넌트들은 개별 유닛들 또는 모듈들로 도시되어 있다. 그러나, 이 도면들을 참조하여 설명되는 다양한 컴포넌트들 중 전부 또는 몇개는 공통 하드웨어, 펌웨어 및/또는 소프트웨어의 결합된 유닛들 또는 모듈들로 통합될 수 있다. 따라서, 컴포넌트들, 유닛들 또는 모듈들로서의 특징들의 표현은 용이한 설명을 위해 특정한 기능 특징들을 강조하도록 의도되고, 개별 하드웨어, 펌웨어 또는 소프트웨어 컴포넌트들에 의한 이러한 특징들의 실현을 반드시 요구하지는 않는다. 몇몇 경우들에서, 다양한 유닛들은 하나 이상의 프로세서들에 의해 수행되는 프로그래머블 프로세스들로서 구현될 수 있다.
본 명세서에서 모듈들, 디바이스들 또는 컴포넌트들로서 설명되는 임의의 특징들은 집적 로직 디바이스에 함께 구현되거나 이산적이지만 협력하는 로직 디바이스들로서 개별적으로 구현될 수 있다. 다양한 양상들에서, 이러한 컴포넌트들은 적어도 부분적으로 하나 이상의 집적 회로 디바이스들로서 형성될 수 있고, 하나 이상의 집적 회로 디바이스들은 집적 회로 칩 또는 칩셋과 같은 집적 회로 디바이스로서 총괄적으로 지칭될 수 있다. 이러한 회로는 단일 집적 회로 칩 디바이스에 제공될 수도 있고, 다수의 협력하는 집적 회로 칩 디바이스들에 제공될 수도 있고, 임의의 다양한 이미지, 디스플레이, 오디오 또는 다른 다중-멀티미디어 애플리케이션들 및 디바이스들에서 이용될 수도 있다. 예를 들어, 몇몇 양상들에서, 이러한 컴포넌트들은 무선 통신 디바이스 핸드셋(예를 들어, 모바일 전화 핸드셋)과 같은 모바일 디바이스의 일부를 형성할 수 있다.
소프트웨어로 구현될 경우, 이 기술들은, 하나 이상의 프로세서들에 의해 실행될 때 전술한 방법들 중 하나 이상을 수행하는 명령들을 갖는 코드를 포함하는 비일시적 컴퓨터 판독가능 데이터 저장 매체에 의해 적어도 부분적으로 실현될 수 있다. 컴퓨터 판독가능 저장 매체는, 패키징 재료들을 포함할 수 있는 컴퓨터 프로그램 물건의 일부를 형성할 수 있다. 컴퓨터 판독가능 매체는, 동기식 동적 랜덤 액세스 메모리(SDRAM)와 같은 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 비휘발성 랜덤 액세스 메모리(NVRAM), 전기적으로 소거가능한 프로그래머블 판독 전용 메모리(EEPROM), 내장형 동적 랜덤 액세스 메모리(eDRAM), 정적 랜덤 액세스 메모리(SRAM), 플래시 메모리, 자기 또는 광학 데이터 저장 매체를 포함할 수 있다. 이용되는 임의의 소프트웨어는 하나 이상의 DSP들, 범용 마이크로프로세서들, ASIC들, FPGA들 또는 다른 등가적 집적 또는 이산 로직 회로와 같은 하나 이상의 프로세서들에 의해 실행될 수 있다.
다양한 양상들이 본 명세서에서 설명되었다. 이 양상들 및 다른 양상들은 다음의 청구항들의 범주에 속한다.

Claims (28)

  1. 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 상기 프레임들의 제 1 세트를 인코딩 및 변조하는 단계;
    상기 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하는 단계;
    상기 프레임들의 제 1 세트 및 상기 프레임들의 제 2 세트를 송신기를 통해 송신하는 단계; 및
    상기 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌(null interval) 동안 상기 송신기를 블랭킹(blanking)하는 단계를 포함하고,
    상기 널 인터벌 및 상기 제 2 시간 인터벌은 상기 제 1 시간 인터벌 이하인,
    방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 제 1 시간 인터벌은 100 밀리초 미만이고, 상기 널 인터벌은 40 밀리초이고, 상기 제 2 시간 인터벌은 60 밀리초 미만인, 방법.
  4. 제 1 항에 있어서,
    상기 프레임들의 제 2 세트를 인코딩 및 변조하는 단계는, 상기 널 인터벌을 고려하기에 충분한 양만큼 상기 프레임들의 제 2 세트의 디코딩 레이턴시를 감소시키기 위해, 상기 프레임들의 제 2 세트를 상기 프레임들의 제 1 세트와는 상이하게 인코딩하는 단계를 포함하는, 방법.
