KR101386329B1 - 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법 - Google Patents

벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법 Download PDF

Info

Publication number
KR101386329B1
KR101386329B1 KR1020120062310A KR20120062310A KR101386329B1 KR 101386329 B1 KR101386329 B1 KR 101386329B1 KR 1020120062310 A KR1020120062310 A KR 1020120062310A KR 20120062310 A KR20120062310 A KR 20120062310A KR 101386329 B1 KR101386329 B1 KR 101386329B1
Authority
KR
South Korea
Prior art keywords
acid
benzylidene acetone
bza
trans
derivatives
Prior art date
Application number
KR1020120062310A
Other languages
English (en)
Other versions
KR20130138596A (ko
Inventor
서삼열
김용균
Original Assignee
안동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안동대학교 산학협력단 filed Critical 안동대학교 산학협력단
Priority to KR1020120062310A priority Critical patent/KR101386329B1/ko
Publication of KR20130138596A publication Critical patent/KR20130138596A/ko
Application granted granted Critical
Publication of KR101386329B1 publication Critical patent/KR101386329B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/06Unsaturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • A01N63/23B. thuringiensis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 식물 병해충 방제 조성물 및 방제 방법에 관한 것으로, 특히 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제에 관한 것이다. 본 발명은 벤질리덴아세톤의 약효를 유지하면서 약해를 낮추는 유도체를 선발, 제공하고자 하는 것으로서, 본 발명에서는, 트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)으로 구성된 군으로부터 선택된 벤질리덴아세톤 유도체를 유효성분으로 포함하는 식물 병해충 방제 조성물과 이들 유도체를 작물에 처리하는 식물 병해충 방제 방법이 제공된다. 본 발명의 병해충 방제 조성물은, 곤충에 대한 면역 억제 활성과 식물병원균에 대한 항균 활성을 유지하면서 비교적 용해도가 높고 약해가 낮는 BZA 유도체를 유효성분으로 하고 있으므로, 기존 BZA의 문제점인 높은 약해 문제를 해결할 수 있고 효과적인 농약으로 이용될 수 있다.

