KR101251723B1 - Transformed Plants having increased campesterol contents - Google Patents

Transformed Plants having increased campesterol contents Download PDF

Info

Publication number
KR101251723B1
KR101251723B1 KR1020100044181A KR20100044181A KR101251723B1 KR 101251723 B1 KR101251723 B1 KR 101251723B1 KR 1020100044181 A KR1020100044181 A KR 1020100044181A KR 20100044181 A KR20100044181 A KR 20100044181A KR 101251723 B1 KR101251723 B1 KR 101251723B1
Authority
KR
South Korea
Prior art keywords
leu
gly
glu
ala
lys
Prior art date
Application number
KR1020100044181A
Other languages
Korean (ko)
Other versions
KR20110124668A (en
Inventor
정인식
정호용
김경일
박종화
이소연
후지오카 스죠
최성화
이윤형
백남인
최근원
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020100044181A priority Critical patent/KR101251723B1/en
Publication of KR20110124668A publication Critical patent/KR20110124668A/en
Application granted granted Critical
Publication of KR101251723B1 publication Critical patent/KR101251723B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 캄페스테롤 함량이 증가된 형질전환 식물체를 제공한다. 본 발명의 형질전환 식물체는 캄페스테롤 함량이 높아 콜레스테롤 수치 강하, 관상 심장질환의 예방 또는 치료를 위한 식품 또는 의약의 제조에 이용될 수 있으며, 난쟁이 표현형을 나타내어 조경용, 분화용으로도 적합하다.The present invention provides a transgenic plant with increased camphorsterol content. The transgenic plant of the present invention has a high content of camphorsterol and can be used for the preparation of food or medicine for lowering cholesterol levels or preventing or treating coronary heart disease, and exhibits a dwarf phenotype, which is suitable for landscaping and differentiation.

Description

캄페스테롤 함량이 증가된 형질전환 식물체 {Transformed Plants having increased campesterol contents}Transformed Plants having increased campesterol contents}

본 발명은 캄페스테롤 함량이 증가된 형질전환 식물체에 관한 것이다. The present invention relates to a transgenic plant having an increased camphorsterol content.

캄페스테롤(campesterol)은 식물계에서 많이 발견되는 식물 스테롤로서, 콜레스테롤과 유사한 화학구조를 갖는 피토스테롤(phytosterol) 중 하나이다. 측쇄의 24번 탄소 위치에 메틸그룹이 존재하는 점에서 콜레스테롤과 다르며, 콜레스탄(cholestane) 계열의 4-데스메틸스테롤(4-desmethylsterol) 로 분류된다. 채소, 과일, 견과류 등에 포함되어 있으나, 낮은 농도로 포함되어 있다.Campesterol is a plant sterol found in many plant systems and is one of phytosterols having a chemical structure similar to cholesterol. It is different from cholesterol in that methyl group is located at carbon position 24 of the side chain, and it is classified as 4-desmethylsterol of cholestane family. It is included in vegetables, fruits and nuts, but in low concentrations.

캄페스테롤은 전체-콜레스테롤과 LDL-콜레스테롤 수치를 낮추어 관상심장질환의 위험을 줄이는 역할을 하는 것으로 알려져 있다. 식이 콜레스테롤 흡수와 위장관의 내생적인 콜레스테롤 재흡수를 억제하고, 콜레스테롤을 변으로 배설하여 세럼 콜레스테롤 수치를 줄이며, 담즙산염으로 콜레스테롤을 치환하거나 장 점막에서 콜레스테롤 에스테르화 억제를 통하여 콜레스테롤 수치를 낮추는 것으로 알려져 있다. Campestrol is known to play a role in reducing the risk of coronary heart disease by lowering total-cholesterol and LDL-cholesterol levels. It is known to inhibit dietary cholesterol absorption and endogenous cholesterol resorption of the gastrointestinal tract, to excrete cholesterol into feces to reduce serum cholesterol levels, to replace cholesterol with bile salts or to lower cholesterol levels by inhibiting cholesterol esterification in the intestinal mucosa. .

브라시노스테로이드(brassinosteroid)는 배발생, 세포신장, 맥관분화, 생식, 노화를 포함한 다양한 생리학적 과정에 영향을 주는 식물 스테로이드 호르몬이다. 브라시노리드(brassinolide) 및 카스타스테론(castasterone)을 포함하는 브라시노스테로이드는 캄페스테롤로부터 환원, 히드록실화, 에피머화 및 산화를 포함하는 일련의 효소 작용을 거쳐 합성된다. Brassinosteroids are plant steroid hormones that affect a variety of physiological processes, including embryogenicity, cell growth, vasculature, reproduction and aging. Brassinosteroids, including brassinolide and castasterone, are synthesized from camphorster through a series of enzymatic actions including reduction, hydroxylation, epimerization and oxidation.

스테롤 메틸 트랜스퍼라제 2 (STEROL METHYLTRANSFERASE 2; SMT2), DE-ETIOLATED2 (DET2) 및 DWARF4 (DWF4)는 애기장대(Arabidopsis thaliana)에서 브라시노스테로이드 생합성에 관여하는 효소이다. Sterol methyl transferase 2 (STEROL METHYLTRANSFERASE 2; SMT2 ), DE-ETIOLATED2 ( DET2 ) and DWARF4 ( DWF4 ) are enzymes involved in brassinosteroid biosynthesis in Arabidopsis thaliana.

상기 SMT2 C-28 스테롤 메틸 트랜스퍼라제를 매개하며, C28 스테롤(캄페스테롤) 및 C29 스테롤(시토스테롤)의 비율을 조절하는데 중요한 역할을 하는 것으로 알려져 있다. The SMT2 is known to play an important role in adjusting the ratio of the C28 parameters and sterol methyl transferase, C28 sterols (campesterol) and C29 sterols (sitosterol).

상기 DET2는 스테롤 5α-리덕타제를 매개하며, (24R)-24-메틸콜레스트-4-엔-3온((24R)-24-methylcholest-4-en-3-one)의 (24R)-24-메틸-5a-콜레스탄-3-온((24R)-24-methyl-5a-cholestan-3-one) 으로의 환원을 촉매하는 것으로 알려져 있다. The DET2 mediates sterol 5α-reductase, and (24R)-of (24R) -24-methylcholest-4-en-3one ((24R) -24-methylcholest-4-en-3-one) It is known to catalyze the reduction to 24-methyl-5a-cholestan-3-one ((24R) -24-methyl-5a-cholestan-3-one).

상기 DWF4 스테롤 C22α-히드록시라제를 매개하며, 여러 C-22 히스록실화를 촉매하며, 이는 브라시노스테로이드 생합성 경로에서 중요한 속도-결정단계로 알려져 있다.It mediates the DWF4 sterol C22α-hydroxylase and catalyzes several C-22 hydroxylations, which are known to be important rate-determination steps in the brassinosteroid biosynthetic pathway.

이에 본 발명자들은 브라시노스테로이드 생합경 경로를 예의 연구한 결과, 야생형과 비교하여 캄페스테롤 함량이 유의적으로 증가한 형질전환 식물체를 제조하고 본 발명을 완성하였다. Accordingly, the present inventors have studied the brassinosteroid biosynthetic pathway, and as a result, prepared a transgenic plant with significantly increased camphorsterol content compared to the wild type and completed the present invention.

본 발명은 캄페스테롤 함량이 증가된 형질전환 식물체를 제공하기 위한 것이다. The present invention is to provide a transgenic plant with increased camphorsterol content.

본 발명은 또한 캄페스테롤 함량이 증가된 형질전환 식물체의 제조방법을 제공하기 위한 것이다. The present invention also provides a method for producing a transgenic plant with increased camphorsterol content.

상기 과제을 해결하기 위한 수단으로써, 본 발명은 det2, dwf4 및 smt2 유전자에 대한 RNA 간섭 재조합벡터를 제공한다. As a means for solving the above problems, the present invention provides RNA interference recombination vector for det2, dwf4 and smt2 gene.

본 발명은 또한 상기 재조합벡터로 형질전환된 미생물을 제공한다. The present invention also provides a microorganism transformed with the recombinant vector.

본 발명은 또한 상기 재조합벡터로 형질전환된 식물체를 제공한다. The present invention also provides a plant transformed with the recombinant vector.

본 발명은 또한 상기 재조합벡터를 이용하여 식물체 내 캄페스테롤 함량을 증가시키는 방법을 제공한다.The present invention also provides a method of increasing the amount of camphorsterol in a plant using the recombinant vector.

본 발명은 또한 상기 형질전환 식물체를 이용하여 캄페스테롤을 제조하는 방법을 제공한다.The present invention also provides a method for producing camphorsterol using the transgenic plant.

본 발명은 또한 상기 형질전환 식물체로부터 추출된 캄페스테롤을 함유하는 식물 추출물을 제공한다.The present invention also provides a plant extract containing camphorsterol extracted from the transgenic plant.

본 발명의 형질전환 식물체는 증가된 캄페스테롤 함량을 가진다. 따라서, 콜레스테롤 수치 강하, 관상 심장질환의 예방 또는 치료를 위한 식품 또는 의약의 제조에 이용될 수 있다. 또한, 본 발명의 형질전환 식물체는 난쟁이 표현형을 나타내기 때문에, 물을 덜 쓰고 바람과 강우 피해에 강하며 종자나 과일을 만드는 데 유리하고, 취급과 채취가 보다 용이하고, 도복저항성이 보다 우수하다. 또한, 화단용 또는 절화용 뿐만 아니라 조경용, 분화용으로도 적합하다.Transgenic plants of the invention have an increased camphorsterol content. Therefore, it can be used for the manufacture of food or medicine for lowering cholesterol level or preventing or treating coronary heart disease. In addition, since the transgenic plant of the present invention exhibits a dwarf phenotype, it uses less water, is resistant to wind and rainfall damage, is advantageous for making seeds or fruits, is easier to handle and collect, and has better doping resistance. . Moreover, it is suitable not only for flower beds or cut flowers, but also for landscaping and differentiation.

도1A는 본 발명에 따른 RNA 간섭 재조합벡터의 개략도를 나타낸 것이고, 도1B는 벡터용 각 유전자의 전사산물 내 증폭 지역을 나타낸 도이다 (흑색 띠: exon 서열, 적색 띠: 실시예의 서열).
도2A는 야생형 식물과 형질전환 식물체(T3)의 표현형을 나타낸 도이고, 도2B는 반-정량적 RT-PCR 분석을 통해 형질전환 식물체(T3) 내 넉다운(knock-down) 돌연변이를 확인한 도이다. (그림 중 1번: 야생형 식물; 2번, 3번: 약한 표현형의 det2:dwf4:smt2 RNA 간섭 형질전환 식물체; 4번, 5번: 강한 표현형의 det2:dwf4:smt2 RNA 간섭 형질전환 식물체)
도3A는 야생형 식물 및 형질전환 식물체(T4)의 표현형을 나타낸 도이고, 도3B는 실시간 RT-PCR 분석을 통해 형질전환 식물체(T4) 내 넉다운 돌연변이를 확인한 도이다. (검은색 막대: 야생형; 사선무늬, 점무늬 막대: 강한 표현형의 det2:dwf4:smt2 간섭 형질전환 식물체)
Figure 1A shows a schematic diagram of the RNA interference recombinant vector according to the present invention, Figure 1B is a diagram showing the amplification region in the transcription product of each gene for the vector (black band: exon sequence, red band: the sequence of the example).
Figure 2A is a diagram showing the phenotype of wild-type plants and transformed plants (T3), Figure 2B is a diagram confirming knock-down mutations in the transformed plant (T3) by semi-quantitative RT-PCR analysis. (No. 1 in the figure: wild type plants; no. 2, 3: weak phenotype det2: dwf4: smt2 RNA interfering transgenic plants; no. 4, 5: strong phenotype det2: dwf4: smt2 RNA interfering transgenic plants)
Figure 3A is a diagram showing the phenotype of wild-type plants and transformed plants (T4), Figure 3B is a diagram showing the knockdown mutations in the transformed plant (T4) through real-time RT-PCR analysis. (Black bars: wild type; oblique, spotted bars: strong phenotype det2: dwf4: smt2 interference transgenic plants)

본 발명은, det2, dwf4, 및 smt2 유전자에 대한 RNA 간섭 재조합벡터, 상기 재조합벡터로 형질전환된 미생물, 및 상기 재조합벡터로 형질전환된 식물체, 상기 형질전환 식물체를 이용한 캄페스테롤의 제조방법에 관한 것이다.The present invention relates to a RNA interference recombinant vector for the det2, dwf4, and smt2 genes, a microorganism transformed with the recombinant vector, and a plant transformed with the recombinant vector, and a method for producing camphorsterol using the transformed plant. will be.

이하에서 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 det2(De-Etilolated 2), dwf4(dwarf 4), 및 smt2(sterol methyltransferase 2) 유전자에 대한 RNA 간섭 재조합벡터에 관한 것이다. The present invention relates to RNA interference recombinant vectors for det2 (De-Etilolated 2), dwf4 (dwarf 4), and smt2 (sterol methyltransferase 2) genes.

본 발명의 RNA 간섭 재조합 벡터는 아래 언급되는 det2, dwf4, 및 smt2 유전자의 RNA 간섭을 위한 센스 염기서열과, 이들 각각의 안티센스 염기서열을 포함한다. RNA interference recombinant vectors of the present invention include the sense sequences for RNA interference of the det2, dwf4, and smt2 genes mentioned below, and their respective antisense sequences.

본 발명의 RNA 간섭 재조합벡터 내 포함되는 det2 유전자의 RNA 간섭을 위한 서열은 서열번호 1에 기재된 DET2 코딩 서열 (GenBank accession no. U53860)의 일부분(센스 염기서열), 즉, 서열번호 1에 기재된 염기서열 중 약 100 내지 약 500 bp 의 DNA를 사용할 수 있으며, 바람직하게는 서열번호 3의 염기서열로 이루어진 DNA를 사용할 수 있다. 또한 형질전환되는 식물체 내에서 발현되어 det2 mRNA와 결합하여 DET2의 발현을 저해할 수 있는 서열번호 3의 염기서열의 변이체도 본 발명의 범위 내에 포함된다. Sequence for RNA interference of the det2 gene contained in the RNA interference recombinant vector of the present invention is a part of the DET2 coding sequence (GenBank accession no. U53860) described in SEQ ID NO: 1 (sense base), that is, the base described in SEQ ID NO: 1 DNA of about 100 to about 500 bp of the sequence may be used, and preferably, a DNA consisting of the nucleotide sequence of SEQ ID NO: 3 may be used. Also included within the scope of the present invention are variants of the nucleotide sequence of SEQ ID NO: 3 which can be expressed in the transformed plant and bind to det2 mRNA to inhibit DET2 expression.

본 발명의 RNA 간섭 재조합벡터 내 포함되는 dwf4 유전자의 RNA 간섭을 위한 서열은 서열번호 4에 기재된 DWF4 코딩 서열 (GenBank accession no. NM_114926)의 일부분(센스 염기서열), 즉, 서열번호 4에 기재된 염기서열 중 약 100 내지 약 500 bp 의 DNA를 사용할 수 있으며, 바람직하게는 서열번호 6의 염기서열로 이루어진 DNA를 사용할 수 있다. 또한 형질전환되는 식물체 내에서 발현되어 dwf4 mRNA와 결합하여 DWF4의 발현을 저해할 수 있는 서열번호 6의 염기서열의 변이체도 본 발명의 범위 내에 포함된다. Sequence for RNA interference of the dwf4 gene included in the RNA interference recombinant vector of the present invention is a part of the DWF4 coding sequence (GenBank accession no. NM_114926) described in SEQ ID NO: 4, that is, the base described in SEQ ID NO: 4 About 100 to about 500 bp of DNA may be used in the sequence, and preferably, a DNA consisting of the nucleotide sequence of SEQ ID NO: 6 may be used. Also included within the scope of the present invention are variants of the nucleotide sequence of SEQ ID NO: 6 which can be expressed in the transformed plant and bind to dwf4 mRNA to inhibit DWF4 expression.

본 발명의 RNA 간섭 재조합벡터 내 포함되는 smt2 유전자의 RNA 간섭을 위한 서열은 서열번호 7에 기재된 SMT2 코딩 서열 (GenBank accession no. NM_101884)의 일부분(센스 염기서열), 즉, 서열번호 7에 기재된 염기서열 중 약 100 내지 약 500 bp 의 DNA를 사용할 수 있으며, 바람직하게는 서열번호 9의 염기서열로 이루어진 DNA를 사용할 수 있다. 또한 형질전환되는 식물체 내에서 발현되어 smt2 mRNA와 결합하여 SMT2의 발현을 저해할 수 있는 서열번호 7의 염기서열의 변이체도 본 발명의 범위 내에 포함된다. Sequence for RNA interference of the smt2 gene included in the RNA interference recombinant vector of the present invention is a part (Sense base) of the SMT2 coding sequence (GenBank accession no. NM_101884) described in SEQ ID NO: 7, that is, the base described in SEQ ID NO: 7 DNA of about 100 to about 500 bp of the sequence may be used, and preferably, a DNA consisting of the nucleotide sequence of SEQ ID NO: 9 may be used. Also included within the scope of the present invention are variants of the nucleotide sequence of SEQ ID NO: 7 that are expressed in the transformed plant and can bind to smt2 mRNA and inhibit the expression of SMT2.

상기 안티센스 염기서열은 센스 염기서열에 대한 상보적인 서열을 의미한다. The antisense base sequence means a complementary sequence to the sense base sequence.