  5. 제 4 항에 있어서,
    상기 프레임들의 제 1 세트를, I-프레임들, P-프레임들 및 B-프레임들을 포함하도록 인코딩하는 단계; 및
    상기 프레임들의 제 2 세트를, 임의의 B-프레임들없이 I-프레임들 및 P-프레임들을 포함하도록 인코딩하는 단계를 더 포함하는, 방법.
  6. 삭제
  7. 삭제
  8. 인코더 및 변조기 ―상기 인코더 및 상기 변조기는, 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 상기 프레임들의 제 1 세트를 인코딩 및 변조하고, 상기 인코더 및 상기 변조기는, 상기 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조함―; 및
    상기 프레임들의 제 1 세트 및 상기 프레임들의 제 2 세트를 송신하는 송신기를 포함하고,
    상기 송신기는, 상기 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 블랭킹하고,
    상기 널 인터벌 및 상기 제 2 시간 인터벌은 상기 제 1 시간 인터벌 이하인,
    디바이스.
  9. 삭제
  10. 제 8 항에 있어서,
    상기 제 1 시간 인터벌은 100 밀리초 미만이고, 상기 널 인터벌은 40 밀리초이고, 상기 제 2 시간 인터벌은 60 밀리초 미만인, 디바이스.
  11. 제 8 항에 있어서,
    상기 인코더 및 상기 변조기는, 상기 널 인터벌을 고려하기에 충분한 양만큼 상기 프레임들의 제 2 세트의 디코딩 레이턴시를 감소시키기 위해, 상기 프레임들의 제 2 세트를 상기 프레임들의 제 1 세트와는 상이하게 인코딩 및 변조하는, 디바이스.
  12. 제 8 항에 있어서,
    상기 인코더는,
    상기 프레임들의 제 1 세트를, I-프레임들, P-프레임들 및 B-프레임들을 포함하도록 인코딩하고; 그리고,
    상기 프레임들의 제 2 세트를, 임의의 B-프레임들없이 I-프레임들 및 P-프레임들을 포함하도록 인코딩하는, 디바이스.
  13. 삭제
  14. 삭제
  15. 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 상기 프레임들의 제 1 세트를 인코딩 및 변조하기 위한 수단;
    상기 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하기 위한 수단;
    상기 프레임들의 제 1 세트 및 상기 프레임들의 제 2 세트를 송신기를 통해 송신하기 위한 수단; 및
    상기 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 상기 송신기를 블랭킹하기 위한 수단을 포함하고,
    상기 널 인터벌 및 상기 제 2 시간 인터벌은 상기 제 1 시간 인터벌 이하인,
    디바이스.
  16. 삭제
  17. 제 15 항에 있어서,
    상기 제 1 시간 인터벌은 100 밀리초 미만이고, 상기 널 인터벌은 40 밀리초이고, 상기 제 2 시간 인터벌은 60 밀리초 미만인, 디바이스.
  18. 제 15 항에 있어서,
    상기 프레임들의 제 2 세트를 인코딩 및 변조하기 위한 수단은, 상기 널 인터벌을 고려하기에 충분한 양만큼 상기 프레임들의 제 2 세트의 디코딩 레이턴시를 감소시키기 위해, 상기 프레임들의 제 2 세트를 상기 프레임들의 제 1 세트와는 상이하게 인코딩하기 위한 수단을 포함하는, 디바이스.
  19. 제 18 항에 있어서,
    상기 프레임들의 제 1 세트를, I-프레임들, P-프레임들 및 B-프레임들을 포함하도록 인코딩하기 위한 수단; 및
    상기 프레임들의 제 2 세트를, 임의의 B-프레임들없이 I-프레임들 및 P-프레임들을 포함하도록 인코딩하기 위한 수단을 더 포함하는, 디바이스.
  20. 삭제
  21. 삭제
  22. 실행 시에 하나 이상의 프로세서들로 하여금,
    프레임들의 제 1 세트의 복조 및 디코딩과 연관된 레이턴시가 제 1 시간 인터벌 미만이 되도록, 상기 프레임들의 제 1 세트를 인코딩 및 변조하게 하고;
    상기 프레임들의 제 1 세트의 복조 및 디코딩과 연관된 요구된 레이턴시가 제 2 시간 인터벌 미만이 되도록, 프레임들의 제 2 세트를 인코딩 및 변조하게 하고;
    상기 프레임들의 제 1 세트 및 상기 프레임들의 제 2 세트를 송신기를 통해 송신하게 하고; 그리고
    상기 프레임들의 제 2 세트를 송신하는 것과 연관된 널 인터벌 동안 상기 송신기를 블랭킹하게 하는
    명령들을 포함하고,
    상기 널 인터벌 및 상기 제 2 시간 인터벌은 상기 제 1 시간 인터벌 이하인,
    컴퓨터 판독가능 저장 매체.