Description

벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법{Composition and method for controlling insects and pathogenic fungi of plants}
본 발명은 식물 병해충 방제 조성물 및 방제 방법에 관한 것으로, 특히 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제에 관한 것이다.
공생세균과 종 특이적 공생관계를 갖는 곤충병원선충은 공생세균과 특이적 병리적 생활환을 가지고 있다(Richards and Goodrich-Blair, 2009). 예를 들어, 곤충병원성 선충인 슈타이너네마 카르포캅사에(Steinernema carpocapsae)는 특이적으로 제노랍두스 네마토필라(Xenorhabdus nematophila, Xn) K1의 공생세균을 갖고 있으며, 이와 비교하여 다른 곤충병원성 선충인 헤테로랍디티스 메기디스(Heterorhabditis megidis)는 특이적으로 포토랍두스 템페라타 템페라타(Photorhabdus temperata temperata, Ptt) 공생세균을 갖고 있다(Akhurst, 1980; Kang et al ., 2004). 감염태 선충이 대상 곤충을 찾고 개구부를 통해 혈강으로 침입하게 되면, 선충의 장내에 서식하는 공생세균은 선충으로부터 나와 곤충 혈강에 자리잡게 된다. 이 때 상기 공생세균은 자신과 선충을 공격하는 곤충의 면역작용을 억제하게 된다. 면역방어 기작이 억제된 기주 곤충 체내에서 세균은 증식하여 패혈증을 일으켜 곤충을 치사시키고, 치사된 곤충 체내에서 선충이 증식하여 새로운 세대의 감염태 선충을 형성하고 다시 다른 곤충 기주를 찾게 된다. 따라서 곤충을 치사시키는 궁극적 원인인 패혈증을 일으키는 인자가 세균이라면, 선충은 이 세균을 운반하는 숙주로서 작용하게 된다. 여기서 곤충의 면역억제유도는 이들의 병리 생활환을 이루는 데 필수적으로 선행되어야 하는 단계이고, 이에 대한 원인으로서 곤충 면역 중개인자인 아이코사노이드 생합성억제가 주목받아 왔다(Park and Kim, 2000; Stanley and Kim, 2011).
벤질리덴아세톤(benzylideneacetone, BZA)은 Xn과 Ptt 곤충병원세균이 합성하여 분비하는 물질이다(Seo et al ., 2012). BZA는 탄소수 10개의 모노터핀 구조의 화합물이며, 다양한 세균에 대한 항생능력을 지닌 것으로 알려지고 있다(Ji et al ., 2004). 특별히 곤충의 면역에 중요한 물질인 아이코사노이드의 생합성 억제자로서 알려지면서 해충방제에 응용을 꾀하게 되었다(Shrestha and Kim, 2008; 대한민국 공개특허공보 제10-2006-0031341호(2006.4.12.).
BZA가 곤충면역억제에 작용하는 기작은 이 물질이 아이코사노이드 생합성의 첫 단계인 아라키도닉산(arachidonic acid)을 유리하는 인지질분해효소 A2 (phospholipase A2, PLA2)를 기질과 경쟁적으로 활성부위에 작용하여 억제 작용을 발휘하는데 기인한다(Shrestha and Kim, 2009). 아라키도닉산은 사이클로옥시게나아제(cyclooxygenase)나 리폭시게나아제(lipoxygenase)의 효소 작용에 의해 다양한 아이코사노이드류를 생합성하게 된다. 이러한 아이코사노이드류는 혈구세포의 활착을 유도하여(Miller, 2005) 곤충의 세포성 면역반응인 식균작용(Shrestha and Kim, 2008), 소낭형성(Miller et al ., 1994), 피낭형성(Carton et al ., 2002)에 관여하는 것으로 알려졌다. 또한 체액성 면역작용에 관여하여 항생단백질의 합성을 유도하였다(Yajima et al ., 2003; Shrestha and Kim, 2009).
BZA는 다양한 세균과 곰팡이에 대해서 항생능력을 소유하고 있다(Ji et al ., 2004). 특별히 BZA은 탄저병에 대한 억제 능력을 지니는 것이 실내 및 야외 실험을 통해 입증되었다(Park et al ., 2010). 그러나 이 물질은 2,000 ppm 이상의 높은 농도에서는 식물체에 약해를 보이며 또한 낮은 침투 이행 능력으로 살균제로서 개발에 어려움을 주고 있다. 이를 보완하기 위해 벤질리덴아세톤의 화학구조의 변형을 통해 수용성을 높이고 약해를 줄이는 방안이 검토되었다(Seo et al., 2011). 이 연구에서는 수산기 또는 포도당을 BZA의 벤젠고리 또는 사슬기 쪽에 붙이면서 활성을 조사하였으나, 모두 살충 및 항균 활성을 크게 잃어 목적을 이루지 못했다(Seo et al., 2011).
대한민국 공개특허공보 제10-2006-0031341호(2006.4.12.) 대한민국 공개특허공보 제10-2012-0013802호(2012.2.15.)
Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. Carton, Y., F. Frey. D.W. Stanley, E. Vass and J.N. Antony. 2002. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J. Parasitol. 88: 405-407. Cho, S. and Y. Kim. 2004. Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia Pac. Entomol. 7: 195-200. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York. Jeon, M., W. Cheon. Y. Kim, Y.P. Hong and Y. Yi. 2012. Control effects of indole isolated from Xenorhabdus nematophila K1 on the diseases of red pepper. Res. Plant Dis. 18: 17-23. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589. Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic aid and several lytic enzymes. Curr. Microbiol. 59: 608-615. Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim, K.H. Park, G.S. Cha, R.D. Park and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358-364. Merchant, D., R.L. Ertl, S.I. Rennard, D.W. Stanley and J.S. Miller. 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54: 215-221. Miller, J.S. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 4251. Miller, J.S., T. Nguyen and D.W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. USA 91: 12418-12422. Ohtani, K., S. Fujioka, T. Kawano, A. Shimada and Y. Kimura. 2011. Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp. Z. Naturforsch. C. 66: 31-34. Park, S.J., M.H. Jun, W. Chun, J.A. Seo, Y. Yi, and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the disease of redpepper plants. Res. Plant Dis. 16: 170-175. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109. Richards, G.R. and H.B. Goodrich. 2009. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol. 11: 1025-1033. Russel, A.D. and J.R. Furr. 1996. Biocides: mechanisms of antifungal action and fungal resistance. Sci. Prog. 79: 27-48. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C. Seo, S.Y., M.Y. Jeon, W.S. Chun, S.H. Lee, J.A. Seo, Y.G. Yi, Y.P. Hong and Y. Kim. 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Kor. J. Appl. Entomol. 50: 107-113. Seo, S.Y., S.H. Lee, Y.P. Hong and Y. Kim. 2012. Chemical identification and biological characterization of phospholipase A2 inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase A2 and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. Shrestha, S., D. Stanley and Y. Kim. 2011. PGE2 induces oenocytoid cell lysis a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57: 1568-1576. Srikanth, K., J. Park, D.W. Stanley and Y. Kim. 2011. Plasmatocyte-spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78: 145-160. Stanley, D. and Y. Kim. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011.00105. Yajima, M., M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima and S. Kurata. 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 37: 205-210. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R1 induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588.
본 발명은 벤질리덴아세톤의 약효를 유지하면서 약해를 낮추는 유도체를 선발, 제공하고자 하는 것이다. 본 발명은 낮은 약해를 유발하면서 높은 곤충면역억제와 항균활성을 보이는 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법을 제공하는 것을 목적으로 한다.
본 발명에서는 벤질리덴아세톤의 사슬의 탄소수를 줄이면서 소수성을 줄이는 방향으로 유도체를 선발하여 스크리닝하였으며, 그 결과 약효를 유지하면서 약해를 낮추는 벤질리덴아세톤 유도체를 선발하였다.
본 발명에서는,
트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)으로 구성된 군으로부터 선택된 벤질리덴아세톤 유도체를 유효성분으로 포함하는 식물 병해충 방제 조성물이 제공된다. 본 발명의 바람직한 일 실시예에서 상기 조성물에 포함되는 벤질리덴아세톤 유도체는, 4-하이드록시페닐아세트산(HPA)이다. 본 발명의 조성물은 바람직하게는, 생물농약 비티(Bacillus thuringiensis, Bt)를 더 포함할 수 있다. 본 발명의 바람직한 일 실시예에서 조성물에 포함되는 벤질리덴아세톤 유도체는, 4-하이드록시페닐아세트산(HPA) 또는 트랜스-신남산(CIA)이다. 상기 식물 병해충에는 나방류 등의 해충과 식물 병원성 곰팡이균이 포함된다. 상기 식물 병원성 곰팡이균은, 특히 고추 역병균 또는 탄저병균을 포함한다. 본 발명의 조성물의 유효성분인 벤질리덴아세톤 유도체, 특히 4-하이드록시페닐아세트산(HPA) 또는 트랜스-신남산(CIA)은, 바람직하게는 2,000~3,000 ppm의 농도로 작물에 처리될 수 있다.
또한, 본 발명에서는,
트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)으로 구성된 군으로부터 선택된 벤질리덴아세톤 유도체를 작물에 처리하는 것을 포함하는, 식물 병해충 방제 방법이 제공된다. 본 발명에서 “작물에 처리”는 작물에 대한 직접 살포 및 침지 등의 방법으로 약물을 작물에 직접적으로 접촉시키는 것은 물론, 지상 및 지하부에 관계 없이 작물 및 작물 주위, 근권 토양에 약물을 살포, 침지, 관주, 혼화 등의 방법으로 처리하는 것, 모종 전 토양에 혼화 처리하는 것 등, 공지된 방제제의 처리방법을 모두 포함하는 의미이다. 본 발명의 방제 방법에서 상기 벤질리덴아세톤 유도체는 특히 4-하이드록시페닐아세트산(HPA) 또는 트랜스-신남산(CIA)을 포함한다. 상기 식물 병해충은 특히 고추 역병균 또는 탄저병균을 포함한다. 본 발명의 바람직한 실시예에서 상기 4-하이드록시페닐아세트산(HPA) 또는 트랜스-신남산(CIA)은 2,000~3,000 ppm의 농도로 고추에 처리될 수 있다. 이때 처리는, 특히 고추의 지상부에 살포하거나 고추 모종의 이식 전에 토양에 혼화 처리하는 것을 포함한다.
본 발명은 선발된 BZA 유도체들의 곤충에 대한 면역억제활성, 식물병원균에 대한 항균력, 세포독성, 살충력, Bt와의 살충 상승 효과 및 BZA에 비해 낮은 약해를 확인함으로써 이들 유도체를 이용한 새로운 살충제 조성물 및 항균제 조성물을 제공한다. 본 발명의 병해충 방제 조성물은, 곤충에 대한 면역 억제 활성과 식물병원균에 대한 항균 활성을 유지하면서 비교적 용해도가 높고 약해가 낮는 BZA 유도체를 유효성분으로 하고 있으므로, 기존 BZA의 문제점인 높은 약해 문제를 해결할 수 있고 효과적인 농약으로 이용될 수 있다.
도 1a, b는 벤질리덴아세톤 및 그 유도체들의 인지질분해효소 A2(PLA2)에 대한 효소 활성 억제 효과를 나타내는 시험결과로, 도 1a는 각각의 억제자 농도에 따른 파밤나방 5령충의 혈구세포로부터 추출된 PLA2 의 활성을 나타내며, 도 1b 는 각각의 억제자에 따른 반수치사농도(IC50)를 나타내고 있다.
도 2a, b는 벤질리덴아세톤 및 그 유도체들의 페놀산화효소(PO)에 대한 효소 활성 억제 효과를 나타내는 시험결과이다. 도 2a는 각각의 억제자 농도에 따른 파밤나방 5령충의 혈구세포로부터 추출된 PO 의 활성을 나타내며, 도 2b는 각각의 억제자에 따른 반수치사농도(IC50)를 나타내고 있다.
도 3a, b는 벤질리덴아세톤 및 그 유도체들의 파밤나방 유충의 세포성 면역에 대한 억제 효과를 나타내는 시험결과이다. 도 3a는 각각의 억제자에 따른 소낭형성을 측정한 결과를 나타내며, 도 3b는 각각의 억제자에 따른 혈구 활착 반응 분석 결과를 나타내고 있다.
도 4a, b는 벤질리덴아세톤 및 그 유도체들의 식물병원균에 대한 항균력을 나타내는 시험결과이다. 도 4a는 각각의 억제자에 따른 탄저병균에 대한 항균력을 나타내며, 도 4b는 각각의 억제자에 따른 고추역병균에 대한 항균력을 나타내고 있다.
도 5a, b는 벤질리덴아세톤 및 그 유도체들의 파밤나방 혈구세포에 대한 세포독성 검정을 나타내는 시험결과이다. 도 5a는 각각의 억제자에 따른 세포 독성 검정 결과이며, 도 5b는 각각의 억제자에 따른 반수치사농도(IC50)를 나타내고 있다.
도 6은 배추좀나방 4령 유충을 대상으로 벤질리덴아세톤 및 그 유도체들의 Bt와의 살충력 협력 효과를 시험한 결과이다.
도 7a, b는 벤질리덴아세톤 및 그 유도체들의 배추에 대한 약해 현상을 분석한 시험결과이다. 도 7a는 벤질리덴아세톤을 2,000 ppm 이상 처리한 배추의 황화 반점 현상을 관찰한 것이며, 도 7b는 벤질리덴아세톤 및 각각의 억제자에 대해 약해 현상이 나타나기 시작하는 최소 농도를 나타낸 것이다.
본 발명 이전의 연구에서는 BZA의 구조를 변형시키지 않고 수산기를 벤젠 고리와 탄화수소 사슬에 각각 붙이면서 수용성 증가와 면역억제 및 살충력의 증가를 시도하였으나, 모든 유도체들이 BZA에 비해 현격하게 낮은 활성을 보이는 것으로 나타났다. 본 발명에서는 BZA의 탄화수소 구조를 변형시키면서 수산기를 첨가하는 유도체를 선발 대상으로 스크리닝 하였으며, 그 결과 BZA와 유사한 약효와 유용성을 지니면서 비교적 용해도가 높고 약해가 낮은 유도체들을 선발하게 되었다. 선발과정에서 BZA의 케톤기를 카르복실기로 변형하면 면역억제와 항균활성을 잃게 되는 것으로 나타났으며, BZA의 벤젠 고리에 수산기가 붙은 유도체들은 대체로 면역억제 및 항균활성이 낮아지는 경향을 나타내었다. 본 발명에서 선발된 BZA 유도체는 트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)이다.
본 발명에서는 하기 실시예와 같이, 선발된 유도체들을 대상으로, 면역억제활성, 항균력, 세포독성, 살충력, Bt와의 협력효과, 약해 등을 실험하였다. 선발된 본 발명의 BZA 유도체들은 모두 면역억제활성, 항균력, 세포독성, 살충력, Bt와의 협력효과를 보이는 것으로 나타났으며, BZA에 비해 낮은 약해를 나타내었다. 특히, BZA의 탄화수소 사슬을 짧게 하여 형성된 아세테이트 유도체인 4-하이드록시페닐아세트산(HPA)은 BZA의 면역억제 및 항균 활성을 거의 잃지 않으면서, BZA 보다 약해가 낮은 것으로 나타났다. HPA를 포함한 본 발명의 BZA 유도체들의 곤충에 대한 면역억제 효과 및 PLA2 억제 효과는 본 발명에서 처음 밝힌 것으로, 본 발명의 BZA 유도체들은 새로운 병해충 방제제로서 이용될 수 있다.
본 발명의 BZA 유도체들은 고추의 주요 병원균인 고추 역병균과 탄저병균에 대해 균사생장을 억제시키는 효과를 나타냈다. 특히, HPA는 항균력이 좋으면서도 고추(Capsicum annuum)에 대해 약해가 낮은 것으로 나타났다. 고추 역병이 토양전염성 병해이기 때문에, 지상부에 대한 약제 살포로는 병해방제 효과가 매우 낮아서 고추 역병의 방제는 그동안 주로 저항성품종 재배에 의존하고 있었다(Jeon et al., 2012). 하지만 본 발명의 결과는 BZA 유도체들에 의해 고추의 역병 발병 후에도 지상부에 처리하여 병을 방제할 수 있는 가능성을 제시하는 것이다. 또한 고추 모종의 이식 전에 BZA 유도체를 토양에 혼화 처리함으로써 역병의 발병률을 감소시킬 수도 있는데, 특히 BZA에 비해 수용성이 높은 HPA가 토양에 처리될 경우 뿌리를 통해 식물체의 체내 이동도 높아지고, 이에 따라 방제 효과도 증가할 것이다.
배추좀나방 4령 유충을 대상으로 비티(Bt) 생물농약과의 살충력 협력 효과를 평가한 결과, 본 발명의 BZA 유도체들 모두에서 살충력의 상승효과가 나타났다(도 6). 비티(Bt) 생물농약을 200 ppm 으로 단독으로 처리하는 경우 약 40 % 의 살충률을 나타내지만, BZA와 혼합하면 약 70%의 살충 효과를 나타내었으며, 특히 유도체 중 HPA와 혼합하면 BZA 혼합체와 유사한 살충력을 보이는 것으로 나타났다. 이는 비티(Bt) 생물농약은 그람양성균으로 곤충의 경구로 체내에 들어가면 비티 생물농약의 내독소에 의해 독성이 나타나게 되고, 중장의 알칼리 환경에서 용해된 내독소는 단백질 분해에 의해 활성화되고 중장의 미세융모의 세포막소낭에 존재하는 수용체에 결합하게 된다(Hoffman et al., 1988; Jenkins and Dean, 2000). 그로 인해 세포막에 구멍을 형성하고 이후 중장마비(Gill et al., 1992) 및 세포치사(Zhang et al., 2008)로 이어진다. 이러한 중장세포의 치사로 인해 비티 세균과 중장세균이 곤충의 혈강으로 침입하게 되고, 패혈증을 유발하여 결국 대상곤충을 치사시키게 된다(Broderick et al., 2006). 이때 면역억제제인 BZA이나 벤질리덴아세톤의 유도체가 혈강으로 침입하는 비티와 소화관내 세균을 방어하는 곤충의 면역을 억제시켜 비티의 활성을 높여주는 것으로 생각된다.
이하 구체적인 시험예 및 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 이들 시험예 및 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 시험예 및 실시예에 의해 한정되는 것은 아니다.
[실험재료 및 실험방법]
1. 시험 곤충
배추좀나방(Plutella xylostella)은 안동시 송천동에 소재한 배추포장에서 채집한 유충을 약제 처리하지 않고 실내에서 누대 사육한 것을 이용하였다. 유충은 온도 25 ± 1℃, 광주기 16:8 h (L:D), 상대습도 40~60%의 조건에서 배추를 먹이로 사육하였다. 성충은 10% 설탕물을 먹이로 공급하고 배추 잎을 이용하여 산란을 유도하였다. 파밤나방(Spodoptera exigua)은 배추좀나방과 같은 조건에서 인공사료(Goh et al., 1990)를 이용하여 Seo et al . (2011)의 방법으로 사육하였다.
2. 시험 화합물
PLA2 효소활성 측정에 사용된 1-헥사데카노일-2-(1-피렌데카노일)-sn-글리세롤-3-포스포콜린(1-hexadecanoyl-2-(1-pyrenedecanoyl) -sn-glycerol-3-phosphatidylcholine)은 미국 Molecular Probes, Inc (Eugene, OR, USA) 에서 구입하였다. PLA2 효소활성 측정에 이용된 다른 화합물인 소 혈청 알부민(BSA, bovine serum albumin), 페놀산화효소(PO, phenoloxidase) 활성측정에 이용된 L-3,4-디하이드록시페닐알라닌(DOPA, L-3,4-dihydroxyphenylalanine), MTT 검정(MTT Assay)에 이용된 MTT(thiazolyl blue tetrazolium bromide) 및 벤질리덴아세톤(BZA, benzylideneacetone, (E)-4-phenylbut-3-en-2-one acetic acid), p-쿠마르산(p-coumaric acid), 3-하이드록시신나믹산(3-hydroxycinnamic acid), 신남산(cinnamic acid), 3-페닐프로피온산(3-phenylpropionic acid), 3-(p-하이드록시페닐)-프로피온산(3-(p-hydroxyphenyl)-propionic acid)는 모두 한국 시그마-알드리치(Sigma-Aldrich Korea, Seoul, Korea)에서 구매하여 사용하였다.
3. 인지질분해효소 A2(PLA2) 효소활성 및 억제자 분석
PLA2 효소활성의 측정은 형광물질 피렌(pyrene)이 부착된 인지질을 기질로 사용하여 형광분석법으로 측정하였다(Radvanyi et al., 1989). PLA2 효소는 파밤나방 5령충의 혈구세포로부터 추출되었다. 간략하게, 약 1 mL의 파밤나방 혈림프로부터 혈구를 분리하고, 400 μL의 인산완충용액(PBS, 50 mM phosphate buffer saline, 0.7% NaCl, pH 7.4)으로 현탁액을 만들었다. 이후 초음파분쇄기(Sonopuls GM2070, Bendelin Inc., Berlin, Germany)로 단백질을 추출하였다. 추출된 단백질은 52 ㎍/mL의 농도를 지녔다. 기질은 99.5% 에탄올을 이용하여 10 mM로 조제하였다. BSA는 PBS 용액을 이용하여 10%로 조제하였다. 트리스(Tris) 완충용액(pH 7.0)은 증류수를 이용하여 50 mM로 조제하였다. 염화칼슘은 증류수로 1 M을 조제하였다. BZA와 유도체는 디메틸설폭시화물(DMSO, dimethylsulfoxide)를 이용하여 1 M의 농도로 조제하였다. 반응용액(2 mL)은 50 mM의 트리스 완충용액 1,900 ㎕, 50 μL의 효소 추출액, 12 μL의 염화칼슘, 20 μL의 BSA, 그리고 10 ㎕의 억제자로 구성되었다. 억제자인 BZA와 그 유도체들은 0.1~5,000 mM 농도로 첨가하여 5 분간 25℃에서 반응시켰다. 이후 20 μL 기질을 첨가하고 2 분간 반응시켰으며, excitation 345 nm와 emission 398 nm 조건에서 형광분광광도계(FA 257, Spectronic Instruments, Madison, WI, USA)를 이용하여 효소 반응을 측정하였다.
4. PO 효소활성 및 억제자 분석
PO 활성 측정은 DOPA를 기질로 이용하여 측정하였다. 파밤나방 유충에 대장균(Escherichia coli, 5×104 cfu)과 농도별로 희석한 BZA 또는 그 유도체를 혈강에 주사하여 12 시간 후 혈림프를 채취하였다. 채취된 혈림프(300 μL)는 5,000 rpm 에서 10 분간 원심분리하여 혈구와 혈장으로 분리하였다. 분리된 혈구는 300 μL의 PBS로 혼합시킨 후 2 mL의 큐벳에 10 ㎕의 혈구 시료를 넣고 PBS에 용해된 DOPA (1 ㎍/㎕)를 990 ㎕ 첨가하였다. 이후 3-5분 반응시간 간격으로 495 nm 조건에서 분광광도계(Uvikon 930, Kontron, Ales, France)를 이용하여 흡광도를 측정하였다.
5. 식물병원균 억제력 검정
BZA와 그 유도체를 DMSO를 사용하여 1,000 ppm의 농도로 조제 후 증류수로 250 ppm과 500 ppm으로 희석하였다. 식물병원성 곰팡이는 농촌진흥청 국립농업과학원 국립농업유전자원센터(Suwon, Korea)로부터 분양받았으며, 감자한천배지(PDA, potato dextrose agar, Difco, New jersey, USA)를 이용하여 계대 배양하였다. BZA와 그 유도체의 최종 농도가 각각 250 ㎍/mL과 500 ㎍/mL이 되도록 첨가한 PDA의 중앙에 각각 직경 6 mm 크기의 고추역병균(Phytophthora capsici)과 탄저병균(Colletotrichum acutatum)의 콜로니를 접종한 후 28℃에서 7 일간 배양하였다. BZA와 이 유도체를 각각의 병원균에 3 반복으로 처리하였으며, 배양된 균주의 직경을 BZA와 그 유도체를 함유하지 않은 PDA에서 배양된 곰팡이의 균주와 직경을 비교하였다.
6. 세포독성 검정
파밤나방 혈구세포(1×103 cell/mL)를 96 well에 접종하여 2 일간 배양한 후 BZA와 유도체를 1 M로 조제하여 3~500 ㎍/mL의 농도로 처리하였다. 처리 후 24 시간 배양 후, 50 ㎍/mL의 MTT(thiazolyl blue tetrazolium bromide)를 포함하는 배지로 교체하여 28℃에서 4 시간 배양하고, 배양액을 제거한 후 1 mL의 DMSO를 첨가하여 분광광도계(Infinite 200, Tecan, M, Switzerland)를 이용하여 570 nm에서 흡광도를 측정하였다.
7. 살충력 검정
BZA와 그 유도체는 DMSO를 이용하여 10,000 ppm 으로 희석 후 증류수를 첨가하여 1,000 ppm으로 희석하였다. 생물농약 비티(Bt, Bacillus thuringiensis var. kurstaki)는 (주) 고려바이오(Hwasung, Korea)로부터 공급받아 200 ppm의 농도로 첨가하였다. 이 현탁액에 배춧잎(1 ㎠)을 10 분간 침지시킨 후 여과지가 깔려진 용기(직경 9 cm)에서 5 분간 건조시켰다. 각 배춧잎에 배추좀나방 4 령충을 10 마리씩 3 반복으로 처리하였으며, 24 시간 주기로 5 일 동안 생존수를 계수하였다. 대조구는 비티(Bt) 또는 살균수로 상기와 동일하게 처리하였다.
8. 약해조사
안동시 남선면에 위치한 비닐하우스에서 3월 10일 정식된 춘금 품종의 배추(Hyundai Seed Inc., Yeoju, Korea)를 이용하여 BZA 및 유도체들의 약해를 조사하였다. 약제제조 방법은 살충력 검정시 제조된 시약과 동일한 방법이며, 처리 농도는 0, 2,000, 3,000 그리고 4,000 ppm의 농도로 처리하였으며, 처리 후 24 시간마다 확인하였으며, 총 7 일간 조사하였다.
9. 통계분석
모든 살충효과 실험결과는 백분율 자료로서 arsine 변환 후 SAS의 PROC GLM(SAS Institute, 1989)프로그램을 이용하여 ANOVA 분석 및 처리 평균 간 비교를 실시하였다.
[실험결과]
1. BZA 유도체 특성
벤질리덴아세톤의 수용성을 높이기 위하여 BZA에 수산기를 첨가하는 방법으로 유도체를 선발하였다. 본 발명의 벤질리덴아세톤 유도체들의 기본적인 물성을 하기 표 1과 같이 정리하였다.
Figure 112012046350915-pat00001
본 발명에서 사용된 벤질리덴아세톤 및 그 유도체들의 화학구조식을 아래 식 (A) 및 (1) 내지 (6)으로 나타내었다. 식 (A)는 벤질리덴아세톤(BZA, benzylideneacetone), (1)은 트랜스-신남산(CIA, trans-cinnamic acid), (2)는 트랜스-3-하이드록시신나믹산(HCA, trans-3-hydroxycinnamic acid), (3)은 p-쿠마르산(PCA, p-coumaric acid), (4)는 3-페닐프로피온산(PPA, 3-phenylpropionic acid) 및 (5)는 4-하이드록시페닐아세트산(HPA, 4-hydroxyphenylacetic acid)이다.
(A) BZA
Figure 112012046350915-pat00002

(1) CIA
Figure 112012046350915-pat00003

(2) HCA
Figure 112012046350915-pat00004

(3) PCA
Figure 112012046350915-pat00005

(4) PPA
Figure 112012046350915-pat00006

(5) HPA
Figure 112012046350915-pat00007

트랜스-신남산(CIA, trans-cinnamic acid)은 베이지색 결정이며, 녹는점은 133℃이며, 끓는점은 300℃, 인화점은 100℃, 밀도는 1,248 g/cm3, 분자량은 148.16 g/mol이다. BZA와 비교했을 때 사슬 부위의 탄소하나를 줄이고 케톤기를 카르복실기로 전환한 형태를 지녔다. 트랜스-3-하이드록시신나믹산(HCA, trans-3-hydroxycinnamic acid)는 베이지색 분말형태이며 녹는점은 193~195℃이며, 분자량은 164.16 g/mol이다. 이 유도체는 CIA의 벤젠 고리 3 번에 수산기를 붙인 것이 특징이다. p-쿠마르산(PCA, p-coumaric acid)은 베이지색 분말 형태이며, 녹는점은 214℃이며, 분자량은 153.15 g/mol이다. 이 유도체는 HCA의 벤젠 고리에 붙은 수산기를 4 번에 옮긴 형태이다. 3-페닐프로피온산(PPA, 3-phenylpropionic acid)은 베이지색 결정이며, 녹는점은 45~48℃이며, 끓는점은 280℃이며, 인화점은 113℃이며, 분자량은 150.17 g/mol이다. 이 유도체는 CIA 사슬 부위에 있는 이중 결합을 없앤 포화 탄화수소 구조이다. 4-하이드록시페닐아세트산(HPA, 4-hydroxyphenylacetic acid)은 베이지색 분말형태이며, 녹는점은 148~151℃이며, 분자량은 152.15 g/mol이다. 이 유도체는 PPA 보다 사슬 길이가 짧고(1개 탄소), 벤젠 고리 4번 위치에 수산기를 첨가한 형태이다.
2. BZA 유도체들의 면역 억제 능력
곤충의 면역에 영향을 미치는 인지질분해효소 A2(PLA2)에 대한 벤질리덴아세톤 및 그 유도체들의 효소 활성 억제 효과를 비교한 결과는 도 1a, b과 같다. 벤질리덴아세톤과 모든 유도체들은 PLA2 효소활성을 억제시키는 것으로 나타났다(도 1a). 벤질리덴아세톤과 그 유도체들 가운데 BZA, HPA, PPA, PCA, CIA 및 HCA 순으로 PLA2 효소활성 억제력이 높게 나타났으며, 그 중 HPA의 반수치사농도(IC50)가 BZA와 차이 없이 높은 억제 능력을 지니는 것으로 나타났다(도 1b). 이러한 PLA2 억제 활성은 아이코사노이드 생합성 능력을 잃게 하여 상기 아이코사노이드가 중개하는 면역 반응을 저하시키기 때문이며, 아이코사노이드는 혈구활착 행동을 중개하기 때문에(Miller, 2005; Srikanth et al., 2011) HPA는 BZA와 유사하게 파밤나방 혈구 활착 반응을 크게 억제하는 것으로 사료된다. 또한 아이코사노이드는 혈구응집 및 소낭형성을 중개하기 때문에(Miller et al., 1994; Merchant et al., 2008) 이 물질의 생합성을 억제하는 HPA는 혈구소낭 반응을 억제하는 것으로 해석된다.
벤질리덴아세톤 및 그 유도체들의 페놀산화효소(PO)에 대한 효소 활성 효과를 비교한 결과는 도 2a, b와 같다. 벤질리덴아세톤과 모든 유도체들은 PO 효소활성을 억제시키는 것으로 나타났다(도 2a). 벤질리덴아세톤과 그 유도체들 가운데 BZA, HPA, CIA, PPA, HCA 및 PCA 순으로 PO 효소활성 억제력이 높게 나타났으며, HPA가 BZA와 유사한 PO 효소활성 억제효과를 나타냈다(도 2b). PO 활성은 곤충 혈장에서 세린계 단백질 분해효소의 활성화로 불활성 전구체인 proPO가 단백질 가수분해를 통해 활성화된 PO 단백질로 전환되면서 이뤄진다(Jiang and Kanost, 2000). 그러나 이에 앞서 proPO 단백질의 생성 장소인 편도혈구세포로부터 혈장으로 분비가 이루어져야 한다. 이 proPO 단백질이 세포 밖으로 분비되려면 N 말단에 분비신호인 signal peptide가 존재하여야 하는데 proPO는 이 신호를 가지고 있지 않다. 따라서 이 단백질이 혈장으로 분비될 수 있는 방법은 편도혈구세포의 붕괴를 통해 가능할 수 있다. 파밤나방의 경우 이러한 편도혈구세포 붕괴는 바로 아이코사노이드에 의해 중개된다(Shrestha and Kim, 2008). 최근 이 아이코사노이드가 프로스타글란딘류이며 이에 대한 G-단백질-결합 수용체(G-protein-coupled receptor)의 세포막 수용체가 편도혈구세포에서 동정되었다(Shrestha et al., 2011). 따라서 HPA의 PO 활성 억제는 궁극적으로 프로스타글란딘류의 생합성을 억제하는 데서 기인될 수 있다.
벤질리덴아세톤 및 그 유도체들의 파밤나방 유충의 세포성 면역에 대한 억제 효과를 평가한 결과는 도 3a, b와 같다. 세포성 면역에 대한 억제 효과는 파밤나방 유충의 혈구 세포를 이용하여 소낭형성을 측정하였다. BZA와 모든 유도체들은 파밤나방의 소낭형성 작용을 현격하게 억제시켰다(도 3a). 벤질리덴아세톤과 그 유도체들 가운데 BZA, HPA, PPA, CIA, HCA 및 PCA 순으로 소낭형성 억제력이 높게 나타났다. 이러한 경향은 혈구소낭 반응을 유도하는 혈구 활착 반응 분석에서도 유사한 결과를 나타냈다(도 3b). 도 3b에 나타난 바와 같이, 소낭 형성과 마찬가지로 HPA가 BZA와 유사하게 가장 높은 억제력을 나타냈다.
3. BZA 유도체들의 식물병원균에 대한 항균력 및 세포독성
벤질리덴아세톤 및 그 유도체들의 식물병원균에 대한 항균력을 평가한 결과는 도 4a, b와 같다. 벤질리덴아세톤과 그 유도체들은 모두 탄저병균과 고추역병균에 대해 항균력을 보이는 것으로 나타났다. 그러나 탄저병균에 대해서는 HPA가 가장 높은 억제력을 보인 반면(도 4a), 고추역병균에 대해서는 CIA가 가장 높은 항균력을 보였다(도 4b).
벤질리덴아세톤 및 그 유도체들의 파밤나방 혈구세포에 대한 세포독성 검정 결과는 도 5a, b와 같다. BZA와 그 유도체들은 모두 높은 세포 독성을 보이는 것으로 나타났다(도 5a). 특히, 유도체들 가운데 HPA가 BZA와 유사하게 가장 높은 세포 독성을 나타내었다(도 5b).
4. BZA 유도체들의 비티(Bt)와의 살충력 협력 효과
배추좀나방 4령 유충을 대상으로 벤질리덴아세톤 및 그 유도체들에 대해 비티(Bt, Bacillus thuringiensis) 생물농약과의 살충력 협력 효과를 평가하였으며, 그 결과는 도 6과 같다. 비티(Bt) 생물농약을 200 ppm 으로 단독으로 처리한 경우 약 40 % 의 살충률을 나타냈지만, BZA와 혼합하면 약 70%의 살충 효과를 나타내었으며, 유도체들 가운데 HPA와 혼합하면 BZA 혼합체와 유사한 살충력을 나타내었다.
5. BZA 유도체들의 약해
벤질리덴아세톤 및 그 유도체들의 배추에 대한 약해 현상을 분석한 결과는 도 7 a, b와 같다. Park et al 에 의해 실시된 선행 연구에서 벤질리덴아세톤의 배추에 대한 약해 현상이 알려졌다. 선행 연구에 개시된 농도를 기준으로 약해 현상의 분석 농도 범위를 정하고 벤질리덴아세톤과 그 유도체들의 배추에 대한 약해 분석을 실시하였다. 그 결과 벤질리덴아세톤은 2,000 ppm 농도 이상으로 처리하는 경우 배추에서 황화 반점 현상이 발생하였다(도 7a의 오른쪽 사진). 그러나 벤질리덴아세톤의 유도체들은 상기 황화 반점 현상과 유사한 약해 증상을 보였으나, 이들의 약해 증상이 유발되는 최저 농도는 벤질리덴아세톤보다 높은 농도에서 나타났으며, PCA, HCA 및 PPA를 처리하는 경우 4,000 ppm 농도 이상에서 나타났다(도 7b).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 균등한 범위는 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (13)

  1. 트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)으로 구성된 군으로부터 선택된 벤질리덴아세톤 유도체를 유효성분으로 포함하며, 상기 벤질리덴아세톤 유도체를 기준으로 1,000~2,000 ppm의 농도로 고추에 처리되는 것을 특징으로 하는 고추 역병균 또는 탄저병균 방제용 조성물.
  2. 제1항에 있어서, 상기 벤질리덴아세톤 유도체는 4-하이드록시페닐아세트산(HPA)인 고추 역병균 또는 탄저병균 방제용 조성물.
  3. 제1항에 있어서, 상기 벤질리덴아세톤 유도체는 트랜스-신남산(CIA)인 고추 역병균 또는 탄저병균 방제용 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 생물농약 비티(Bacillus thuringiensis, Bt)를 더 포함하는 고추 역병균 또는 탄저병균 방제용 조성물.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 트랜스-신남산(trans-cinnamic acid, CIA), 트랜스-3-하이드록시신나믹산(trans-3-hydroxycinnamic acid, HCA), p-쿠마르산(p-coumaric acid, PCA), 3-페닐프로피온산(3-phenylpropionic acid, PPA) 및 4-하이드록시페닐아세트산(4-hydroxyphenylacetic acid, HPA)으로 구성된 군으로부터 선택된 벤질리덴아세톤 유도체를 1,000~2,000 ppm의 농도로 고추에 처리하는 것을 포함하는, 고추 역병균 또는 탄저병균 방제 방법.
  9. 제8항에 있어서, 생물농약 비티(Bacillus thuringiensis, Bt)를 함께 처리하는 것을 포함하는 고추 역병균 또는 탄저병균 방제 방법.
  10. 제8항에 있어서, 상기 벤질리덴아세톤 유도체는 4-하이드록시페닐아세트산(HPA) 또는 트랜스-신남산(CIA)인 고추 역병균 또는 탄저병균 방제 방법.
  11. 삭제
  12. 삭제
  13. 제8항 내지 제10항 중 어느 한 항에 있어서, 상기 처리는 상기 벤질리덴아세톤 유도체를 고추의 지상부에 살포하거나 고추 모종의 이식 전에 토양에 혼화 처리하는 것을 포함하는 식물 병해충 방제 방법.
KR1020120062310A 2012-06-11 2012-06-11 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법 KR101386329B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120062310A KR101386329B1 (ko) 2012-06-11 2012-06-11 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120062310A KR101386329B1 (ko) 2012-06-11 2012-06-11 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법

Publications (2)

Publication Number Publication Date
KR20130138596A KR20130138596A (ko) 2013-12-19
KR101386329B1 true KR101386329B1 (ko) 2014-04-17

Family

ID=49984272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120062310A KR101386329B1 (ko) 2012-06-11 2012-06-11 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법

Country Status (1)

Country Link
KR (1) KR101386329B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053431A (zh) * 2018-08-30 2018-12-21 北京清源保生物科技有限公司 阿魏酸或其衍生物在防治植物细菌病或真菌病中的应用
KR102667154B1 (ko) 2022-02-23 2024-05-20 국립안동대학교 산학협력단 제노랍두스 호미니키아이(Xenorhabdus hominickii)의 세균 대사체를 유효성분으로 하는, 파검은무늬병을 포함한 식물병 방제용 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691512B1 (ko) 2004-10-08 2007-03-09 주식회사 비아이지 벤질리덴아세톤과 피티를 유효성분으로 하는 살충·살비제
KR20120013802A (ko) * 2010-08-06 2012-02-15 주식회사 비앤엘아그로 벤질리덴아세톤을 포함하는 항균 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691512B1 (ko) 2004-10-08 2007-03-09 주식회사 비아이지 벤질리덴아세톤과 피티를 유효성분으로 하는 살충·살비제
KR20120013802A (ko) * 2010-08-06 2012-02-15 주식회사 비앤엘아그로 벤질리덴아세톤을 포함하는 항균 조성물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
논문 Research in Plant Disease (2010) *
논문 Research in Plant Disease (2010)*
논문 한국농약과학회 (2012) *
논문 한국농약과학회 (2012)*

Also Published As

Publication number Publication date
KR20130138596A (ko) 2013-12-19

Similar Documents

Publication Publication Date Title
Yaroslavtseva et al. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae
AU2018213284A1 (en) Compositions and related methods for agriculture
Mazza et al. Antimicrobial activity of the red palm weevil Rhynchophorus ferrugineus
Sindhu et al. Biological control of insect pests for sustainable agriculture
Noskov et al. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae
Jalali et al. Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein
Chertkova et al. Bacterial and fungal infections induce bursts of dopamine in the haemolymph of the Colorado potato beetle Leptinotarsa decemlineata and greater wax moth Galleria mellonella
Portilla et al. A novel bioassay to evaluate the potential of Beauveria bassiana strain NI8 and the insect growth regulator novaluron against Lygus lineolaris on a non-autoclaved solid artificial diet
Gross et al. A well protected intruder: the effective antimicrobial defense of the invasive ladybird Harmonia axyridis
Bruno et al. Sequestration of cucurbitacins from cucumber plants by Diabrotica balteata larvae provides little protection against biological control agents
Meissle et al. Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the entomopathogenic fungus Metarhizium anisopliae when feeding on Bacillus thuringiensis Cry3Bb1-expressing maize
KR20230080450A (ko) 식물 질병을 방제하기 위한 슈도모나스 균주 및 이의 대사산물
KR101386329B1 (ko) 벤질리덴아세톤 유도체를 이용한 식물 병해충 방제 조성물 및 방제 방법
Shahina et al. Biopesticidal affect of Photorhabdus luminescens against Galleria mellonella larvae and subterranean termite (Termitidae: Macrotermis)
Baranek et al. Insecticidal activity of Bacillus thuringiensis towards Agrotis exclamationis larvae–A widespread and underestimated pest of the Palearctic zone
Abdisa et al. Enhancement of an entomopathogenic fungal virulence against the seedcorn maggot, Delia platura, by suppressing immune responses with a bacterial culture broth of Photorhabdus temperata subsp. temperata
KR101288637B1 (ko) 곤충병원세균 유래 생물농약 조성물과 이를 이용한 방제 방법
Soth The evaluation of Beauveria isolates for virulence to diamondback moth (Plutella xylostella L.): A thesis submitted in partial fulfilment of the requirements for the Degree of Master at Lincoln University
KR101142214B1 (ko) 제노랍두스 네마토필라 유래 아이코사노이드 생합성 억제물질 유도체와 이의 해충 방제 적용방법
KR20100103190A (ko) 살충 활성이 있는 바실러스 투린지엔시스 아종 쿠르스타키 kb099 균주 및 이의 용도
KR102667154B1 (ko) 제노랍두스 호미니키아이(Xenorhabdus hominickii)의 세균 대사체를 유효성분으로 하는, 파검은무늬병을 포함한 식물병 방제용 조성물
Aleyo Characterization and antimicrobial activity of Serratia Marcescens endosymbionts of Rhabditis nematodes against selected bacterial and fungal pathogen
Unzué Pozas et al. Multifunctional properties of a bacillus thuringiensis strain (BST-122): beyond the parasporal crystal
Okosun et al. Biology, ecology, and management of redbanded stink bug (Hemiptera: Pentatomidae)
Li et al. Volatile organic compounds released from entomopathogenic nematode‐infected insect cadavers for the biocontrol of Meloidogyne incognita

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170404

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190410

Year of fee payment: 6