상기 언급된 변이체는 해당 염기서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함하며, 해당 염기서열의 대립유전자형 또는 종간 변이체, 또는 이의 단편들을 포함한다. 폴리뉴클레오티드 및 폴리펩티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 및 폴리펩티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.The abovementioned variants include base sequences each having at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% homology with the corresponding base sequence, and corresponding Allelic or interspecies variants of the nucleotide sequence, or fragments thereof. The "% sequence homology" for polynucleotides and polypeptides is determined by comparing two optimally arranged sequences with a comparison region, wherein a portion of the polynucleotide and polypeptide sequences in the comparison region are the reference sequences for the optimal alignment of the two sequences. It may include additions or deletions (ie gaps) compared to (not including additions or deletions).

본 발명에서 사용가능한 벡터는 식물 발현용 벡터이다. The vector usable in the present invention is a vector for plant expression.

"벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 의미한다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다."Vector" refers to DNA fragment (s), nucleic acid molecules that are delivered into a cell. The vector replicates the DNA and can be independently regenerated in the host cell. "Expression vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 이원(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.Preferred examples of plant expression vectors are Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is currently used to transfer hybrid DNA sequences to protoplasts from which plant cells or new plants can be produced that properly insert hybrid DNA into the plant's genome. have. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into the plant host include viral vectors such as those that can be derived from double-stranded plant viruses (e. G., CaMV) and single- For example, from non -complete plant virus vectors. The use of such vectors may be particularly advantageous when it is difficult to transform the plant host properly.

본 발명에서 사용되는 식물 발현 벡터는 RNA 간섭 재조합 벡터로서, 이는 형질전환되는 식물체 내에서 det2, dwf4 및 smt2 유전자에 대한 RNA 간섭을 유도하는 스템 루프형 dsRNA를 생성하도록 설계된 재조합 벡터이다. “스템 루프”란, 단일 사슬 RNA 상에 존재하는 역방향 반복 서열간 수소결합에 의해 생기는 이중 사슬의 부분(스템; stem)과 그 사이의 루프 부분으로 구성되는 구조를 말하며, 헤어핀 루프라고도 불린다. 따라서, 본 발명에서 사용되는 식물 발현 벡터는 DET2 , DWF4 , SMT2에 대한 mRNA의 어느 영역의 센스(혹은 안티센스) RNA를 암호화하는 센스서열(혹은 안티센스)과, 본 센스서열에 상보적인 서열을, 스페이서-영역을 사이에 두어 2개의 서열이 서로 역방향이 되도록 배치시키고 이것을 프로모터와 작동가능하게 연결한 구조를 가지는 DNA를 포함한다. 여기서, 스페이서 영역을 구성하는 DNA는 이에 인접하는 반복 서열이 수소결합을 할 수 있는 한, 그 길이는 특히 제한되지 않지만, 통상 1~10,000 염기이다. 스페이서 영역을 구성하는 DNA의 염기 서열은, 특별히 규정하지 않고 임의의 서열로 할 수 있으며, 바람직하게는 CHSA 유전자 (penunia chalcone synthase A)로부터 얻은 1,352 bp 인트론 (이하 ‘CHSA 인트론’)을 사용할 수 있다. The plant expression vector used in the present invention is an RNA interference recombinant vector, which is a recombinant vector designed to generate a stem looped dsRNA that induces RNA interference on det2, dwf4 and smt2 genes in the transformed plant. A “stem loop” refers to a structure composed of a portion of a double chain (stem) generated by hydrogen bonding between reverse repeat sequences present on a single chain RNA and a loop portion therebetween, also called a hairpin loop. Therefore, the plant expression vector used in the present invention comprises a sense sequence (or antisense) encoding a sense (or antisense) RNA of a region of mRNA for DET2 , DWF4 , SMT2 , and a sequence complementary to the present sense sequence, a spacer -Includes a DNA having a structure in which the two sequences are arranged opposite each other with a region interposed therebetween and operably linked to the promoter. Here, the DNA constituting the spacer region is usually 1 to 10,000 bases, although the length thereof is not particularly limited as long as the repeating sequence adjacent thereto can hydrogen bond. The base sequence of the DNA constituting the spacer region can be any sequence without particular limitation, and preferably, a 1,352 bp intron obtained from the CHSA gene (penunia chalcone synthase A) (hereinafter referred to as 'CHSA intron') can be used. .

본 발명의 식물 발현 벡터는 또한 선택마커, 프로모터 및 터미네이터를 포함한다. Plant expression vectors of the invention also include selection markers, promoters and terminators.

본 발명에서 사용가능한 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 포스피노트리신과 같은 제초제 저항성 유전자, 카나마이신, G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다. 바람직하게는 Basta 저항성 (BAR) 유전자가 사용된다. Markers usable in the present invention are typically nucleic acid sequences having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include, but are not limited to, antibiotic resistance genes such as glyphosate, herbicide resistance genes such as phosphinothricin, kanamycin, G418, bleomycin, hygromycin, chloramphenicol It doesn't happen. Preferably the Basta resistance (BAR) gene is used.

본 발명에서 사용가능한 프로모터는 식물 세포에서 전사를 개시할 수 있는 프로모터로서, CaMV35S, 액틴, 유비퀴틴, pEMU, 히스톤 프로모터 등이 있으며, 바람직하게는 CaMV35S 프로모터가 사용된다. Promoters usable in the present invention include promoters capable of initiating transcription in plant cells, including CaMV35S, actin, ubiquitin, pEMU, histone promoters, and the like, and preferably CaMV35S promoters.

본 발명에서 사용가능한 터미네이터는 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으며, 바람직하게는 옥토파인 신타제(OCS) 터미네이터가 사용된다. Terminators usable in the present invention may use conventional terminators, for example nopalin synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, agrobacterium tumefaciens (agrobacterium tumefaciens) Terminator of the octopine gene, and the rrnB1 / B2 terminator of Escherichia coli, and the like. An octopine synthase (OCS) terminator is preferably used.

특히, 본 발명에서 바람직한 RNA 간섭 재조합벡터는 2개의 T-DNA 보더 사이에 제초제 저항성을 가지는 BAR 유전자, CaMV35S 프로모터, 옥토파인 신타제 터미네이터 및 CHSA 인트론을 포함하고, det2, dwf4 및 smt2 유전자의 RNA 간섭을 위한 센스 염기서열과, det2, dwf4 및 smt2 유전자의 RNA 간섭을 위한 안티센스 염기서열이 CHSA를 사이에 두고 서로 역방향이 되도록 배치되고, 프로모터와 작동가능하게 연결된 식물 발현 재조합벡터이다. 본 발명의 일 구현예에 따른 상기 벡터는 도 1A에 기재된 pFGC5941-DET2 : DWF4 : SMT2 벡터이다.In particular, a preferred RNA interference recombinant vector in the present invention comprises a BAR gene, a CaMV35S promoter, an octopine synthase terminator and a CHSA intron having herbicide resistance between two T-DNA borders, and RNA interference of det2, dwf4 and smt2 genes. The sense sequences for and the antisense sequences for RNA interference of the det2, dwf4 and smt2 genes are plant expression recombinant vectors arranged to be reversed from each other with CHSA interposed therebetween and operably linked to the promoter. The vector according to an embodiment of the present invention is a pFGC5941- DET2 : DWF4 : SMT2 vector described in FIG. 1A.

본 발명의 RNA 간섭 재조합 벡터 내 포함되는 det2 유전자, dwf4 유전자 및 smt2 유전자의 RNA 간섭을 위한 센스 염기서열과, 이들의 안티센스 염기서열은 전사산물이 안정한 스템 루프 구조를 형성할 수 있는 한 임의의 순서로 정렬될 수 있으며, 바람직하게는 N-말단쪽으로부터 det2:dwf4:smt2 순서로 배치된다. The sense sequences for RNA interference of the det2 gene, dwf4 gene, and smt2 gene included in the RNA interference recombinant vector of the present invention, and their antisense sequences are in any order as long as the transcription product can form a stable stem loop structure. Can be arranged in a det2: dwf4: smt2 order from the N-terminal side.

본 명세서에서 유전자와 프로모터가 작동가능하게 연결되었다고 함은 핵산 서열들이 이들의 의도된 기능을 수행하도록 연결된 상태를 지칭한다. 예를 들어, 프로모터 서열을 목적하는 뉴클레오티드 서열에 작동가능하게 연결시킨다는 것은 프로모터 서열이 목적하는 뉴클레오티드 서열의 전사를 지시할 수 있게 하는 방식으로 프로모터 서열과 목적하는 뉴클레오티드 서열을 연결하는 것을 의미한다. As used herein, operably linked genes and promoters refer to conditions in which nucleic acid sequences are linked to perform their intended function. For example, operably linking a promoter sequence to a desired nucleotide sequence refers to linking the promoter sequence to the desired nucleotide sequence in a manner that enables the promoter sequence to direct transcription of the desired nucleotide sequence.

본 발명의 RNA 간섭 재조합 벡터는 감염, 형질도입, 트랜스펙션, 전기천공 및 형질전환과 같은 주지된 기술을 이용하여 배양된 숙주 세포 내로 도입될 수 있다. 숙주의 대표적인 예는 박테리아 세포, 예를 들면, 대장균, 스트렙토마이세스 및 살모넬라 티피무리움 세포; 및 식물 세포를 포함하나, 이에 제한되지 않는다. 숙주 세포에 대한 적당한 배양 배지 및 조건은 당업계에 공지되어 있다. 본 발명에서는 식물체 형질전환에 사용하기 위하여 아그로박테리움 속 균주를 사용하는 것이 바람직하다. RNA interfering recombinant vectors of the invention can be introduced into cultured host cells using well known techniques such as infection, transduction, transfection, electroporation and transformation. Representative examples of hosts include bacterial cells such as Escherichia coli, Streptomyces and Salmonella typhimurium cells; And plant cells. Suitable culture media and conditions for host cells are known in the art. In the present invention, it is preferable to use the strain Agrobacterium for use in plant transformation.

본 발명의 RNA 간섭 재조합 벡터에 의한 식물체의 형질전환은 DNA를 식물에 전이시키는 임의의 방법에 의해 수행될 수 있다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. Transformation of a plant by the RNA interference recombinant vector of the present invention may be performed by any method for transferring DNA to a plant. Such transformation methods do not necessarily have a regeneration and / or tissue culture period. Transformation of plant species is now common for plant species, including both terminal plants as well as dicotyledonous plants.

예를 들어, 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316 호) 등으로부터 적당하게 선택될 수 있다. 바람직하게는 아그로박테리움 매개 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.For example, calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373) , Electroporation of protoplasts (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179 -185), Agrobacterium (DNA or RNA-coated) particle bombardment of various plant elements (Klein TM et al., 1987, Nature 327, 70), invasion of plants or transformation of mature pollen or vesicles Tumefaciens ( Agrobacterium) tumefaciens ) mediated gene transfer ( incomplete ) infection with virus (EP 0 301 316) and the like can be suitably selected. Preferably Agrobacterium mediated DNA delivery. Particularly preferred is the use of so-called binary vector techniques as described in EP A 120 516 and U.S. Pat. No. 4,940,838.

아그로박테리움 벡터에 의한 식물체의 형질전환을 위한 최적 절차는 형질전환될 식물체의 종류에 따라 다양하다. 아그로박테리움 매개 형질전환을 위한 대표적인 방법은 멸균된 묘목 및/또는 작은 식물체로부터 유래된, 배축, 정단(shoot tip), 줄기 또는 잎 조직의 외식편의 형질전환을 포함한다. 그와 같은 형질전환된 식물체는 유성생식으로 또는 세포 또는 조직 배양에 의해 번식될 수 있다. 아그로박테리움 매개 형질전환은 이전에 다수의 상이한 종류의 식물체를 위해 기재되었으며 그와 같은 형질전환을 위한 방법은 당업계에 공지된 문헌에서 찾을 수 있다.Optimal procedures for the transformation of plants with Agrobacterium vectors vary depending on the type of plant to be transformed. Exemplary methods for Agrobacterium mediated transformation include transformation of explants of embryonic axis, shoot tip, stem or leaf tissue, derived from sterile seedlings and / or small plants. Such transformed plants can be reproduced by sexual reproduction or by cell or tissue culture. Agrobacterium mediated transformation has previously been described for many different kinds of plants and methods for such transformation can be found in literature known in the art.

본 발명에서 사용가능한 식물 형질전환용 아그로박테리움 균주로는 통상 이용되는 어떠한 균주라도 사용이 가능하다. 구체적으로 본 발명에서는, 식물시료에 침투하여 외래 유전자를 전달하는데 필요한 병원성이 큰 것으로 알려진 아그로박테리움 투메파시엔스, 더욱 바람직하게는, 하이그로마이신(hygromycin) 저항성 유전자 pCAMBIA 1300 플라스미드가 들어 있는 GV3101 계통의 아그로박테리움 투메파시엔스을 사용할 수 있다.Agrobacterium strains for plant transformation that can be used in the present invention can be used any strains commonly used. Specifically, in the present invention, Agrobacterium tumefaciens, which is known to be highly pathogenic to penetrate plant samples and deliver foreign genes, and more preferably, a GV3101 strain containing a hygromycin resistance gene pCAMBIA 1300 plasmid Agrobacterium tumefaciens can be used.

본 발명에서 형질전환되는 식물체는 본 실시예에서 사용된 애기장대 뿐만 아니라 리아트리스, 에키네시아, 가우라, 플록스 등 경제적으로 사용될 수 있는 식물에 대하여 사용할 수 있다. 본 발명의 RNA 간섭 재조합 벡터로 형질전환된 식물체는 증가된 캄페스테롤 함량 및 난쟁이 표현형을 나타낸다.Plants to be transformed in the present invention can be used for plants that can be used economically, such as Riatris, Echinacea, Gaura, Phlox as well as the Arabidopsis used in the present embodiment. Plants transformed with the RNA interference recombinant vector of the present invention exhibit increased camphorsterol content and dwarf phenotype.

또한, 본 발명은 상기 RNA 재조합 벡터로 형질전환하는 것을 포함하는, 식물체 내 캄페스테롤의 함량을 증가시키는 방법에 관한 것이다.The present invention also relates to a method for increasing the content of camphorsterol in a plant, including transformation with the RNA recombinant vector.

또한, 본 발명은 상기 RNA 재조합 벡터로 형질전환된 식물체로부터 추출하는 것을 특징으로 하는 캄페스테롤의 제조방법에 관한 것이다. In addition, the present invention relates to a method for producing camphorsterol, characterized in that the extraction from the plant transformed with the RNA recombinant vector.

또한, 본 발명은 상기 형질전환 식물체로부터 추출된 식물추출물에 관한 것이다.The present invention also relates to a plant extract extracted from the transgenic plant.

본 발명의 형질전환 식물체로부터 캄페스테롤의 추출은 식물스테롤의 추출에 관한 당업계에 알려진 통상의 방법에 의하여 행하여질 수 있다. Extraction of camphorsterol from the transgenic plant of the present invention can be carried out by conventional methods known in the art for the extraction of phytosterols.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only to illustrate the invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예Example 1. One. RNARNA 간섭 재조합 벡터 제작 Interference Recombinant Vector Fabrication

(1) (One) DET2DET2 , , DWF4DWF4 , , SMT2SMT2 전장  Battlefield cDNAcDNA 클로닝Cloning

RT-PCR을 이용하여 애기장대 DET2 (GenBank accession no. U53860), DWF4 (GenBank accession no. NM_114926) 및 SMT2 (GenBank accession no. NM_101884)의 전장 cDNA를 애기장대 잎(leaves)으로부터 획득하여, pGEM-T (Promega, USA) 내 클로닝하여 pGEM-T-DET2, pGEM-T-DWF4 및 pGEM-T-SMT2를 제조하였다. Arabidopsis DET2 (GenBank accession no. U53860), DWF4 (GenBank accession no. NM_114926) and SMT2 using RT-PCR Full length cDNA of GenBank accession no. NM_101884 was obtained from Arabidopsis leaves and cloned into pGEM-T (Promega, USA) to obtain pGEM-T- DET2 , pGEM-T- DWF4 and pGEM-T- SMT2 . Prepared.