  23. 삭제
  24. 제 22 항에 있어서,
    상기 제 1 시간 인터벌은 100 밀리초 미만이고, 상기 널 인터벌은 40 밀리초이고, 상기 제 2 시간 인터벌은 60 밀리초 미만인, 컴퓨터 판독가능 저장 매체.
  25. 제 22 항에 있어서,
    상기 명령들은 상기 하나 이상의 프로세서들로 하여금, 상기 널 인터벌을 고려하기에 충분한 양만큼 상기 프레임들의 제 2 세트의 디코딩 레이턴시를 감소시키기 위해, 상기 프레임들의 제 2 세트를 상기 프레임들의 제 1 세트와는 상이하게 인코딩하게 하는, 컴퓨터 판독가능 저장 매체.
  26. 제 25 항에 있어서,
    상기 명령들은 상기 하나 이상의 프로세서들로 하여금,
    상기 프레임들의 제 1 세트를, I-프레임들, P-프레임들 및 B-프레임들을 포함하도록 인코딩하게 하고; 그리고,
    상기 프레임들의 제 2 세트를, 임의의 B-프레임들없이 I-프레임들 및 P-프레임들을 포함하도록 인코딩하게 하는, 컴퓨터 판독가능 저장 매체.
  27. 삭제
  28. 삭제
KR1020127003012A 2009-07-02 2010-07-02 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들 KR101387041B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US22284509P 2009-07-02 2009-07-02
US61/222,845 2009-07-02
US22660109P 2009-07-17 2009-07-17
US61/226,601 2009-07-17
US29547910P 2010-01-15 2010-01-15
US61/295,479 2010-01-15
US30951110P 2010-03-02 2010-03-02
US61/309,511 2010-03-02
US12/829,302 2010-07-01
US12/829,302 US9112618B2 (en) 2009-07-02 2010-07-01 Coding latency reductions during transmitter quieting
PCT/US2010/040948 WO2011003084A1 (en) 2009-07-02 2010-07-02 Coding latency reductions to allow transmitter quieting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020137024552A Division KR101443893B1 (ko) 2009-07-02 2010-07-02 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들

Publications (2)

Publication Number Publication Date
KR20120039691A KR20120039691A (ko) 2012-04-25
KR101387041B1 true KR101387041B1 (ko) 2014-04-18

Family

ID=42542743

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137024552A KR101443893B1 (ko) 2009-07-02 2010-07-02 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들
KR1020127003012A KR101387041B1 (ko) 2009-07-02 2010-07-02 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020137024552A KR101443893B1 (ko) 2009-07-02 2010-07-02 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들

Country Status (8)

Country Link
US (1) US9112618B2 (ko)
EP (1) EP2449702A1 (ko)
JP (2) JP5710608B2 (ko)
KR (2) KR101443893B1 (ko)
CN (1) CN102474362B (ko)
BR (1) BRPI1011800B1 (ko)
TW (2) TWI498000B (ko)
WO (1) WO2011003084A1 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2009007037A (es) * 2007-01-04 2009-07-10 Qualcomm Inc Metodo y aparato para deteccion de espectro distribuido para comunicacion inalambrica.