구체적으로, RNeasy Plant Mini Kit (Qiagen,USA)를 이용하여 애기장대 잎으로부터 total RNA를 획득한 후 ImProm-IITM Reverse Transcription System(Promega)을 이용하여 cDNA를 확보하였다. 전체 RNA 1㎍과 올리고-dt primer를 70℃에서 5분간 반응시킨후 ImProm-IITM 5X 반응 버퍼, 2.5mM MgCl2, 0.5mM dNTPs Mix와 ImProm-IITM 역전사효소(reverse transcriptase)를 25℃에서 5분간 반응시킨후 42℃에서 1시간 동안 반응시킨후 70℃에서 15분간 반응시킨후 cDNA를 획득하였다. 획득한 cDNA를 템플리트로 PCR을 수행하였다. PCR에서, 증폭 프로그램은 초기 94℃ 5분, 이어서 94℃ 1분; 55℃ 1분; 72℃ 1분의 30 사이클, 및 최종 연장 72 ℃ 10분으로 구성되었다. PCR에 사용된 센스 및 안티센스 프라이머 서열은 각각 다음과 같다.Specifically, after obtaining the total RNA from the Arabidopsis leaf using the RNeasy Plant Mini Kit (Qiagen, USA), cDNA was secured using the ImProm-II TM Reverse Transcription System (Promega). After reacting 1 μg of total RNA with oligo-dt primer at 70 ° C. for 5 minutes, ImProm-II TM 5X reaction buffer, 2.5 mM MgCl 2 , 0.5 mM dNTPs Mix and ImProm-II TM reverse transcriptase were reacted at 25 ° C. After reacting for 5 minutes, the mixture was reacted at 42 ° C. for 1 hour, and then reacted at 70 ° C. for 15 minutes to obtain cDNA. PCR was performed with the obtained cDNA as a template. In PCR, the amplification program was initially 94 ° C. 5 minutes, followed by 94 ° C. 1 minute; 55 ° C. 1 minute; 30 cycles of 72 ° C. per minute, and final extension of 72 ° C. for 10 minutes. The sense and antisense primer sequences used for PCR are as follows.

det2 센스 및 안티센스 프라이머det2 sense and antisense primer

5'-ATGGAAGAAATCGCCGATAAAAC-3' (서열번호 10)5'-ATGGAAGAAATCGCCGATAAAAC-3 '(SEQ ID NO: 10)

5'-TCAGTACACAAAAGGAATAACAG-3' (서열번호 11)5'-TCAGTACACAAAAGGAATAACAG-3 '(SEQ ID NO: 11)

dwf4 센스 및 안티센스 프라이머dwf4 sense and antisense primer

5'-ATGTTCGAAACAGAGCATC-3' (서열번호 12)5'-ATGTTCGAAACAGAGCATC-3 '(SEQ ID NO: 12)

5'-TTACAGAATACGAGAAACCC-3' (서열번호 13)5'-TTACAGAATACGAGAAACCC-3 '(SEQ ID NO: 13)

smt2 센스 및 안티센스 프라이머smt2 sense and antisense primer

5'-ATGGACTCTTTAACACTCTTC-3' (서열번호 14)5'-ATGGACTCTTTAACACTCTTC-3 '(SEQ ID NO: 14)

5'-TCAAGAACTCTCCTCCGGTG-3' (서열번호 15)5'-TCAAGAACTCTCCTCCGGTG-3 '(SEQ ID NO: 15)

상기 증폭된 각각의 유전자들을 pGEM-T 벡터(Promega)에 결찰(ligation)시켰다. 증폭된 각각의 유전자 3㎕, pGEM-T 벡터 1㎕ 와 T4 DNA 라이게이즈 1㎕를 25℃에서 2시간동안 반응시켰다.Each of the amplified genes was ligated to the pGEM-T vector (Promega). 3 μl of each amplified gene, 1 μl of pGEM-T vector and 1 μl of T4 DNA ligase were reacted at 25 ° C. for 2 hours.

(2) (2) pFGC5941pFGC5941 -- DET2DET2 :: DWF4DWF4 :: SMT2SMT2 재조합 벡터 제작 Recombinant vector production

상기 제작된 AtDET2, AtDWF4, 및 AtSMT2의 cDNA를 사용하여 pFGC5941-DET2:DWF4:SMT2 를 제조하였다 (도1B). PFGC5941- DET2: DWF4: SMT2 was prepared using the prepared cDNAs of AtDET2, AtDWF4, and AtSMT2 (FIG. 1B).

pFGC5941-DET2 : DWF4 : SMT2 벡터를 제조하기 위하여, det2 455 bp 절편을 pGEM-T-DET2로부터 PCR 증폭하였다. 센스 및 안티센스 프라이머 서열은 각각 다음과 같다. To prepare pFGC5941- DET2 : DWF4 : SMT2 vectors, det2 455 bp fragments were PCR amplified from pGEM-T- DET2 . The sense and antisense primer sequences are as follows, respectively.

5'-AAGCTTTCATTTACCCTCTTCG-3' (서열번호 16)5'-AAGCTTTCATTTACCCTCTTCG-3 '(SEQ ID NO: 16)

5'-GTCGACGAACTTGGCAATGTAC-3' (서열번호 17) 5'-GTCGACGAACTTGGCAATGTAC-3 '(SEQ ID NO: 17)

상기 증폭된 det2 절편을 HindIII 및 Sal I 으로 절단하고, 절단된 절편을 pUC18 내에 결찰(ligation)시켜 pUC18-DET2를 생성하였다. 이어서, dwf4 361 bp 절편를 다음의 프라이머 서열을 이용하여 증폭하였다. The amplified det2 fragment was cleaved with HindIII and Sal I, and the cleaved fragment was ligation into pUC18 to generate pUC18- DET2 . The dwf4 361 bp fragment was then amplified using the following primer sequence.

5'-GTCGACGCCGGACATGAGACTTC-3' (서열번호 18)5'-GTCGACGCCGGACATGAGACTTC-3 '(SEQ ID NO: 18)

5'-GGTACCGCCATCTCCAAGGATTAA-3' (서열번호 19) 5'-GGTACCGCCATCTCCAAGGATTAA-3 '(SEQ ID NO: 19)

상기 증폭된 dwf4 절편을 Sal I 및 Kpn I으로 절단하고, 절단된 절편을 pUC18-DET2에 결찰시켜, pUC18-DET2 : DWF4를 제조하였다. By cutting the amplified fragment dwf4 the Sal I and Kpn I, and ligated to the cut sections to the pUC18- DET2, pUC18- DET2: was prepared DWF4.

SMT2 289 bp 절편을 다음의 프라이머 서열을 사용하여 증폭하였다. SMT2 289 bp fragment was amplified using the following primer sequence.

5'-GGTACCCTAGACGTCGGATGCGGT-3' (서열번호 20)5'-GGTACCCTAGACGTCGGATGCGGT-3 '(SEQ ID NO: 20)

5'-GAATTCCATAGATCCGGGTTTCAA-3' (서열번호 21) 5'-GAATTCCATAGATCCGGGTTTCAA-3 '(SEQ ID NO: 21)

상기 증폭된 smt2 절편을 KpnI 및 EcoRI으로 절단하고, 절단된 절편을 pUC18-DET2:DWF4에 결찰시켜 pUC18-DET2 : DWF4 : SMT2를 제조하였다. Ligated to DWF4 pUC18- DET2:: cut the amplified fragment smt2 the KpnI and EcoRI, and the truncated fragment was prepared pUC18- DET2 SMT2: DWF4.

다음의 프라이머 서열을 이용하여 DET2 : DWF4 : SMT2 의 PCR 산물을 획득하였다. PCR products of DET2 : DWF4 : SMT2 were obtained using the following primer sequences.

5'-TCTAGAGGCGCGCCTCATTTACCCTCTTCGC-3' (서열번호 22)5'-TCTAGAGGCGCGCCTCATTTACCCTCTTCGC-3 '(SEQ ID NO: 22)

5'-GGATCCATTTAAATCATAGATCCGGGTTTCAA-3' (서열번호 23)5'-GGATCCATTTAAATCATAGATCCGGGTTTCAA-3 '(SEQ ID NO: 23)

생성된 PCR 산물을 pFGC5941 벡터 (식물 내 이중가닥 RNA 제조를 위한 이원 벡터 (http://www.chromdb.org/rnai/vector_info.html)의 AscISwaI 및 BamHIXbaI 제한효소 부위를 이용하여 센스 및 안티센스 방향(orientation)으로 찰콘 신타제 인트론(chalcone synthase intron)의 상위 및 하위에 삽입하였다. The resulting PCR product was subjected to sense and antisense directions using the AscISwaI and BamHIXbaI restriction enzyme sites of the pFGC5941 vector (binary vector (http://www.chromdb.org/rnai/vector_info.html) for the production of double stranded RNA in plants). orientation was inserted above and below the chalcone synthase intron.

pFGC5941-DET2 : DWF4 : SMT2 벡터내 삽입의 방향성 및 판독 프레임의 적합성을 DNA 시퀀싱으로 확인하였다. pFGC5941- DET2 : DWF4 : SMT2 The directionality of the insertion into the vector and the suitability of the reading frame were confirmed by DNA sequencing.

실시예Example 2. 형질전환 균주의 제작 2. Preparation of Transgenic Strains

식물 형질전환에 사용될 재조합 아그로박테리움 투메파시엔스의 제조를 위해 전기천공법(electroporation)을 사용하여 pFGC5941-DET2 : DWF4 : SMT2 벡터를 포함하는 아그로박테리움 투메파시엔스 GV3101 세포를 제조하였다. Agrobacterium tumefaciens GV3101 cells comprising pFGC5941- DET2 : DWF4 : SMT2 vectors were prepared by electroporation for the preparation of recombinant Agrobacterium tumefaciens to be used for plant transformation.

구체적으로, 아그로박테리움 컴피턴트 세포(GV3101) 200㎕에 위에서 제작된 pFGC5941-DET2:DWF4:SMT2 재조합 벡터 DNA 1㎕ (50ng/㎕이상)를 넣고 ice에 30분간 방치한 후 알코올로 소독된 큐벳에 넣고 미세-전기천공 챔버(Micro-Electroporation Chamber)를 이용하여 2.4kV의 전류를 가한 후 ice로 옮겨주었다.Specifically, 1 μl (50ng / μl or more) of pFGC5941-DET2: DWF4: SMT2 recombinant vector DNA prepared above was added to 200 μl of Agrobacterium competent cells (GV3101), and left on ice for 30 minutes, followed by alcohol sterilization. Put it in the micro-electroporation chamber (Micro-Electroporation Chamber) using a current of 2.4kV was transferred to ice.

이렇게 전류를 준 아그로박테리움 용액에 LB배지 800㎕를 넣고 피펫을 이용하여 15ml 튜브로 옮겨서 25℃에서 4시간 동안 키운 뒤 50mg/L의 겐타마이신과 50mg/L의 카나마이신 항생제가 들어간 LB 고체 배지에 도말하여 25℃에서 2일간 배양하였다.Into this Agrobacterium solution, 800 μl of LB medium was added to a 15 ml tube using a pipette, grown at 25 ° C. for 4 hours, and then in an LB solid medium containing 50 mg / L gentamicin and 50 mg / L kanamycin antibiotic. The plate was incubated at 25 ° C. for 2 days.

배양된 아그로박테리움 단일 콜로니를 액체 배양하여, 플라스미드 DNA를 추출하여 PCR 방법으로 확인하였다. PCR 조건은 전변성 94℃에서 5분, 변성 94℃ 30초, 어닐링 55℃ 30초, 신장 72℃ 30초, 확장 72℃에서 7분, 그리고 총 30 싸이클을 수행하였다. 선별된 아그로박테리움 클론에 서열번호 3의 염기서열을 갖는 DNA가 삽입된 것을 확인하고 식물 형질전환에 사용하였다.Cultured Agrobacterium single colony was liquid cultured, plasmid DNA was extracted and confirmed by PCR method. PCR conditions were performed for 5 minutes at 94 ° C total denaturation, 30 ° C denaturation at 94 ° C, 30 ° C annealing at 55 ° C, 30 ° elongation at 72 ° C, 7 minutes at extension 72 ° C, and a total of 30 cycles. The DNA having the nucleotide sequence of SEQ ID NO: 3 was inserted into the selected Agrobacterium clone and used for plant transformation.

실시예Example 3. 형질전환 식물의 제작 3. Preparation of Transgenic Plants

(1) 아그로박테리움에 의한 감염(1) Infection with Agrobacterium

상기 제조된 형질전환 아그로박테리움을 스핀다운 후, 10% 수크로스 용액 내 OD600 = 0.8 까지 재현탁시키고, 0.05% 농도의 Silwet L-77 (Cat. No. VIS-02, Lehle Seed, USA)에 첨가하고, 충분히 혼합하였다. 파종후 로제트(Rosette) 생성 후 꽃대가 올라온 애기장대에 상기 용액을 격일로 매 3번 애기장대에 분무하였다. 상기 애기장대는 흙에서 발아시켰고, 광주기 16h, 22℃ 성장 챔버에서 성장시켰다. After spin down of the prepared transformed Agrobacterium, resuspended in OD 600 = 0.8 in 10% sucrose solution, Silwet L-77 (Cat. No. VIS-02, Lehle Seed, USA) at 0.05% concentration. Was added and mixed well. After seeding, the solution was sprayed onto the Arabidopsis every 3 times every other day on the Arabidopsis, which rose after the rosette generation. The Arabidopsis germinated in soil, and was grown in a photoperiod 16h, 22 ℃ growth chamber.

(2) 형질전환 식물의 선별(2) Selection of Transgenic Plants

형질전환 식물 및 비-형질전환 식물로 추정되는 파종 후 본엽이 나온 묘목에 0.4% BASTA (Bayer, 독일)를 1주일 동안 격일로 분무하고, 생존한 묘목을 화분에 옮겼다. 형질전환체 종자를 획득하였다. 발아 후, 형질전환된 식물체를 위와 동일한 방법으로 0.4% BASTA를 사용하여 재선별하였다. 배양조건은 광주기 16h, 22℃이었다. Seedlings with main leaves after sowing presumed to be transgenic plants and non-transgenic plants were sprayed with 0.4% BASTA (Bayer, Germany) every other week for one week and the surviving seedlings were potted. Transformant seeds were obtained. After germination, the transformed plants were reselected using 0.4% BASTA in the same manner as above. Culture conditions were photoperiod 16h, 22 ℃.

이로써 본 발명자들의 넉다운(knock-down) 돌연변이체는 생식에서 현저한 감소를 나타내는 완전 기능-상실 돌연변이체 (loss-of-function mutant) 또는 넉아웃 돌연변이체와는 달리 우수한 종자 생산성을 나타낼 수 있음을 확인하였으며, 따라서 상업적 이점을 가짐을 알 수 있다. 이러한 종자 생산성은 유전자 발현이 RNAi 식물체 내에서는 잔존하기 때문인 것으로 보인다. This confirms that the knock-down mutants of the present inventors can exhibit excellent seed productivity, unlike the loss-of-function mutant or knockout mutants, which show a significant reduction in reproduction. Thus, it can be seen that it has a commercial advantage. This seed productivity seems to be due to gene expression remaining in RNAi plants.

실험예Experimental Example 1. 야생형 식물체와  1. Wild type plants and DET2DET2 :: DWF4DWF4 :: SMT2SMT2 RNARNA 간섭 형질전환 식물체의 표현형 비교 Comparison of Phenotypes of Interfering Transgenic Plants

(1) (One) T3T3 세대 형질전환 식물체의 표현형 비교 Phenotype Comparison of Generation Transgenic Plants

선택 항생 마커를 이용하여 분리 분석에 의하여 T3 세대에서 RNAi 넉다운(knock-down) 식물주를 선별하였다. 파종후 본엽이 나왔을 때 0.4% BASTA로 1주일 동안 격일로 분무하였고 배양조건은 광주기 16h의 22℃로 4주 동안 키워 표현형을 관찰하였다. 야생형 식물과 형질전환 식물체 간에는 형태적 차이가 관찰되었다. (도2A) 형질 전환 식물체는 명백한 표현형의 변경을 나타내었다. 강한 억제 및 약한 억제에 해당하는 형질전환 식물체는 난쟁이 및 준-난쟁이 표현형을 각각 나타냈다. RNAi knock-down plant lines were selected from the T3 generation by isolation analysis using selective antibiotic markers. After seeding, the leaves were sprayed every other day for 1 week with 0.4% BASTA, and the culture conditions were grown for 4 weeks at 22 ° C. of 16 h of photoperiod and observed the phenotype. Morphological differences were observed between wild type plants and transgenic plants. (FIG. 2A) Transgenic plants showed a clear change in phenotype. Transgenic plants corresponding to strong and weak inhibition showed dwarf and quasi-dwarf phenotypes, respectively.

(2) (2) T4T4 세대 형질전환 식물체의 표현형 비교 Phenotype Comparison of Generation Transgenic Plants

상기 T3세대에서 나타난 특성이 다음 세대에 유전되는지 조사하기 위하여, 도 2A에 보여진 바와 같은 4번, 5번 난쟁이주로부터 BASTA-저항성 T4 식물체를 수확하였다. 위와 동일하게 파종후 본엽이 나왔을 때 0.4% BASTA로 1주일 동안 격일로 분무하였고 배양조건은 광주기 16h의 22℃로 4주 동안 키워 표현형을 관찰하였다. 상기 형질전환 식물체는 명백한 변형된 표현형을 나타내었다(도3a). 한편, 상기 형질전환 식물체의 형태계측 분석 결과는 하기 표1과 같았다. BASTA-resistant T4 plants were harvested from 4 and 5 dwarf strains as shown in FIG. 2A to investigate if the properties shown in the T3 generation were inherited in the next generation. As above, when seedlings emerged after seeding, they were sprayed every other day for 1 week with 0.4% BASTA, and the culture conditions were observed for 4 weeks at 22 ° C. of photoperiod 16h. The transgenic plants showed a clear modified phenotype (FIG. 3A). On the other hand, the results of morphometric analysis of the transformed plant was as Table 1 below.

[표1] 야생형 및 T4 형질전환 식물체의 형태계측 분석Table 1 Morphometric Analysis of Wild-type and T4 Transgenic Plants

Figure 112010030342456-pat00001
Figure 112010030342456-pat00001

위 표1에 나타난 바와 같이 형질 전환 식물체는 짧은 개화 높이, 더짧은 옆편, 더짧은 잎자루를 가졌다. As shown in Table 1 above, the transgenic plant had short flowering height, shorter flanks and shorter petioles.

실험예Experimental Example 2.  2. RNARNA 분리 및 발현 패턴 확인 Isolation and Expression Pattern Confirmation

(1) (One) T3T3 세대 형질전환 식물체의  Generation of transgenic plants RNARNA 분리 및 반-정량적  Separation and semi-quantitative RTRT -- PCRPCR 분석  analysis

반-정량적 RT PCR 분석을 통해 각 형질전환체 주로부터 분리된 RNA를 이용하여 DET2, DWF4, SMT2 및 CYP85A1 유전자의 전사 수준을 확인하였다. Semi-quantitative RT PCR analysis confirmed the transcription levels of the DET2, DWF4, SMT2 and CYP85A1 genes using RNA isolated from each transformant strain.

구체적으로, RNeasy Plant Mini Kit (Qiagen,USA)를 이용하여, 위 실험예 1.(1)에서 얻은 T3 세대 애기장대 잎으로부터 전체 RNA를 분리하였다. Specifically, using the RNeasy Plant Mini Kit (Qiagen, USA), total RNA was isolated from the T3 generation Arabidopsis leaf obtained in Experimental Example 1. (1) above.

분리한 RNA를 DNaseI (Takara, 일본)-처리 전체 RNA를 ImProm-IITM Reverse Transcription System (Promega,USA)과 제조사 지시에 따른 올리고-dT 프라이머를 사용하여 역전사하였다. 이어서, 제1 가닥 cDNA를 DET2, DWF4, SMT2 및 CYP85A1 유전자-특이적 프라이머와 내부 표준 18S rRNA 프라이머를 이용하여 PCR 증폭하였다. The isolated RNA was reverse transcribed using DNaseI (Takara, Japan) -treated total RNA using ImProm-II Reverse Transcription System (Promega, USA) and oligo-dT primer according to the manufacturer's instructions. The first strand cDNA was then PCR amplified using DET2, DWF4, SMT2 and CYP85A1 gene-specific primers and internal standard 18S rRNA primers.

하기 프라이머 세트로 DET2 유전자를 증폭하여 780 bp 단편을 제조하였다. A 780 bp fragment was prepared by amplifying the DET2 gene with the following primer sets.

5'-ATGGAAGAAATCGCCGATAAAACC-3' (서열번호 24)5'-ATGGAAGAAATCGCCGATAAAACC-3 '(SEQ ID NO: 24)

5'-ACACAAAAGGAATAACAGCTTTAC-3' (서열번호 25)5'-ACACAAAAGGAATAACAGCTTTAC-3 '(SEQ ID NO: 25)

하기 프라이머 세트로 DWF4 유전자를 증폭하여 1,540 bp 단편을 제조하였다.The 1,540 bp fragment was prepared by amplifying the DWF4 gene with the following primer sets.

5'-ATGTTCGAAACAGAGCATCATAC-3' (서열번호 26)5'-ATGTTCGAAACAGAGCATCATAC-3 '(SEQ ID NO: 26)

5'-GAATACGAGAAACCCTAATAGGC-3' (서열번호 27)5'-GAATACGAGAAACCCTAATAGGC-3 '(SEQ ID NO: 27)

하기 프라이머 세트로 SMT2 유전자를 증폭하여 1,080 bp 단편을 제조하였다. The SMT2 gene was amplified with the following primer sets to prepare 1,080 bp fragments.

5'-ATGGACTCTTTAACACTCTTC-3' (서열번호 28) 5'-ATGGACTCTTTAACACTCTTC-3 '(SEQ ID NO: 28)

5'-AGAACTCTCCTCCGGTGACTC-3' (서열번호 29)5'-AGAACTCTCCTCCGGTGACTC-3 '(SEQ ID NO: 29)

하기 프라이머 세트로 CYP85A1 유전자를 증폭하여 1,150 bp 단편을 제조하였다. The 1,150 bp fragment was prepared by amplifying the CYP85A1 gene with the following primer sets.

5'-GCTCGCTTCTGTCTCTCA-3' (서열번호 30)5'-GCTCGCTTCTGTCTCTCA-3 '(SEQ ID NO: 30)

5'-TCATCCCCTCCTATTTCC-3' (서열번호 31)5'-TCATCCCCTCCTATTTCC-3 '(SEQ ID NO: 31)

내부 표준 18S rRNA 프라이머는 하기의 세트를 사용하였다. Internal standard 18S rRNA primers used the following set.

5'-GGATGGGTCGGCCGGTC-3' (서열번호 32)5'-GGATGGGTCGGCCGGTC-3 '(SEQ ID NO: 32)

5'-CAGGCTGAGGTCTCGTTC-3' (서열번호 33)5'-CAGGCTGAGGTCTCGTTC-3 '(SEQ ID NO: 33)

PCR에서, 증폭 프로그램은 초기 94℃ 5분, 이어서 94℃ 1분; 55℃ 1분; 72℃ 1분의 28-35 사이클, 및 최종 연장 72 ℃ 10분으로 구성되었다. 상기 실험을 세 번 이상 반복하여 유사한 결과를 얻었다. In PCR, the amplification program was initially 94 ° C. 5 minutes, then 94 ° C. 1 minute; 55 ° C. 1 minute; 28-35 cycles of 72 ° C. per minute, and final extension of 72 ° C. for 10 minutes. The experiment was repeated three more times to obtain similar results.

RT-PCR 분석 결과를 도2B에 나타내었다. 도2B에 나타난 바와 같이, 형질전환 식물체 내 DET2, DWF4, SMT2 유전자의 mRNA 수준은 야생형의 수준에 비하여 감소되었음을 확인하였다. 유전자 발현의 넉다운 정도는 강한 억제와 약한 억제 군으로 분류되었다. 이는 투여량-종속적 난쟁이증을 나타낸다. The results of RT-PCR analysis are shown in Figure 2B. As shown in Figure 2B, it was confirmed that the mRNA levels of the DET2, DWF4, SMT2 gene in the transgenic plant was reduced compared to the level of wild type. The knockdown of gene expression was classified into strong and weak inhibitory groups. This indicates dose-dependent dwarfism.

한편, DET2, DWF4, SMT2의 전사수준과 달리, CYP85A1은 형질전환 식물체 내에서 상향-조절되었다. 이는 브라시노스테로이드 생합성 유전자의 피드백 조절 기전과 일치하는 것으로, 감소된 브라시노스테로이드 생합성 또는 잘못된 응답은 CYP85A1을 포함한 생합성 유전자의 발현을 탈-억제한다. 따라서, 본 발명의 형질전환 식물체 내에 CYP85A1의 증가된 전사 수준은 전체 생합성 활성 및 이어지는 시그널 반응이 형질전환에 의한 RNA 간섭 효과 때문에 하향 조절되었음을 시사한다. On the other hand, unlike the transcription levels of DET2, DWF4 and SMT2, CYP85A1 was up-regulated in transgenic plants. This is consistent with the feedback regulatory mechanism of the brassinosteroid biosynthesis gene, with reduced brassinosteroid biosynthesis or erroneous responses de-inhibiting the expression of the biosynthetic gene, including CYP85A1. Thus, the increased transcription level of CYP85A1 in the transgenic plants of the present invention suggests that the overall biosynthetic activity and the subsequent signal response are down regulated due to RNA interference effects by transformation.

(2) (2) T4T4 세대 형질전환 식물체의  Generation of transgenic plants RNARNA 분리 및 실시간 정량 Separation and Real Time Quantitation RTRT -- PCRPCR 분석 analysis

위 실시예 1.(1)과 동일한 방법으로 위 실험예 1.(2)에서 얻은 T4 세대 애기장대 잎으로부터 cDNA를 획득하였다. DNase I (Takara, 일본)-처리 전체 RNA의 역전사를 올리고-dT 프라이머 및 First-Strand cDNA Synthesis kit (Roche Diagnostics GmbH, 독일)을 이용하여 수행하였다. 정량적 실시간 PCR을 위하여, 유전자-특이적 PCR 프라이머 및 Taq-Man 검정용 형광생성 프로브를 Assays-by-Design Service (Applied Biosystems,USA)에 의해 디자인하였다. 제조사의 지시에 따라 TaqMan Universal PCR Master Mix and 7500 Real-Time PCR System (Applied Biosystems)을 이용하여 유전자 발현을 분석하였다. 증폭 조건은 50℃ 2분의 초기 사이클, 95℃ 10분 한 사이클, 이어서 95℃ 15초, 60℃ 1분의 40 사이클이었다. CDNA was obtained from the T4 generation Arabidopsis leaves obtained in Experimental Example 1. (2) above in the same manner as in Example 1. (1) above. Reverse transcription of DNase I (Takara, Japan) -treated total RNA was performed using oligo-dT primers and a First-Strand cDNA Synthesis kit (Roche Diagnostics GmbH, Germany). For quantitative real-time PCR, gene-specific PCR primers and fluorescence probes for Taq-Man assays were designed by Assays-by-Design Service (Applied Biosystems, USA). Gene expression was analyzed using TaqMan Universal PCR Master Mix and 7500 Real-Time PCR System (Applied Biosystems) according to the manufacturer's instructions. Amplification conditions were an initial cycle of 50 ° C. for 2 minutes, one cycle of 95 ° C. for 10 minutes, followed by 95 cycles of 15 seconds and 60 cycles of 1 cycle of 40 minutes.

형질전환 식물체의 분석에서, 정량적 실시간 PCR을 위하여 사용된 유전자-특이적 프라이머 및 프로브는 다음과 같다:In the analysis of transgenic plants, the gene-specific primers and probes used for quantitative real-time PCR are as follows:

[DET2용][For DET2]

정방향: 5'-TTTGGAGAGGCGATTGAGTG-3' (서열번호 34)Forward: 5'-TTTGGAGAGGCGATTGAGTG-3 '(SEQ ID NO. 34)

역방향: 5'-CTCTTCCTTGAACTTGGCAATG-3' (서열번호 35)Reverse: 5'-CTCTTCCTTGAACTTGGCAATG-3 '(SEQ ID NO: 35)

DET2-프로브 DET2-probe

FAM-TGGGCTGTTATGACTTGGTCTTGGG-NFQ; FAM-TGGGCTGTTATGACTTGGTCTTGGG-NFQ;

[DWF4용] [For DWF4]

정방향: 5'-CAGAGGATGAAGCAGAGATGAG-3' (서열번호 36)Forward: 5'-CAGAGGATGAAGCAGAGATGAG-3 '(SEQ ID NO: 36)

역방향: 5'-TGAGATCGAGAATTTGCTCCG-3' (서열번호 37)Reverse: 5'-TGAGATCGAGAATTTGCTCCG-3 '(SEQ ID NO: 37)

DWF4-프로브 DWF4-Probe

FAM-ACAGACGATGATCTTTTGGGATGGGTT-NFQ; FAM-ACAGACGATGATCTTTTGGGATGGGTT-NFQ;

[SMT2용] [For SMT2]

정방향: 5'-CCAAAAGAAATCGAAACCGCC-3' (서열번호 38)Forward: 5'-CCAAAAGAAATCGAAACCGCC-3 '(SEQ ID NO: 38)

역방향: 5'-GCGTCTTTGTGAGATTTTCCG-3' (서열번호 39)Reverse: 5'-GCGTCTTTGTGAGATTTTCCG-3 '(SEQ ID NO: 39)

SMT2-프로브 SMT2-Probe

FAM-TGTCCCCATCCCCACTCGTATATGT-NFQ;FAM-TGTCCCCATCCCCACTCGTATATGT-NFQ;

[CYP85A1용] [For CYP85A1]

정방향: 5'-ACAGAGCAGAAAACAGAGTGAG-3' (서열번호 40)Forward: 5'-ACAGAGCAGAAAACAGAGTGAG-3 '(SEQ ID NO: 40)

역방향: 5'-GAAGGAGAGCGGAACAGAG-3' (서열번호 41)Reverse: 5'-GAAGGAGAGCGGAACAGAG-3 '(SEQ ID NO: 41)

CYP85A1-프로브CYP85A1-Probe

FAM-TGGGAGCAATGATGGTGATGATGGG-NFQ;FAM-TGGGAGCAATGATGGTGATGATGGG-NFQ;

[18S rRNA용] [For 18S rRNA]

기-디자인된 프라이머 및 프로브Pre-designed primers and probes

(Taqman assay-on-demand gene expression products, Applied Biosystems). (Taqman assay-on-demand gene expression products, Applied Biosystems).

18S rRNA의 증폭은 실시간 PCR 결과의 표준화를 위하여 사용하였다. Amplification of 18S rRNA was used for standardization of real time PCR results.

RT-PCR 분석 결과인 각 유전자의 상대적 발현수준을 도3B에 나타내었다. 도3B에 나타난 바와 같이, 형질전환 식물체 내 DET2, DWF4, SMT2 유전자의 mRNA 수준은 야생형의 수준에 비하여 감소되었음을 확인하였다. 즉, 형질전환 식물체로부터 DET2, DWF4, SMT2 유전자의 mRNA 수준이 약 20, 56, 52%까지 하향-조절되었음이 확인되었다. 한편, CYP85A1 유전자의 발현은 최대 27%까지 상향-조절되었음이 확인되었다. Relative expression levels of each gene as a result of RT-PCR analysis are shown in FIG. 3B. As shown in FIG. 3B, it was confirmed that mRNA levels of DET2, DWF4, and SMT2 genes in the transgenic plants were reduced compared to those of the wild type. That is, it was confirmed that mRNA levels of DET2, DWF4, and SMT2 genes were down-regulated by about 20, 56, and 52% from transgenic plants. On the other hand, the expression of the CYP85A1 gene was confirmed to be up-regulated by up to 27%.

실험예Experimental Example 3. 스테롤 및  3. Sterol and 브라시노스테로이드Brassinosteroid 프로파일 분석 Profile analysis

위 실험예 1.(2)에서 얻은 T4 세대 애기장대의 줄기, 꽃, 잎, 장각과의 대기 중 부분 20g을 수확하여, 스테롤 및 브라시노스테로이드의 정제 및 정량을 수행하였다. 상기 정제 및 정량은 [Fujioka et al., Plant Physiology 2002 Oct;130(2):930-9, An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway]에 기재된 방법에 따라 수행하였다. 분석결과를 하기 표2에 나타내었다. 20 g of the stem, flowers, leaves, and long-gap stems of the T4 generation cephalopod obtained in Experimental Example 1. (2) above were harvested to purify and quantify sterols and brassinosteroids. The purification and quantification was performed according to the method described in Fujioka et al., Plant Physiology 2002 Oct; 130 (2): 930-9, An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. The analysis results are shown in Table 2 below.

[표2] 야생형 및 T4 형질전환 식물체의 내생적 스테롤 및 브라시노스테로이드 수준Table 2. Endogenous Sterol and Brassinosteroid Levels of Wild-type and T4 Transgenic Plants

Figure 112010030342456-pat00002
Figure 112010030342456-pat00002

위 표2에 나타난 바와 같이, 삼중 넉다운 형질전환 식물체의 캄페스테롤 함량은 186㎍/g FW 이었다. 이러한 함량은 야생형 내 수준 (44.2 ㎍/g FW)보다 4.2 배 높은 것이다. 캄페스테롤을 포함한 피토스테롤은 인간 건강에 매우 중요하며, 특히 캄페스테롤은 콜레스테롤-저하 효과 및 항암 효과를 나타내는 것으로 널리 알려져 있다. As shown in Table 2 above, the camphorsterol content of the triple knockdown transgenic plant was 186 μg / g FW. This content is 4.2 times higher than the level in wild type (44.2 μg / g FW). Phytosterols, including camphorsterol, are very important for human health, and in particular, camphorsterol is widely known to exhibit cholesterol-lowering and anticancer effects.