US8902995B2 (en) * 2009-07-02 2014-12-02 Qualcomm Incorporated Transmitter quieting and reduced rate encoding
US8780982B2 (en) 2009-07-02 2014-07-15 Qualcomm Incorporated Transmitter quieting and different encoding rates for portions of a set of frames
US8537772B2 (en) * 2009-07-02 2013-09-17 Qualcomm Incorporated Transmitter quieting during spectrum sensing
US8958475B2 (en) * 2009-07-02 2015-02-17 Qualcomm Incorporated Transmitter quieting and null data encoding
KR101234495B1 (ko) * 2009-10-19 2013-02-18 한국전자통신연구원 화상회의 시스템을 위한 단말, 중계 노드 및 스트림 처리 방법
US20110176060A1 (en) * 2010-01-21 2011-07-21 Qualcomm Incorporated Data feedback for broadcast applications
US20110182257A1 (en) * 2010-01-26 2011-07-28 Qualcomm Incorporated White space spectrum commmunciation device with multiplexing capabilties
US8904027B2 (en) * 2010-06-30 2014-12-02 Cable Television Laboratories, Inc. Adaptive bit rate for data transmission
IL301488B2 (en) 2012-04-13 2024-03-01 Ge Video Compression Llc Low-delay image coding
US9065576B2 (en) 2012-04-18 2015-06-23 2236008 Ontario Inc. System, apparatus and method for transmitting continuous audio data
CN115442624A (zh) * 2012-06-29 2022-12-06 Ge视频压缩有限责任公司 视频数据流、编码器、编码视频内容的方法以及解码器
TWI597968B (zh) 2012-12-21 2017-09-01 杜比實驗室特許公司 在高位元深度視訊的可適性編碼中,高精度升取樣
US9008203B2 (en) 2013-03-13 2015-04-14 Sony Corporation Transmitters, receivers and methods of transmitting and receiving
WO2014195303A1 (en) 2013-06-05 2014-12-11 Sony Corporation Transmitter and transmission method for transmitting payload data and emergency information
KR102211586B1 (ko) 2013-09-27 2021-02-04 삼성전자주식회사 송신 장치, 수신 장치 및 그 제어 방법
US9374552B2 (en) 2013-11-11 2016-06-21 Amazon Technologies, Inc. Streaming game server video recorder
US9805479B2 (en) 2013-11-11 2017-10-31 Amazon Technologies, Inc. Session idle optimization for streaming server
US9604139B2 (en) 2013-11-11 2017-03-28 Amazon Technologies, Inc. Service for generating graphics object data
US9578074B2 (en) * 2013-11-11 2017-02-21 Amazon Technologies, Inc. Adaptive content transmission
US9634942B2 (en) 2013-11-11 2017-04-25 Amazon Technologies, Inc. Adaptive scene complexity based on service quality
US9582904B2 (en) 2013-11-11 2017-02-28 Amazon Technologies, Inc. Image composition based on remote object data
US9641592B2 (en) 2013-11-11 2017-05-02 Amazon Technologies, Inc. Location of actor resources
CN105187155B (zh) * 2015-06-12 2018-10-19 北京邮电大学 一种反馈信息的传输方法及装置
CN105302867B (zh) * 2015-09-28 2019-06-11 浙江宇视科技有限公司 一种搜索引擎查询方法及装置
US10101747B2 (en) 2015-12-11 2018-10-16 Uber Technologies, Inc. Formatting sensor data for use in autonomous vehicle communications platform
US9537956B1 (en) * 2015-12-11 2017-01-03 Uber Technologies, Inc. System for acquiring time-synchronized sensor data
US9785150B2 (en) 2015-12-11 2017-10-10 Uber Technologies, Inc. Formatting sensor data for use in autonomous vehicle communications platform
US9596666B1 (en) 2015-12-11 2017-03-14 Uber Technologies, Inc. System for processing asynchronous sensor data
US10114103B2 (en) 2016-03-31 2018-10-30 Uber Technologies, Inc. System and method for sensor triggering for synchronized operation
US10200424B2 (en) * 2016-09-28 2019-02-05 Gogo Llc Seamless delivery of real-time media stream with intermittent signal loss
US10482559B2 (en) 2016-11-11 2019-11-19 Uatc, Llc Personalizing ride experience based on contextual ride usage data
US11223507B2 (en) 2017-04-18 2022-01-11 Qualcomm Incorporated Payload with synchronization information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008074A1 (en) 2003-06-25 2005-01-13 Van Beek Petrus J.L. Wireless video transmission system
US7068724B1 (en) * 1999-10-20 2006-06-27 Prime Research Alliance E., Inc. Method and apparatus for inserting digital media advertisements into statistical multiplexed streams

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668525A (en) 1970-03-12 1972-06-06 Robert E Mcgraw Communication system
US4079380A (en) 1976-11-22 1978-03-14 Motorola, Inc. Null steering apparatus for a multiple antenna array on an FM receiver
US4098110A (en) * 1977-05-04 1978-07-04 Dacor Corporation Depth gauge
US4745479A (en) 1985-10-04 1988-05-17 American Dynamics Corporation Multiple image video display system
US5098110A (en) 1989-07-19 1992-03-24 Michael Yang Method for remotely controlling a video game system of a video game apparatus
JP3164647B2 (ja) * 1992-06-03 2001-05-08 株式会社東芝 動画像符号化方法及び装置
US5278647A (en) * 1992-08-05 1994-01-11 At&T Bell Laboratories Video decoder using adaptive macroblock leak signals
US5678172A (en) * 1992-10-26 1997-10-14 Eon Corporation Simulated voice packet messaging
US5754353A (en) 1993-07-01 1998-05-19 Cirrus Logic, Inc. Channel quality circuit in a sampled amplitude read channel
JP3278505B2 (ja) 1993-10-06 2002-04-30 松下電器産業株式会社 ディジタル無線電話装置
JP3538907B2 (ja) 1994-08-19 2004-06-14 セイコーエプソン株式会社 移動体用の放送波受信装置
US5668948A (en) * 1994-09-08 1997-09-16 International Business Machines Corporation Media streamer with control node enabling same isochronous streams to appear simultaneously at output ports or different streams to appear simultaneously at output ports
FR2729030B1 (fr) * 1994-12-30 1997-03-28 France Telecom Procede de reconfiguration dynamique d'un signal presentant un entrelacement temporel, recepteur et signal correspondants
US6009237A (en) * 1995-02-24 1999-12-28 Hitachi Ltd. Optical disk and optical disk reproduction apparatus
US6044270A (en) 1995-10-18 2000-03-28 Telefonaktiengesellschaft Lm Ericsson Apparatuses and methods for signal strength measurement in a wireless communication system
US5751280A (en) * 1995-12-11 1998-05-12 Silicon Graphics, Inc. System and method for media stream synchronization with a base atom index file and an auxiliary atom index file
GB9616537D0 (en) 1996-08-06 1996-09-25 Digi Media Vision Ltd Digital synthesiser
JPH10191331A (ja) 1996-12-25 1998-07-21 Sony Corp 画像データの符号化方法及び装置
FI105252B (fi) 1997-07-14 2000-06-30 Nokia Mobile Phones Ltd Menetelmä ajan varaamiseksi matkaviestimelle
JP4009789B2 (ja) 1997-10-09 2007-11-21 ソニー株式会社 送信機
US6788710B1 (en) 1998-03-19 2004-09-07 Thomson Licensing S.A. Auxiliary data insertion in a transport datastream
GB9808716D0 (en) * 1998-04-25 1998-06-24 Philips Electronics Nv A method of controlling a communication system and the system employing the method
JP2000059330A (ja) * 1998-08-04 2000-02-25 Sony Corp デジタル放送の受信機
US6310866B1 (en) 1998-10-09 2001-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Medium access control protocol with automatic frequency assignment
JP3583962B2 (ja) 1998-10-22 2004-11-04 日本無線株式会社 無線機
KR20000038176A (ko) 1998-12-04 2000-07-05 전주범 위성위치 측정시스템을 이용한 라디오 주파수 자동선택방법
SE521227C2 (sv) 1999-02-22 2003-10-14 Ericsson Telefon Ab L M Mobilradiosystem och ett förfarande för kanallokering i ett mobilradiosystem
US6686957B1 (en) 1999-03-31 2004-02-03 Cirrus Logic, Inc. Preview mode low resolution output system and method
KR100608042B1 (ko) 1999-06-12 2006-08-02 삼성전자주식회사 멀티 미디어 데이터의 무선 송수신을 위한 인코딩 방법 및그 장치
FI19992851A (fi) * 1999-12-31 2001-07-01 Nokia Oyj Palvelujen lähetys pakettiverkossa
JP2001308876A (ja) 2000-04-24 2001-11-02 Ntt Communications Kk 情報伝送方式、送信装置及び受信装置
US6621528B1 (en) 2000-05-22 2003-09-16 Sony Corporation Channel control for digital television
KR100341063B1 (ko) 2000-06-28 2002-06-20 송문섭 실시간 영상 통신을 위한 율제어 장치 및 그 방법