한편, 시토스테롤 및 스티그마스테롤 함량은 각각 야생형 수준의 35, 31%까지 감소하였다. 형질전환 식물체에서, 6-디옥소카타스테론 (6-deoxocathasterone: DeoxoCT), 6-디옥소테아스테론 (6-deoxoteasterone: 6-DeoxoTE), 3-디히드로-6-디옥소테아스테론 (3-dehydro-6-deoxoteasterone: 6-Deoxo3DT), 6-디옥소티파스테롤 (6-deoxotyphasterol: 6-DeoxoTY), 6-디옥소카스타스테론(6-deoxocastasterone: 6-DeoxoCS), 티파스테롤 (typhasterol: TY), 및 카스타스테론 (castasterone: CS)의 수준은 각각 야생형 식물 내 수준의 19, 50, 15, 43, 19, 38 및 54%까지 감소하였다. 카타스테론(cathasterone: CT), 테아스테론(teasterone: TE), 3-디히드로테아스테론 (3-dehydroteasterone: 3-DT) 및 브라시노리드(brassinolide: BL)는 야생형 또는 형질전환 식물체에서 검출되지 않았다. On the other hand, cytosterol and stigmasterol contents decreased by 35 and 31% of wild type levels, respectively. In transgenic plants, 6-dioxocatasterone (6-deoxocathasterone: DeoxoCT), 6-dioxoteasterone (6-deoxoteasterone: 6-DeoxoTE), 3-dihydro-6-dioxoteasterone ( 3-dehydro-6-deoxoteasterone: 6-Deoxo3DT), 6-dioxotyphasterol (6-deoxotyphasterol: 6-DeoxoTY), 6-dioxocastasterone (6-deoxocastasterone: 6-DeoxoCS), typhasterol : TY), and castasterone (CS) levels were reduced by 19, 50, 15, 43, 19, 38 and 54% of the levels in wild type plants, respectively. Cathasterone (CT), teasterone (TE), 3-dehydroteasterone (3-DT) and brassinolide (BL) are found in wild-type or transgenic plants. It was not detected.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed plants having increased campesterol contents <130> P10-019-KHU <160> 41 <170> KopatentIn 1.71 <210> 1 <211> 789 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(786) <223> DET2 (Genbank accession no. U53860) <400> 1 atg gaa gaa atc gcc gat aaa acc ttc ttc cga tac tgt ctc ctc act 48 Met Glu Glu Ile Ala Asp Lys Thr Phe Phe Arg Tyr Cys Leu Leu Thr 1 5 10 15 ctt att ttc gcc ggc cca cca acc gcc gtc ctt ctg aaa ttc ctc caa 96 Leu Ile Phe Ala Gly Pro Pro Thr Ala Val Leu Leu Lys Phe Leu Gln 20 25 30 gct cct tac ggt aaa cac aac cgt acc gga tgg ggt ccc acc gta tct 144 Ala Pro Tyr Gly Lys His Asn Arg Thr Gly Trp Gly Pro Thr Val Ser 35 40 45 cca ccg att gct tgg ttc gtc atg gag agc cca acc ttg tgg ctc act 192 Pro Pro Ile Ala Trp Phe Val Met Glu Ser Pro Thr Leu Trp Leu Thr 50 55 60 ctc ctc ctc ttc ccc ttt ggt cgt cac gct ctc aac cct aaa tct cta 240 Leu Leu Leu Phe Pro Phe Gly Arg His Ala Leu Asn Pro Lys Ser Leu 65 70 75 80 ctt cta ttc tct cct tat ctc att cat tac ttc cac cgc acc atc att 288 Leu Leu Phe Ser Pro Tyr Leu Ile His Tyr Phe His Arg Thr Ile Ile 85 90 95 tac cct ctt cgc ctc ttc cgc agc tcc ttc ccc gcc ggt aaa aac gga 336 Tyr Pro Leu Arg Leu Phe Arg Ser Ser Phe Pro Ala Gly Lys Asn Gly 100 105 110 ttt ccg atc acc atc gcc gcc ttg gct ttc acc ttt aat ctc ctc aat 384 Phe Pro Ile Thr Ile Ala Ala Leu Ala Phe Thr Phe Asn Leu Leu Asn 115 120 125 ggt tat atc cag gcg agg tgg gtt tcg cat tac aag gat gac tac gaa 432 Gly Tyr Ile Gln Ala Arg Trp Val Ser His Tyr Lys Asp Asp Tyr Glu 130 135 140 gac gga aac tgg ttc tgg tgg cgg ttt gtt atc ggt atg gtg gtt ttc 480 Asp Gly Asn Trp Phe Trp Trp Arg Phe Val Ile Gly Met Val Val Phe 145 150 155 160 ata acc ggc atg tat ata aat atc acg tcg gac cgc act ttg gta cga 528 Ile Thr Gly Met Tyr Ile Asn Ile Thr Ser Asp Arg Thr Leu Val Arg 165 170 175 ttg aag aaa gag aac cgg gga ggt tat gtg ata ccg aga gga ggc tgg 576 Leu Lys Lys Glu Asn Arg Gly Gly Tyr Val Ile Pro Arg Gly Gly Trp 180 185 190 ttc gag ttg gta agc cgt ccg aat tat ttt gga gag gcg att gag tgg 624 Phe Glu Leu Val Ser Arg Pro Asn Tyr Phe Gly Glu Ala Ile Glu Trp 195 200 205 ttg ggc tgg gct gtt atg act tgg tct tgg gcc ggt att gga ttt ttt 672 Leu Gly Trp Ala Val Met Thr Trp Ser Trp Ala Gly Ile Gly Phe Phe 210 215 220 ctg tac acg tgt tcc aat ttg ttt ccg cgt gca cgt gcg agt cac aag 720 Leu Tyr Thr Cys Ser Asn Leu Phe Pro Arg Ala Arg Ala Ser His Lys 225 230 235 240 tgg tac att gcc aag ttc aag gaa gag tat ccc aag act cgt aaa gct 768 Trp Tyr Ile Ala Lys Phe Lys Glu Glu Tyr Pro Lys Thr Arg Lys Ala 245 250 255 gtt att cct ttt gtg tac tga 789 Val Ile Pro Phe Val Tyr 260 <210> 2 <211> 262 <212> PRT <213> Arabidopsis thaliana <400> 2 Met Glu Glu Ile Ala Asp Lys Thr Phe Phe Arg Tyr Cys Leu Leu Thr 1 5 10 15 Leu Ile Phe Ala Gly Pro Pro Thr Ala Val Leu Leu Lys Phe Leu Gln 20 25 30 Ala Pro Tyr Gly Lys His Asn Arg Thr Gly Trp Gly Pro Thr Val Ser 35 40 45 Pro Pro Ile Ala Trp Phe Val Met Glu Ser Pro Thr Leu Trp Leu Thr 50 55 60 Leu Leu Leu Phe Pro Phe Gly Arg His Ala Leu Asn Pro Lys Ser Leu 65 70 75 80 Leu Leu Phe Ser Pro Tyr Leu Ile His Tyr Phe His Arg Thr Ile Ile 85 90 95 Tyr Pro Leu Arg Leu Phe Arg Ser Ser Phe Pro Ala Gly Lys Asn Gly 100 105 110 Phe Pro Ile Thr Ile Ala Ala Leu Ala Phe Thr Phe Asn Leu Leu Asn 115 120 125 Gly Tyr Ile Gln Ala Arg Trp Val Ser His Tyr Lys Asp Asp Tyr Glu 130 135 140 Asp Gly Asn Trp Phe Trp Trp Arg Phe Val Ile Gly Met Val Val Phe 145 150 155 160 Ile Thr Gly Met Tyr Ile Asn Ile Thr Ser Asp Arg Thr Leu Val Arg 165 170 175 Leu Lys Lys Glu Asn Arg Gly Gly Tyr Val Ile Pro Arg Gly Gly Trp 180 185 190 Phe Glu Leu Val Ser Arg Pro Asn Tyr Phe Gly Glu Ala Ile Glu Trp 195 200 205 Leu Gly Trp Ala Val Met Thr Trp Ser Trp Ala Gly Ile Gly Phe Phe 210 215 220 Leu Tyr Thr Cys Ser Asn Leu Phe Pro Arg Ala Arg Ala Ser His Lys 225 230 235 240 Trp Tyr Ile Ala Lys Phe Lys Glu Glu Tyr Pro Lys Thr Arg Lys Ala 245 250 255 Val Ile Pro Phe Val Tyr 260 <210> 3 <211> 455 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature <222> (1)..(455) <223> DET2 fragment for RNAi <400> 3 tcatttaccc tcttcgcctc ttccgcagct ccttccccgc cggtaaaaac ggatttccga 60 tcaccatcgc cgccttggct ttcaccttta atctcctcaa tggttatatc caggcgaggt 120 gggtttcgca ttacaaggat gactacgaag acggaaactg gttctggtgg cggtttgtta 180 tcggtatggt ggttttcata accggcatgt atataaatat cacgtcggac cgcactttgg 240 tacgattgaa gaaagagaac cggggaggtt atgtgatacc gagaggaggc tggttcgagt 300 tggtaagccg tccgaattat tttggagagg cgattgagtg gttgggctgg gctgttatga 360 cttggtcttg ggccggtatt ggattttttc tgtacacgtg ttccaatttg tttccgcgtg 420 cacgtgcgag tcacaagtgg tacattgcca agttc 455 <210> 4 <211> 1542 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1539) <223> DWF4 (GenBank accession no. NM_114926) <400> 4 atg ttc gaa aca gag cat cat act ctc tta cct ctt ctt ctt ctc cca 48 Met Phe Glu Thr Glu His His Thr Leu Leu Pro Leu Leu Leu Leu Pro 1 5 10 15 tcg ctt ttg tct ctt ctt ctc ttc ttg att ctc ttg aag aga aga aat 96 Ser Leu Leu Ser Leu Leu Leu Phe Leu Ile Leu Leu Lys Arg Arg Asn 20 25 30 aga aaa acc aga ttc aat cta cct ccg ggt aaa tcc ggt tgg cca ttt 144 Arg Lys Thr Arg Phe Asn Leu Pro Pro Gly Lys Ser Gly Trp Pro Phe 35 40 45 ctt ggt gaa acc atc ggt tat ctt aaa ccg tac acc gcc aca aca ctc 192 Leu Gly Glu Thr Ile Gly Tyr Leu Lys Pro Tyr Thr Ala Thr Thr Leu 50 55 60 ggt gac ttc atg caa caa cat gtc tcc aag tat ggt aag ata tat aga 240 Gly Asp Phe Met Gln Gln His Val Ser Lys Tyr Gly Lys Ile Tyr Arg 65 70 75 80 tcg aac ttg ttt gga gaa cca acg atc gta tca gct gat gct gga ctt 288 Ser Asn Leu Phe Gly Glu Pro Thr Ile Val Ser Ala Asp Ala Gly Leu 85 90 95 aat aga ttc ata tta caa aac gaa gga agg ctc ttt gaa tgt agt tat 336 Asn Arg Phe Ile Leu Gln Asn Glu Gly Arg Leu Phe Glu Cys Ser Tyr 100 105 110 cct aga agt ata ggt ggg att ctt ggg aaa tgg tcg atg ctt gtt ctt 384 Pro Arg Ser Ile Gly Gly Ile Leu Gly Lys Trp Ser Met Leu Val Leu 115 120 125 gtt ggt gac atg cat aga gat atg aga agt atc tcg ctt aac ttc tta 432 Val Gly Asp Met His Arg Asp Met Arg Ser Ile Ser Leu Asn Phe Leu 130 135 140 agt cac gca cgt ctt aga act att cta ctt aaa gat gtt gag aga cat 480 Ser His Ala Arg Leu Arg Thr Ile Leu Leu Lys Asp Val Glu Arg His 145 150 155 160 act ttg ttt gtt ctt gat tct tgg caa caa aac tct att ttc tct gct 528 Thr Leu Phe Val Leu Asp Ser Trp Gln Gln Asn Ser Ile Phe Ser Ala 165 170 175 caa gac gag gcc aaa aag ttt acg ttt aat cta atg gcg aag cat ata 576 Gln Asp Glu Ala Lys Lys Phe Thr Phe Asn Leu Met Ala Lys His Ile 180 185 190 atg agt atg gat cct gga gaa gaa gaa aca gag caa tta aag aaa gag 624 Met Ser Met Asp Pro Gly Glu Glu Glu Thr Glu Gln Leu Lys Lys Glu 195 200 205 tat gta act ttc atg aaa gga gtt gtc tct gct cct cta aat cta cca 672 Tyr Val Thr Phe Met Lys Gly Val Val Ser Ala Pro Leu Asn Leu Pro 210 215 220 gga act gct tat cat aaa gct ctt cag tca cga gca acg ata ttg aag 720 Gly Thr Ala Tyr His Lys Ala Leu Gln Ser Arg Ala Thr Ile Leu Lys 225 230 235 240 ttc att gag agg aaa atg gaa gag aga aaa ttg gat atc aag gaa gaa 768 Phe Ile Glu Arg Lys Met Glu Glu Arg Lys Leu Asp Ile Lys Glu Glu 245 250 255 gat caa gaa gaa gaa gaa gtg aaa aca gag gat gaa gca gag atg agt 816 Asp Gln Glu Glu Glu Glu Val Lys Thr Glu Asp Glu Ala Glu Met Ser 260 265 270 aag agt gat cat gtt agg aaa caa aga aca gac gat gat ctt ttg gga 864 Lys Ser Asp His Val Arg Lys Gln Arg Thr Asp Asp Asp Leu Leu Gly 275 280 285 tgg gtt ttg aaa cat tcg aat tta tcg acg gag caa att ctc gat ctc 912 Trp Val Leu Lys His Ser Asn Leu Ser Thr Glu Gln Ile Leu Asp Leu 290 295 300 att ctt agt ttg tta ttt gcc gga cat gag act tct tct gta gcc att 960 Ile Leu Ser Leu Leu Phe Ala Gly His Glu Thr Ser Ser Val Ala Ile 305 310 315 320 gct ctc gct atc ttc ttc ttg caa gct tgc cct aaa gcc gtt gaa gag 1008 Ala Leu Ala Ile Phe Phe Leu Gln Ala Cys Pro Lys Ala Val Glu Glu 325 330 335 ctt agg gaa gag cat ctt gag atc gcg agg gcc aag aag gaa cta gga 1056 Leu Arg Glu Glu His Leu Glu Ile Ala Arg Ala Lys Lys Glu Leu Gly 340 345 350 gag tca gaa tta aat tgg gat gat tac aag aaa atg gac ttt act caa 1104 Glu Ser Glu Leu Asn Trp Asp Asp Tyr Lys Lys Met Asp Phe Thr Gln 355 360 365 tgt gtt ata aat gaa act ctt cga ttg gga aat gta gtt agg ttt ttg 1152 Cys Val Ile Asn Glu Thr Leu Arg Leu Gly Asn Val Val Arg Phe Leu 370 375 380 cat cgc aaa gca ctc aaa gat gtt cgg tac aaa gga tac gat atc cct 1200 His Arg Lys Ala Leu Lys Asp Val Arg Tyr Lys Gly Tyr Asp Ile Pro 385 390 395 400 agt ggg tgg aaa gtg tta ccg gtg atc tca gcc gta cat ttg gat aat 1248 Ser Gly Trp Lys Val Leu Pro Val Ile Ser Ala Val His Leu Asp Asn 405 410 415 tct cgt tat gac caa cct aat ctc ttt aat cct tgg aga tgg caa cag 1296 Ser Arg Tyr Asp Gln Pro Asn Leu Phe Asn Pro Trp Arg Trp Gln Gln 420 425 430 caa aac aac gga gcg tca tcc tca gga agt ggt agt ttt tcg acg tgg 1344 Gln Asn Asn Gly Ala Ser Ser Ser Gly Ser Gly Ser Phe Ser Thr Trp 435 440 445 gga aac aac tac atg ccg ttt gga gga ggg cca agg cta tgt gct ggt 1392 Gly Asn Asn Tyr Met Pro Phe Gly Gly Gly Pro Arg Leu Cys Ala Gly 450 455 460 tca gag cta gcc aag tta gaa atg gca gtg ttt att cat cat cta gtt 1440 Ser Glu Leu Ala Lys Leu Glu Met Ala Val Phe Ile His His Leu Val 465 470 475 480 ctt aaa ttc aat tgg gaa tta gca gaa gat gat aaa cca ttt gct ttt 1488 Leu Lys Phe Asn Trp Glu Leu Ala Glu Asp Asp Lys Pro Phe Ala Phe 485 490 495 cct ttt gtt gat ttt cct aac ggt ttg cct att agg gtt tct cgt att 1536 Pro Phe Val Asp Phe Pro Asn Gly Leu Pro Ile Arg Val Ser Arg Ile 500 505 510 ctg t aa 1542 Leu <210> 5 <211> 513 <212> PRT <213> Arabidopsis thaliana <400> 5 Met Phe Glu Thr Glu His His Thr Leu Leu Pro Leu Leu Leu Leu Pro 1 5 10 15 Ser Leu Leu Ser Leu Leu Leu Phe Leu Ile Leu Leu Lys Arg Arg Asn 20 25 30 Arg Lys Thr Arg Phe Asn Leu Pro Pro Gly Lys Ser Gly Trp Pro Phe 35 40 45 Leu Gly Glu Thr Ile Gly Tyr Leu Lys Pro Tyr Thr Ala Thr Thr Leu 50 55 60 Gly Asp Phe Met Gln Gln His Val Ser Lys Tyr Gly Lys Ile Tyr Arg 65 70 75 80 Ser Asn Leu Phe Gly Glu Pro Thr Ile Val Ser Ala Asp Ala Gly Leu 85 90 95 Asn Arg Phe Ile Leu Gln Asn Glu Gly Arg Leu Phe Glu Cys Ser Tyr 100 105 110 Pro Arg Ser Ile Gly Gly Ile Leu Gly Lys Trp Ser Met Leu Val Leu 115 120 125 Val Gly Asp Met His Arg Asp Met Arg Ser Ile Ser Leu Asn Phe Leu 130 135 140 Ser His Ala Arg Leu Arg Thr Ile Leu Leu Lys Asp Val Glu Arg His 145 150 155 160 Thr Leu Phe Val Leu Asp Ser Trp Gln Gln Asn Ser Ile Phe Ser Ala 165 170 175 Gln Asp Glu Ala Lys Lys Phe Thr Phe Asn Leu Met Ala Lys His Ile 180 185 190 Met Ser Met Asp Pro Gly Glu Glu Glu Thr Glu Gln Leu Lys Lys Glu 195 200 205 Tyr Val Thr Phe Met Lys Gly Val Val Ser Ala Pro Leu Asn Leu Pro 210 215 220 Gly Thr Ala Tyr His Lys Ala Leu Gln Ser Arg Ala Thr Ile Leu Lys 225 230 235 240 Phe Ile Glu Arg Lys Met Glu Glu Arg Lys Leu Asp Ile Lys Glu Glu 245 250 255 Asp Gln Glu Glu Glu Glu Val Lys Thr Glu Asp Glu Ala Glu Met Ser 260 265 270 Lys Ser Asp His Val Arg Lys Gln Arg Thr Asp Asp Asp Leu Leu Gly 275 280 285 Trp Val Leu Lys His Ser Asn Leu Ser Thr Glu Gln Ile Leu Asp Leu 290 295 300 Ile Leu Ser Leu Leu Phe Ala Gly His Glu Thr Ser Ser Val Ala Ile 305 310 315 320 Ala Leu Ala Ile Phe Phe Leu Gln Ala Cys Pro Lys Ala Val Glu Glu 325 330 335 Leu Arg Glu Glu His Leu Glu Ile Ala Arg Ala Lys Lys Glu Leu Gly 340 345 350 Glu Ser Glu Leu Asn Trp Asp Asp Tyr Lys Lys Met Asp Phe Thr Gln 355 360 365 Cys Val Ile Asn Glu Thr Leu Arg Leu Gly Asn Val Val Arg Phe Leu 370 375 380 His Arg Lys Ala Leu Lys Asp Val Arg Tyr Lys Gly Tyr Asp Ile Pro 385 390 395 400 Ser Gly Trp Lys Val Leu Pro Val Ile Ser Ala Val His Leu Asp Asn 405 410 415 Ser Arg Tyr Asp Gln Pro Asn Leu Phe Asn Pro Trp Arg Trp Gln Gln 420 425 430 Gln Asn Asn Gly Ala Ser Ser Ser Gly Ser Gly Ser Phe Ser Thr Trp 435 440 445 Gly Asn Asn Tyr Met Pro Phe Gly Gly Gly Pro Arg Leu Cys Ala Gly 450 455 460 Ser Glu Leu Ala Lys Leu Glu Met Ala Val Phe Ile His His Leu Val 465 470 475 480 Leu Lys Phe Asn Trp Glu Leu Ala Glu Asp Asp Lys Pro Phe Ala Phe 485 490 495 Pro Phe Val Asp Phe Pro Asn Gly Leu Pro Ile Arg Val Ser Arg Ile 500 505 510 Leu <210> 6 <211> 361 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature <222> (1)..(361) <223> DWF4 fragment for RNAi <400> 6 gccggacatg agacttcttc tgtagccatt gctctcgcta tcttcttctt gcaagcttgc 60 cctaaagccg ttgaagagct tagggaagag catcttgaga tcgcgagggc caagaaggaa 120 ctaggagagt cagaattaaa ttgggatgat tacaagaaaa tggactttac tcaatgtgtt 180 ataaatgaaa ctcttcgatt gggaaatgta gttaggtttt tgcatcgcaa agcactcaaa 240 gatgttcggt acaaaggata cgatatccct agtgggtgga aagtgttacc ggtgatctca 300 gccgtacatt tggataattc tcgttatgac caacctaatc tctttaatcc ttggagatgg 360 c 361 <210> 7 <211> 1086 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1083) <223> SMT2 (GenBank accession no. NM_101884) <400> 7 atg gac tct tta aca ctc ttc ttc acc ggt gca ctc gtc gcc gtc ggt 48 Met Asp Ser Leu Thr Leu Phe Phe Thr Gly Ala Leu Val Ala Val Gly 1 5 10 15 atc tac tgg ttc ctc tgc gtt ctc ggt cca gca gag cgt aaa ggc aaa 96 Ile Tyr Trp Phe Leu Cys Val Leu Gly Pro Ala Glu Arg Lys Gly Lys 20 25 30 cga gcc gta gat ctc tct ggt ggc tca atc tcc gcc gag aaa gtc caa 144 Arg Ala Val Asp Leu Ser Gly Gly Ser Ile Ser Ala Glu Lys Val Gln 35 40 45 gac aac tac aaa cag tac tgg tct ttc ttc cgc cgt cca aaa gaa atc 192 Asp Asn Tyr Lys Gln Tyr Trp Ser Phe Phe Arg Arg Pro Lys Glu Ile 50 55 60 gaa acc gcc gag aaa gtt cca gac ttc gtc gac aca ttc tac aat ctc 240 Glu Thr Ala Glu Lys Val Pro Asp Phe Val Asp Thr Phe Tyr Asn Leu 65 70 75 80 gtc acc gac ata tac gag tgg gga tgg gga caa tcc ttc cac ttc tca 288 Val Thr Asp Ile Tyr Glu Trp Gly Trp Gly Gln Ser Phe His Phe Ser 85 90 95 cca tca atc ccc gga aaa tct cac aaa gac gcc acg cgc ctc cac gaa 336 Pro Ser Ile Pro Gly Lys Ser His Lys Asp Ala Thr Arg Leu His Glu 100 105 110 gag atg gcc gta gat ctg atc caa gtc aaa cct ggt caa aag atc cta 384 Glu Met Ala Val Asp Leu Ile Gln Val Lys Pro Gly Gln Lys Ile Leu 115 120 125 gac gtc gga tgc ggt gtc ggc ggt ccg atg cga gcg att gca tct cac 432 Asp Val Gly Cys Gly Val Gly Gly Pro Met Arg Ala Ile Ala Ser His 130 135 140 tcg cga gct aac gta gtc ggg att aca ata aac gag tat cag gtg aac 480 Ser Arg Ala Asn Val Val Gly Ile Thr Ile Asn Glu Tyr Gln Val Asn 145 150 155 160 aga gct cgt ctc cac aat aag aaa gct ggt ctc gac gcg ctt tgc gag 528 Arg Ala Arg Leu His Asn Lys Lys Ala Gly Leu Asp Ala Leu Cys Glu 165 170 175 gtc gtg tgt ggt aac ttc ctc cag atg ccg ttc gat gac aac agt ttc 576 Val Val Cys Gly Asn Phe Leu Gln Met Pro Phe Asp Asp Asn Ser Phe 180 185 190 gac ggt gct tat tcc atc gaa gcc acg tgt cac gcg ccg aag ctg gaa 624 Asp Gly Ala Tyr Ser Ile Glu Ala Thr Cys His Ala Pro Lys Leu Glu 195 200 205 gaa gtg tac gca gag atc tac agg gtg ttg aaa ccc gga tct atg tat 672 Glu Val Tyr Ala Glu Ile Tyr Arg Val Leu Lys Pro Gly Ser Met Tyr 210 215 220 gtg tcg tac gag tgg gtt acg acg gag aaa ttt aag gcg gag gat gac 720 Val Ser Tyr Glu Trp Val Thr Thr Glu Lys Phe Lys Ala Glu Asp Asp 225 230 235 240 gaa cac gtg gag gta atc caa ggg att gag aga ggc gat gcg tta cca 768 Glu His Val Glu Val Ile Gln Gly Ile Glu Arg Gly Asp Ala Leu Pro 245 250 255 ggg ctt agg gct tac gtg gat ata gct gag acg gct aaa aag gtt ggg 816 Gly Leu Arg Ala Tyr Val Asp Ile Ala Glu Thr Ala Lys Lys Val Gly 260 265 270 ttt gag ata gtg aag gag aag gat ctg gcg agt cca ccg gct gag ccg 864 Phe Glu Ile Val Lys Glu Lys Asp Leu Ala Ser Pro Pro Ala Glu Pro 275 280 285 tgg tgg act agg ctt aag atg ggt agg ctt gct tat tgg agg aat cac 912 Trp Trp Thr Arg Leu Lys Met Gly Arg Leu Ala Tyr Trp Arg Asn His 290 295 300 att gtg gtt cag att ttg tca gcg gtt gga gtt gct cct aaa gga act 960 Ile Val Val Gln Ile Leu Ser Ala Val Gly Val Ala Pro Lys Gly Thr 305 310 315 320 gtt gat gtt cat gag atg ttg ttt aag act gct gat tat ttg acc aga 1008 Val Asp Val His Glu Met Leu Phe Lys Thr Ala Asp Tyr Leu Thr Arg 325 330 335 gga ggt gaa acc gga ata ttc tct ccg atg cat atg att ctc tgc aga 1056 Gly Gly Glu Thr Gly Ile Phe Ser Pro Met His Met Ile Leu Cys Arg 340 345 350 aaa ccg gag tca ccg gag gag agt tct tga 1086 Lys Pro Glu Ser Pro Glu Glu Ser Ser 355 360 <210> 8 <211> 361 <212> PRT <213> Arabidopsis thaliana <400> 8 Met Asp Ser Leu Thr Leu Phe Phe Thr Gly Ala Leu Val Ala Val Gly 1 5 10 15 Ile Tyr Trp Phe Leu Cys Val Leu Gly Pro Ala Glu Arg Lys Gly Lys 20 25 30 Arg Ala Val Asp Leu Ser Gly Gly Ser Ile Ser Ala Glu Lys Val Gln 35 40 45 Asp Asn Tyr Lys Gln Tyr Trp Ser Phe Phe Arg Arg Pro Lys Glu Ile 50 55 60 Glu Thr Ala Glu Lys Val Pro Asp Phe Val Asp Thr Phe Tyr Asn Leu 65 70 75 80 Val Thr Asp Ile Tyr Glu Trp Gly Trp Gly Gln Ser Phe His Phe Ser 85 90 95 Pro Ser Ile Pro Gly Lys Ser His Lys Asp Ala Thr Arg Leu His Glu 100 105 110 Glu Met Ala Val Asp Leu Ile Gln Val Lys Pro Gly Gln Lys Ile Leu 115 120 125 Asp Val Gly Cys Gly Val Gly Gly Pro Met Arg Ala Ile Ala Ser His 130 135 140 Ser Arg Ala Asn Val Val Gly Ile Thr Ile Asn Glu Tyr Gln Val Asn 145 150 155 160 Arg Ala Arg Leu His Asn Lys Lys Ala Gly Leu Asp Ala Leu Cys Glu 165 170 175 Val Val Cys Gly Asn Phe Leu Gln Met Pro Phe Asp Asp Asn Ser Phe 180 185 190 Asp Gly Ala Tyr Ser Ile Glu Ala Thr Cys His Ala Pro Lys Leu Glu 195 200 205 Glu Val Tyr Ala Glu Ile Tyr Arg Val Leu Lys Pro Gly Ser Met Tyr 210 215 220 Val Ser Tyr Glu Trp Val Thr Thr Glu Lys Phe Lys Ala Glu Asp Asp 225 230 235 240 Glu His Val Glu Val Ile Gln Gly Ile Glu Arg Gly Asp Ala Leu Pro 245 250 255 Gly Leu Arg Ala Tyr Val Asp Ile Ala Glu Thr Ala Lys Lys Val Gly 260 265 270 Phe Glu Ile Val Lys Glu Lys Asp Leu Ala Ser Pro Pro Ala Glu Pro 275 280 285 Trp Trp Thr Arg Leu Lys Met Gly Arg Leu Ala Tyr Trp Arg Asn His 290 295 300 Ile Val Val Gln Ile Leu Ser Ala Val Gly Val Ala Pro Lys Gly Thr 305 310 315 320 Val Asp Val His Glu Met Leu Phe Lys Thr Ala Asp Tyr Leu Thr Arg 325 330 335 Gly Gly Glu Thr Gly Ile Phe Ser Pro Met His Met Ile Leu Cys Arg 340 345 350 Lys Pro Glu Ser Pro Glu Glu Ser Ser 355 360 <210> 9 <211> 288 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature <222> (1)..(288) <223> SMT2 fragment for RNAi <400> 9 ctagacgtcg gatgcggtgt cggcggtccg atgcgagcga ttgcatctca ctcgcgagct 60 aacgtagtcg ggattacaat aaacgagtat caggtgaaca gagctcgtct ccacaataag 120 aaagctggtc tcgacgcgct ttgcgaggtc gtgtgtggta acttcctcca gatgccgttc 180 gatgacaaca gtttcgacgg tgcttattcc atcgaagcca cgtgtcacgc gccgaagctg 240 gaagaagtgt acgcagagat ctacagggtg ttgaaacccg gatctatg 288 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> DET2 sense primer <400> 10 atggaagaaa tcgccgataa aac 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> DET2 anti-sense primer <400> 11 tcagtacaca aaaggaataa cag 23 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> DWF4 sense primer <400> 12 atgttcgaaa cagagcatc 19 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DWF4 anti-sense primer <400> 13 ttacagaata cgagaaaccc 20 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SMT2 sense primer <400> 14 atggactctt taacactctt c 21 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SMT2 anti-sense primer <400> 15 tcaagaactc tcctccggtg 20 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DET2 RNAi <400> 16 aagctttcat ttaccctctt cg 22 <210> 17 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DET2 RNAi <400> 17 gtcgacgaac ttggcaatgt ac 22 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DWF4 RNAi <400> 18 gtcgacgccg gacatgagac ttc 23 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DWF4 RNAi <400> 19 ggtaccgcca tctccaagga ttaa 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sense primer for SMT2 RNAi <400> 20 ggtaccctag acgtcggatg cggt 24 <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for SMT2 RNAi <400> 21 gaattccata gatccgggtt tcaa 24 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DET2:DWF4:SMT2 <400> 22 tctagaggcg cgcctcattt accctcttcg c 31 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DET2:DWF4:SMT2 <400> 23 ggatccattt aaatcataga tccgggtttc aa 32 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (DET2) <400> 24 atggaagaaa tcgccgataa aacc 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (DET2) <400> 25 acacaaaagg aataacagct ttac 24 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (DWF4) <400> 26 atgttcgaaa cagagcatca tac 23 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (DWF4) <400> 27 gaatacgaga aaccctaata ggc 23 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (SMT2) <400> 28 atggactctt taacactctt c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (SMT2) <400> 29 agaactctcc tccggtgact c 21 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (CYP85A1) <400> 30 gctcgcttct gtctctca 18 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (CYP85A1) <400> 31 tcatcccctc ctatttcc 18 <210> 32 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> sense primer for 18s rRNA <400> 32 ggatgggtcg gccggtc 17 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for 18s rRNA <400> 33 caggctgagg tctcgttc 18 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (DET2) <400> 34 tttggagagg cgattgagtg 20 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T4 qRT-PCR (DET2) <400> 35 ctcttccttg aacttggcaa tg 22 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (DWF4) <400> 36 cagaggatga agcagagatg ag 22 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for T4 qRT-PCR (DWF4) <400> 37 tgagatcgag aatttgctcc g 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (SMT2) <400> 38 ccaaaagaaa tcgaaaccgc c 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for T4 qRT-PCR (SMT2) <400> 39 gcgtctttgt gagattttcc g 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (CYP85A1) <400> 40 acagagcaga aaacagagtg ag 22 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for qRT-PCR (CYP85A1) <400> 41 gaaggagagc ggaacagag 19 <110> University-Industry Cooperation Group of Kyung Hee University <120> Transformed plants having increased campesterol contents <130> P10-019-KHU <160> 41 <170> Kopatentin 1.71 <210> 1 <211> 789 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (222) (1) .. (786) <223> DET2 (Genbank accession no.U53860) <400> 1 atg gaa gaa atc gcc gat aaa acc ttc ttc cga tac tgt ctc ctc act 48 Met Glu Glu Ile Ala Asp Lys Thr Phe Phe Arg Tyr Cys Leu Leu Thr   1 5 10 15 ctt att ttc gcc ggc cca cca acc gcc gtc ctt ctg aaa ttc ctc caa 96 Leu Ile Phe Ala Gly Pro Pro Thr Ala Val Leu Leu Lys Phe Leu Gln              20 25 30 gct cct tac ggt aaa cac aac cgt acc gga tgg ggt ccc acc gta tct 144 Ala Pro Tyr Gly Lys His Asn Arg Thr Gly Trp Gly Pro Thr Val Ser          35 40 45 cca ccg att gct tgg ttc gtc atg gag agc cca acc ttg tgg ctc act 192 Pro Pro Ile Ala Trp Phe Val Met Glu Ser Pro Thr Leu Trp Leu Thr      50 55 60 ctc ctc ctc ttc ccc ttt ggt cgt cac gct ctc aac cct aaa tct cta 240 Leu Leu Leu Phe Pro Phe Gly Arg His Ala Leu Asn Pro Lys Ser Leu  65 70 75 80 ctt cta ttc tct cct tat ctc att cat tac ttc cac cgc acc atc att 288 Leu Leu Phe Ser Pro Tyr Leu Ile His Tyr Phe His Arg Thr Ile Ile                  85 90 95 tac cct ctt cgc ctc ttc cgc agc tcc ttc ccc gcc ggt aaa aac gga 336 Tyr Pro Leu Arg Leu Phe Arg Ser Ser Phe Pro Ala Gly Lys Asn Gly             100 105 110 ttt ccg atc acc atc gcc gcc ttg gct ttc acc ttt aat ctc ctc aat 384 Phe Pro Ile Thr Ile Ala Ala Leu Ala Phe Thr Phe Asn Leu Leu Asn         115 120 125 ggt tat atc cag gcg agg tgg gtt tcg cat tac aag gat gac tac gaa 432 Gly Tyr Ile Gln Ala Arg Trp Val Ser His Tyr Lys Asp Asp Tyr Glu     130 135 140 gac gga aac tgg ttc tgg tgg cgg ttt gtt atc ggt atg gtg gtt ttc 480 Asp Gly Asn Trp Phe Trp Trp Arg Phe Val Ile Gly Met Val Val Phe 145 150 155 160 ata acc ggc atg tat ata aat atc acg tcg gac cgc act ttg gta cga 528 Ile Thr Gly Met Tyr Ile Asn Ile Thr Ser Asp Arg Thr Leu Val Arg                 165 170 175 ttg aag aaa gag aac cgg gga ggt tat gtg ata ccg aga gga ggc tgg 576 Leu Lys Lys Glu Asn Arg Gly Gly Tyr Val Ile Pro Arg Gly Gly Trp             180 185 190 ttc gag ttg gta agc cgt ccg aat tat ttt gga gag gcg att gag tgg 624 Phe Glu Leu Val Ser Arg Pro Asn Tyr Phe Gly Glu Ala Ile Glu Trp         195 200 205 ttg ggc tgg gct gtt atg act tgg tct tgg gcc ggt att gga ttt ttt 672 Leu Gly Trp Ala Val Met Thr Trp Ser Trp Ala Gly Ile Gly Phe Phe     210 215 220 ctg tac acg tgt tcc aat ttg ttt ccg cgt gca cgt gcg agt cac aag 720 Leu Tyr Thr Cys Ser Asn Leu Phe Pro Arg Ala Arg Ala Ser His Lys 225 230 235 240 tgg tac att gcc aag ttc aag gaa gag tat ccc aag act cgt aaa gct 768 Trp Tyr Ile Ala Lys Phe Lys Glu Glu Tyr Pro Lys Thr Arg Lys Ala                 245 250 255 gtt att cct ttt gtg tac tga 789 Val Ile Pro Phe Val Tyr             260 <210> 2 <211> 262 <212> PRT <213> Arabidopsis thaliana <400> 2 Met Glu Glu Ile Ala Asp Lys Thr Phe Phe Arg Tyr Cys Leu Leu Thr   1 5 10 15 Leu Ile Phe Ala Gly Pro Pro Thr Ala Val Leu Leu Lys Phe Leu Gln              20 25 30 Ala Pro Tyr Gly Lys His Asn Arg Thr Gly Trp Gly Pro Thr Val Ser          35 40 45 Pro Pro Ile Ala Trp Phe Val Met Glu Ser Pro Thr Leu Trp Leu Thr      50 55 60 Leu Leu Leu Phe Pro Phe Gly Arg His Ala Leu Asn Pro Lys Ser Leu  65 70 75 80 Leu Leu Phe Ser Pro Tyr Leu Ile His Tyr Phe His Arg Thr Ile Ile                  85 90 95 Tyr Pro Leu Arg Leu Phe Arg Ser Ser Phe Pro Ala Gly Lys Asn Gly             100 105 110 Phe Pro Ile Thr Ile Ala Ala Leu Ala Phe Thr Phe Asn Leu Leu Asn         115 120 125 Gly Tyr Ile Gln Ala Arg Trp Val Ser His Tyr Lys Asp Asp Tyr Glu     130 135 140 Asp Gly Asn Trp Phe Trp Trp Arg Phe Val Ile Gly Met Val Val Phe 145 150 155 160 Ile Thr Gly Met Tyr Ile Asn Ile Thr Ser Asp Arg Thr Leu Val Arg                 165 170 175 Leu Lys Lys Glu Asn Arg Gly Gly Tyr Val Ile Pro Arg Gly Gly Trp             180 185 190 Phe Glu Leu Val Ser Arg Pro Asn Tyr Phe Gly Glu Ala Ile Glu Trp         195 200 205 Leu Gly Trp Ala Val Met Thr Trp Ser Trp Ala Gly Ile Gly Phe Phe     210 215 220 Leu Tyr Thr Cys Ser Asn Leu Phe Pro Arg Ala Arg Ala Ser His Lys 225 230 235 240 Trp Tyr Ile Ala Lys Phe Lys Glu Glu Tyr Pro Lys Thr Arg Lys Ala                 245 250 255 Val Ile Pro Phe Val Tyr             260 <210> 3 <211> 455 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature (222) (1) .. (455) <223> DET2 fragment for RNAi <400> 3 tcatttaccc tcttcgcctc ttccgcagct ccttccccgc cggtaaaaac ggatttccga 60 tcaccatcgc cgccttggct ttcaccttta atctcctcaa tggttatatc caggcgaggt 120 gggtttcgca ttacaaggat gactacgaag acggaaactg gttctggtgg cggtttgtta 180 tcggtatggt ggttttcata accggcatgt atataaatat cacgtcggac cgcactttgg 240 tacgattgaa gaaagagaac cggggaggtt atgtgatacc gagaggaggc tggttcgagt 300 tggtaagccg tccgaattat tttggagagg cgattgagtg gttgggctgg gctgttatga 360 cttggtcttg ggccggtatt ggattttttc tgtacacgtg ttccaatttg tttccgcgtg 420 cacgtgcgag tcacaagtgg tacattgcca agttc 455 <210> 4 <211> 1542 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (222) (1) .. (1539) <223> DWF4 (GenBank accession no.NM_114926) <400> 4 atg ttc gaa aca gag cat cat act ctc tta cct ctt ctt ctt ctc cca 48 Met Phe Glu Thr Glu His His Thr Leu Leu Pro Leu Leu Leu Leu Pro   1 5 10 15 tcg ctt ttg tct ctt ctt ctc ttc ttg att ctc ttg aag aga aga aat 96 Ser Leu Leu Ser Leu Leu Leu Phe Leu Ile Leu Leu Lys Arg Arg Asn              20 25 30 aga aaa acc aga ttc aat cta cct ccg ggt aaa tcc ggt tgg cca ttt 144 Arg Lys Thr Arg Phe Asn Leu Pro Pro Gly Lys Ser Gly Trp Pro Phe          35 40 45 ctt ggt gaa acc atc ggt tat ctt aaa ccg tac acc gcc aca aca ctc 192 Leu Gly Glu Thr Ile Gly Tyr Leu Lys Pro Tyr Thr Ala Thr Thr Leu      50 55 60 ggt gac ttc atg caa caa cat gtc tcc aag tat ggt aag ata tat aga 240 Gly Asp Phe Met Gln Gln His Val Ser Lys Tyr Gly Lys Ile Tyr Arg  65 70 75 80 tcg aac ttg ttt gga gaa cca acg atc gta tca gct gat gct gga ctt 288 Ser Asn Leu Phe Gly Glu Pro Thr Ile Val Ser Ala Asp Ala Gly Leu                  85 90 95 aat aga ttc ata tta caa aac gaa gga agg ctc ttt gaa tgt agt tat 336 Asn Arg Phe Ile Leu Gln Asn Glu Gly Arg Leu Phe Glu Cys Ser Tyr             100 105 110 cct aga agt ata ggt ggg att ctt ggg aaa tgg tcg atg ctt gtt ctt 384 Pro Arg Ser Ile Gly Gly Ile Leu Gly Lys Trp Ser Met Leu Val Leu         115 120 125 gtt ggt gac atg cat aga gat atg aga agt atc tcg ctt aac ttc tta 432 Val Gly Asp Met His Arg Asp Met Arg Ser Ile Ser Leu Asn Phe Leu     130 135 140 agt cac gca cgt ctt aga act att cta ctt aaa gat gtt gag aga cat 480 Ser His Ala Arg Leu Arg Thr Ile Leu Leu Lys Asp Val Glu Arg His 145 150 155 160 act ttg ttt gtt ctt gat tct tgg caa caa aac tct att ttc tct gct 528 Thr Leu Phe Val Leu Asp Ser Trp Gln Gln Asn Ser Ile Phe Ser Ala                 165 170 175 caa gac gag gcc aaa aag ttt acg ttt aat cta atg gcg aag cat ata 576 Gln Asp Glu Ala Lys Lys Phe Thr Phe Asn Leu Met Ala Lys His Ile             180 185 190 atg agt atg gat cct gga gaa gaa gaa aca gag caa tta aag aaa gag 624 Met Ser Met Asp Pro Gly Glu Glu Glu Thr Glu Gln Leu Lys Lys Glu         195 200 205 tat gta act ttc atg aaa gga gtt gtc tct gct cct cta aat cta cca 672 Tyr Val Thr Phe Met Lys Gly Val Val Ser Ala Pro Leu Asn Leu Pro     210 215 220 gga act gct tat cat aaa gct ctt cag tca cga gca acg ata ttg aag 720 Gly Thr Ala Tyr His Lys Ala Leu Gln Ser Arg Ala Thr Ile Leu Lys 225 230 235 240 ttc att gag agg aaa atg gaa gag aga aaa ttg gat atc aag gaa gaa 768 Phe Ile Glu Arg Lys Met Glu Glu Arg Lys Leu Asp Ile Lys Glu Glu                 245 250 255 gat caa gaa gaa gaa gaa gtg aaa aca gag gat gaa gca gag atg agt 816 Asp Gln Glu Glu Glu Glu Val Lys Thr Glu Asp Glu Ala Glu Met Ser             260 265 270 aag agt gat cat gtt agg aaa caa aga aca gac gat gat ctt ttg gga 864 Lys Ser Asp His Val Arg Lys Gln Arg Thr Asp Asp Asp Leu Leu Gly         275 280 285 tgg gtt ttg aaa cat tcg aat tta tcg acg gag caa att ctc gat ctc 912 Trp Val Leu Lys His Ser Asn Leu Ser Thr Glu Gln Ile Leu Asp Leu     290 295 300 att ctt agt ttg tta ttt gcc gga cat gag act tct tct gta gcc att 960 Ile Leu Ser Leu Leu Phe Ala Gly His Glu Thr Ser Ser Val Ala Ile 305 310 315 320 gct ctc gct atc ttc ttc ttg caa gct tgc cct aaa gcc gtt gaa gag 1008 Ala Leu Ala Ile Phe Phe Leu Gln Ala Cys Pro Lys Ala Val Glu Glu                 325 330 335 ctt agg gaa gag cat ctt gag atc gcg agg gcc aag aag gaa cta gga 1056 Leu Arg Glu Glu His Leu Glu Ile Ala Arg Ala Lys Lys Glu Leu Gly             340 345 350 gag tca gaa tta aat tgg gat gat tac aag aaa atg gac ttt act caa 1104 Glu Ser Glu Leu Asn Trp Asp Asp Tyr Lys Lys Met Asp Phe Thr Gln         355 360 365 tgt gtt ata aat gaa act ctt cga ttg gga aat gta gtt agg ttt ttg 1152 Cys Val Ile Asn Glu Thr Leu Arg Leu Gly Asn Val Val Arg Phe Leu     370 375 380 cat cgc aaa gca ctc aaa gat gtt cgg tac aaa gga tac gat atc cct 1200 His Arg Lys Ala Leu Lys Asp Val Arg Tyr Lys Gly Tyr Asp Ile Pro 385 390 395 400 agt ggg tgg aaa gtg tta ccg gtg atc tca gcc gta cat ttg gat aat 1248 Ser Gly Trp Lys Val Leu Pro Val Ile Ser Ala Val His Leu Asp Asn                 405 410 415 tct cgt tat gac caa cct aat ctc ttt aat cct tgg aga tgg caa cag 1296 Ser Arg Tyr Asp Gln Pro Asn Leu Phe Asn Pro Trp Arg Trp Gln Gln             420 425 430 caa aac aac gga gcg tca tcc tca gga agt ggt agt ttt tcg acg tgg 1344 Gln Asn Asn Gly Ala Ser Ser Ser Gly Ser Gly Ser Phe Ser Thr Trp         435 440 445 gga aac aac tac atg ccg ttt gga gga ggg cca agg cta tgt gct ggt 1392 Gly Asn Asn Tyr Met Pro Phe Gly Gly Gly Pro Arg Leu Cys Ala Gly     450 455 460 tca gag cta gcc aag tta gaa atg gca gtg ttt att cat cat cta gtt 1440 Ser Glu Leu Ala Lys Leu Glu Met Ala Val Phe Ile His His Leu Val 465 470 475 480 ctt aaa ttc aat tgg gaa tta gca gaa gat gat aaa cca ttt gct ttt 1488 Leu Lys Phe Asn Trp Glu Leu Ala Glu Asp Asp Lys Pro Phe Ala Phe                 485 490 495 cct ttt gtt gat ttt cct aac ggt ttg cct att agg gtt tct cgt att 1536 Pro Phe Val Asp Phe Pro Asn Gly Leu Pro Ile Arg Val Ser Arg Ile             500 505 510 ctg t aa 1542 Leu <210> 5 <211> 513 <212> PRT <213> Arabidopsis thaliana <400> 5 Met Phe Glu Thr Glu His His Thr Leu Leu Pro Leu Leu Leu Leu Pro   1 5 10 15 Ser Leu Leu Ser Leu Leu Leu Phe Leu Ile Leu Leu Lys Arg Arg Asn              20 25 30 Arg Lys Thr Arg Phe Asn Leu Pro Pro Gly Lys Ser Gly Trp Pro Phe          35 40 45 Leu Gly Glu Thr Ile Gly Tyr Leu Lys Pro Tyr Thr Ala Thr Thr Leu      50 55 60 Gly Asp Phe Met Gln Gln His Val Ser Lys Tyr Gly Lys Ile Tyr Arg  65 70 75 80 Ser Asn Leu Phe Gly Glu Pro Thr Ile Val Ser Ala Asp Ala Gly Leu                  85 90 95 Asn Arg Phe Ile Leu Gln Asn Glu Gly Arg Leu Phe Glu Cys Ser Tyr             100 105 110 Pro Arg Ser Ile Gly Gly Ile Leu Gly Lys Trp Ser Met Leu Val Leu         115 120 125 Val Gly Asp Met His Arg Asp Met Arg Ser Ile Ser Leu Asn Phe Leu     130 135 140 Ser His Ala Arg Leu Arg Thr Ile Leu Leu Lys Asp Val Glu Arg His 145 150 155 160 Thr Leu Phe Val Leu Asp Ser Trp Gln Gln Asn Ser Ile Phe Ser Ala                 165 170 175 Gln Asp Glu Ala Lys Lys Phe Thr Phe Asn Leu Met Ala Lys His Ile             180 185 190 Met Ser Met Asp Pro Gly Glu Glu Glu Thr Glu Gln Leu Lys Lys Glu         195 200 205 Tyr Val Thr Phe Met Lys Gly Val Val Ser Ala Pro Leu Asn Leu Pro     210 215 220 Gly Thr Ala Tyr His Lys Ala Leu Gln Ser Arg Ala Thr Ile Leu Lys 225 230 235 240 Phe Ile Glu Arg Lys Met Glu Glu Arg Lys Leu Asp Ile Lys Glu Glu                 245 250 255 Asp Gln Glu Glu Glu Glu Val Lys Thr Glu Asp Glu Ala Glu Met Ser             260 265 270 Lys Ser Asp His Val Arg Lys Gln Arg Thr Asp Asp Asp Leu Leu Gly         275 280 285 Trp Val Leu Lys His Ser Asn Leu Ser Thr Glu Gln Ile Leu Asp Leu     290 295 300 Ile Leu Ser Leu Leu Phe Ala Gly His Glu Thr Ser Ser Val Ala Ile 305 310 315 320 Ala Leu Ala Ile Phe Phe Leu Gln Ala Cys Pro Lys Ala Val Glu Glu                 325 330 335 Leu Arg Glu Glu His Leu Glu Ile Ala Arg Ala Lys Lys Glu Leu Gly             340 345 350 Glu Ser Glu Leu Asn Trp Asp Asp Tyr Lys Lys Met Asp Phe Thr Gln         355 360 365 Cys Val Ile Asn Glu Thr Leu Arg Leu Gly Asn Val Val Arg Phe Leu     370 375 380 His Arg Lys Ala Leu Lys Asp Val Arg Tyr Lys Gly Tyr Asp Ile Pro 385 390 395 400 Ser Gly Trp Lys Val Leu Pro Val Ile Ser Ala Val His Leu Asp Asn                 405 410 415 Ser Arg Tyr Asp Gln Pro Asn Leu Phe Asn Pro Trp Arg Trp Gln Gln             420 425 430 Gln Asn Asn Gly Ala Ser Ser Ser Gly Ser Gly Ser Phe Ser Thr Trp         435 440 445 Gly Asn Asn Tyr Met Pro Phe Gly Gly Gly Pro Arg Leu Cys Ala Gly     450 455 460 Ser Glu Leu Ala Lys Leu Glu Met Ala Val Phe Ile His His Leu Val 465 470 475 480 Leu Lys Phe Asn Trp Glu Leu Ala Glu Asp Asp Lys Pro Phe Ala Phe                 485 490 495 Pro Phe Val Asp Phe Pro Asn Gly Leu Pro Ile Arg Val Ser Arg Ile             500 505 510 Leu     <210> 6 <211> 361 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature (222) (1) .. (361) <223> DWF4 fragment for RNAi <400> 6 gccggacatg agacttcttc tgtagccatt gctctcgcta tcttcttctt gcaagcttgc 60 cctaaagccg ttgaagagct tagggaagag catcttgaga tcgcgagggc caagaaggaa 120 ctaggagagt cagaattaaa ttgggatgat tacaagaaaa tggactttac tcaatgtgtt 180 ataaatgaaa ctcttcgatt gggaaatgta gttaggtttt tgcatcgcaa agcactcaaa 240 gatgttcggt acaaaggata cgatatccct agtgggtgga aagtgttacc ggtgatctca 300 gccgtacatt tggataattc tcgttatgac caacctaatc tctttaatcc ttggagatgg 360 c 361 <210> 7 <211> 1086 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (222) (1) .. (1083) <223> SMT2 (GenBank accession no.NM_101884) <400> 7 atg gac tct tta aca ctc ttc ttc acc ggt gca ctc gtc gcc gtc ggt 48 Met Asp Ser Leu Thr Leu Phe Phe Thr Gly Ala Leu Val Ala Val Gly   1 5 10 15 atc tac tgg ttc ctc tgc gtt ctc ggt cca gca gag cgt aaa ggc aaa 96 Ile Tyr Trp Phe Leu Cys Val Leu Gly Pro Ala Glu Arg Lys Gly Lys              20 25 30 cga gcc gta gat ctc tct ggt ggc tca atc tcc gcc gag aaa gtc caa 144 Arg Ala Val Asp Leu Ser Gly Gly Ser Ile Ser Ala Glu Lys Val Gln          35 40 45 gac aac tac aaa cag tac tgg tct ttc ttc cgc cgt cca aaa gaa atc 192 Asp Asn Tyr Lys Gln Tyr Trp Ser Phe Phe Arg Arg Pro Lys Glu Ile      50 55 60 gaa acc gcc gag aaa gtt cca gac ttc gtc gac aca ttc tac aat ctc 240 Glu Thr Ala Glu Lys Val Pro Asp Phe Val Asp Thr Phe Tyr Asn Leu  65 70 75 80 gtc acc gac ata tac gag tgg gga tgg gga caa tcc ttc cac ttc tca 288 Val Thr Asp Ile Tyr Glu Trp Gly Trp Gly Gln Ser Phe His Phe Ser                  85 90 95 cca tca atc ccc gga aaa tct cac aaa gac gcc acg cgc ctc cac gaa 336 Pro Ser Ile Pro Gly Lys Ser His Lys Asp Ala Thr Arg Leu His Glu             100 105 110 gag atg gcc gta gat ctg atc caa gtc aaa cct ggt caa aag atc cta 384 Glu Met Ala Val Asp Leu Ile Gln Val Lys Pro Gly Gln Lys Ile Leu         115 120 125 gac gtc gga tgc ggt gtc ggc ggt ccg atg cga gcg att gca tct cac 432 Asp Val Gly Cys Gly Val Gly Gly Pro Met Arg Ala Ile Ala Ser His     130 135 140 tcg cga gct aac gta gtc ggg att aca ata aac gag tat cag gtg aac 480 Ser Arg Ala Asn Val Val Gly Ile Thr Ile Asn Glu Tyr Gln Val Asn 145 150 155 160 aga gct cgt ctc cac aat aag aaa gct ggt ctc gac gcg ctt tgc gag 528 Arg Ala Arg Leu His Asn Lys Lys Ala Gly Leu Asp Ala Leu Cys Glu                 165 170 175 gtc gtg tgt ggt aac ttc ctc cag atg ccg ttc gat gac aac agt ttc 576 Val Val Cys Gly Asn Phe Leu Gln Met Pro Phe Asp Asp Asn Ser Phe             180 185 190 gac ggt gct tat tcc atc gaa gcc acg tgt cac gcg ccg aag ctg gaa 624 Asp Gly Ala Tyr Ser Ile Glu Ala Thr Cys His Ala Pro Lys Leu Glu         195 200 205 gaa gtg tac gca gag atc tac agg gtg ttg aaa ccc gga tct atg tat 672 Glu Val Tyr Ala Glu Ile Tyr Arg Val Leu Lys Pro Gly Ser Met Tyr     210 215 220 gtg tcg tac gag tgg gtt acg acg gag aaa ttt aag gcg gag gat gac 720 Val Ser Tyr Glu Trp Val Thr Thr Glu Lys Phe Lys Ala Glu Asp Asp 225 230 235 240 gaa cac gtg gag gta atc caa ggg att gag aga ggc gat gcg tta cca 768 Glu His Val Glu Val Ile Gln Gly Ile Glu Arg Gly Asp Ala Leu Pro                 245 250 255 ggg ctt agg gct tac gtg gat ata gct gag acg gct aaa aag gtt ggg 816 Gly Leu Arg Ala Tyr Val Asp Ile Ala Glu Thr Ala Lys Lys Val Gly             260 265 270 ttt gag ata gtg aag gag aag gat ctg gcg agt cca ccg gct gag ccg 864 Phe Glu Ile Val Lys Glu Lys Asp Leu Ala Ser Pro Pro Ala Glu Pro         275 280 285 tgg tgg act agg ctt aag atg ggt agg ctt gct tat tgg agg aat cac 912 Trp Trp Thr Arg Leu Lys Met Gly Arg Leu Ala Tyr Trp Arg Asn His     290 295 300 att gtg gtt cag att ttg tca gcg gtt gga gtt gct cct aaa gga act 960 Ile Val Val Gln Ile Leu Ser Ala Val Gly Val Ala Pro Lys Gly Thr 305 310 315 320 gtt gat gtt cat gag atg ttg ttt aag act gct gat tat ttg acc aga 1008 Val Asp Val His Glu Met Leu Phe Lys Thr Ala Asp Tyr Leu Thr Arg                 325 330 335 gga ggt gaa acc gga ata ttc tct ccg atg cat atg att ctc tgc aga 1056 Gly Gly Glu Thr Gly Ile Phe Ser Pro Met His Met Ile Leu Cys Arg             340 345 350 aaa ccg gag tca ccg gag gag agt tct tga 1086 Lys Pro Glu Ser Pro Glu Glu Ser Ser         355 360 <210> 8 <211> 361 <212> PRT <213> Arabidopsis thaliana <400> 8 Met Asp Ser Leu Thr Leu Phe Phe Thr Gly Ala Leu Val Ala Val Gly   1 5 10 15 Ile Tyr Trp Phe Leu Cys Val Leu Gly Pro Ala Glu Arg Lys Gly Lys              20 25 30 Arg Ala Val Asp Leu Ser Gly Gly Ser Ile Ser Ala Glu Lys Val Gln          35 40 45 Asp Asn Tyr Lys Gln Tyr Trp Ser Phe Phe Arg Arg Pro Lys Glu Ile      50 55 60 Glu Thr Ala Glu Lys Val Pro Asp Phe Val Asp Thr Phe Tyr Asn Leu  65 70 75 80 Val Thr Asp Ile Tyr Glu Trp Gly Trp Gly Gln Ser Phe His Phe Ser                  85 90 95 Pro Ser Ile Pro Gly Lys Ser His Lys Asp Ala Thr Arg Leu His Glu             100 105 110 Glu Met Ala Val Asp Leu Ile Gln Val Lys Pro Gly Gln Lys Ile Leu         115 120 125 Asp Val Gly Cys Gly Val Gly Gly Pro Met Arg Ala Ile Ala Ser His     130 135 140 Ser Arg Ala Asn Val Val Gly Ile Thr Ile Asn Glu Tyr Gln Val Asn 145 150 155 160 Arg Ala Arg Leu His Asn Lys Lys Ala Gly Leu Asp Ala Leu Cys Glu                 165 170 175 Val Val Cys Gly Asn Phe Leu Gln Met Pro Phe Asp Asp Asn Ser Phe             180 185 190 Asp Gly Ala Tyr Ser Ile Glu Ala Thr Cys His Ala Pro Lys Leu Glu         195 200 205 Glu Val Tyr Ala Glu Ile Tyr Arg Val Leu Lys Pro Gly Ser Met Tyr     210 215 220 Val Ser Tyr Glu Trp Val Thr Thr Glu Lys Phe Lys Ala Glu Asp Asp 225 230 235 240 Glu His Val Glu Val Ile Gln Gly Ile Glu Arg Gly Asp Ala Leu Pro                 245 250 255 Gly Leu Arg Ala Tyr Val Asp Ile Ala Glu Thr Ala Lys Lys Val Gly             260 265 270 Phe Glu Ile Val Lys Glu Lys Asp Leu Ala Ser Pro Pro Ala Glu Pro         275 280 285 Trp Trp Thr Arg Leu Lys Met Gly Arg Leu Ala Tyr Trp Arg Asn His     290 295 300 Ile Val Val Gln Ile Leu Ser Ala Val Gly Val Ala Pro Lys Gly Thr 305 310 315 320 Val Asp Val His Glu Met Leu Phe Lys Thr Ala Asp Tyr Leu Thr Arg                 325 330 335 Gly Gly Glu Thr Gly Ile Phe Ser Pro Met His Met Ile Leu Cys Arg             340 345 350 Lys Pro Glu Ser Pro Glu Glu Ser Ser         355 360 <210> 9 <211> 288 <212> DNA <213> Arabidopsis thaliana <220> <221> misc_feature (222) (1) .. (288) <223> SMT2 fragment for RNAi <400> 9 ctagacgtcg gatgcggtgt cggcggtccg atgcgagcga ttgcatctca ctcgcgagct 60 aacgtagtcg ggattacaat aaacgagtat caggtgaaca gagctcgtct ccacaataag 120 aaagctggtc tcgacgcgct ttgcgaggtc gtgtgtggta acttcctcca gatgccgttc 180 gatgacaaca gtttcgacgg tgcttattcc atcgaagcca cgtgtcacgc gccgaagctg 240 gaagaagtgt acgcagagat ctacagggtg ttgaaacccg gatctatg 288 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> DET2 sense primer <400> 10 atggaagaaa tcgccgataa aac 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> DET2 anti-sense primer <400> 11 tcagtacaca aaaggaataa cag 23 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> DWF4 sense primer <400> 12 atgttcgaaa cagagcatc 19 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DWF4 anti-sense primer <400> 13 ttacagaata cgagaaaccc 20 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SMT2 sense primer <400> 14 atggactctt taacactctt c 21 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SMT2 anti-sense primer <400> 15 tcaagaactc tcctccggtg 20 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DET2 RNAi <400> 16 aagctttcat ttaccctctt cg 22 <210> 17 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DET2 RNAi <400> 17 gtcgacgaac ttggcaatgt ac 22 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DWF4 RNAi <400> 18 gtcgacgccg gacatgagac ttc 23 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DWF4 RNAi <400> 19 ggtaccgcca tctccaagga ttaa 24 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sense primer for SMT2 RNAi <400> 20 ggtaccctag acgtcggatg cggt 24 <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for SMT2 RNAi <400> 21 gaattccata gatccgggtt tcaa 24 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sense primer for DET2: DWF4: SMT2 <400> 22 tctagaggcg cgcctcattt accctcttcg c 31 <210> 23 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for DET2: DWF4: SMT2 <400> 23 ggatccattt aaatcataga tccgggtttc aa 32 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (DET2) <400> 24 atggaagaaa tcgccgataa aacc 24 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (DET2) <400> 25 acacaaaagg aataacagct ttac 24 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (DWF4) <400> 26 atgttcgaaa cagagcatca tac 23 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (DWF4) <400> 27 gaatacgaga aaccctaata ggc 23 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (SMT2) <400> 28 atggactctt taacactctt c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (SMT2) <400> 29 agaactctcc tccggtgact c 21 <210> 30 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T3 qRT-PCR (CYP85A1) <400> 30 gctcgcttct gtctctca 18 <210> 31 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T3 qRT-PCR (CYP85A1) <400> 31 tcatcccctc ctatttcc 18 <210> 32 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> sense primer for 18s rRNA <400> 32 ggatgggtcg gccggtc 17 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for 18s rRNA <400> 33 caggctgagg tctcgttc 18 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (DET2) <400> 34 tttggagagg cgattgagtg 20 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> anti-sense primer for T4 qRT-PCR (DET2) <400> 35 ctcttccttg aacttggcaa tg 22 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (DWF4) <400> 36 cagaggatga agcagagatg ag 22 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for T4 qRT-PCR (DWF4) <400> 37 tgagatcgag aatttgctcc g 21 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (SMT2) <400> 38 ccaaaagaaa tcgaaaccgc c 21 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for T4 qRT-PCR (SMT2) <400> 39 gcgtctttgt gagattttcc g 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sense primer for T4 qRT-PCR (CYP85A1) <400> 40 acagagcaga aaacagagtg ag 22 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> anti sense primer for qRT-PCR (CYP85A1) <400> 41 gaaggagagc ggaacagag 19

Claims (10)

2개의 T-DNA 보더 사이에 제초제 저항성 선택마커, 프로모터, 스페이서 및 터미네이터를 포함하고,
서로 이웃하여 연결된 De-Etilolated 2(det2) 유전자의 RNA 간섭을 위한 센스 염기서열, dwarf 4(dwf4) 유전자의 RNA 간섭을 위한 센스 염기서열 및 sterol methyltransferase 2(smt2) 유전자의 RNA 간섭을 위한 센스 염기서열과, 서로 이웃하여 연결된 이들 각각의 안티센스 염기서열이 스페이서를 사이에 두고 서로 역방향이 되도록 배치되고, 프로모터와 작동가능하게 연결된,
식물 발현용 RNA 간섭 재조합 벡터.
A herbicide resistant selection marker, a promoter, a spacer and a terminator between two T-DNA borders,
Sense bases for RNA interference of De-Etilolated 2 (det2) genes linked to each other, sense bases for RNA interference of dwarf 4 (dwf4) gene, and sense bases for RNA interference of sterol methyltransferase 2 (smt2) gene The sequences and their respective antisense sequences linked adjacent to each other are arranged in reverse order with spacers interposed therebetween, and operably linked with a promoter,
RNA interference recombinant vector for plant expression.
제1항에 있어서, De-Etilolated 2(det2) 유전자의 RNA 간섭을 위한 센스 염기서열은 서열번호 3의 염기서열의 DNA 이고, dwarf 4(dwf4) 유전자의 RNA 간섭을 위한 센스 염기서열은 서열번호 6의 염기서열의 DNA 이고, sterol methyltransferase 2(smt2) 유전자의 RNA 간섭을 위한 센스 염기서열은 서열번호 9의 염기서열의 DNA 이고, 이들 각각의 안티센스 염기서열은 상기 센스 염기서열 각각에 대해 상보적인 서열의 DNA인 식물 발현용 RNA 간섭 재조합 벡터. According to claim 1, wherein the sense base for RNA interference of the De-Etilolated 2 (det2) gene is DNA of the nucleotide sequence of SEQ ID NO: 3, the sense base sequence for RNA interference of the dwarf 4 (dwf4) gene is SEQ ID NO: DNA of the nucleotide sequence of 6, the sense sequence for RNA interference of the sterol methyltransferase 2 (smt2) gene is DNA of the nucleotide sequence of SEQ ID NO: 9, each of these antisense sequences are complementary to each of the sense sequences RNA interference recombinant vector for plant expression which is DNA of sequence. 제2항에 있어서, RNA 간섭 재조합 벡터는 도 1A에 기재된 pFGC5941-De-Etilolated 2(det2):dwarf 4(dwf4):sterol methyltransferase 2(smt2) 벡터인 식물 발현용 RNA 간섭 재조합 벡터.The RNA interference recombinant vector for plant expression according to claim 2, wherein the RNA interference recombinant vector is a pFGC5941- De-Etilolated 2 (det2): dwarf 4 (dwf4): sterol methyltransferase 2 (smt2) vector described in FIG. 1A. 제1항 내지 제3항 중 어느 한 항에 기재된 벡터로 형질전환된 미생물.A microorganism transformed with the vector according to any one of claims 1 to 3. 제4항에 있어서, 미생물은 아그로박테리움 투메파시엔스인 형질전환된 미생물.The transformed microorganism of claim 4, wherein the microorganism is Agrobacterium tumefaciens. 제1항 내지 제3항 중 어느 한 항의 벡터로 형질 전환된 애기장대.Arabidopsis transformed with the vector of any one of claims 1 to 3. 제6항에 있어서, 애기장대는 야생형과 비교하여 캄페스테롤의 함량이 증가 된 형질 전환된 애기장대.7. The transformed Arabidopsis larvae of claim 6, wherein the Arabidopsis oleracea contains an increased amount of camphorsterol compared to the wild type. 제6항의 형질 전환된 애기장대로부터 추출하는 것을 특징으로 하는 캄페스테롤의 제조방법.Method for producing camphorsterol, characterized in that extracted from the transformed Arabidopsis of claim 6. 제1항 내지 제3항 중 어느 한 항에 기재된 벡터로 형질전환하는 것을 포함하는, 애기장대 내 캄페스테롤 함량을 증가시키는 방법.A method for increasing camphorsterol content in Arabidopsis, comprising transforming with a vector according to any one of claims 1 to 3. 제6항에 기재된 형질 전환된 애기장대로부터 추출된 것을 특징으로 하는 캄페스테롤을 함유하는 애기장대 추출물.A Arabidopsis extract containing camphorsterol, which is extracted from the transformed Arabidopsis recited in claim 6.
KR1020100044181A 2010-05-11 2010-05-11 Transformed Plants having increased campesterol contents KR101251723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100044181A KR101251723B1 (en) 2010-05-11 2010-05-11 Transformed Plants having increased campesterol contents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100044181A KR101251723B1 (en) 2010-05-11 2010-05-11 Transformed Plants having increased campesterol contents