AU2001271632A1 (en) 2000-07-26 2002-02-05 Thomson Licensing S.A. Multi-media jitter removal in an asynchronous digital home network
US7327381B2 (en) 2000-09-25 2008-02-05 Matsushita Electric Industrial Co., Ltd. Signal transmission system, signal transmitter, and signal receiver
US7031342B2 (en) 2001-05-15 2006-04-18 Webex Communications, Inc. Aligning data packets/frames for transmission over a network channel
WO2003005719A2 (en) 2001-05-24 2003-01-16 Vixs Systems Inc. Method and apparatus for managing resources and multiplexing a plurality of channels in a multimedia system
JP3866538B2 (ja) * 2001-06-29 2007-01-10 株式会社東芝 動画像符号化方法及び装置
US7274661B2 (en) * 2001-09-17 2007-09-25 Altera Corporation Flow control method for quality streaming of audio/video/media over packet networks
KR100547847B1 (ko) 2001-10-26 2006-01-31 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 제어 장치 및 방법
US7088398B1 (en) 2001-12-24 2006-08-08 Silicon Image, Inc. Method and apparatus for regenerating a clock for auxiliary data transmitted over a serial link with video data
US7483487B2 (en) * 2002-04-11 2009-01-27 Microsoft Corporation Streaming methods and systems
US7254191B2 (en) 2002-04-22 2007-08-07 Cognio, Inc. System and method for real-time spectrum analysis in a radio device
EP1604468B1 (en) 2002-10-15 2008-07-23 Qualcomm Incorporated Wireless local area network repeater with automatic gain control for extending network coverage
JP4196640B2 (ja) * 2002-10-21 2008-12-17 株式会社日立製作所 データ変換方法
AU2003291065A1 (en) 2002-11-27 2004-06-23 Cognio, Inc. Server and multiple sensor system for monitoring activity in a shared radio frequency band
US8832772B2 (en) 2002-12-10 2014-09-09 Ol2, Inc. System for combining recorded application state with application streaming interactive video output
US20060153148A1 (en) * 2003-02-28 2006-07-13 Guillaume Bichot Method for wlan exclusive downlink channel
JP4059120B2 (ja) 2003-03-26 2008-03-12 日本ビクター株式会社 マルチキャリア伝送方法、及びマルチキャリア伝送装置
JP4197266B2 (ja) 2003-04-10 2008-12-17 株式会社エヌ・ティ・ティ・ドコモ 無線制御装置及びハンドオーバ制御方法
JP4214816B2 (ja) 2003-04-15 2009-01-28 パナソニック株式会社 メディア情報処理方法
JP2006524478A (ja) * 2003-04-23 2006-10-26 パットワードハン,ニケット,ケシャブ レート適応データ放送技術
EP1478197B1 (en) 2003-05-12 2006-03-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for transmitting layers for scalable data services
US7974243B2 (en) 2003-06-18 2011-07-05 Nippon Telegraph And Telephone Corporation Wireless packet communication method and wireless packet communication apparatus
JP2005057710A (ja) 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd 通信端末装置及び基地局装置
JP2005072742A (ja) * 2003-08-21 2005-03-17 Sony Corp 符号化装置及び符号化方法
JP4175510B2 (ja) 2003-08-29 2008-11-05 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 移動体端末、無線中継装置、移動通信システム
US7110756B2 (en) 2003-10-03 2006-09-19 Cognio, Inc. Automated real-time site survey in a shared frequency band environment
KR100629525B1 (ko) 2003-10-23 2006-09-27 엘지.필립스 디스플레이 주식회사 음극선관
TWI262660B (en) * 2003-11-19 2006-09-21 Inst Information Industry Video transcoder adaptively reducing frame rate
JP4313169B2 (ja) 2003-12-08 2009-08-12 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線基地局及び移動局並びに拡散符号割当方法
US7391809B2 (en) * 2003-12-30 2008-06-24 Microsoft Corporation Scalable video transcoding
KR100606062B1 (ko) 2004-02-26 2006-07-26 삼성전자주식회사 이동통신 시스템에서 시변채널의 특성에 따라 채널품질정보의 전송을 제어하는 방법
US20050213602A1 (en) 2004-03-25 2005-09-29 Bbnt Solutions Llc Methods for providing prioritized communications using a carrier sense multiple access protocol
KR100870215B1 (ko) 2004-05-13 2008-11-24 퀄컴 인코포레이티드 무선 통신 시스템을 통해 송신된 멀티미디어 데이터의 헤더압축
US7885337B2 (en) 2004-08-23 2011-02-08 Qualcomm Incorporated Efficient video slicing
JP2006074647A (ja) 2004-09-06 2006-03-16 Ikegami Tsushinki Co Ltd デジタルfpu送信機
US20060084444A1 (en) 2004-10-20 2006-04-20 Nokia Corporation System and method utilizing a cognitive transceiver for ad hoc networking
JP4434920B2 (ja) 2004-10-26 2010-03-17 株式会社東芝 無線通信装置および無線通信方法
US7228154B2 (en) 2004-11-03 2007-06-05 Sony Corporation Method and system for processing wireless digital multimedia
WO2006051509A1 (en) 2004-11-15 2006-05-18 Koninklijke Philips Electronics, N.V. Detection of the operation of a microwave oven by scanning medium noise pattern
US20060209890A1 (en) 2005-03-15 2006-09-21 Radiospire Networks, Inc. System, method and apparatus for placing training information within a digital media frame for wireless transmission
US20060209892A1 (en) 2005-03-15 2006-09-21 Radiospire Networks, Inc. System, method and apparatus for wirelessly providing a display data channel between a generalized content source and a generalized content sink
US8774860B2 (en) 2005-04-05 2014-07-08 Nokia Corporation Method and device for low-power FM transmission of audio data to RDS capable FM radio receiver
US20060223467A1 (en) 2005-04-05 2006-10-05 Nokia Corporation Method and device for low-power FM transmission of audio data to RDS (Radio Data System) capable FM radio receiver
JP4556785B2 (ja) 2005-06-27 2010-10-06 船井電機株式会社 データ伝送システム
US7280810B2 (en) 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
JP4358169B2 (ja) 2005-08-25 2009-11-04 株式会社東芝 無線通信装置および無線通信方法
EP1768285A1 (en) * 2005-09-23 2007-03-28 Udcast Method and device for processing a DVB-H (Digital Video Broadcasting - Handheld) compliant transport stream
JP4473803B2 (ja) 2005-09-28 2010-06-02 日本放送協会 多重化装置及び分離装置
KR100785799B1 (ko) 2005-10-14 2007-12-13 한국전자통신연구원 다중 주파수채널 시스템에서 효율적인 스펙트럼 센싱을이용한 채널 할당 방법
WO2007043827A1 (en) 2005-10-14 2007-04-19 Electronics And Telecommunications Research Institute Method of frequency channel assignment using effective spectrum sensing in multiple fa system
US8948260B2 (en) * 2005-10-17 2015-02-03 Qualcomm Incorporated Adaptive GOP structure in video streaming
US8208797B2 (en) 2005-10-27 2012-06-26 Panasonic Corporation Transport stream generating apparatus, recording apparatus having the same, and transport stream generating method
JP2007134896A (ja) 2005-11-09 2007-05-31 Sony Ericsson Mobilecommunications Japan Inc 携帯端末装置及び情報送信方法
JP4398942B2 (ja) 2006-01-10 2010-01-13 株式会社東芝 コグニティブ通信システムおよびこのシステムで用いられるデータベース装置、無線通信機
KR100770849B1 (ko) 2006-02-17 2007-10-26 삼성전자주식회사 무선 페이딩 환경에서의 압축된 비디오 정합 장치 및 방법
JP4772582B2 (ja) 2006-04-28 2011-09-14 株式会社東芝 コグニティブ無線システム
KR101145847B1 (ko) 2006-07-14 2012-05-17 삼성전자주식회사 무선 인식 환경에서 숨겨진 인컴번트 시스템을 탐지하기위한 시그널링 방법 및 상기 방법에 채용되는 채널 분할방법
JP4856012B2 (ja) 2006-08-24 2012-01-18 日本電信電話株式会社 無線通信システム、無線通信局装置および無線通信方法
US8493834B2 (en) 2006-08-28 2013-07-23 Qualcomm Incorporated Content-adaptive multimedia coding and physical layer modulation
CN102740323B (zh) 2006-09-26 2015-09-30 高通股份有限公司 基于无线装置的传感器网络
US7831414B2 (en) 2006-10-06 2010-11-09 Qualcomm Incorporated Method and apparatus for detecting a presence of a signal in a communication channel
US8031807B2 (en) 2006-11-10 2011-10-04 Qualcomm, Incorporated Systems and methods for detecting the presence of a transmission signal in a wireless channel
JP4203832B2 (ja) 2006-12-13 2009-01-07 オムロン株式会社 無線通信装置、無線通信システム及び無線通信方法
US7680459B2 (en) 2006-12-13 2010-03-16 Sony Ericsson Mobile Communications Ab FM transmission system and method
US8630355B2 (en) 2006-12-22 2014-01-14 Qualcomm Incorporated Multimedia data reorganization between base layer and enhancement layer
MX2009007037A (es) 2007-01-04 2009-07-10 Qualcomm Inc Metodo y aparato para deteccion de espectro distribuido para comunicacion inalambrica.
US8687563B2 (en) 2007-01-09 2014-04-01 Stmicroelectronics, Inc. Simultaneous sensing and data transmission
JP2008211583A (ja) 2007-02-27 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> 統合型無線通信システム、情報管理装置、及び、基地局装置
US9071414B2 (en) 2007-03-23 2015-06-30 Qualcomm Incorporated Method and apparatus for distinguishing broadcast messages in wireless signals
JP5012894B2 (ja) 2007-04-16 2012-08-29 富士通株式会社 移動端末
US8655283B2 (en) 2007-04-23 2014-02-18 Lingna Holdings Pte., Llc Cluster-based cooperative spectrum sensing in cognitive radio systems
US8218559B2 (en) * 2007-05-15 2012-07-10 Nokia Corporation Providing best effort services via a digital broadcast network using data encapsulation
JP2008289056A (ja) 2007-05-21 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> チャネル割当て方法、管理局装置、および無線通信装置
JP5444213B2 (ja) 2007-06-01 2014-03-19 イマコー・インコーポレーテッド 高フレームレート超音波イメージング用の温度管理
EP2171485A4 (en) 2007-07-12 2018-01-10 BAE Systems Information and Electronic Systems Integration Inc. Spectrum sensing function for cognitive radio applications
US7903550B2 (en) 2007-07-27 2011-03-08 Silicon Image, Inc. Bandwidth reservation for data flows in interconnection networks
CN101127903B (zh) 2007-09-29 2010-12-08 华南理工大学 基于dct的分辨率可伸缩图像编解码方法
US8121187B2 (en) * 2007-12-05 2012-02-21 Alcatel Lucent Method and apparatus for performing multiple bit rate video encoding and video stream switching
US8478288B2 (en) 2007-12-21 2013-07-02 Qualcomm Incorporated Systems and methods for automatically searching a database to tune a frequency modulator in a mobile device
US8155039B2 (en) 2008-03-17 2012-04-10 Wi-Lan, Inc. System and apparatus for cascading and redistributing HDTV signals
US8428632B2 (en) 2008-03-31 2013-04-23 Motorola Solutions, Inc. Dynamic allocation of spectrum sensing resources in cognitive radio networks
US8565063B2 (en) 2008-05-07 2013-10-22 Xianbin Wang Method and system for adaptive orthogonal frequency division multiplexing using precoded cyclic prefix
US20100013855A1 (en) 2008-07-16 2010-01-21 International Business Machines Corporation Automatically calibrating picture settings on a display in accordance with media stream specific characteristics
US8358978B2 (en) 2008-11-04 2013-01-22 Broadcom Corporation Multiservice communication device with cognitive radio transceiver
US8902995B2 (en) 2009-07-02 2014-12-02 Qualcomm Incorporated Transmitter quieting and reduced rate encoding
US8958475B2 (en) 2009-07-02 2015-02-17 Qualcomm Incorporated Transmitter quieting and null data encoding
US8780982B2 (en) 2009-07-02 2014-07-15 Qualcomm Incorporated Transmitter quieting and different encoding rates for portions of a set of frames
US8537772B2 (en) 2009-07-02 2013-09-17 Qualcomm Incorporated Transmitter quieting during spectrum sensing
US20110182257A1 (en) 2010-01-26 2011-07-28 Qualcomm Incorporated White space spectrum commmunciation device with multiplexing capabilties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068724B1 (en) * 1999-10-20 2006-06-27 Prime Research Alliance E., Inc. Method and apparatus for inserting digital media advertisements into statistical multiplexed streams
US20050008074A1 (en) 2003-06-25 2005-01-13 Van Beek Petrus J.L. Wireless video transmission system

Also Published As

Publication number Publication date
JP5833089B2 (ja) 2015-12-16
WO2011003084A1 (en) 2011-01-06
JP2012532571A (ja) 2012-12-13
TW201448602A (zh) 2014-12-16
US20110002378A1 (en) 2011-01-06
KR20120039691A (ko) 2012-04-25
CN102474362B (zh) 2015-11-25
JP5710608B2 (ja) 2015-04-30
KR20130117880A (ko) 2013-10-28
KR101443893B1 (ko) 2014-09-24
TWI593291B (zh) 2017-07-21
JP2014112837A (ja) 2014-06-19
TW201110691A (en) 2011-03-16
BRPI1011800A2 (pt) 2019-04-02
BRPI1011800B1 (pt) 2021-02-02
EP2449702A1 (en) 2012-05-09
CN102474362A (zh) 2012-05-23
US9112618B2 (en) 2015-08-18
TWI498000B (zh) 2015-08-21

Similar Documents

Publication Publication Date Title
KR101387041B1 (ko) 송신기 침묵을 허용하기 위한 코딩 레이턴시 감소들
KR101450724B1 (ko) 송신기 침묵 및 널 데이터 인코딩
KR101443880B1 (ko) 송신기 침묵 및 감소된 레이트의 인코딩
KR101486320B1 (ko) 프레임들의 세트의 부분들에 대한 송신기 침묵 및 상이한 인코딩 레이트들
US8537772B2 (en) Transmitter quieting during spectrum sensing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 6