Publications (2)

Publication Number Publication Date
KR20110124668A KR20110124668A (en) 2011-11-17
KR101251723B1 true KR101251723B1 (en) 2013-04-05

Family

ID=45394375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100044181A KR101251723B1 (en) 2010-05-11 2010-05-11 Transformed Plants having increased campesterol contents

Country Status (1)

Country Link
KR (1) KR101251723B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609923B1 (en) 2014-05-30 2016-04-06 경희대학교 산학협력단 Transgenic dwarf plants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095039A (en) 2003-09-24 2005-04-14 Japan Atom Energy Res Inst Gene modifying shapes of petal and calyx
WO2005033305A1 (en) 2003-09-17 2005-04-14 Kyoto University PROCESS FOR PRODUCING INTERMEDIATE OF USEFUL ALKALOID BIOSYNTHESIS ACCORDING TO RNAi METHOD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033305A1 (en) 2003-09-17 2005-04-14 Kyoto University PROCESS FOR PRODUCING INTERMEDIATE OF USEFUL ALKALOID BIOSYNTHESIS ACCORDING TO RNAi METHOD
JP2005095039A (en) 2003-09-24 2005-04-14 Japan Atom Energy Res Inst Gene modifying shapes of petal and calyx

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609923B1 (en) 2014-05-30 2016-04-06 경희대학교 산학협력단 Transgenic dwarf plants

Also Published As

Publication number Publication date
KR20110124668A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
EP0904290B1 (en) Nucleic acid encoding gai gene of arabidopsis thaliana
CN101970668A (en) Plants with modified starch metabolism
AU2018220084A1 (en) Method for plant improvement
EA031178B1 (en) Resistance genes
JPH08508412A (en) Plants with modified response to ethylene
Karesch et al. Direct gene transfer to protoplasts of Arabidopsis thaliana
KR101465692B1 (en) Method for producing transgenic plant with regulated anthocyanin biosynthesis using AtbHLH113 gene and the plant thereof
JP2005130770A (en) Potato increased in starch level obtained per plant body and method for creating the same
EP3689895B1 (en) Modulation of seed vigor
CN112280786B (en) Herbicide-tolerant corn even HH2823 transformation event with high nutrient utilization efficiency and specificity identification method and application thereof
JP5186076B2 (en) Engineering plant senescence using the myb gene promoter and cytokinin biosynthesis genes
US9029635B2 (en) Method for increasing sucrose yield in agricultural production of sugar beet and sugar cane
WO2019201059A1 (en) Gene for regulating anti-aluminum toxicity transcription factor stop1 protein and application thereof
KR101251723B1 (en) Transformed Plants having increased campesterol contents
EP0967278A2 (en) Flowering regulating gene and its use
US6977297B1 (en) Methods and means for modification of glucosinolates in plants
WO2013163668A1 (en) Papaver bracteatum with modified alkaloid content
AU720590B2 (en) Novel plant steroid 5alpha reductase, DET2
US20050188435A1 (en) Method of increasing the GGT activity in plants, plants with increased GGT activity, and a method of producing such plants
CN102268415B (en) Protein CYP724A related with plant growth, gene encoding same and application of gene
WO2008083598A1 (en) Transgenic crop being selectively killed, preparation and utilization thereof
CN112830959B (en) Paraquat degradation protein and coding gene and application thereof
CN114805510B (en) Gene for regulating and controlling aluminum-toxicity-resistant transcription factor STOP-1 protein and application thereof
JP2005229823A (en) Plant whose dormant period is shortened, and method for creating the same
KR101262451B1 (en) Transformed Dwarf Plants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160317

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee