KR101241917B1 - A method and a base station for transmitting reference signals, and a method and a user equipment for receiving reference signals - Google Patents

A method and a base station for transmitting reference signals, and a method and a user equipment for receiving reference signals Download PDF

Info

Publication number
KR101241917B1
KR101241917B1 KR1020110011806A KR20110011806A KR101241917B1 KR 101241917 B1 KR101241917 B1 KR 101241917B1 KR 1020110011806 A KR1020110011806 A KR 1020110011806A KR 20110011806 A KR20110011806 A KR 20110011806A KR 101241917 B1 KR101241917 B1 KR 101241917B1
Authority
KR
South Korea
Prior art keywords
cdm group
drs
multiplexed
cdm
rss
Prior art date
Application number
KR1020110011806A
Other languages
Korean (ko)
Other versions
KR20110104424A (en
Inventor
이문일
정재훈
한승희
노민석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP11001911.4A priority Critical patent/EP2369775B1/en
Priority to PL11001911T priority patent/PL2369775T3/en
Priority to TR2019/07819T priority patent/TR201907819T4/en
Priority to JP2011054829A priority patent/JP5178866B2/en
Priority to CN201110069542.0A priority patent/CN102195923B/en
Priority to US13/049,847 priority patent/US9019904B2/en
Publication of KR20110104424A publication Critical patent/KR20110104424A/en
Application granted granted Critical
Publication of KR101241917B1 publication Critical patent/KR101241917B1/en
Priority to US14/672,421 priority patent/US9288005B2/en
Priority to US15/018,741 priority patent/US9559799B2/en
Priority to US15/389,985 priority patent/US9967046B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

본 발명은 OFDM 심볼들 사이의 전력 균형화를 제공하도록 참조신호를 소정 개수의 CDM 그룹에 다중화하는 방법 및 장치에 관한 것이다. 본 발명에 따른 무선 통신 시스템에서, 참조신호의 다중화에 사용되는 직교 시퀀스는, 일 CDM 그룹의 부반송파에 할당된 직교 시퀀스의 순서가, 상기 부반송파에 인접한 다른 CDM 그룹의 부반송파에 할당된 직교 시퀀스의 순서와 소정 오프셋을 갖도록, 할당한다.The present invention relates to a method and apparatus for multiplexing a reference signal into a predetermined number of CDM groups to provide power balancing between OFDM symbols. In the wireless communication system according to the present invention, the orthogonal sequence used for the multiplexing of the reference signal is a sequence of orthogonal sequences assigned to subcarriers of another CDM group adjacent to the subcarriers in the order of the orthogonal sequences assigned to the subcarriers of one CDM group. And so as to have a predetermined offset.

Description

하향링크 참조신호 전송방법 및 기지국과, 하향링크 참조신호 수신방법 및 사용자기기{A METHOD AND A BASE STATION FOR TRANSMITTING REFERENCE SIGNALS, AND A METHOD AND A USER EQUIPMENT FOR RECEIVING REFERENCE SIGNALS}Method for transmitting downlink reference signal and base station, method for receiving downlink reference signal, and user equipment {A METHOD AND A BASE STATION FOR TRANSMITTING REFERENCE SIGNALS

본 발명은 무선 통신 시스템에 관한 것으로서, 특히 데이터 복조를 위한 참조신호를 전송하는 방법 및 장치와, 데이터 복조를 위한 참조신호를 수신하는 방법 및 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting a reference signal for data demodulation, and a method and apparatus for receiving a reference signal for data demodulation.

최근에는 무선통신 시스템의 성능과 통신용량을 극대화하기 위하여 다중입출력(Multiple Input Multiple Output, MIMO) 시스템이 주목 받고 있다. MIMO 기술은 하나의 송신 안테나와 하나의 수신 안테나를 사용했던 것에서 탈피하여, 다중 송신 안테나와 다중 수신 안테나를 채택해 송수신 데이터 전송 효율을 향상시킬 수 있는 방법이다. MIMO 시스템을 다중안테나(multiple antenna) 시스템이라고도 한다. MIMO 기술은 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고 여러 안테나에서 수신된 단편적인 데이터 조각을 한데 모아 완성하는 기술을 응용한 것이다. 그 결과, 특정 범위에서 데이터 전송 속도를 향상시키거나 특정 데이터 전송 속도에 대해 시스템 범위를 증가시킬 수 있다.Recently, multiple input multiple output (MIMO) systems have attracted attention in order to maximize performance and communication capacity of wireless communication systems. The MIMO technique is a method of improving transmission / reception data transmission efficiency by employing multiple transmit antennas and multiple receive antennas by avoiding the use of one transmit antenna and one receive antenna. A MIMO system is also referred to as a multiple antenna system. MIMO technology is an application of a technique of gathering and completing fragmented pieces of data received from multiple antennas without relying on a single antenna path to receive one entire message. As a result, it is possible to improve the data transmission speed in a specific range or increase the system range for a specific data transmission speed.

MIMO 기술에는 송신 다이버시티(transmit diversity), 공간 다중화(spatial multiplexing) 및 빔형성(beamforming) 등이 있다. 송신 다이버시티는 다중 송신 안테나에서 동일한 데이터를 전송하여 전송 신뢰도를 높이는 기술이다. 공간 다중화는 다중 송신 안테나에서 서로 다른 데이터를 동시에 전송하여 시스템의 대역폭을 증가시키지 않고 고속의 데이터를 전송할 수 있는 기술이다. 빔 형성은 다중 안테나에서 채널 상태에 따른 가중치를 가하여 신호의 SINR(Signal to Interference plus Noise Ratio)을 증가시키기 위해 사용된다. 이때, 가중치는 가중치 벡터(weight vector) 또는 가중치 행렬(weight matrix)로 표시될 수 있고, 이를 프리코딩 벡터(precoding vector) 또는 프리코딩 행렬(precoding matrix)이라 한다. MIMO techniques include transmit diversity, spatial multiplexing, and beamforming. Transmit diversity is a technique for increasing transmission reliability by transmitting the same data in multiple transmit antennas. Spatial multiplexing is a technology that allows high-speed data transmission without increasing the bandwidth of the system by simultaneously transmitting different data from multiple transmit antennas. Beamforming is used to increase the signal to interference plus noise ratio (SINR) of a signal by applying weights according to channel conditions in multiple antennas. In this case, the weight may be expressed by a weight vector or a weight matrix, which is referred to as a precoding vector or a precoding matrix.

공간 다중화는 단일 사용자에 대한 공간 다중화와 다중 사용자에 대한 공간 다중화가 있다. 공간 다중화는 단일사용자 MIMO(Single User MIMO)라고도 하며, 다중 사용자에 대한 공간 다중화는 SDMA(Spatial Division Multiple Access) 혹은 다중사용자 MIMO(Multi User MIMO)로 불린다. Spatial multiplexing is spatial multiplexing for a single user and spatial multiplexing for multiple users. Spatial multiplexing is also referred to as single user MIMO, and spatial multiplexing for multiple users is called spatial division multiple access (SDMA) or multi-user MIMO.

한편, 기지국은 하나 또는 그 이상의 사용자를 위해 다수의 레이어(layer)를 함께 전송할 수 있다. 기지국은 상기 다수의 레이어를 함께 전송하기 위해 소정 주파수/시간 영역에 다중화하고, 상기 소정 주파수/시간 영역에서 상기 다수의 레이어를 하나 이상의 사용자기기에 함께 전송한다. 일반적으로 기지국이 하향링크 전송에 이용가능한 최대 전송 전력은 상기 기지국에 의해 지원되는 주파수 대역폭, 상기 기지국의 데이터 처리량(throughput), 상기 기지국의 전력 효율 등에 의해 결정된다. 상기 기지국이 사용가능한 총 전송 전력이 소정 값으로 제한되어 있으므로, 상기 기지국은 일 OFDM 심볼 구간에서 부반송파 당 전송 전력을 효율적으로 할당할 것이 요구된다. Meanwhile, the base station may transmit a plurality of layers together for one or more users. The base station multiplexes the multiple layers in a predetermined frequency / time domain to transmit the multiple layers together, and transmits the multiple layers together to one or more user equipments in the predetermined frequency / time domain. In general, the maximum transmit power available to the base station for downlink transmission is determined by the frequency bandwidth supported by the base station, the data throughput of the base station, the power efficiency of the base station, and the like. Since the total transmit power available to the base station is limited to a predetermined value, the base station is required to efficiently allocate the transmit power per subcarrier in one OFDM symbol period.

사용자기기가 소정 시간/주파수 영역에 할당된 데이터를 복조(demodulate)할 수 있기 위해서, 상기 사용자기기는 상기 기지국으로부터 전송된 참조신호(reference signal, RS)을 이용하여, 상기 데이터의 전송에 사용된 물리 안테나의 구성 및 채널품질 등을 추정하는 채널추정(channel estimate)을 수행한다. 채널추정 방법 및 참조신호에 대하여 간략히 설명하면 다음과 같다. 동기 신호를 검출하기 위해서 수신기는 무선 채널의 정보(감쇄, 위상 편이 또는 시간지연 등)를 알아야 한다. 이때 채널추정은 반송파의 크기 및 기준 위상을 추정하는 것을 말한다. 무선채널환경은 시간과 주파수 영역 상에서 채널 상태가 시간적으로 불규칙하게 변하게 되는 페이딩 특성을 갖는다. 이러한 채널에 대해 진폭과 위상을 추정하는 것을 채널추정이라고 한다. 즉, 채널추정은 무선구간 또는 무선채널의 주파수 응답을 추정하는 것이다. 채널추정 방법으로는, 2차원 채널 추정기를 사용하여 몇 개 기지국의 참조신호를 바탕으로 기준값을 추정하는 방법이 있다. 이때, 기준신호란 반송파 위상 동기화 및 기지국 정보 획득 등에 도움이 되도록 실제 데이터를 가지지 않지만, 높은 출력을 갖는 심볼을 말한다. 송신장치 및 수신장치는 상기와 같은 참조신호를 이용하여 채널추정을 수행할 수 있다. 참조신호에 의한 채널 추정 결과를 바탕으로 수신장치는 송신장치로부터 수신한 데이터를 복원할 수 있다.In order for the user equipment to demodulate data allocated to a predetermined time / frequency region, the user equipment uses a reference signal (RS) transmitted from the base station to transmit the data. A channel estimate for estimating the configuration and channel quality of the physical antenna is performed. The channel estimation method and the reference signal will be briefly described as follows. In order to detect the synchronization signal, the receiver needs to know the information of the radio channel (such as attenuation, phase shift or time delay). In this case, channel estimation refers to estimating the size and reference phase of the carrier. The wireless channel environment has a fading characteristic in which the channel state changes irregularly in time and frequency domain. Estimating amplitude and phase for these channels is called channel estimation. That is, channel estimation estimates the frequency response of the radio section or the radio channel. As a channel estimation method, there is a method of estimating reference values based on reference signals of several base stations using a two-dimensional channel estimator. In this case, the reference signal refers to a symbol having a high output although it does not have actual data to help carrier phase synchronization and base station information acquisition. The transmitter and the receiver can perform channel estimation using the above reference signals. The receiver may restore data received from the transmitter based on the channel estimation result based on the reference signal.

수신 장치가 송신 장치가 전송한 신호를 정확하게 복조하기 위해서는, 상기 신호의 복조를 위한 참조신호가 적절히 구성될 것이 요구된다.In order for the receiving device to correctly demodulate the signal transmitted by the transmitting device, a reference signal for demodulating the signal is required to be appropriately configured.

또한, 수신 장치가 높은 정확도를 가지고 참조신호를 수신할 수 있도록 하기 위해서는, 기지국이 사용가능한 총 전송 전력 내에서 복조용 참조신호의 전송전력을 적절히 배분할 수 있도록 참조신호가 구성될 것이 요구된다.In addition, in order for the receiving apparatus to receive the reference signal with high accuracy, the reference signal is required to be configured so that the base station can appropriately distribute the transmission power of the demodulation reference signal within the total available transmission power.

또한, 기지국이 사용가능한 전력을 효율적으로 사용하기 위해서는 OFDM 심볼들 사이에 전력이 고르게 분포될 것이 요구된다.In addition, in order for the base station to efficiently use the available power, power is required to be evenly distributed among the OFDM symbols.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the precise form disclosed. It can be understood.

상기와 같은 기술적 과제를 해결하기 위한 본 발명의 양상들은 다음과 같다.Aspects of the present invention for solving the technical problem as described above are as follows.

본 발명 일 실시예에서, 참조신호의 다중화에 사용되는 직교 시퀀스는, 일 CDM 그룹의 부반송파에 할당된 직교 시퀀스의 순서가, 상기 부반송파에 인접한 다른 CDM 그룹의 부반송파에 할당된 직교 시퀀스의 순서와 소정 오프셋을 갖도록, 할당한다. In an embodiment of the present invention, an orthogonal sequence used for multiplexing a reference signal may include a sequence of orthogonal sequences assigned to subcarriers of one CDM group and an orthogonal sequence assigned to subcarriers of another CDM group adjacent to the subcarriers. Assign to have an offset.

본 발명의 또 다른 실시예에서, 레이어별 참조신호는, 레이어별로 위상 오프셋이 적용된 후 소정 무선자원에 다중화된다.In another embodiment of the present invention, the reference signal for each layer is multiplexed on a predetermined radio resource after the phase offset is applied for each layer.

본 발명의 일 양상으로, 무선 통신 시스템에서 기지국이 사용자기기에 복수의 참조신호(RS)를 전송하는 방법에 있어서, 상기 복수의 RS를 확산 직교 시퀀스들을 이용하여 확산하는 단계; 및 상기 복수의 RS를 2개의 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 전송하는 단계를 포함하되, 상기 복수의 RS 중 상기 제1 CDM 그룹에서 전송되는 RS는 제1표와 같이 정의된 확산 직교 시퀀스 중 어느 하나에 따라 확산되어 상기 제1 CDM 그룹에 속한 일 부반송파를 통해 전송되고, 상기 복수의 RS 중 상기 제2 CDM 그룹에서 전송되는 RS는 제2표와 같이 정의된 확산 직교 시퀀스들 중 어느 하나에 따라 확산되어 상기 제2 CDM 그룹에 속한 일 부반송파를 통해 전송되는, 참조신호 전송방법이 제공된다.In one aspect of the present invention, a method for transmitting a plurality of RSs to a user equipment by a base station in a wireless communication system, the method comprising: spreading the plurality of RSs using spreading orthogonal sequences; And transmitting the plurality of RSs through at least one of a first CDM group and a second CDM group, which are two Code Division Multiplexing (CDM) groups, wherein the first CDM is among the plurality of RSs. The RS transmitted in the group is spread according to one of the spreading orthogonal sequences defined as in the first table and transmitted through a subcarrier belonging to the first CDM group, and is transmitted in the second CDM group among the plurality of RSs. RS is spread according to any one of spreading orthogonal sequences defined as shown in the second table, and transmitted through a partial carrier belonging to the second CDM group.

본 발명의 다른 양상으로, 무선 통신 시스템에서 사용자기기가 기지국으로부터 복수의 참조신호(RS)를 수신하는 방법에 있어서, 상기 기지국으로부터 상기 복수의 RS를 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 수신하는 단계; 및 상기 복수의 RS로부터 상기 사용자기기를 위한 제1 RS를 상기 사용자기기의 RS의 확산에 사용된 제1 확산 직교 시퀀스를 이용하여 검출하는 단계를 포함하되, 상기 제1 확신 직교 시퀀스는, 상기 제1 RS가 상기 제1 CDM 그룹을 통해 수신되는 경우, 제1표와 같이 정의된 확산 직교 시퀀스 중 어느 하나이고, 상기 제1 RS가 상기 제2 CDM 그룹을 통해 수신되는 경우, 제2표와 같이 정의된 확산 직교 시퀀스 중 어느 하나인, 참조신호 수신방법이 제공된다.In another aspect of the present invention, in a method for receiving a plurality of reference signals (RS) from a base station by a user equipment in a wireless communication system, the plurality of RS from the base station (Code Division Multiplexing, CDM) group Receiving via at least one of the first CDM group and the second CDM group; And detecting a first RS for the user equipment from the plurality of RSs using a first spreading orthogonal sequence used for spreading the RS of the user equipment, wherein the first confident orthogonal sequence comprises: the first RS; When 1 RS is received through the first CDM group, it is one of spreading orthogonal sequences defined as in the first table, and when the first RS is received through the second CDM group, as shown in the second table. A reference signal receiving method, which is one of the defined spreading orthogonal sequences, is provided.

본 발명의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 사용자기기에 복수의 참조신호(RS)를 전송함에 있어서, 송신기; 및 상기 송신기를 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는, 상기 복수의 RS를 확산 직교 시퀀스들을 이용하여 확산하고 상기 복수의 RS를 2개의 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 전송하도록, 상기 송시기를 제어하되, 상기 프로세서는, 상기 복수의 RS 중 상기 제1 CDM 그룹에서 전송되는 RS는 제2표와 같이 정의된 확산 직교 시퀀스 중 어느 하나에 따라 확산하여 상기 제1 CDM 그룹에 속한 일 부반송파를 통해 전송하도록 상기 송신기를 제어하고, 상기 복수의 RS 중 상기 제2 CDM 그룹에서 전송되는 RS는 제2표와 같이 정의된 확산 직교 시퀀스들 중 어느 하나에 따라 확산하여 상기 제2 CDM 그룹에 속한 일 부반송파를 통해 전송하도록 상기 송신기를 제어하는, 기지국이 제공된다.In another aspect of the present invention, a base station transmits a plurality of reference signals (RS) to the user equipment in a wireless communication system, the transmitter; And a processor configured to control the transmitter, the processor comprising: a first spreading the plurality of RSs using spreading orthogonal sequences and the plurality of RSs as two Code Division Multiplexing (CDM) groups The transmitter is controlled to be transmitted through at least one of a CDM group and a second CDM group, and wherein the processor is further configured to transmit a spreading orthogonal number of RSs transmitted from the first CDM group among the plurality of RSs as defined in the second table. The transmitter is controlled to spread according to any one of sequences and transmit on a subcarrier belonging to the first CDM group, and RSs transmitted from the second CDM group among the plurality of RSs are spread as defined in Table 2 A base station is provided that controls the transmitter to spread according to any one of orthogonal sequences and transmit on some carriers belonging to the second CDM group.

본 발명의 또 다른 양상으로, 무선 통신 시스템에서 사용자기기가 기지국으로부터 복수의 참조신호(RS)를 수신함에 있어서, 수신기; 및 상기 수신기를 제어하도록 구성된 프로세서를 포함하되, 상기 수신기는 상기 기지국으로부터 상기 복수의 RS를 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 수신하도록 구성되고; 상기 프로세서는, 상기 복수의 RS로부터 상기 사용자기기를 위한 제1 RS를 상기 사용자기기의 RS의 확산에 사용된 제1 확산 직교 시퀀스를 이용하여 검출하도록 상기 수신기를 제어하되, 상기 제1 확신 직교 시퀀스는, 상기 제1 RS가 상기 제1 CDM 그룹을 통해 수신되는 경우, 제1표와 같이 정의된 확산 직교 시퀀스 중 어느 하나이고, 상기 제1 RS가 상기 제2 CDM 그룹을 통해 수신되는 경우, 제2표와 같이 정의된 확산 직교 시퀀스 중 어느 하나인, 사용자기기가 제공된다.In still another aspect of the present invention, in a wireless communication system, a user equipment receives a plurality of RSs from a base station, the receiver comprising: a receiver; And a processor configured to control the receiver, wherein the receiver receives the plurality of RSs from the base station through at least one of a first CDM group and a second CDM group, which are Code Division Multiplexing (CDM) groups; Configured to; The processor controls the receiver to detect a first RS for the user equipment from the plurality of RSs using a first spreading orthogonal sequence used for spreading the RS of the user equipment, wherein the first confident orthogonal sequence Is any one of the spreading orthogonal sequences defined as in the first table when the first RS is received through the first CDM group, and when the first RS is received through the second CDM group, A user equipment, which is one of the spreading orthogonal sequences defined as shown in Table 2, is provided.

본 발명의 각 양상에 있어서, 상기 제1표는In each aspect of the invention, the first table is

Figure 112011009495429-pat00001
Figure 112011009495429-pat00001

이고, 다음 제2표는And the second table

Figure 112011009495429-pat00002
.
Figure 112011009495429-pat00002
.

본 발명의 각 양상에 있어서, 상기 복수의 RS는 제3표에 따라 상기 기지국에 의해 확산되어 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나를 통해 상기 사용자기기에 전송될 수 있다. 상기 제3표는,In each aspect of the present invention, the plurality of RSs may be spread by the base station according to the third table and transmitted to the user equipment through at least one of the first CDM group and the second CDM group. The third table,

Figure 112011009495429-pat00003
Figure 112011009495429-pat00003

이며, 여기서, RS 0~RS 7은 레이어 0~레이어 7에 일대일로 대응할 수 있다.Here, RS 0 to RS 7 may correspond to layers 0 to layer 7 in a one-to-one manner.

본 발명의 각 양상에 있어서, 상기 복수의 RS는 다음과 같이 정의된 다중화 직교 시퀀스 a 및 b, c, d에 의해In each aspect of the present invention, the plurality of RSs are represented by multiplexed orthogonal sequences a and b, c, d defined as follows.

Figure 112011009495429-pat00004
,
Figure 112011009495429-pat00004
,

상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나에서 다중화되어 전송될 수 있다. RS 0 및 RS 1, RS 4, RS 6는 다음식At least one of the first CDM group and the second CDM group may be multiplexed and transmitted. RS 0 and RS 1, RS 4, RS 6 are

Figure 112011009495429-pat00005
,
Figure 112011009495429-pat00005
,

을 사용하여 상기 제1 CDM 그룹에 다중화되고, RS 2 및 RS 3, RS 5, RS 7은 다음식Multiplexed to the first CDM group by using RS 2 and RS 3, RS 5, RS 7

Figure 112011009495429-pat00006
Figure 112011009495429-pat00006

을 사용하여 상기 제2 CDM 그룹에 다중화될 수 있다.Can be multiplexed into the second CDM group using.

본 발명의 각 양상에 있어서, 상기 복수의 RS는 (a, c) 또는 (b, d)의 다중화 직교 시퀀스 쌍 중 하나에 의해 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹에 각각 속하는 인접한 2개의 부반송파에 다중화될 수 있다.In each aspect of the present invention, each of the plurality of RSs includes two adjacent groups belonging to the first CDM group and the second CDM group, respectively, by one of (a, c) or (b, d) multiplexed orthogonal sequence pairs. It can be multiplexed on subcarriers.

본 발명의 각 양상에 있어서, 레이어 p에 대한 복조용 참조신호 RS p인 r(m)은 다음 식에 따라 상기 제1 CDM 그룹 또는 상기 제2 CDM 그룹에 할당될 수 있다.In each aspect of the present invention, r (m), which is a demodulation reference signal RS p for layer p, may be allocated to the first CDM group or the second CDM group according to the following equation.

Figure 112011009495429-pat00007
. 여기서, nPRB는 물리자원블록 인덱스이며, NRB sc는 일 RB를 구성하는 부반송파의 개수이고, Nmax,DL RB는 하향링크 슬롯에 포함된 RB의 최대개수를 나타내며, p는 레이어 인덱스이며, k 및 l은 일 서브프레임 내 부반송파 인덱스 및 OFDM 심볼 인덱스이며, m'는 일 자원블락(RB)에서 RS를 포함하는 RS 부반송파의 인덱스이고, l'는 상기 일 서브프레임에서 RS를 포함하는 RS OFDM 심볼들의 인덱스이다.
Figure 112011009495429-pat00007
. Here, n PRB is a physical resource block index, N RB sc is the number of subcarriers constituting one RB, N max, DL RB represents the maximum number of RBs included in the downlink slot, p is a layer index, k and l are the subcarrier index and the OFDM symbol index in one subframe, m 'is the index of the RS subcarrier including RS in one resource block (RB), l' is RS OFDM including RS in the one subframe Index of symbols.

본 발명의 각 양상에 있어서, 상기 복수의 RS는 다음과 같은 패턴으로 상기 기지국에 의해 일 서브프레임에 다중화되어 상기 사용자기기에 전송될 수 있다In each aspect of the present invention, the plurality of RSs may be multiplexed in one subframe by the base station and transmitted to the user equipment in the following pattern.

Figure 112011009495429-pat00008
.
Figure 112011009495429-pat00008
.

상기 과제해결 수단들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above technical solutions are only a part of embodiments of the present invention, and various embodiments reflecting the technical features of the present invention are based on the detailed description of the present invention described below by those skilled in the art. Can be derived and understood.

본 발명에 의하면, 일 서브프레임 내 모든 OFDM 심볼들에 걸쳐서 전송 전력이 고르게 분포될 수 있다는 장점이 있다.According to the present invention, there is an advantage that the transmission power can be evenly distributed over all OFDM symbols in one subframe.

본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects according to the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the following description of the invention There will be.

본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국의 구성요소를 나타내는 블록도이다.
도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다.
도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 도시한 것이다.
도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다.
도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6은 DRS 전송의 개념도이다.
도 7은 LTE 시스템에서 사용되는 DRS 패턴의 예를 도시한 것이다.
도 8은 LTE-A 시스템에서 사용되는 DRS 패턴의 예를 도시한 것이다.
도 9는 2개의 레이어의 DRS들이 길이가 2인 OCC를 사용하여, 정상 CP를 갖는 서브프레임들에 다중화된 패턴을 예시한 것이다.
도 10은 4개의 레이어에 대한 DRS들이 2개의 CDM 그룹을 통해 전송되는 예를 나타낸 것이다.
도 11은 4개의 DRS들을 2개의 CDM 그룹에 다중화하는 방법을 나타낸 것이다.
도 12는 일 CDM 그룹에 2개의 DRS가 다중화되는 예를 나타낸 것이다.
도 13은 랭크-2 전송에서 OFDM 심볼들에 걸쳐 전송 전력을 고르게 분포시키는 본 발명의 실시예를 나타낸 것이다.
도 14 및 도 15는 랭크-2 전송에서 DRS RE 및 데이터 RE에 대한 전력할당 예들을 나타낸 것이다.
도 16은 안테나 포트 11~14에 대응하는 레이어들을 위한 DRS들이 2개의 CDM 그룹에 할당되는 예를 나타낸 것이다.
도 17은 8개의 DRS들을 2개의 CDM 그룹에 다중화하는 방법을 나타낸 것이다.
도 18 내지 도 22는 1개의 CDM 그룹에 길이가 4인 OCC로 DRS를 다중화하는 본 발명의 실시예들을 나타낸 것이다.
도 23 내지 도 30은 2개의 CDM 그룹에 길이가 4인 OCC로 DRS를 다중화하는 본 발명의 실시예들을 나타낸 것이다.
도 31은 2개의 CDM 그룹 간에 소정 OCC 오프셋을 갖도록 OCC를 할당하는 본 발명의 실시예에 따른 다른 예들을 나타낸 것이다.
도 32 내지 도 38은 본 발명의 실시예들에 따라, 2개의 CDM 그룹이 소정 OCC 오프셋을 갖도록 OCC가 할당될 때의 장점을 나타내기 위해 도시된 것이다.
도 39는 DRS 포트별 DRS 부반송파에 따른 위상 오프셋을 예시한 것이다.
도 40 내지 도 42는 본 발명의 실시예들에 따라, DRS 부반송파에 따라 레이어별로 위상 오프셋이 적용될 때의 장점을 나타내기 위해 도시된 것이다.
도 43은 본 발명의 실시예들에 따라, 2개의 CDM 그룹이 소정 OCC 오프셋을 갖도록 OCC가 할당되고, DRS 부반송파에 따라 레이어별로 위상 오프셋이 적용될 때의 장점을 나타내기 위해 도시된 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
1 is a block diagram illustrating components of a user equipment (UE) and a base station for carrying out the present invention.
2 illustrates an example of a structure of a transmitter in a user equipment and a base station.
3 illustrates an example of a radio frame structure used in a wireless communication system.
4 shows an example of a DL / UL slot structure in a wireless communication system.
5 shows an example of a downlink subframe structure in a wireless communication system.
6 is a conceptual diagram of DRS transmission.
7 illustrates an example of a DRS pattern used in an LTE system.
8 illustrates an example of a DRS pattern used in an LTE-A system.
FIG. 9 illustrates a pattern multiplexed into subframes having normal CPs using an OCC having a length of two DRSs of two layers.
10 shows an example in which DRSs for four layers are transmitted through two CDM groups.
11 shows a method of multiplexing four DRSs into two CDM groups.
12 shows an example in which two DRSs are multiplexed in one CDM group.
FIG. 13 illustrates an embodiment of the present invention that distributes transmit power evenly over OFDM symbols in rank-2 transmission.
14 and 15 show power allocation examples for the DRS RE and the data RE in rank-2 transmission.
16 illustrates an example in which DRSs for layers corresponding to antenna ports 11 to 14 are allocated to two CDM groups.
17 shows a method of multiplexing eight DRSs into two CDM groups.
18 to 22 illustrate embodiments of the present invention for multiplexing DRS with an OCC of length 4 in one CDM group.
23 to 30 illustrate embodiments of the present invention for multiplexing DRS with an OCC of length 4 in two CDM groups.
31 shows other examples according to an embodiment of the present invention for allocating an OCC to have a predetermined OCC offset between two CDM groups.
32 to 38 are diagrams illustrating the advantages of OCC being allocated such that two CDM groups have a predetermined OCC offset, in accordance with embodiments of the present invention.
39 illustrates a phase offset according to DRS subcarriers for each DRS port.
40 to 42 illustrate the advantages of applying a phase offset for each layer according to a DRS subcarrier according to embodiments of the present invention.
FIG. 43 is a diagram for illustrating an advantage when an OCC is allocated such that two CDM groups have a predetermined OCC offset, and a phase offset is applied for each layer according to a DRS subcarrier according to embodiments of the present invention.

이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description, together with the accompanying drawings, is intended to illustrate exemplary embodiments of the invention and is not intended to represent the only embodiments in which the invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details.

또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크에서는 OFDMA를 채택하고, 상향링크에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.In addition, the techniques, devices, and systems described below may be applied to various wireless multiple access systems. Examples of multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, a single carrier frequency division multiple access (MC-FDMA) system, and a multi-carrier frequency division multiple access (MC-FDMA) system. CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented in wireless technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE), and the like. OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like. UTRA is part of Universal Mobile Telecommunication System (UMTS), and 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of E-UMTS using E-UTRA. 3GPP LTE adopts OFDMA in downlink and SC-FDMA in uplink. LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A. However, the technical features of the present invention are not limited thereto. For example, even if the following detailed description is described based on the mobile communication system corresponding to the 3GPP LTE / LTE-A system, any other mobile communication except for those specific to 3GPP LTE / LTE-A is described. Applicable to the system as well.

몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.

본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, 기지국과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. 사용자기기는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 사용자기기 및/또는 다른 기지국과 통신하는 고정된 지점(fixed station)을 말하며, 사용자기기 및 타 기지국과 통신하여 각종 데이터 및 제어정보를 교환한다. 기지국은 eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.In the present invention, a user equipment (UE) may be fixed or mobile, and various devices which communicate with a base station to transmit and receive user data and / or various control information belong to the same. The user equipment may be a terminal equipment, a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), a wireless modem ( It may be called a wireless modem, a handheld device, or the like. In addition, in the present invention, a base station (BS) generally refers to a fixed station that communicates with a user equipment and / or another base station, and communicates with the user equipment and other base stations for various data and control information. Replace it. The base station may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point.

이하에서는, PDCCH/PCFICH/PHICH/PDSCH/DRS/CRS/DMRS/CSI-RS 자원요소(Resource Element, RE)는 각각 PDCCH/PCFICH/PHICH/PDSCH/DRS/CRS/DMRS/CSI-RS에 할당 혹은 이용가능한 RE를 의미한다. 이하에서는 특히, 참조신호가 전송되는 자원요소를 RS RE라고 칭하며, 제어정보 혹은 데이터가 전송되는 자원요소를 데이터 RE라고 칭한다. In the following description, PDCCH / PCFICH / PHICH / PDSCH / DRS / CRS / DMRS / CSI-RS Resource Element (RE) is allocated to PDCCH / PCFICH / PHICH / PDSCH / DRS / CRS / DMRS / CSI-RS, respectively. Means available RE. Hereinafter, in particular, the resource element to which the reference signal is transmitted is referred to as RS RE, and the resource element to which control information or data is transmitted is called data RE.

또한, 이하에서는 DRS/CRS/DMRS/CSI-RS가 할당된 심볼/반송파/부반송파를 DRS/CRS/DMRS/CSI-RS 심볼/반송파/부반송파라고 칭한다. 예를 들어, DRS가 할당된 심볼은 DRS 심볼이라고 칭하며, DRS가 할당된 부반송파는 DRS 부반송파라 칭한다. 또한, 사용자데이터(예를 들어, PDSCH 데이터, PDCCH 데이터 등)가 할당된 심볼을 데이터 심볼이라고 칭하며, 사용자데이터가 할당된 부반송파를 데이터 부반송파라고 칭한다.In addition, hereinafter, a symbol / carrier / subcarrier to which DRS / CRS / DMRS / CSI-RS is assigned is referred to as a DRS / CRS / DMRS / CSI-RS symbol / carrier / subcarrier. For example, a symbol to which a DRS is assigned is called a DRS symbol, and a subcarrier to which a DRS is assigned is called a DRS subcarrier. In addition, a symbol to which user data (for example, PDSCH data, PDCCH data, etc.) are allocated is called a data symbol, and a subcarrier to which user data is assigned is called a data subcarrier.

한편, 본 발명에서, 특정 신호가 프레임/서브프레임/슬롯/반송파/부반송파에 할당된다는 것은, 상기 특정 신호가 해당 프레임/서브프레임/슬롯/심볼의 기간/타이밍 동안 해당 반송파/부반송파를 통해 전송되는 것을 의미한다. Meanwhile, in the present invention, that a specific signal is allocated to a frame / subframe / slot / carrier / subcarrier means that the specific signal is transmitted through a corresponding carrier / subcarrier during a period / timing of the frame / subframe / slot / symbol. Means that.

본 발명에서 랭크 혹은 전송랭크라 함은 일 OFDM 심볼 혹은 일 데이터 RE 상에 다중화/할당된 레이어의 개수를 의미한다.In the present invention, the rank or transmission rank refers to the number of layers multiplexed / assigned on one OFDM symbol or one data RE.

이하에서는, 프레임/서브프레임/슬롯/심볼/반송파/부반송파 내 특정 신호가 전송되지 않는 경우, 상기 특정 신호의 전송이 드랍, 뮤트, 널 혹은 블랭크되었다고 표현한다. 예를 들어, 송신장치가 소정 자원요소 상에서 제로(zero) 전송 전력으로 특정 신호를 전송하는 경우, 상기 송신장치가 상기 특정 신호의 전송을 드랍, 혹은 상기 소정 자원요소을 뮤트 혹은 블랭크, 흑은 상기 소정 무선자원에서 널 신호를 전송한다고 표현될 수 있다.Hereinafter, when a specific signal in a frame / subframe / slot / symbol / carrier / subcarrier is not transmitted, it is expressed that the transmission of the specific signal is a drop, mute, null or blank. For example, when the transmitter transmits a specific signal with zero transmission power on a predetermined resource element, the transmitter drops the transmission of the specific signal, or mutes or blanks the predetermined resource element, or the predetermined signal. It can be expressed as transmitting a null signal in a radio resource.

도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국(BS)의 구성요소를 나타내는 블록도이다.1 is a block diagram illustrating components of a user equipment (UE) and a base station (BS) for carrying out the present invention.

UE는 상향링크에서는 송신장치로 동작하고 하향링크에서는 수신장치로 동작한다. 이와 반대로, 기지국은 상향링크에서는 수신장치로 동작하고, 하향링크에서는 송신장치로 동작할 수 있다.The UE operates as a transmitter in an uplink and as a receiver in a downlink. Conversely, the base station can operate as a receiving apparatus in the uplink and as a transmitting apparatus in the downlink.

UE 및 기지국은 정보 및/또는 데이터, 신호, 메시지 등을 수신할 수 있는 안테나 (500a, 500b)와, 안테나를 제어하여 메시지를 전송하는 송신기(Transmitter; 100a, 100b), 안테나를 제어하여 메시지를 수신하는 수신기(Receiver; 300a, 300b), 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(200a, 200b)를 포함한다. 또한, UE 및 기지국은 UE 또는 기지국에 포함된 송신기 및 수신기, 메모리 등의 구성요소를 제어하여 본 발명을 수행하도록 구성된 프로세서(400a, 400b)를 각각 포함한다. 상기 UE 내 송신기(100a), 수신기(300a), 메모리(200a), 프로세서(400a)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 마찬가지로, 상기 기지국 내 송신기(100b), 수신기(300b), 메모리(200b), 프로세서(400b)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 송신기와 수신기가 통합되어 사용자기기 또는 기지국 내에서 한 개의 송수신기(transceiver)로 구현될 수도 있다.The UE and the base station are antennas 500a and 500b capable of receiving information and / or data, signals, messages, and the like, transmitters 100a and 100b that control the antennas to transmit messages, and control the antennas to transmit messages. Receiving receiver (Receiver) (300a, 300b), and memory (200a, 200b) for storing a variety of information related to communication in a wireless communication system. In addition, the UE and the base station each include processors 400a and 400b configured to control components such as transmitters, receivers, and memory included in the UE or the base station to perform the present invention. The transmitter 100a, the receiver 300a, the memory 200a, and the processor 400a in the UE may be implemented as independent components by separate chips, respectively, and two or more are one chip. It may be implemented by. Similarly, the transmitter 100b, the receiver 300b, the memory 200b, and the processor 400b in the base station may be implemented as independent components by separate chips, respectively, and two or more chips may be included in one chip ( chip). The transmitter and the receiver may be integrated to be implemented as one transceiver in a user equipment or a base station.

안테나(500a, 500b)는 송신기(100a, 100b)에서 생성된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 수신기(300a, 300b)로 전달하는 기능을 수행한다. 안테나(500a, 500b)는 안테나 포트로 불리기도 한다. 각 안테나 포트는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나의 조합에 의해 구성될 수 있다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 송수신기의 경우에는 2개 이상의 안테나와 연결될 수 있다. The antennas 500a and 500b transmit a signal generated by the transmitters 100a and 100b to the outside, or receive a radio signal from the outside and transmit the signal to the receivers 300a and 300b. Antennas 500a and 500b are also called antenna ports. Each antenna port may correspond to one physical antenna or may be configured by a combination of more than one physical antenna. A transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas may be connected to two or more antennas.

프로세서(400a, 400b)는 통상적으로 UE 또는 기지국 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(400a, 400b)는 본 발명을 수행하기 위한 각종 제어 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 유휴모드 동작을 제어하기 위한 전력절약모드 기능, 핸드오버(Handover) 기능, 인증 및 암호화 기능 등을 수행할 수 있다. 프로세서(400a, 400b)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 한편, 프로세서(400a, 400b)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(400a, 400b) 내에 구비되거나 메모리(200a, 200b)에 저장되어 프로세서(400a, 400b)에 의해 구동될 수 있다.Processors 400a and 400b typically control the overall operation of various modules in a UE or base station. In particular, the processor 400a or 400b includes various control functions for performing the present invention, a medium access control (MAC) frame variable control function according to service characteristics and a propagation environment, a power saving mode function for controlling idle mode operation, and a hand. Handover, authentication and encryption functions can be performed. The processors 400a and 400b may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. Meanwhile, the processors 400a and 400b may be implemented by hardware or firmware, software, or a combination thereof. When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 400a and 400b. Meanwhile, when implementing the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention. The firmware or software may be provided in the processors 400a and 400b or may be stored in the memory 200a and 200b to be driven by the processors 400a and 400b.

송신기(100a, 100b)는 프로세서(400a, 400b) 또는 상기 프로세서와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 안테나(500a, 500b)에 전달한다. 예를 들어, 송신기(100a, 100b)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 상기 K개의 레이어는 송신기 내 송신처리기를 거쳐 송신 안테나(500a, 500b)를 통해 전송된다. UE 및 기지국의 송신기(100a, 100b) 및 수신기(300a, 300b)는 송신신호 및 수신신호를 처리하는 과정에 따라 다르게 구성될 수 있다.The transmitters 100a and 100b perform a predetermined encoding and modulation on a signal and / or data to be transmitted from the processor 400a or 400b or a scheduler connected to the processor to be transmitted to the outside, and then an antenna ( 500a, 500b). For example, the transmitters 100a and 100b convert a data stream to be transmitted into K layers through demultiplexing, channel encoding, and modulation processes. The K layers are transmitted through the transmit antennas 500a and 500b through a transmitter in the transmitter. The transmitters 100a and 100b and the receivers 300a and 300b of the UE and the base station may be configured differently according to a process of processing a transmission signal and a reception signal.

메모리(200a, 200b)는 프로세서(400a, 400b)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입출력되는 정보를 임시 저장할 수 있다. 메모리(200a, 200b)가 버퍼로서 활용될 수 있다. 메모리는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type) 또는 카드 타입의 메모리(예를 들어, SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 등을 이용하여 구현될 수 있다.The memories 200a and 200b may store a program for processing and controlling the processors 400a and 400b and may temporarily store information input and output. The memory 200a, 200b may be utilized as a buffer. The memory may be a flash memory type, a hard disk type, a multimedia card micro type or a card type memory (e.g. SD or XD memory, etc.), RAM Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic Disk, It can be implemented using an optical disk or the like.

도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다. 도 2를 참조하여 송신기(100a, 100b)의 동작을 보다 구체적으로 설명하면 다음과 같다.2 illustrates an example of a structure of a transmitter in a user equipment and a base station. The operation of the transmitters 100a and 100b will be described in more detail with reference to FIG. 2 as follows.

도 2를 참조하면, UE 또는 기지국 내 송신기(100a, 100b)는 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDM 신호생성기(306)를 포함할 수 있다.Referring to FIG. 2, the transmitters 100a and 100b in the UE or the base station may include a scrambler 301, a modulation mapper 302, a layer mapper 303, a precoder 304, a resource element mapper 305, and an OFDM / SC. -May comprise an FDM signal generator 306.

상기 송신기(100a, 100b)는 하나 이상의 코드워드(codeword)를 송신할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 상기 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터열로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록과 등가이다. MAC 계층이 제공하는 데이터 블록은 전송 블록으로 지칭되기도 한다. The transmitters 100a and 100b may transmit one or more codewords. Coded bits in each codeword are scrambled by the scrambler 301 and transmitted on a physical channel. Codewords are also referred to as data streams and are equivalent to data blocks provided by the MAC layer. The data block provided by the MAC layer may also be referred to as a transport block.

스크램블된 비트는 상기 변조맵퍼(302)에 의해 복소변조심볼(complex-valued modulation symbols)로 변조된다. 상기 변조맵퍼는 상기 스크램블된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소변조심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다. The scrambled bits are modulated into complex-valued modulation symbols by the modulation mapper 302. The modulation mapper may be arranged as a complex modulation symbol representing a position on a signal constellation by modulating the scrambled bit according to a predetermined modulation scheme. There is no restriction on a modulation scheme, and m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM) may be used to modulate the encoded data.

상기 복소변조심볼은 상기 레이어맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑된다. The complex modulation symbol is mapped to one or more transport layers by the layer mapper 303.

각 레이어 상의 복소변조심볼은 안테나 포트상에서의 전송을 위해 프리코더(304)에 의해 프리코딩된다. 구체적으로, 프리코더(304)는 상기 복소변조심볼을 다중 송신 안테나(500-1,..., 500-Nt)에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원요소맵퍼(305)로 분배한다. 즉, 전송 레이어의 안테나 포트로의 매핑은 프리코더(304)에 의해 수행된다. 프리코더(304)는 레이어맵퍼(303)의 출력 x를 Nt×Mt의 프리코딩 행렬 W와 곱해 Nt×MF의 행렬 z로 출력할 수 있다.The complex modulation symbol on each layer is precoded by the precoder 304 for transmission on the antenna port. Specifically, the precoder 304 processes the complex modulation symbol in a MIMO scheme according to the multiple transmit antennas 500-1, ..., 500-N t to output antenna specific symbols, and applies the antenna specific symbols. The resource element mapper 305 is distributed. That is, mapping of the transport layer to the antenna port is performed by the precoder 304. The precoder 304 may be output to the matrix z of the layer mapper 303, an output x N t × M t precoding matrix W is multiplied with N t × M F of the.

상기 자원요소맵퍼(305)는 각 안테나 포트에 대한 복소변조심볼을 적절한 자원요소(resource elements)에 맵핑/할당한다. 상기 자원요소맵퍼(305)는 상기 각 안테나 포트에 대한 복소변조심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다. The resource element mapper 305 maps / assigns the complex modulation symbols for each antenna port to appropriate resource elements. The resource element mapper 305 may assign a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.

OFDM/SC-FDM 신호생성기(306)는 상기 각 안테나 포트에 대한 복소변조심볼, 즉, 안테나 특정 심볼을 OFDM 또는 SC-FDM 방식으로 변조하여, 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호 또는 SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 신호를 생성한다. OFDM/SC-FDM 신호생성기(306)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)을 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 송신 안테나(500-1,...,500-Nt)를 통해 수신장치로 송신된다. OFDM/SC-FDM 신호생성기(306)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The OFDM / SC-FDM signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by an OFDM or SC-FDM scheme, thereby complex-valued time domain OFDM (Orthogonal) Generates a Frequency Division Multiplexing (SCC) symbol signal or a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol signal. The OFDM / SC-FDM signal generator 306 may perform an Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a cyclic prefix (CP) may be inserted into a time domain symbol on which the IFFT is performed. The OFDM symbol is transmitted to the receiving apparatus through each of the transmission antennas 500-1, ..., 500-N t through digital-to-analog conversion, frequency up-conversion, and the like. The OFDM / SC-FDM signal generator 306 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.

한편, 상기 송신기(100a, 100b)가 코드워드의 송신에 SC-FDM 접속(SC-FDMA) 방식을 채택하는 경우, 상기 송신기(100a, 100b)는 고속푸리에변환기(fast Fourier transformer)를 포함할 수 있다. 상기 고속 푸리에변환기는 상기 안테나 특정 심볼에 FFT(Fast Fourier Transform)를 수행하여 고속푸리에변환된 심볼을 상기 자원요소맵퍼(305)에 출력한다.Meanwhile, when the transmitters 100a and 100b adopt a SC-FDM connection (SC-FDMA) scheme for transmitting codewords, the transmitters 100a and 100b may include a fast Fourier transformer. have. The fast Fourier transform performs a fast fourier transform (FFT) on the antenna specific symbol and outputs the fast Fourier transformed symbol to the resource element mapper 305.

수신기(300a, 300b)의 신호 처리 과정은 송신기의 신호 처리 과정의 역으로 구성된다. 구체적으로, 수신기(300a, 300b)는 외부에서 안테나(500a, 500b)를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여 해당 프로세서(400a, 400b)로 전달한다. 상기 수신기(300a, 300b)에 연결된 안테나(500a, 500b)는 Nr개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 송신기(100a, 100b)가 본래 전송하고자 했던 데이터열로 복원된다. 수신기(300a, 300b)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 송신장치가 전송하고자 했던 코드워드로 복원된다. The signal processing of the receivers 300a and 300b consists of the inverse of the signal processing of the transmitter. In detail, the receivers 300a and 300b decode and demodulate the radio signals received through the antennas 500a and 500b from the outside and transmit them to the corresponding processors 400a and 400b. The antennas 500a and 500b connected to the receivers 300a and 300b may include N r multiple receive antennas, and each of the signals received through the receive antennas is restored to a baseband signal and then multiplexed and MIMO demodulated. The transmitters 100a and 100b restore the data sequence originally intended to be transmitted. The receivers 300a and 300b may include a signal restorer for restoring a received signal to a baseband signal, a multiplexer for combining and multiplexing the received processed signals, and a channel demodulator for demodulating the multiplexed signal sequence with a corresponding codeword. have. The signal restorer, the multiplexer, and the channel demodulator may be composed of one integrated module or each independent module for performing their functions. More specifically, the signal restorer is an analog-to-digital converter (ADC) for converting an analog signal into a digital signal, a CP remover for removing a CP from the digital signal, and a fast fourier transform (FFT) to the signal from which the CP is removed. FFT module for outputting a frequency domain symbol by applying a, and may include a resource element demapper (equalizer) to restore the frequency domain symbol to an antenna-specific symbol (equalizer). The antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by a transmitting device by a channel demodulator.

한편, 상기 수신기(300a, 300b)가 SC-FDMA 방식에 의해 전송된 신호를 수신하는 경우, 상기 수신기는(300a, 300b)는 IFFT 모듈을 추가로 포함한다. 상기 IFFT 모듈은 자원요소디맵퍼에 의해 복원된 안테나 특정 심볼에 IFFT를 수행하여 역고속푸리에변환된 심볼을 다중화기에 출력한다. On the other hand, when the receiver (300a, 300b) receives a signal transmitted by the SC-FDMA scheme, the receiver (300a, 300b) further includes an IFFT module. The IFFT module performs an IFFT on the antenna specific symbol reconstructed by the resource element demapper and outputs the inverse fast Fourier transformed symbol to the multiplexer.

참고로, 도 1 및 도 2에서 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 송신기(100a, 100b)에 포함되는 것으로 설명하였으나, 송신장치의 프로세서(400a, 400b)가 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)를 포함하도록 구성되는 것도 가능하다. 마찬가지로, 도 1 및 도 2에서는 신호복원기 및 다중화기, 채널복조기가 수신기(300a, 300b)에 포함되는 것으로 설명하였으나, 수신장치의 프로세서(400a, 400b)가 상기 신호복원기 및 다중화기, 채널복조기를 포함하도록 구성되는 것도 가능하다. 이하에서는 설명의 편의를 위하여, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 이들의 동작을 제어하는 프로세서(400a, 400b)와 분리된 송신기(100a, 100b)에 포함되고, 신호복원기 및 다중화기, 채널복조기가 이들의 동작을 제어하는 프로세서(400a, 400b)와는 분리된 수신기(300a, 300b)에 포함된 것으로 설명한다. 그러나, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 프로세서(400a, 400b)에 포함된 경우 및 신호복원기 및 다중화기, 채널복조기가 프로세서(400a, 400b)에 포함된 경우에도 본 발명의 실시예들이 동일하게 적용될 수 있다.For reference, in FIG. 1 and FIG. 2, the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 are provided. Although described as being included in the transmitter (100a, 100b), the processor (400a, 400b) of the transmitting device is a scrambler 301, modulation mapper 302, layer mapper 303, precoder 304, resource element mapper ( 305), it may be configured to include an OFDM / SC-FDMA signal generator 306. Similarly, in FIGS. 1 and 2, the signal restorer, the multiplexer, and the channel demodulator are included in the receivers 300a and 300b. It is also possible to be configured to include a demodulator. Hereinafter, for convenience of description, the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 may include these. Receivers included in the transmitters 100a and 100b separated from the processors 400a and 400b for controlling the operation of the processor, and signal receivers, multiplexers, and channel demodulators are separated from the processors 400a and 400b for controlling their operations. It will be described as being included in (300a, 300b). However, the scrambler 301 and the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 are provided to the processors 400a and 400b. In the case where the signal restorer, the multiplexer, and the channel demodulator are included in the processors 400a and 400b, the embodiments of the present invention may be equally applied.

도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 도시한 것이다. 특히, 도 3은 3GPP LTE/LTE-A 시스템의 무선 프레임의 구조를 예시한다. 도 3의 무선 프레임 구조는 FDD 모드와, 반(half) FDD(H-FDD) 모드와, TDD 모드에 적용될 수 있다.3 illustrates an example of a radio frame structure used in a wireless communication system. In particular, FIG. 3 illustrates the structure of a radio frame of a 3GPP LTE / LTE-A system. The radio frame structure of FIG. 3 may be applied to an FDD mode, a half FDD (H-FDD) mode, and a TDD mode.

도 3을 참조하면, 3GPP LTE/LTE-A에서 사용되는 무선프레임은 10ms(327200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다.여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048x15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링된다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. Referring to FIG. 3, a radio frame used in 3GPP LTE / LTE-A has a length of 10 ms (327200 Ts) and consists of 10 equally sized subframes. Here, T s denotes a sampling time, T s = 1 / (2048x15kHz). Each subframe is 1 ms long and consists of two slots. 20 slots in one radio frame are sequentially numbered from 0 to 19. Each slot has a length of 0.5 ms. The time for transmitting one subframe is defined as a transmission time interval (TTI).

도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 4는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다.4 shows an example of a DL / UL slot structure in a wireless communication system. In particular, FIG. 4 shows a structure of a resource grid of a 3GPP LTE / LTE-A system.

도 4를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 자원블록은 주파수 도메인에서 다수의 부반송파를 포함한다. OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정상(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 4에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다.Referring to FIG. 4, a slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. The OFDM symbol also means one symbol period. The resource block includes a plurality of subcarriers in the frequency domain. The OFDM symbol may be referred to as an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme. The number of OFDM symbols included in one slot may be variously changed according to the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, whereas one slot includes six OFDM symbols in an extended CP. In FIG. 4, for convenience of description, a subframe in which one slot includes 7 OFDM symbols is illustrated. However, embodiments of the present invention may be applied to subframes having other numbers of OFDM symbols in the same manner. For reference, a resource composed of one OFDM symbol and one subcarrier is referred to as a resource element (RE) or a tone.

도 4를 참조하면, 각 슬롯에서 전송되는 신호는 NDL / UL RBNRB sc개의 부반송파(subcarrier)와 NDL / UL symb개의 OFDM 혹은 SC-FDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 상향링크 슬롯에서의 RB의 개수를 나타낸다. NDL symb은 하향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타내며, NUL symb은 상향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.Referring to FIG. 4, a signal transmitted in each slot is represented by a resource grid composed of N DL / UL RB N RB sc subcarriers and N DL / UL symb OFDM or SC-FDM symbols. Can be. Here, N DL RB represents the number of resource blocks (RBs) in the downlink slot, and N UL RB represents the number of RBs in the uplink slot. N DL symb denotes the number of OFDM or SC-FDM symbols in the downlink slot, and N UL symb denotes the number of OFDM or SC-FDM symbols in the uplink slot. N RB sc represents the number of sub-carriers constituting one RB.

다시 말해, 물리자원블록(physical resource block, PRB)는 시간 도메인에서 NDL/UL symb개의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 PRB는 NDL / UL symb×NRB sc개의 자원요소로 구성된다. In other words, a physical resource block (PRB) is defined as N DL / UL symb consecutive OFDM symbols or SC-FDM symbols in the time domain and is defined by N RB sc consecutive subcarriers in the frequency domain. . Therefore, one PRB consists of N DL / UL symb × N RB sc resource elements.

자원격자 내 각 자원요소는 일 슬롯 내 인덱스쌍 (k,1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL / UL RBNRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL / UL symb-1까지 부여되는 인덱스이다.Each resource element in the resource grid can be uniquely defined by an index pair (k, 1) in one slot. k is an index assigned from 0 to N DL / UL RB N RB sc -1 in the frequency domain, and 1 is an index assigned from 0 to N DL / UL symb -1 in the time domain.

도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.5 shows an example of a downlink subframe structure in a wireless communication system.

도 5를 참조하면, 각 서브프레임은 제어영역(control region)과 데이터영역(data region)으로 구분될 수 있다. 제어영역은 첫번째 OFDM 심볼로부터 시작하여 하나 이상의 OFDM 심볼을 포함한다. 서브프레임 내 제어영역으로 사용되는 OFDM 심볼의 개수는 서브프레임별로 독립적으로 설정될 수 있으며, 상기 OFDM 심볼의 개수는 PCFICH(Physical Control Format Indicator CHannel)를 통해 전송된다. 기지국은 제어영역을 통해 각종 제어정보를 사용자기기(들)에 전송할 수 있다. 제어정보의 전송을 위하여, 상기 제어영역에는 PDCCH(Physical Downlink Control CHannel), PCFICH, PHICH(Physical Hybrid automatic retransmit request Indicator CHannel) 등이 할당될 수 있다.Referring to FIG. 5, each subframe may be divided into a control region and a data region. The control region includes one or more OFDM symbols starting from the first OFDM symbol. The number of OFDM symbols used as a control region in a subframe may be independently set for each subframe, and the number of OFDM symbols is transmitted through a physical control format indicator channel (PCFICH). The base station may transmit various control information to the user device (s) through the control area. In order to transmit control information, a PDCCH (physical downlink control channel), a PCFICH, a physical hybrid automatic repeat request indicator channel (PHICH), or the like may be allocated to the control region.

기지국은 데이터영역을 통해 사용자기기 혹은 사용자기기그룹를 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. 사용자기기는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. 예를 들어, PDSCH의 데이터가 어떤 사용자기기 혹은 사용자기기그룹에게 전송되는지, 상기 사용자기기 혹은 사용자기기그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다.The base station may transmit data for the user equipment or the user equipment group through the data area. Data transmitted through the data area is also referred to as user data. For transmission of user data, a PDSCH (Physical Downlink Shared CHannel) may be allocated to the data area. The user equipment may read the data transmitted through the PDSCH by decoding the control information transmitted through the PDCCH. For example, information indicating to which user equipment or group of user equipments the PDSCH data is transmitted and how the user equipment or user equipment group should receive and decode PDSCH data is included in the PDCCH and transmitted.

PDCCH는 DL-SCH(Downlink Shared Channel)의 전송포맷(transport format) 및 자원할당정보와, UL-SCH(Uplink Shared Channel)의 자원할당정보, PCH(paging channel)에 관한 페이징 정보, 상기 DL-SCH에 관한 시스템정보, PDSCH 상에서 전송된 랜덤접속응답(random access response)과 같은 상위 레이어 제어 메시지의 할당정보, 임의의 UE 그룹 내 각 UE들에 관한 Tx 전력제어명령의 모음, VoIP(voice over IP)의 활성화(activation) 정보 등을 나른다. 복수의 PDCCH가 제어영역에서 전송될 수 있다. UE는 상기 복수의 PDCCH를 모니터하여, 자신의 PDCCH를 검출할 수 있다. PDCCH는 DCI(downlink control indicator) 포맷에 따라서 제어정보의 크기와 용도가 다르며, 부호화율에 따라 크기가 달라질 수 있다. The PDCCH includes transport format and resource allocation information of a downlink shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information about a paging channel (PCH), and the DL-SCH. System information about the system, allocation information of upper layer control messages such as random access response transmitted on PDSCH, collection of Tx power control commands for each UE in a certain UE group, voice over IP (VoIP) Carry activation information and the like. A plurality of PDCCHs may be transmitted in the control domain. The UE can monitor the plurality of PDCCHs and detect its PDCCH. The PDCCH has different sizes and uses of control information according to a downlink control indicator (DCI) format, and may vary in size according to a coding rate.

DCI 포맷은 각 UE별로 독립적으로 적용되며, 일 서브프레임 안에 여러 UE의 PDCCH가 다중화될 수 있다. 각 UE의 PDCCH는 독립적으로 채널코딩되어 CRC(cyclic redundancy check)가 부가된다. CRC는 각 UE가 자신의 PDCCH를 수신할 수 있도록, 각 UE의 고유 식별자로 마스크(mask)된다. 그러나, 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 수신할 때까지 블라인드 검출(블라인드 디코딩이라고도 함)을 수행한다.The DCI format is independently applied to each UE, and PDCCHs of multiple UEs may be multiplexed in one subframe. The PDCCH of each UE is independently channel coded to add a cyclic redundancy check (CRC). The CRC is masked with a unique identifier of each UE so that each UE can receive its own PDCCH. However, since the UE basically does not know where its PDCCH is transmitted, blind detection (also called blind decoding) is performed every subframe until all PDCCHs of the corresponding DCI format have received the PDCCH having their identifiers. .

한편, 간섭 신호의 완화, BS와 UE 간의 채널상태의 추정, BS와 UE 사이에 전송된 신호의 복조 등을 위하여 다양한 참조신호가 BS와 UE간에 전송된다. 참조신호라 함은 BS로부터 UE로 혹은 UE로부터 BS로 전송하는, BS와 UE가 서로 알고 있는 기정의된, 특별한 파형의 신호를 의미한다.Meanwhile, various reference signals are transmitted between the BS and the UE for mitigation of interference signals, estimation of channel conditions between the BS and the UE, and demodulation of signals transmitted between the BS and the UE. The reference signal refers to a signal of a predefined, special waveform that the BS and the UE know from each other, transmitted from the BS to the UE or from the UE to the BS.

참조신호들은 크게 전용 참조신호(dedicated reference signal, DRS)와 공용 참조신호(common reference signal, CRS)로 분류될 수 있다. CRS 는 PDSCH 전송을 지원하는 셀 내 모든 하향링크 서브프레임에서 전송된다. CRS는 복조 목적 및 측정 목적 둘 다에 이용될 수 있는 참조신호로서 셀 내 모든 사용자기기에 의해 공유된다. CRS 시퀀스는 레이어와 관계없이 모든 안테나 포트에서 전송된다. 이에 반해 DRS는 복조 목적으로 사용되는 것이 일반적이며, 특정 UE만이 사용할 수 있다. CRS와 DRS는 각각 셀-특정 RS와 복조(demoduation) RS(DMRS)라고 불리기도 한다. 또한, DMRS는 사용자기기-특정 (UE-specific) RS라고도 불린다.The reference signals can be classified into a dedicated reference signal (DRS) and a common reference signal (CRS). The CRS is transmitted in all downlink subframes in the cell supporting PDSCH transmission. The CRS is a reference signal that can be used for both demodulation and measurement purposes and is shared by all user equipment in the cell. The CRS sequence is transmitted on all antenna ports regardless of layer. In contrast, DRS is generally used for demodulation purposes, and can be used only by a specific UE. CRS and DRS are also referred to as cell-specific RSs and demodulation RSs (DMRSs), respectively. The DMRS is also referred to as a UE-specific RS.

도 6은 DRS 전송의 개념도이다. 특히, 도 6은 프리코딩된 RS를 전송하는 송신기를 예시한 것이다.6 is a conceptual diagram of DRS transmission. In particular, FIG. 6 illustrates a transmitter for transmitting a precoded RS.

DRS는 특정 UE에서만 사용될 수 있으며, 다른 UE들은 상기 특정 UE를 위해 전송된 DRS를 사용할 수 없다. 소정 UE의 데이터 복조에 이용되는 상기 DRS는, 프리코딩된 RS(precoded RS)와 프리코딩되지 않은 RS(non-precoded RS)로 구분될 수 있다. 프리코딩된 RS가 DRS로 채택되면, 상기 DRS는 데이터 심볼의 프리코딩에 사용되는 프리코딩 행렬로 프리코딩되어, K개의 레이어(스트림(stream) 0 ~ 스트림 K-1)와 동일한 개수의 RS 시퀀스가 전송된다. 여기서, K는 물리 안테나 포트의 개수 Nt와 같거나 작다. 상기 K개의 레이어는 하나 또는 다수의 UE들에 할당될 수 있다. 다수의 UE가 상기 K개의 레이어를 공유하는 경우에는 1부터 K개의 UE가 동일 시간/주파수 자원을 사용하여 상기 K개의 레이어를 수신할 수 있다.The DRS may be used only in a specific UE, and other UEs may not use the DRS transmitted for the specific UE. The DRS used for data demodulation of a given UE may be classified into a precoded RS and a non-precoded RS. If a precoded RS is adopted as the DRS, the DRS is precoded into a precoding matrix used for precoding a data symbol, so that the same number of RS sequences as K layers (stream 0 to stream K-1) Is sent. Here, K is equal to or smaller than the number N t of physical antenna ports. The K layers may be assigned to one or multiple UEs. When a plurality of UEs share the K layers, 1 to K UEs may receive the K layers using the same time / frequency resources.

상기 UE는, 예를 들어, 데이터 신호와 함께 전송된 DRS를 바탕으로 기지정된 변조 방식에 따라 상기 수신 데이터 신호를 신호성상 상 소정 위치에 배열함으로써, 상기 수신 데이터 신호를 복조할 수 있다.The UE may demodulate the received data signal by, for example, arranging the received data signal at a predetermined position on a signal property according to a predetermined modulation scheme based on the DRS transmitted together with the data signal.

도 7은 LTE 시스템에서 사용되는 DRS 패턴의 예를 도시한 것이다. 특히, 도 7(a)는 정상 CP 서브프레임 내 DRS 패턴을 예시한 것이고, 도 7(b)는 확장 CP 서브프레임 내 DRS 패턴을 예시한 것이다. 도 7에서, 'l'은 일 슬롯 내 OFDM 심볼의 위치를 나타낸다.7 illustrates an example of a DRS pattern used in an LTE system. In particular, FIG. 7A illustrates a DRS pattern in a normal CP subframe, and FIG. 7B illustrates a DRS pattern in an extended CP subframe. In FIG. 7, 'l' indicates the position of an OFDM symbol in one slot.

일 자원블록 혹은 일 자원블록 쌍을 구성하는 자원요소들 중에서 DRS가 전송될 수 있는 자원요소들은 정해져 있는 것이 일반적이다. 이 경우, UE는 각 자원블록 혹은 각 자원블록 쌍의 자원요소들 중 미리 정해진 위치의 자원요소(들)에서 DRS를 검출하면 된다. 예를 들어, 도 7을 참조하면, BS는 안테나 포트 5를 통해 하나 이상의 자원블록쌍에서 도 7(a) 혹은 도 7(b)와 같이 할당된 DRS를 전송한다. 이하에서는, 일 자원블록 혹은 일 자원블록 쌍에서 DRS가 전송되는 자원요소들의 위치를 DRS 패턴이라고 하여 본 발명의 실시예들을 설명한다.Among the resource elements constituting one resource block or one resource block pair, resource elements to which a DRS can be transmitted are generally determined. In this case, the UE may detect the DRS in the resource element (s) at a predetermined position among the resource elements of each resource block or each resource block pair. For example, referring to FIG. 7, the BS transmits an allocated DRS as shown in FIG. 7 (a) or FIG. 7 (b) in one or more resource block pairs through the antenna port 5. Hereinafter, embodiments of the present invention will be described with reference to a position of resource elements for transmitting DRS in one resource block or one resource block pair as a DRS pattern.

한편, LTE 시스템에서는 최대 2개의 레이어를 지원하며, 상기 레이어는 상기 레이어의 복조를 위한 DRS 및 해당 UE 및 상기 레이어를 전송하는 BS 간의 채널 추정을 위한 CRS와 동시에 전송된다. CRS 기반 하향링크 전송은 모든 물리 안테나 포트 상에서 RS가 전송되어야 한다. 따라서, CRS 기반 하향링크 전송은 물리 안테나 포트의 개수가 증가함에 따라 전체적인 RS 오버헤드도 증가하여 데이터 전송효율이 떨어지는 문제점이 발생하게 된다. 이러한 문제점을 해결하기 위하여, LTE 시스템보다 더 많은 개수의 레이어 전송이 가능한 LTE-A 시스템은 물리 안테나 포트의 개수에 따라 전송 오버헤드가 증가하는 CRS 대신 DRS를 복조용 참조신호로서 활용한다. DRS 기반 하향링크 전송의 경우, 가상 안테나 포트만이 코히런트(coherent) 복조를 위한 참조신호를 필요로 한다. 즉, DRS 기반 하향링크 전송의 경우, BS의 모든 물리 안테나 포트가 아닌 가상 안테나 포트만이 해당 가상 안테나의 DRS를 전송하면 된다. 가상 안테나 포트의 개수는 물리 안테나 포트의 개수 Nt보다 작거나 같은 것이 일반적이므로, DRS 기반 하향링크 전송의 RS 전송오버헤드가 CRS 기반 하향링크 전송의 RS 오버헤드에 비해 줄어든다는 장점이 있다.Meanwhile, the LTE system supports up to two layers, and the layer is simultaneously transmitted with the DRS for demodulation of the layer and the CRS for channel estimation between the UE and the BS transmitting the layer. CRS-based downlink transmission requires RS to be transmitted on all physical antenna ports. Therefore, CRS-based downlink transmission has a problem that the overall RS overhead also increases as the number of physical antenna ports increases, resulting in a decrease in data transmission efficiency. In order to solve this problem, the LTE-A system capable of transmitting a larger number of layers than the LTE system utilizes DRS as a demodulation reference signal instead of CRS in which transmission overhead increases according to the number of physical antenna ports. In the case of DRS-based downlink transmission, only a virtual antenna port needs a reference signal for coherent demodulation. That is, in the case of DRS-based downlink transmission, only the virtual antenna port, not all physical antenna ports of the BS, needs to transmit the DRS of the corresponding virtual antenna. Since the number of virtual antenna ports is generally less than or equal to the number N t of physical antenna ports, the RS transmission overhead of DRS-based downlink transmission is reduced compared to the RS overhead of CRS-based downlink transmission.

참고로, 데이터와 동일한 프리코더를 사용한 DRS는 복조 목적으로만 사용되는 RS이므로, LTE-A에서는 UE가 채널 상태 정보를 측정할 수 있도록 하기 위한 추가적인 측정용 RS인 CSI-RS(Channel State Information RS)가 상기 UE에 전송된다. CSI-RS는 채널상태가 상대적으로 시간에 따른 변화도가 크지 않다는 사실에 기반하여, 매 서브프레임마다 전송되는 CRS와 달리, 다수의 서브프레임으로 구성되는 소정 전송 주기마다 전송된다. 이러한 CSI-RS의 전송 특징 때문에, CSI-RS 전송 오버헤드가 CRS의 전송 오버헤드보다 낮다는 장점이 있다. For reference, since the DRS using the same precoder as the data is an RS used only for demodulation purposes, in LTE-A, an additional measurement RS for allowing a UE to measure channel state information is Channel State Information RS. ) Is transmitted to the UE. The CSI-RS is transmitted every predetermined transmission period consisting of a plurality of subframes, unlike the CRS transmitted for each subframe, based on the fact that the channel state is not relatively varied with time. Because of the transmission characteristics of the CSI-RS, there is an advantage that the CSI-RS transmission overhead is lower than the transmission overhead of the CRS.

참고로, 본 발명의 DRS는 PDSCH 전송을 위해 사용되며 상기 PDSCH의 전송에 사용되는 레이어의 개수만큼 각 레이어의 복조를 위해 전송된다. 본 발명의 DRS는 해당 PDSCH가 맵핑된 자원블록(RB) 상에서만 전송된다. 또한, 본 발명의 DRS는 안테나 포트에 관계없이 다른 RS의 전송에 사용되는 RE상에서는 전송되지 않는다.For reference, the DRS of the present invention is used for PDSCH transmission and is transmitted for demodulation of each layer by the number of layers used for transmission of the PDSCH. The DRS of the present invention is transmitted only on a resource block (RB) to which the corresponding PDSCH is mapped. In addition, the DRS of the present invention is not transmitted on the RE used for transmission of other RS regardless of the antenna port.

도 8은 LTE-A 시스템에서 사용되는 DRS 패턴의 예를 도시한 것이다. 특히, 도 8은 정상 CP를 갖는 일반적인(regular) 서브프레임의 일 자원블록 쌍 내 DRS 패턴을 예시한 것이다.8 illustrates an example of a DRS pattern used in an LTE-A system. In particular, FIG. 8 illustrates a DRS pattern in one resource block pair of a regular subframe having a normal CP.

LTE-A 시스템에서는 일 서브프레임에서 다수의 레이어가 다중화되어 UE에 전송될 수 있다. 다중 레이어 전송의 경우, 레이어별로 DRS도 전송되어야 하므로, 전송되는 레이어의 개수에 비례하여 DRS의 개수도 증가하게 된다. 다수의 DRS가 서로 다른 RE들을 통해 전송되는 경우, 레이어의 개수가 증가하면 DRS RE의 개수 또한 증가하여, 데이터 전송 효율이 낮아진다는 문제점이 발생한다. 따라서, DRS 전송 오버헤드를 줄이기 위하여, 복수의 DRS가 전송되어야 하는 경우에는 소정 RE에 하나 이상의 DRS가 다중화되어 전송되는 것이 좋다.In the LTE-A system, a plurality of layers may be multiplexed and transmitted to a UE in one subframe. In the case of multi-layer transmission, since the DRS should also be transmitted for each layer, the number of DRS is also increased in proportion to the number of transmitted layers. When a plurality of DRSs are transmitted through different REs, as the number of layers increases, the number of DRS REs also increases, resulting in a low data transmission efficiency. Therefore, in order to reduce the DRS transmission overhead, when a plurality of DRSs should be transmitted, it is preferable that one or more DRSs are multiplexed and transmitted to a predetermined RE.

따라서, LTE-A 시스템에서는 복수의 DRS들을 크게 두 그룹의 RE들에서 각각 전송한다. 예를 들어, 도 8에서 'C'로 표기된 RE들에 하나 이상의 DRS가 다중화되어 UE에 전송되고, 'D'로 표기된 RE들에 하나 이상의 다른 DRS가 다중화되어 UE에 전송될 수 있다. 소정 무선 자원에 복수의 DRS가 다중화되는 경우, 상기 복수의 DRS가 서로 구분될 수 있도록 하기 위하여, 예를 들어, 길이가 2인 직교커버코드(Orthogonal Cover Code, OCC)를 사용하여 DRS를 확장하면, 일 RE를 통해서 최대 2개의 서로 다른 DRS가 전송될 수 있다. 또 다른 예로, 길이가 4인 직교커버코드(Orthogonal Cover Code, OCC)를 사용하여 DRS를 확장하면, 일 RE를 통해서 최대 4개의 서로 다른 DRS가 다중화되어 전송될 수 있다. 직교커버코드의 일 예로, 왈쉬-하드마드(Walsh-Hadmard) 코드를 들 수 있다. 직교커버코드는 직교 시퀀스라 불리기도 한다.Accordingly, in the LTE-A system, a plurality of DRSs are largely transmitted in two groups of REs. For example, in FIG. 8, one or more DRSs may be multiplexed to the REs labeled 'C' and transmitted to the UE, and one or more other DRSs may be multiplexed and transmitted to the UE. When a plurality of DRSs are multiplexed on a predetermined radio resource, in order to distinguish the plurality of DRSs from each other, for example, when the DRS is extended using an orthogonal cover code (OCC) having a length of 2, Up to two different DRSs may be transmitted through one RE. As another example, if a DRS is extended using an Orthogonal Cover Code (OCC) having a length of 4, up to four different DRSs may be multiplexed and transmitted through one RE. An example of an orthogonal cover code is Walsh-Hadmard code. Orthogonal cover codes are also called orthogonal sequences.

이하에서는, 일 자원블록 혹은 일 자원블록 쌍의 RE들 중에서, 직교커버코드에 의해 확장되어 서로 구분될 수 있는 DRS들이 전송되는 RE들의 모음을 CDM(Code Division Multiplexing) 그룹이라고 칭한다. 도 8을 참조하면, 예를 들어, 'C'로 표기된 RE들이 하나의 CDM 그룹(이하, CDM 그룹 1)에 속하며, 'D'로 표기된 RE들이 다른 하나의 CDM 그룹 (이하, CDM 그룹 2)에 속한다. 한 쌍의 연속하는 자원블록(이하, 자원블록 쌍) 내에서, 도 8의 각 CDM 그룹은 12개의 RE를 포함한다.Hereinafter, a collection of REs in which DRSs, which can be distinguished from each other by being extended by an orthogonal cover code and transmitted from among REs of one resource block or one resource block pair, is transmitted, is referred to as a Code Division Multiplexing (CDM) group. Referring to FIG. 8, for example, REs designated as 'C' belong to one CDM group (hereinafter, CDM group 1), and REs designated as 'D' are the other CDM group (hereinafter, CDM group 2). Belongs to. Within a pair of contiguous resource blocks (hereinafter, referred to as resource block pairs), each CDM group of FIG. 8 includes 12 REs.

도 9는 2개의 레이어의 DRS들이 길이가 2인 OCC를 사용하여, 정상 CP를 갖는 서브프레임들에 다중화된 패턴을 예시한 것이다. FIG. 9 illustrates a pattern multiplexed into subframes having normal CPs using an OCC having a length of two DRSs of two layers.

도 9(a)부터 도 9(c)에 예시된, 2개의 레이어에 대한 2개의 DRS들의 무선 자원으로의 맵핑은 다음과 같이 표현될 수 있다. 예를 들어, 상기 2개의 레이어에 일대일로 대응하는 가상 안테나 포트가 안테나 포트 7 및 안테나 포트 7이라 가정하자. 정상 CP를 갖는 서브프레임의 경우, 상기 안테나 포트 7 및 안테나 포트 8을 위한 각 DRS 시퀀스 r(m)의 일부는 해당 PDSCH 전송을 위해 할당된, 주파수 도메인 인덱스 nPRB를 갖는 물리자원블록(Physical Resource Block, PRB)에서 다음식들에 따라 복소변조심볼(complex-valued modulation symbol)들 a(p) k,l에 맵핑될 수 있다.9 (a) to 9 (c), mapping of two DRSs to radio resources for two layers may be expressed as follows. For example, assume that the virtual antenna ports corresponding to the two layers one-to-one are antenna port 7 and antenna port 7. In case of a subframe having a normal CP, a part of each DRS sequence r (m) for the antenna port 7 and the antenna port 8 is a physical resource block having a frequency domain index n PRB allocated for the corresponding PDSCH transmission. Block, PRB) may be mapped to complex-valued modulation symbols a (p) k, l according to the following equations.

Figure 112011009495429-pat00009
Figure 112011009495429-pat00009

여기서, p는 안테나 포트 인덱스로서, p∈{7,8}이다. k 및 l은 도 4에서 설명한 부반송파 인덱스와 OFDM 심볼 인덱스이다. r(s)는 랜덤 시퀀스이다. m'는 해당 PDSCH 전송의 각 OFDM 심볼 내 DRS RE들의 카운터를 나타낸다. 각 DRS OFDM 심볼은 각 RB마다 3개의 DRS 부반송파를 포함하므로, m'는 0, 1, 2 중 하나의 값을 갖는다. Nmax , DL RB는 해당 PDSCH에 할당된 하향링크 슬롯에서의 자원블록의 최대개수를 나타낸다. ns는 무선 프레임에서의 슬롯 넘버를 나타낸다. l'는 서브프레임 내 DRS OFDM 심볼들의 카운터에 해당한다. 특별(special) 서브프레임이 아닌 일반(normal) 서브프레임의 경우, 정상 CP에서 총 4개의 DRS OFDM 심볼을 가지므로, l'는 0, 1, 2, 3 중 하나의 값을 갖는다.Here, p is an antenna port index, which is p ∈ {7,8}. k and l are the subcarrier index and the OFDM symbol index described with reference to FIG. r (s) is a random sequence. m 'represents a counter of DRS REs in each OFDM symbol of the corresponding PDSCH transmission. Since each DRS OFDM symbol includes three DRS subcarriers for each RB, m 'has one of 0, 1, and 2. N max , DL RB represents the maximum number of resource blocks in the downlink slot allocated to the PDSCH. n s represents a slot number in a radio frame. l 'corresponds to a counter of DRS OFDM symbols in a subframe. In the case of a normal subframe that is not a special subframe, since there are a total of four DRS OFDM symbols in a normal CP, l 'has one of 0, 1, 2, and 3 values.

도 9를 참조하면, 안테나 포트 7에 해당하는 레이어의 DRS와 안테나 포트 8에 해당하는 레이어의 DRS는 동일한 RE들에 할당되어 전송됨을 알 수 있다. 다시 말해, 안테나 포트 7의 DRS와 안테나 포트 8의 DRS는 소정 CDM 그룹, 예를 들어, CDM 그룹 1에 다중화되어 전송될 수 있다.9, it can be seen that the DRS of the layer corresponding to antenna port 7 and the DRS of the layer corresponding to antenna port 8 are allocated to the same REs and transmitted. In other words, the DRS of the antenna port 7 and the DRS of the antenna port 8 may be multiplexed and transmitted to a predetermined CDM group, for example, CDM group 1.

이하에서는 도 9(a)와 같이, CDM 그룹이 구성되는 일반 서브프레임을 예로 하여, 본 발명의 실시예들을 기술한다. 그러나, 본 발명은 일반 서브프레임뿐만 아니라 특수 서브프레임에도 마찬가지의 방법으로 적용될 수 있다.Hereinafter, embodiments of the present invention will be described with reference to a general subframe in which a CDM group is configured as shown in FIG. 9 (a). However, the present invention can be applied to the special subframe as well as the general subframe in the same manner.

도 10은 4개의 레이어에 대한 DRS들이 2개의 CDM 그룹을 통해 전송되는 예를 나타낸 것으로서, 2개의 CDM 그룹을 사용하면 CDM 그룹별로 2개의 DRS가 다중화되어 전송될 수 있다.FIG. 10 illustrates an example in which DRSs for four layers are transmitted through two CDM groups. When two CDM groups are used, two DRSs may be multiplexed and transmitted for each CDM group.

이와 같이, 길이가 2인 OCC(OCC=2)를 이용하면, 일 RE에 2개의 DRS가 다중화될 수 있고, CDM 그룹에 개수에 비례하여 다중화하여 전송될 수 있는 레이어의 개수가 증가한다. 예를 들어, 길이가 2인 OCC(OCC=2)를 이용하면, 최대 4개의 DRS 시퀀스가 2개의 CDM 그룹을 통해 전송될 수 있다.As such, when the OCC having a length of 2 (OCC = 2) is used, two DRSs can be multiplexed in one RE, and the number of layers that can be multiplexed and transmitted in proportion to the number of CDM groups increases. For example, using OCC having a length of 2 (OCC = 2), up to four DRS sequences can be transmitted through two CDM groups.

도 11은 4개의 DRS들을 2개의 CDM 그룹에 다중화하는 방법을 나타낸 것이다. 최대랭크 4까지의 MIMO를 지원하는 시스템에서는 최대 4개의 DRS 시퀀스가 2개의 CDM 그룹을 통해 전송될 수 있다. 즉, CDM 그룹별로 2개의 DRS가 길이가 2(OCC=2)인 2개의 OCC 시퀀스에 의해 다중화될 수 있다.11 shows a method of multiplexing four DRSs into two CDM groups. In a system supporting MIMO up to 4, up to 4 DRS sequences may be transmitted through 2 CDM groups. That is, two DRSs for each CDM group may be multiplexed by two OCC sequences having a length of 2 (OCC = 2).

도 11을 참조하면, DRSx 및 DRSy, DRSz, DRSw에 대응하는 가상 안테나 포트들을 각각 DRS 포트 X 및 DRS 포트 Y, DRS 포트 Z 및 DRS 포트 W라고 하자. 또한, 상기 길이 2인 2개의 OCC 시퀀스는 [1 1] 및 [1 -1]라고 가정한다. 상기 2개의 OCC 시퀀스는 도 11의 2×2 행렬에서 행(row)방향 시퀀스에 해당한다. Referring to FIG. 11, the virtual antenna ports corresponding to DRSx, DRSy, DRSz, and DRSw are referred to as DRS port X and DRS port Y, DRS port Z, and DRS port W, respectively. In addition, it is assumed that the two OCC sequences of length 2 are [1 1] and [1 -1]. The two OCC sequences correspond to a row direction sequence in the 2 × 2 matrix of FIG. 11.

도 11을 참조하면, DRSx는 시퀀스 [1 1]에 의해 확장되고, DRSy는 시퀀스 [1 -1]에 의해 확장되어, CDM 그룹 1에 할당될 수 있다. DRSz는 시퀀스 [1 1]와 [1 -1] 중 어느 하나에 의해 확장되고, DRSw는 나머지 시퀀스에 의해 확장되어, CDM 그룹 2에 할당될 수 있다. Referring to FIG. 11, DRSx may be extended by a sequence [1 1], and DRSy may be extended by a sequence [1-1] and allocated to CDM group 1. DRSz can be extended by any one of sequences [1 1] and [1 -1], and DRSw can be extended by the remaining sequences and assigned to CDM group 2.

도 11의 자원블록 쌍은 총 4개의 DRS 심볼 1~4을 포함한다. DRS 심볼 1에는 시퀀스 [1 1]에 의해 확장된 DRSx의 일부와 시퀀스 [1 -1]에 의해 확장된 DRSy의 일부가 할당된다. 예를 들어, DRSx는 [1 1]에 의해 [1 1]×DRSx=[DRSx DRSx]로 확장되고, DRSy는 [1 -1]에 의해 [1 -1]×DRSy=[DRSy -DRSy]로 확장되어, 첫번째 원소들인 DRSx와 DRSy는 DRS 심볼 1에 할당되고 두번째 원소들인 DRSx와 -DRSy는 DRS 심볼 2에 할당될 수 있다. 즉, DRS 심볼 1에는 (1×DRSx)+(1×DRSy)가 할당되며, DRS 심볼 2에는 (1×DRSx)+(-1×DRSy)가 할당된다.The RB pair of FIG. 11 includes four DRS symbols 1 to 4 in total. The DRS symbol 1 is assigned a portion of the DRSx extended by the sequence [1 1] and a portion of the DRSy extended by the sequence [1 -1]. For example, DRSx is extended to [1 1] by [1 1] x DRSx = [DRSx DRSx], and DRSy is [1 -1] by [1 -1] × DRSy = [DRSy -DRSy]. Expanded, the first elements DRSx and DRSy may be assigned to DRS symbol 1 and the second elements DRSx and -DRSy may be assigned to DRS symbol 2. That is, (1 × DRSx) + (1 × DRSy) is assigned to DRS symbol 1, and (1 × DRSx) + (− 1 × DRSy) is assigned to DRS symbol 2.

이를 정리하면, 4개의 DRS는 2개의 CDM 그룹에 다음과 같이 직교커버코드를 이용하여 DRS RE들에 할당될 수 있다.In summary, four DRSs may be allocated to two CDM groups to DRS REs using an orthogonal cover code as follows.

Figure 112011009495429-pat00010
Figure 112011009495429-pat00010

표 1에서 DRS 포트는 레이어에 일대일로 대응한다. 따라서, DRS 포트 인덱스는 레이어 인덱스로 활용될 수도 있다. 반대로, 레이어 인덱스가 DRS 포트 인덱스로 사용되는 것도 가능하다. 안테나 포트 7~10은 DRS 포트 0~3에 대응될 수 있다. 각 DRS 포트에 대한 DRS는 [wp(0) wp(1)]에 의해 확장되어, 해당 CDM 그룹 상의 1쌍의 RE마다에 맵핑된다.In Table 1, the DRS ports correspond one-to-one to the layer. Therefore, the DRS port index may be utilized as a layer index. Conversely, it is also possible for the layer index to be used as the DRS port index. Antenna ports 7 to 10 may correspond to DRS ports 0 to 3. The DRS for each DRS port is extended by [w p (0) w p (1)] and mapped to every pair of REs on that CDM group.

각 CDM 그룹을 기준으로, 해당 CDM 그룹에 할당된 DRS 포트 및 해당 DRS의 확산에 사용된 직교커버코드를 정리하면 다음과 같다.Based on each CDM group, the DRS port assigned to the CDM group and the orthogonal cover code used for the spread of the DRS are summarized as follows.

Figure 112011009495429-pat00011
Figure 112011009495429-pat00011

표 1 또는 표 2를 참조하면, CDM 그룹 1에 속한 RE들에는 (+1×DRS0)+(+1×DRS1)와 (+1×DRS0)+(-1×DRS1)가 순서대로 맵핑되며, CDM 그룹 2에 속한 RE들에는 (+1×DRS2)+(+1×DRS3)와 (+1×DRS2)+(-1×DRS3)가 순서대로 맵핑될 수 있다. Referring to Table 1 or Table 2, (+ 1 × DRS0) + (+ 1 × DRS1) and (+ 1 × DRS0) + (-1 × DRS1) are mapped to REs belonging to CDM group 1 in order. (+ 1 × DRS2) + (+ 1 × DRS3) and (+ 1 × DRS2) + (− 1 × DRS3) may be mapped to REs belonging to CDM group 2 in order.

이와 같이 길이가 2인 OCC에 의한 DRS의 확산에 이용되는 OCC 및 일 RE로의 다중화에 사용되는 OCC는 다음과 같은 수학식으로 간단히 표현될 수 있다.As described above, the OCC used for spreading the DRS by the OCC having a length of 2 and the OCC used for multiplexing to one RE can be simply expressed by the following equation.

Figure 112011009495429-pat00012
Figure 112011009495429-pat00012

여기서, 열벡터 a 및 열벡터 b는 각각 복수의 DRS를 다중화하는 OCC로서, 각 열벡터는 일 RE로 다중화될 때 각 DRS에 곱해지는 계수들로 구성된다. 행벡터 x 및 행백터 y 각각은 일 DRS를 확산시키는 OCC를 나타내며, 일종의 확산인자(spreading factor)로 볼 수 있다. 이하, 확산의 관점에서 바라본 OCC를 확산 OCC, 다중화의 관점에서 바라본 OCC를 다중화 OCC라 칭하여 본 발명을 설명한다.Here, the column vector a and the column vector b are OCCs which multiplex a plurality of DRSs, respectively, and each column vector is composed of coefficients multiplied by each DRS when multiplexed to one RE. Each of the row vector x and the row vector y represents an OCC that diffuses one DRS and may be regarded as a spreading factor. Hereinafter, the present invention will be described by referring to an OCC viewed from the viewpoint of diffusion as an OCC viewed from the viewpoint of diffusion OCC and multiplexing.

이하에서는 설명의 편의를 위하여, 일 RE에 복수의 DRS가 다중화된 형태를 각 DRS에 곱해지는 가중치를 나타내는 열벡터 a 및 열벡터 b로 표현하여, 본 발명을 설명한다. 예를 들어, 일 CDM 그룹에 2개의 DRS가 다중화되는 예를 나타낸 도 12에서, 'a'로 표기된 RE는 2개의 DRS가 열벡터 a의 원소에 의해 각각 곱해져 할당된 RE를 나타내며, 'b'로 표기된 RE는 2개의 DRS가 열벡터 b의 원소에 의해 각각 곱해져 할당된 RE를 나타낸다.Hereinafter, for convenience of description, the present invention will be described by expressing a form in which a plurality of DRSs are multiplexed in one RE by a column vector a and a column vector b representing a weight multiplied by each DRS. For example, in FIG. 12 illustrating an example in which two DRSs are multiplexed in one CDM group, an RE denoted by 'a' denotes an RE allocated by multiplying each of the two DRSs by an element of the column vector a. RE denoted RE denotes an RE allocated by two DRSs each multiplied by an element of the column vector b.

도 12를 참조하면, 다중화 OCC들이 할당되는 경우, 일 OFDM 심볼 레이어들에서 사용되는 다중 OCC는 정해져 있고, 다수의 RB가 UE를 위해 할당되더라도 각 RB에 동일한 형태로 다중 OCC가 할당되게 된다. 이 경우, 일 UE에 전송되는 레이어들은 동일한 스크램블링 시퀀스로 스크램블링되므로, 도 12와 같이 DRS들이 할당되는 경우, 특정 OFDM 심볼에 전송 전력이 편중되는 형상이 발생할 수 있다.이와 같이 특정 OFDM 심볼에 전력이 편중되는 결과를 초래하므로, 전송 전력이 효율적으로 사용될 수 없다는 문제점이 있다. BS의 전송 전력은 시점에 관계없이 최대 전송 전력 범위 내에서 일정하게 최대한으로 사용되는 것이 상기 BS에 의한 데이터 전송률을 높이는 데 좋다. 따라서, 전송 전력이 특정 OFDM 심볼에 편중되지 않도록, 즉, OFDM 심볼들에 걸쳐 고른 전송 전력 분포가 나타날 수 있도록, 다중 OCC 코드가 적절히 할당될 필요가 있다.Referring to FIG. 12, when multiplexed OCCs are allocated, multiple OCCs used in one OFDM symbol layer are determined, and multiple OCCs are allocated to each RB in the same form even if multiple RBs are allocated for the UE. In this case, since the layers transmitted to one UE are scrambled with the same scrambling sequence, when DRSs are allocated as shown in FIG. 12, a shape in which transmission power is biased may occur in a specific OFDM symbol. Since this results in a biased result, there is a problem that the transmission power cannot be used efficiently. The transmission power of the BS is consistently maximized within the maximum transmission power range regardless of the time point to increase the data transmission rate by the BS. Thus, multiple OCC codes need to be appropriately allocated so that the transmit power is not biased to a particular OFDM symbol, i.e., an even transmit power distribution can appear across the OFDM symbols.

도 13은 랭크-2 전송에서 OFDM 심볼들에 걸쳐 전송 전력을 고르게 분포시키는 본 발명의 실시예를 나타낸 것이다.FIG. 13 illustrates an embodiment of the present invention that distributes transmit power evenly over OFDM symbols in rank-2 transmission.

도 13을 참조하면, 특정 OFDM 심볼에서 DRS 시퀀스끼리 상쇄되거나 DRS 시퀀스들의 합이 지나치게 커지는 것을 방지하기 위하여, 주파수 도메인 혹은 시간 도메인에서 다중화 OCC의 할당위치가 스왑(swap)될 수 있다.Referring to FIG. 13, in order to prevent DRS sequences from being canceled or sum of DRS sequences in a specific OFDM symbol from being too large, allocation positions of multiplexed OCCs in a frequency domain or a time domain may be swapped.

한편, 도 14 및 도 15는 랭크-2 전송에서 DRS RE 및 데이터 RE에 대한 전력할당 예들을 나타낸 것이다. Meanwhile, FIGS. 14 and 15 show power allocation examples for the DRS RE and the data RE in rank-2 transmission.

도 14를 참조하면, 전송랭크가 2인 경우, BS는 2개의 DRS 포트를 통해 2개의 레이어 및 2개의 DRS를 전송할 수 있다. 상기 2개의 레이어의 프리코딩에 사용된 프리코더는 상기 2개의 DRS의 프리코딩에 사용되므로, 각 레이어에서 데이터 RE 및 DRS RE 사이의 전력비는 같다. Referring to FIG. 14, when the transmission rank is 2, the BS may transmit two layers and two DRSs through two DRS ports. Since the precoder used for the precoding of the two layers is used for the precoding of the two DRSs, the power ratio between the data RE and the DRS RE in each layer is the same.

따라서, UE는 BS로부터 별도의 정보를 시그널링받지 않아도, 각 레이어에서의 데이터 RE와 DRS RE 사이의 전력비를 알 수 있다. 데이터 RE와 DRS RE 사이의 전력비는 각 DRS 포트가 데이터 RE에 할당된 신호와 DRS RE에 할당된 신호를 동일한 전력으로 전송하는 것에 의해, 묵시적으로 UE에게 시그널링되기 때문이다. 이에 따라, 랭크-2 전송의 경우에는 레이어들 간의 전력비가 다를 수도 있다. 도 15를 참조하면, 레이어0 및 레이어1은 서로 다른 전력으로 전송될 수 있다.Accordingly, the UE can know the power ratio between the data RE and the DRS RE in each layer without receiving the separate information from the BS. This is because the power ratio between the data RE and the DRS RE is implicitly signaled to the UE by each DRS port transmitting the signal assigned to the data RE and the signal assigned to the DRS RE at the same power. Accordingly, in the case of rank-2 transmission, the power ratio between layers may be different. Referring to FIG. 15, layer 0 and layer 1 may be transmitted at different powers.

도 14 및 도 15를 참조하면, RE당 레이어별 전송전력뿐만 아니라 RE당 전송전력이 일정함을 알 수 있다. 즉, 랭크-2 전송까지는 일 서브프레임 내 OFDM 심볼들에 걸쳐 전력이 일정하게 분포될 수 있다. 그러나, 랭크-3 이상의 전송의 경우, OCC의 길이 및 CDM 그룹의 개수에 따라, 데이터 RE 당 레이어의 개수와 DRS RE당 레이어의 개수가 일 OFDM 심볼 내에서 달라질 수 있다. 예를 들어, 도 10을 참조하면, 총 4개의 레이어가 안테나 포트 7~10에 일대일로 대응된다고 가정하면, 각 데이터 RE에는 4개의 레이어가 다중화되지만 각 DRS RE에는 2개의 DRS가 다중화된다. 결국, 랭크-3 이상의 전송에서는 데이터 RE와 DRS RE에서 레이어당 전송전력이 달라질 수 있다. 이에 따라, 랭크-3 이상의 전송에서는 랭크-2 이하의 전송에 비해 서브프레임 내 OFDM 심볼들에 전력을 고르게 분포시키는 것이 더 어려울 수 있다. 따라서, 랭크-3 이상의 전송이 가능한 LTE-A 시스템에서는 OFDM 심볼별로 전송 전력이 크게 변동하는 것을 방지하기 위한, 전력 균형화 방안이 마련되어야 한다.14 and 15, it can be seen that the transmission power per RE as well as the transmission power per layer per RE are constant. That is, power may be uniformly distributed over OFDM symbols in one subframe up to rank-2 transmission. However, in case of rank-3 or higher transmission, the number of layers per data RE and the number of layers per DRS RE may vary within one OFDM symbol according to the length of the OCC and the number of CDM groups. For example, referring to FIG. 10, assuming that a total of four layers correspond one-to-one to antenna ports 7 to 10, four layers are multiplexed in each data RE, but two DRSs are multiplexed in each DRS RE. As a result, the transmission power per layer may vary in the data RE and the DRS RE in the transmission of rank-3 or higher. Accordingly, it may be more difficult to evenly distribute power in OFDM symbols in a subframe in rank-3 or higher transmissions than in rank-2 or lower transmissions. Accordingly, in an LTE-A system capable of transmitting a rank-3 or higher, a power balancing method should be provided to prevent a large fluctuation in transmit power for each OFDM symbol.

이하에서는, 일 서브프레임 내 OFDM 심볼들에 걸쳐 전력이 고르게 분포할 수 있도록, DRS를 할당/구성하는 방안을 제시한다. 설명의 편의를 위하여, 최대 8개의 레이어를 지원하기 위해, 2개의 CDM 그룹을 사용하는 경우를 예로 하여 본 발명을 설명한다. Hereinafter, a method of allocating / configuring a DRS so that power can be evenly distributed over OFDM symbols in one subframe. For convenience of description, the present invention will be described with an example of using two CDM groups to support a maximum of eight layers.

2개의 CDM 그룹을 통해 8개의 레이어에 대한 DRS들을 전송하기 위하여, 도 15와 같이 길이가 4인 OCC(OCC=4)가 사용될 수 있다. 도 16은 안테나 포트 11~14에 대응하는 레이어들을 위한 DRS들이 2개의 CDM 그룹에 할당되는 예를 나타낸 것이다. 도 10과 도 16를 참조하면, 안테나 포트 7~14에 대응하는 레이어들을 위한 DRS들이 2개의 CDM 그룹에 4개씩 다중화되어 전송될 수 있음을 알 수 있다.In order to transmit DRSs for eight layers through two CDM groups, an OCC having a length of 4 (OCC = 4) may be used as shown in FIG. 15. 16 illustrates an example in which DRSs for layers corresponding to antenna ports 11 to 14 are allocated to two CDM groups. Referring to FIGS. 10 and 16, it can be seen that DRSs for layers corresponding to antenna ports 7 to 14 may be multiplexed and transmitted four by two CDM groups.

도 17은 8개의 DRS들을 2개의 CDM 그룹에 다중화하는 방법을 나타낸 것이다.17 shows a method of multiplexing eight DRSs into two CDM groups.

최대랭크 8까지의 MIMO를 지원하는 시스템에서는 최대 8개의 DRS 시퀀스가 2개의 CDM(Code Division Multiplexing) 그룹을 통해 전송될 수 있다. CDM 그룹별로 4개의 DRS가, 길이가 4인 4개의 OCC 시퀀스에 의해 다중화될 수 있다. DRSx 및 DRSy, DRSz, DRSw가 전송되는 가상 안테나 포트들을 각각 DRS 포트 X 및 DRS 포트 Y, DRS 포트 Z 및 DRS 포트 W라고 하자. 또한, 상기 길이 4인 4개의 OCC 시퀀스는 [1 1 1 1] 및 [1 -1 1 -1], [1 1 -1 -1], [1 -1 -1 1]라고 가정한다. 상기 4개의 OCC 시퀀스는 도 17의 4×4 행렬에서 행(row)방향 시퀀스에 해당한다. In a system supporting MIMO up to 8, up to 8 DRS sequences may be transmitted through two Code Division Multiplexing (CDM) groups. Four DRSs for each CDM group may be multiplexed by four OCC sequences having a length of four. Let DRSx, DRSy, DRSz, and DRSw transmit the virtual antenna ports DRS port X and DRS port Y, DRS port Z, and DRS port W, respectively. In addition, it is assumed that the four OCC sequences of length 4 are [1 1 1 1] and [1 -1 1 -1], [1 1 -1 -1], and [1 -1 -1 1]. The four OCC sequences correspond to a row direction sequence in the 4x4 matrix of FIG. 17.

도 17을 참조하면, DRSx는 시퀀스 [1 1 1 1]에 의해 확장되고, DRSy는 시퀀스 [1 -1 1 -1]에 의해 확장되고, DRSz는 시퀀스 [1 1 -1 -1]에 의해 확장되고, DRSw는 시퀀스 [1 -1 -1 1]에 의해 확장되어, CDM 그룹 1에 할당될 수 있다. DRSx 및 DRSy, DRSz, DRSw와는 다른 4개의 DRS들이 [1 1 1 1] 및 [1 -1 1 -1], [1 1 -1 -1], [1 -1 -1 1]에 의해 확장되어 CDM 그룹 2에 할당될 수 있다.Referring to Fig. 17, DRSx is extended by a sequence [1 1 1 1], DRSy is extended by a sequence [1 -1 1 -1], and DRSz is extended by a sequence [1 1 -1 -1]. DRSw can be extended by the sequence [1 -1 -1 1] and assigned to CDM group 1. Four DRSs different from DRSx and DRSy, DRSz, and DRSw are extended by [1 1 1 1] and [1 -1 1 -1], [1 1 -1 -1], [1 -1 -1 1] Can be assigned to CDM group 2.

도 17의 자원블록 쌍은 총 4개의 DRS 심볼 1~4을 포함한다. DRS 심볼 1에는 시퀀스 [1 1 1 1] 및 [1 -1 1 -1], [1 1 -1 -1], [1 -1 -1 1]에 의해 각각 확장된 DRSx 및 DRSy, DRSz, DRSw의 일부들이 할당된다. 예를 들어, DRSx는 [1 1 1 1]에 의해 [1 1 1 1]×DRSx=[DRSx DRSx DRSx DRSx]로 확장되고, DRSy는 [1 -1 1 -1]에 의해 [1 -1 1 -1]×DRSy=[DRSy -DRSy DRSy -DRSy]로 확장되며, DRSz는 [1 1 -1 -1]에 의해 [1 1 -1 -1]×DRSz=[DRSz DRSz -DRSz -DRSz]로 확장되고, DRSw는 [1 -1 -1 1]에 의해 [1 -1 -1 1]×DRSw=[DRSw -DRSw -DRSw DRSw]로 확장될 수 있다. 상기 확장된 DRS 시퀀스 중에서, 예를 들어, 첫번째 원소들인 DRSx 및 DRSy, DRSz, DRSw는 DRS 심볼 1에 할당되고, 두번째 원소들인 DRSx 및 -DRSy, DRSz, -DRSw는 DRS 심볼 2에 할당되고, 세번째 원소들인 DRSx 및 DRSy, -DRSz, -DRSw는 DRS 심볼 3에 할당되고, 네번째 원소들인 DRSx 및 -DRSy, -DRSz, DRSw될 수 있다. 즉, DRS 심볼 1에는 (1×DRSx)+(1×DRSy)+(1×DRSz)+(1×DRSw)의 성분이 할당되며, DRS 심볼 2에는 (1×DRSx)+(-1×DRSy)+(1×DRSz)+(-1×DRSw)의 성분이 할당되며, DRS 심볼 3에는 (1×DRSx)+(1×DRSy)+(-1×DRSz)+(-1×DRSw)의 성분이 할당되며, DRS 심볼 4에는 (1×DRSx)+(-1×DRSy)+(-1×DRSz)+(1×DRSw)의 성분이 할당될 수 있다.The RB pair of FIG. 17 includes four DRS symbols 1 to 4 in total. DRS symbol 1 contains DRSx and DRSy, DRSz, and DRSw extended by the sequence [1 1 1 1] and [1 -1 1 -1], [1 1 -1 -1], [1 -1 -1 1], respectively. Portions of are assigned. For example, DRSx is extended to [1 1 1 1] by [1 1 1 1] x DRSx = [DRSx DRSx DRSx DRSx], and DRSy is [1 -1 1 -1] by [1 -1 1] -1] × DRSy = [DRSy -DRSy DRSy -DRSy], where DRSz is [1 1 -1 -1] by [1 1 -1 -1] × DRSz = [DRSz DRSz -DRSz -DRSz] DRSw can be extended to [1 -1 -1 1] x DRSw = [DRSw -DRSw -DRSw DRSw] by [1 -1 -1 1]. Among the extended DRS sequences, for example, the first elements DRSx and DRSy, DRSz, and DRSw are assigned to DRS symbol 1, the second elements DRSx and -DRSy, DRSz, and -DRSw are assigned to DRS symbol 2, and the third The elements DRSx and DRSy, -DRSz, and -DRSw may be allocated to DRS symbol 3, and the fourth elements, DRSx and -DRSy, -DRSz, and DRSw. That is, a component of (1 × DRSx) + (1 × DRSy) + (1 × DRSz) + (1 × DRSw) is allocated to DRS symbol 1, and (1 × DRSx) + (− 1 × DRSy) to DRS symbol 2 ) + (1 × DRSz) + (− 1 × DRSw), and the component of DRS symbol 3 is (1 × DRSx) + (1 × DRSy) + (− 1 × DRSz) + (− 1 × DRSw). A component is allocated, and a component of (1 × DRSx) + (− 1 × DRSy) + (− 1 × DRSz) + (1 × DRSw) may be allocated to the DRS symbol 4.

이를 정리하면, 4개의 DRS는 2개의 CDM 그룹에 다음과 같이 직교커버코드를 이용하여 DRS RE들에 할당될 수 있다.In summary, four DRSs may be allocated to two CDM groups to DRS REs using an orthogonal cover code as follows.

Figure 112011009495429-pat00013
Figure 112011009495429-pat00013

여기서, 열벡터 a 및 b, c, d은 복수의 DRS가 일 RE로 다중화될 때 각 DRS에 곱해지는 계수들로 구성된 다중화 OCC들을 나타낸다. 행벡터 x 및 y, z, w은 일 DRS를 확산시키는 확산 OCC들을 나타낸다. 이하에서는 설명의 편의를 위하여, 일 RE에 복수의 DRS가 다중화된 형태를 각 DRS에 곱해지는 가중치를 나타내는 다중화 OCC로 일 RE에 다중화된 DRS들을 표현하여, 본 발명을 설명한다.Here, the column vectors a, b, c, and d represent multiplexed OCCs composed of coefficients multiplied by each DRS when a plurality of DRSs are multiplexed into one RE. The row vectors x and y, z, w represent spreading OCCs that spread one DRS. Hereinafter, for convenience of description, the present invention will be described by expressing DRSs multiplexed in one RE with a multiplexed OCC representing a weight multiplied by each DRS in a form in which a plurality of DRSs are multiplexed in one RE.

참고로, 무선 통신 시스템에서 도 11에 의한 DRS 다중화와 도 17에 의한 DRS 다중화는 동시에 사용될 수도 있고, 둘 중 하나만 사용될 수도 있다. 예를 들어, 도 11의 DRS 다중화 방식은 BS가 1~4개의 레이어를 다중화하여 전송하는 경우에 사용되고, 도 17에 의한 DRS 다중화 방식은 BS가 5~8개의 레이어를 다중화하여 전송하는 경우에 사용될 수 있다. 또 다른 예로, BS가 도 17의 DRS 다중화 방식을 이용하여 1~8개의 레이어를 다중화하여 전송하는 것도 가능하다. 다만, 전자의 경우에는 BS가 전송하는 레이어의 총 개수에 따라 OCC의 길이가 달라지므로, UE가 OCC를 이용하여 자신의 레이어를 검출하기 위해서는, BS가 전송하는 레이어의 총 개수 혹은 레이어의 다중화에 사용된 OCC의 길이를 나타내는 정보가 묵시적으로든 명시적으로든 상기 UE에 시그널링되어야 한다. For reference, in the wireless communication system, the DRS multiplexing of FIG. 11 and the DRS multiplexing of FIG. 17 may be used simultaneously or only one of them may be used. For example, the DRS multiplexing scheme of FIG. 11 is used when the BS multiplexes 1 to 4 layers and is transmitted, and the DRS multiplexing scheme according to FIG. 17 is used when the BS multiplexes and transmits 5 to 8 layers. Can be. As another example, the BS may multiplex 1 to 8 layers using the DRS multiplexing scheme of FIG. 17 and transmit the same. However, in the former case, since the length of the OCC varies according to the total number of layers transmitted by the BS, in order for the UE to detect its own layer using the OCC, the total number of layers transmitted by the BS or multiplexing of layers is determined. Information indicating the length of the used OCC should be signaled to the UE, either implicitly or explicitly.

이하에서는, 시나리오에 따라, OFDM 심볼들에 걸쳐 전송 전력이 고르게 분포하도록 DRS를 할당하는, 본 발명의 실시예들을 설명한다.
In the following, embodiments of the present invention are described, in which a DRS is allocated such that transmission power is distributed evenly over OFDM symbols according to a scenario.

<1 CDM 그룹 및 OCC=4 할당><1 CDM group and OCC = 4 assignment>

도 18 내지 도 22는 1개의 CDM 그룹에 길이가 4인 OCC로 DRS를 다중화하는 본 발명의 실시예들을 나타낸 것이다.18 to 22 illustrate embodiments of the present invention for multiplexing DRS with an OCC of length 4 in one CDM group.

- 실시예1Example 1

도 18을 참조하면, 모든 RB 내 DRS 부반송파들에서 동일한 순서로 4개의 OCC가 4개의 DRS OFDM 심볼들에 할당될 수 있다. 다만, 이 경우, 일 DRS OFDM 심볼의 관점에서는 4개의 OCC 중에서 오직 1개의 OCC만이 사용되므로 일 DRS OFDM 심볼에 전력이 편중되는 결과를 발생하게 된다. 일 CDM 그룹에 길이가 4인 4개의 다중화 OCC를 할당하는 경우, 다음과 같은 실시예2 내지 할당한다가 OFDM 심볼 전력의 고른 분포를 위해 고려될 수 있다. Referring to FIG. 18, four OCCs may be allocated to four DRS OFDM symbols in the same order in the DRS subcarriers in all RBs. However, in this case, since only one OCC is used among four OCCs in view of one DRS OFDM symbol, power is biased in one DRS OFDM symbol. In case of assigning four multiplexed OCCs having a length of 4 to one CDM group, the following Embodiment 2 to Allocation can be considered for even distribution of OFDM symbol power.

- 실시예2Example 2

도 19를 참조하면, 슬롯 내에서 OCC 그룹 (a, b)가 DRS 부반송파에 따라 스왑되면서 할당되고 다른 슬롯 내에서 OCC 그룹 (c, d)가 DRS 부반송파에 따라 스왑되변서 할당될 수 있다. 즉, 실시예2-1은 일 슬롯 내 DRS 부반송파에서 [a b] 순으로 OCC를 할당하면, 다음 DRS 부반송파에서는 [a b]의 역순인 [b a]로 OCC를 할당한다. 본 실시예2에 의하면, 일 슬롯 내에서 DRS 부반송파가 바뀜에 따라 2개의 OCC를 순방향->역방향->순방향->역방향->순방향->역방향의 순으로 할당된다. 이에 따라, OCC들의 할당 패턴은 1쌍의 연속한 RB마다 같아진다. 따라서, 소정 UE를 위해 다수의 RB들이 할당되더라도 2개의 PRB마다 같은 패턴으로 OCC가 할당되게 된다. 다만, 실시예2에 따라 OCC를 할당하는 경우, 일 DRS OFDM 심볼의 관점에서는, 4개의 OCC 중에서 오직 2개의 OCC만이 사용된다. 또한, 일 RB의 관점에서도, 일 RB에서 2개의 OCC만이 사용된다. 즉, 일 서브프레임 내에 OCC가 고르게 분포하지 않는다. 이러한 이유 때문에, 실시예2에 따라 OCC를 할당하는 경우, 일 서브프레임 내에서 모든 OFDM 심볼들에 걸쳐 전력이 고르게 분포되는 결과를 얻기 어렵다는 단점이 있다.Referring to FIG. 19, OCC groups (a, b) may be allocated according to a DRS subcarrier in a slot and OCC groups (c, d) may be swapped and allocated according to a DRS subcarrier in another slot. That is, in Example 2-1, when the OCC is allocated in the order of [a b] in the DRS subcarriers in one slot, the OCC is allocated in the order of [b a], which is the reverse of [a b] in the next DRS subcarrier. According to the second embodiment, two OCCs are allocated in the order of forward-> reverse-> forward-> reverse-> forward-> reverse as DRS subcarriers change in one slot. Accordingly, the allocation pattern of the OCCs is the same for each pair of consecutive RBs. Therefore, even if multiple RBs are allocated for a given UE, the OCC is allocated in the same pattern every two PRBs. However, in the case of allocating the OCC according to the second embodiment, from the viewpoint of one DRS OFDM symbol, only two OCCs are used among the four OCCs. Also from the standpoint of one RB, only two OCCs are used in one RB. That is, the OCC is not evenly distributed within one subframe. For this reason, when the OCC is allocated according to the second embodiment, it is difficult to obtain a result of evenly distributing power over all OFDM symbols in one subframe.

- 실시예3-1Example 3-1

일 OFDM 심볼 상에서 모든 OCC가 존재하도록, 실시예3-1은 일 RB 내 두 슬롯에 할당된 OCC 패턴을 다음 RB에서 스왑하여 할당한다. 도 20(a)를 참조하면, 일 RB 내에 모든 OCC들이 할당되지는 않더라도, 일 OFDM 심볼 내에서는 모든 OCC들이 존재한다. 따라서, 실시예3-1은 실시예2에 비해 일 서브프레임 내 OFDM 심볼들에 걸쳐 고른 전력 분포를 얻을 수 있다.In order that all OCCs exist on one OFDM symbol, Embodiment 3-1 swaps and allocates an OCC pattern allocated to two slots in one RB in the next RB. Referring to FIG. 20 (a), although all OCCs are not allocated in one RB, all OCCs exist in one OFDM symbol. Therefore, Embodiment 3-1 can obtain even power distribution over OFDM symbols in one subframe compared with Embodiment 2.

다만, 실시예3-1은 일 RB의 입장에서는 일부 OCC만을 할당받으므로, 주파수 도메인 관점에서는 RB 인덱스의 변화에 따라 전력이 오르락 내리락 하게 된다.However, in Example 3-1, only some OCCs are allocated from one RB's point of view, so that the power rises and falls in accordance with the change of the RB index from the viewpoint of the frequency domain.

- 실시예3-2Example 3-2

RB 레벨에서 OCC가 고르게 분포할 수 있도록, 실시예3-2는 일 서브프레임 내에서 DRS 부반송파에 따라 4개의 OCC의 방향을 바꿔가면서 할당한다. 도 20(b)를 참조하면, 실시예3-2는 일 서브프레임 내에서 첫번째 DRS 부반송파에 OCC를 [a b c d] 순으로 할당하면, 다음 DRS 부반송파에는 [a b c d]의 역순인 [d c b a]의 순으로 할당하고, 다음 DRS 부반송파에는 이전 DRS 부반송파에 할당된 OCC 패턴의 역순으로 OCC를 할당한다.  In order to distribute the OCCs evenly at the RB level, the embodiment 3-2 allocates the four OCCs by changing the directions of the four OCCs according to the DRS subcarriers within one subframe. Referring to FIG. 20 (b), when the OCC is allocated to the first DRS subcarrier in the order of [abcd] in one subframe, the next DRS subcarrier is in the order of [dcba], which is the reverse order of [abcd]. The next DRS subcarrier is allocated to the next DRS subcarrier in the reverse order of the OCC pattern allocated to the previous DRS subcarrier.

실시예3-2에 의하면, 일 슬롯 내에 모든 OCC가 할당되는 장점이 있다. 다만, 실시예3-2에 의하면, 일 DRS OFDM 심볼 상에 2개의 OCC만이 반복된다.According to the embodiment 3-2, all OCCs are allocated in one slot. However, according to the embodiment 3-2, only two OCCs are repeated on one DRS OFDM symbol.

- 실시예4Example 4

일 RB 및 일 DRS OFDM 심볼에서 OCC가 고르게 분포할 수 있도록, 본 발명의 실시예4는 OCC (a, b, c, d)를 DRS 부반송파에 따라 스왑하면서 일 CDM 그룹에 할당할 수 있다. 도 21을 참조하면, 일 서브프레임 내 RB #n의 첫번째 DRS 부반송파에는 [a b c d] 순으로 OCC가 할당된다. 다음 DRS 부반송파에서는 OCC가 스왑되어 [b c d a] 순으로 할당되며 그 다음 부반송파에서는 [c d a b] 순으로 할당된다. In order to distribute the OCC evenly in one RB and one DRS OFDM symbol, Embodiment 4 of the present invention can allocate OCC (a, b, c, d) to one CDM group while swapping according to the DRS subcarriers. Referring to FIG. 21, an OCC is allocated to the first DRS subcarrier of RB #n in one subframe in the order of [a b c d]. In the next DRS subcarrier, the OCC is swapped and allocated in the order of [b c d a], and in the next subcarrier, it is allocated in the order of [c d a b].

본 발명의 실시예4에 의하면 일 DRS OFDM 심볼뿐만 아니라 일 RB에도 모든 OCC가 할당되게 된다. 다만, 실시예4에 의해서도, 일 DRS OFDM 심볼 및 일 RB에 의해 구성된 자원영역에 4개의 OCC를 할당할 수는 없다. 일 DRS OFDM 심볼 및 일 RB에 의해 구성된 자원영역에서는 오직 3개의 DRS RE만이 이용가능하기 때문이다. According to the fourth embodiment of the present invention, all OCCs are allocated not only to one DRS OFDM symbol but also to one RB. However, according to the fourth embodiment, four OCCs cannot be allocated to the resource region formed by one DRS OFDM symbol and one RB. This is because only three DRS REs are available in a resource region constituted by one DRS OFDM symbol and one RB.

- 실시예5Example 5

각 DRS OFDM 심볼에서 복수의 RB들에 걸쳐 OCC들이 균등하게 분포할 수 있도록, 본 발명의 실시예5는 OCC들 각 DRS OFDM 심볼 내 DRS RE들에 따라 순환하여 할당한다. 도 22를 참조하면, 일 서브프레임 내 4개의 DRS OFDM 심볼들은 DRS를 포함하고 각 OFDM 심볼에서 RB마다 3개의 DRS RE들이 이용될 수 있다. 일 OFDM 심볼 내에서 처음 할당되는 OCC인 시작 OCC는 OFDM 심볼 인덱스에 따라 변화됨으로써 일 서브프레임 내 일 DRS 부반송파 상에 모든 OCC가 위치된다.
In order to distribute the OCCs evenly over a plurality of RBs in each DRS OFDM symbol, Embodiment 5 of the present invention recursively allocates DRS REs in each DRS OFDM symbol of the OCCs. Referring to FIG. 22, four DRS OFDM symbols in one subframe include a DRS and three DRS REs may be used for each RB in each OFDM symbol. The starting OCC, which is the first allocated OCC in one OFDM symbol, is changed according to the OFDM symbol index so that all OCCs are located on one DRS subcarrier in one subframe.

<2 CDM 그룹 및 OCC=4 할당><2 CDM groups and OCC = 4 assignments>

도 23 내지 도 30은 2개의 CDM 그룹에 길이가 4인 OCC로 DRS를 다중화하는 본 발명의 실시예들을 나타낸 것이다. 2개의 CDM 그룹 각각에 길이가 4인 4개의 다중화 OCC를 할당하는 경우, 다음과 같은 실시예들이 OFDM 심볼 전력의 고른 분포를 위해 고려될 수 있다. 후술하는 실시예6 내지 실시예8은 전술한 실시예1 내지 실시예5 중 어느 하나와 결합하여 사용될 수 있다.23 to 30 illustrate embodiments of the present invention for multiplexing DRS with an OCC of length 4 in two CDM groups. When assigning four multiplexed OCCs of length 4 to each of two CDM groups, the following embodiments may be considered for even distribution of OFDM symbol power. Embodiments 6 to 8 to be described later may be used in combination with any one of the embodiments 1 to 5 described above.

- 실시예6Example 6

2개의 CDM 그룹 각각에 4개의 OCC를 할당하는 가장 간단한 방법은 1개의 CDM 그룹 내 OCC 할당 패턴을 2번째 CDM 그룹에도 반복하는 것이다. 예를 들어, 도 21 및 도 23을 참조하면, 실시예4가 CDM 그룹 1에 채택된다고 가정하면, CDM 그룹 1에 OCC들이 할당된 패턴과 마찬가지 패턴으로 OCC들이 CDM 그룹 2에 할당될 수 있다. The simplest way to assign four OCCs to each of the two CDM groups is to repeat the OCC allocation pattern in one CDM group to the second CDM group. For example, referring to FIGS. 21 and 23, assuming that Embodiment 4 is adopted in CDM group 1, OCCs may be allocated to CDM group 2 in the same pattern as that in which OCCs are assigned to CDM group 1.

한편, 인접한 2개의 DRS 부반송파들에, 실시예5에 따라 OCC를 할당하면, CDM 그룹 1 및 CDM 그룹 2에 대한 확산 OCC와 DRS 포트는, 예를 들어, 다음과 같은 대응관계를 갖는다.On the other hand, if the OCC is allocated to two adjacent DRS subcarriers according to Embodiment 5, the spreading OCC and the DRS port for the CDM group 1 and the CDM group 2 have the following correspondence, for example.

Figure 112011009495429-pat00014
Figure 112011009495429-pat00014

표 3에서 DRS 포트는 안테나 포트들 중 DRS를 전송하는 가상 안테나 포트를 나타낸다. DRS 포트들은 레이어에 일대일로 대응한다. 예를 들어, 안테나 포트 7~14은 DRS 포트 0~7에 대응될 수 있다. 표 5에서 DRS 포트 0부터 DRS 포트 7은 레이어 0부터 레이어 7에 일대일로 대응할 수 있다. 이 경우, DRS 포트별 확산 OCC는 레이어별 확산 OCC가 된다. 각 DRS 포트(혹은 각 레이어)에 대한 DRS는 [wp(0) wp(1) wp(2) wp(3)]에 의해 확장되어, 해당 CDM 그룹 상의 4개의 연속한 DRS RE마다에 맵핑된다.In Table 3, the DRS port represents a virtual antenna port for transmitting the DRS among the antenna ports. DRS ports correspond one-to-one to a layer. For example, antenna ports 7-14 may correspond to DRS ports 0-7. In Table 5, DRS port 0 to DRS port 7 may correspond one-to-one to layer 0 to layer 7. In this case, the spreading OCC for each DRS port becomes a spreading OCC for each layer. The DRS for each DRS port (or each layer) is extended by [w p (0) w p (1) w p (2) w p (3)], for every four consecutive DRS REs on that CDM group. Is mapped to.

각 CDM 그룹을 기준으로, 2개의 DRS 부반송파에서 해당 CDM 그룹에 할당된 DRS 포트 및 해당 DRS 포트에 대응하는 레이어의 확산 사용된 직교커버코드를 정리하면 다음과 같다.Based on each CDM group, the DRS port allocated to the CDM group and the spreading orthogonal cover code of the layer corresponding to the DRS port in two DRS subcarriers are summarized as follows.

Figure 112011009495429-pat00015
Figure 112011009495429-pat00015

표 4에서 wp(l')는 DRS OFDM 심볼 l'에서 일 레이어에 곱해지는 가중치를 의미한다. 일 CDM 그룹에 할당된 DRS 포트들의 가중치들로 구성된 벡터를 다중화 OCC로 볼 수 있다. 예를 들어, 표 4를 참조하면, CDM 그룹 1에 할당된 DRS 포트 0, 1, 4, 6에 대한 wp(0)와 CDM 그룹 2에 할당된 DRS 포트 2, 3, 5, 7에 대한 wp(0)는 +1, +1, +1, +1이므로, CDM 그룹 1의 시작 DRS 부반송파 내 시작 DRS OFDM에 할당된 다중화 OCC는 [+1 +1 +1 +1]인 a에 해당한다. 도 24를 참조하면, 각 CDM 그룹의 시작 DRS 부반송파 내 4개의 DRS OFDM 심볼에는 다중화 OCC가 [a b c d]의 순으로 할당된다.In Table 4, w p (l ') means a weight multiplied by one layer in the DRS OFDM symbol l'. A vector consisting of weights of DRS ports allocated to one CDM group may be viewed as a multiplexed OCC. For example, referring to Table 4, w p (0) for DRS ports 0, 1, 4, and 6 assigned to CDM group 1, and for DRS ports 2, 3, 5, and 7 assigned to CDM group 2. Since w p (0) is +1, +1, +1, +1, the multiplexed OCC assigned to the starting DRS OFDM in the starting DRS subcarrier of CDM group 1 corresponds to a of [+1 +1 +1 +1]. do. Referring to FIG. 24, multiplexed OCCs are allocated to four DRS OFDM symbols in a start DRS subcarrier of each CDM group in the order of [abcd].

- 실시예7Example 7

실시예7는 첫번째 CDM 그룹에 대한 OCC 할당 패턴을 슬롯방향(slot-wise)으로 스왑하여 두번째 CDM 그룹에 할당하되, 2개의 OCC 만큼씩 스왑하여 할당한다. 도 24(a)을 참조하면, CDM 그룹 1에는 실시예4에 따라 OCC (a, b, c, d)가 DRS 부반송파에 따라 1개의 OCC씩 스왑되면서 할당된다. CDM 그룹 2의 각 DRS 부반송파에는 CDM 그룹 1의 인접 DRS 부반송파에 할당된 OCC 패턴이 슬롯 방향으로 2개의 OCC씩만큼 스왑되어 할당된다. 실시예 7에 의하면, DRS OFDM 심볼들에 할당되는 일 CDM 그룹에 대한 시작 OCC 패턴이 [a b c d]이면, 다른 CDM 그룹에 대한 시작 OCC 패턴은 [c d a b]가 된다.Embodiment 7 swaps the OCC allocation pattern for the first CDM group in a slot-wise manner and allocates the same to the second CDM group. Referring to FIG. 24 (a), OCCs (a, b, c, d) are allocated to CDM group 1 while being swapped by one OCC according to the DRS subcarriers according to the fourth embodiment. Each DRS subcarrier of the CDM group 2 is assigned an OCC pattern allocated to an adjacent DRS subcarrier of the CDM group 1 by two OCCs in the slot direction. According to Embodiment 7, if the starting OCC pattern for one CDM group assigned to DRS OFDM symbols is [a b c d], the starting OCC pattern for another CDM group is [c d a b].

- 실시예8 Example 8

실시예8은 첫번째 CDM 그룹에 대한 OCC 할당 패턴을 슬롯방향(slot-wise)으로 스왑하여 두번째 CDM 그룹에 할당하되, 1개의 OCC 만큼씩 스왑하여 할당한다. 도 25(a)를 참조하면, CDM 그룹 1에는 실시예4에 따라 OCC (a, b, c, d)가 DRS 부반송파에 따라 1개의 OCC씩 스왑되면서 할당된다. CDM 그룹 2의 각 부반송파에는 CDM 그룹 1의 인접 DRS 부반송파에 할당된 OCC 패턴이 슬롯 방향으로 1개의 OCC씩만큼 스왑되어 할당된다. 실시예 8에 의하면, DRS OFDM 심볼들에 할당되는 일 CDM 그룹에 대한 시작 OCC 패턴이 [a b c d]이면, 다른 CDM 그룹에 대한 시작 OCC 패턴은 [d a b c]가 된다.In the eighth embodiment, the OCC allocation pattern for the first CDM group is swapped in the slot-wise manner and allocated to the second CDM group, but is allocated by swapping by one OCC. Referring to FIG. 25 (a), OCCs (a, b, c, d) are allocated to CDM group 1 while being swapped by one OCC according to the DRS subcarriers according to the fourth embodiment. Each subcarrier of CDM group 2 is allocated with an OCC pattern allocated to adjacent DRS subcarriers of CDM group 1 by one OCC in the slot direction. According to Embodiment 8, if the starting OCC pattern for one CDM group allocated to DRS OFDM symbols is [a b c d], the starting OCC pattern for another CDM group is [d a b c].

도 24(a) 및 도 25(a)에서 2개의 CDM 그룹에 할당된 OCC 패턴은 상기 2개의 CDM 그룹에서 서로 스왑될 수 있다. 도 24(b) 및 도 25(b)는, 도 24(a) 및 도 25(a)의 CDM 그룹 1의 OCC 할당 패턴과 CDM 그룹 2의 OCC 할당 패턴을 서로 스왑한 실시예들을 각각 나타낸다. 24 (a) and 25 (a), OCC patterns allocated to two CDM groups may be swapped with each other in the two CDM groups. 24 (b) and 25 (b) show embodiments in which the OCC allocation pattern of CDM group 1 and the OCC allocation pattern of CDM group 2 are swapped with each other, respectively, in FIGS. 24 (a) and 25 (a).

전술한 실시예1 내지 실시예8에서, 스크램블링 시퀀스는 모든 DRS 포트에 대해 같을 수도 있고 DRS 포트 그룹 및/또는 각 DRS 포트에 따라 다를 수도 있다. In Embodiments 1-8 described above, the scrambling sequence may be the same for all DRS ports or may be different for each DRS port group and / or for each DRS port.

실시예6 내지 실시예8에 관한 도 23 내지 도 25는, 실시예4에 따라 첫번째 CDM 그룹에 OCC가 할당된 경우(도 21에 해당)를 예로 하여, 실시예6 내지 실시예8에 따라 2개의 CDM 그룹에 OCC를 할당하는 방법을 예시한 것이다. 실시예5에 따라 첫번째 CDM 그룹에 OCC가 할당된다고 가정하면, 실시예6 내지 실시예8에 따라 2개 CDM 그룹에 할당된 OCC 패턴은, 예를 들어, 도 26 내지 도 28과 같이 나타낼 수 있다. 도 26 내지 도 28에서 도시된, CDM 그룹 1의 OCC 할당 패턴과 CDM 그룹 2의 OCC 할당 패턴은 서로 스왑될 수 있다. 23 to 25 of Embodiments 6 to 8 are examples of the case where OCC is assigned to the first CDM group according to Embodiment 4 (corresponding to FIG. 21). A method of allocating OCC to two CDM groups is illustrated. Assuming that an OCC is allocated to the first CDM group according to the fifth embodiment, the OCC patterns allocated to the two CDM groups according to the sixth to eighth embodiments may be represented, for example, as shown in FIGS. 26 to 28. . 26 to 28, the OCC allocation pattern of CDM group 1 and the OCC allocation pattern of CDM group 2 may be swapped with each other.

한편, 실시예7는 2개의 CDM 그룹에 OCC를 할당함에 있어서, 일 CDM 그룹의 일 DRS 부반송파에 [a b c d] 순으로 OCC를 할당하는 경우, 상기 DRS 부반송파에 인접한 다른 CDM 그룹의 DRS 부반송파에는 2개만큼의 OCC를 쉬프트한 [c d a b] 순으로 할당한다. 실시예8은 2개의 CDM 그룹에 OCC를 할당함에 있어서, 일 CDM 그룹의 일 DRS 부반송파에 [a b c d] 순으로 OCC를 할당하는 경우, 상기 DRS 부반송파에 인접한 다른 CDM 그룹의 DRS 부반송파에는 2개만큼의 OCC를 쉬프트한 [b c d a] 순으로 할당한다. 즉, 실시예7과 실시예8은 인접한 두 DRS 부반송파에 할당된 OCC는 소정 개수만큼의 오프셋을 갖는다. 이를 OCC 오프셋이라고 하면, 실시예6은 OCC 오프셋이 0이고, 실시예7는 OCC 오프셋이 2이며, 실시예8은 OCC 오프셋이 1이라고 할 수 있다. CDM 그룹 1에 시작 DRS 부반송파에 OCC가 [a b c d] 순으로 할당된다고 가정하고, 실시예6 내지 실시예8에 따라 OCC를 할당하는 방법을 다시 나타내면, 도 29와 같다. 도 29에서 오프셋-N은 CDM 그룹의 OCC가 서로 N개만큼 차이가 남을 의미한다. 특히, 도 29는 N이 2인 경우를 나타낸 것이다. 실시예8에 관한 도 28에서는 CDM 그룹 1의 OCC 패턴이 왼쪽으로 1개만큼의 차이를 갖도록 CDM 그룹 2에 할당된 경우가 도시된 것이다. 그러나, 도 30에 도시된 바와 같이, CDM 그룹 1의 OCC 패턴이 오른쪽으로 1개, 즉, 왼쪽으로 3개만큼의 차이를 갖도록 CDM 그룹 2에 할당될 수도 있다. OCC 오프셋이 2인 경우, 어느 쪽으로 쉬프트되더라도 같은 결과를 얻게 될 것이다.Meanwhile, in the seventh embodiment, in assigning OCCs to two CDM groups, when OCCs are assigned to one DRS subcarrier in one CDM group in [abcd] order, two embodiments are provided for DRS subcarriers in another CDM group adjacent to the DRS subcarrier. As many OCCs are allocated in order of shifted [cdab]. In the eighth embodiment, in assigning OCCs to two CDM groups, when assigning OCCs to one DRS subcarrier of one CDM group in [abcd] order, two DRS subcarriers of another CDM group adjacent to the DRS subcarrier are allocated. Assign OCC in the order of shifted [bcda]. That is, in the seventh embodiment and the eighth embodiment, OCCs allocated to two adjacent DRS subcarriers have an offset of a predetermined number. If this is called an OCC offset, the sixth embodiment may have an OCC offset of 0, the seventh embodiment may have an OCC offset of two, and the eighth embodiment may have an OCC offset of one. Assuming that OCCs are allocated to the starting DRS subcarriers in CDM group 1 in the order of [a b c d], the method of allocating OCCs according to the sixth to eighth embodiments will be described with reference to FIG. 29. In FIG. 29, offset-N means that the number of OCCs in the CDM group is left by N different from each other. In particular, FIG. 29 shows the case where N is 2. 28 shows a case where the OCC pattern of CDM group 1 is allocated to CDM group 2 such that there is one difference to the left. However, as shown in FIG. 30, the OCC patterns of CDM group 1 may be assigned to CDM group 2 such that there is one difference to the right, that is, three to the left. If the OCC offset is 2, the same result will be obtained no matter which direction is shifted.

한편, 첫번째 CDM 그룹에 대한 두번째 CDM 그룹의 OCC 오프셋은 고정된 값일 수도 있고 BS에 의해 구성된 값일 수도 있다. 또한, OCC를 더욱 고르게 분포시킬 수 있도록 주파수 위치에 따라 OCC 오프셋이 달라지도록 정의되는 것도 가능하다. 또한, OCC 오프셋이 랭크 및/또는 전송모드에 따라 달라지도록 정의되는 것도 가능하다. Meanwhile, the OCC offset of the second CDM group with respect to the first CDM group may be a fixed value or a value configured by the BS. In addition, the OCC offset may be defined according to the frequency position so that the OCC can be more evenly distributed. It is also possible that the OCC offset is defined to vary with rank and / or transmission mode.

첫번째 CDM 그룹의 일 DRS 부반송파에 할당된 OCC 패턴과 상기 DRS 부반송파에 인접한 두번째 CDM 그룹의 DRS 부반송파에 할당된 OCC 패턴이 소정 크기의 오프셋을 갖도록 할당하는 실시예는 첫번째 CDM 그룹에 OCC가 어떻게 할당되는지에 관계없이 적용될 수 있다. 즉, 실시예6 내지 실시예8에서는 첫번째 CDM 그룹에 실시예4에 따라 OCC가 할당되는 경우를 가정하고, 두 CDM 그룹 간에 소정 OCC를 갖도록 OCC를 할당하는 실시예를 설명하였으나, 실시예1 내지 실시예5에도 마찬가지의 방식으로 적용될 수 있다. An embodiment in which an OCC pattern allocated to one DRS subcarrier of the first CDM group and an OCC pattern allocated to the DRS subcarrier of the second CDM group adjacent to the DRS subcarrier have an offset of a predetermined size are described. It can be applied regardless. That is, in the sixth embodiment to the eighth embodiment, it is assumed that an OCC is allocated to the first CDM group according to the fourth embodiment, and an embodiment in which the OCC is allocated to have a predetermined OCC between two CDM groups has been described. The same applies to the fifth embodiment.

두 CDM 그룹 간에 소정 OCC 오프셋을 갖도록 OCC를 할당하는 본 발명의 실시예에 의하면, 인접한 2개의 DRS 부반송파들에 할당된 CDM 그룹 1 및 CDM 그룹 2에 대한 확산 OCC와 DRS 포트의 대응관계는, 예를 들어, 다음과 같이 표현될 수 있다. 표 5는 오프셋이 2인 경우를 예시한 것이다.According to an embodiment of the present invention in which an OCC is allocated to have a predetermined OCC offset between two CDM groups, the correspondence of the spreading OCC and the DRS port for CDM group 1 and CDM group 2 allocated to two adjacent DRS subcarriers may be, for example. For example, it can be expressed as follows. Table 5 illustrates the case where the offset is 2.

Figure 112011009495429-pat00016
Figure 112011009495429-pat00016

각 CDM 그룹을 기준으로, 2개의 DRS 부반송파에서 해당 CDM 그룹에 할당된 DRS 포트 및 해당 DRS 포트에 대응하는 레이어의 확산 사용된 직교커버코드를 다시 정리하면 다음과 같다.Based on each CDM group, the DRS port allocated to the CDM group and spreading orthogonal cover code of the layer corresponding to the DRS port in two DRS subcarriers are rearranged as follows.

표 5에서 DRS 포트 0부터 DRS 포트 7은 레이어 0부터 레이어 7에 일대일로 대응할 수 있다. 이 경우, DRS 포트별 확산 OCC는 레이어별 확산 OCC가 된다.In Table 5, DRS port 0 to DRS port 7 may correspond one-to-one to layer 0 to layer 7. In this case, the spreading OCC for each DRS port becomes a spreading OCC for each layer.

Figure 112011009495429-pat00017
Figure 112011009495429-pat00017

표 5 및 표 6에서 wp(l')는 DRS OFDM 심볼 l'에서 일 레이어에 곱해지는 가중치를 의미한다. 일 DRS 포트의 DRS는, 확산 OCC [wp(0) wp(1) wp(2) wp(3)]로 확장되어, 일 서브프레임 내 4개의 DRS OFDM 심볼에 해당한다. 한편, 일 CDM 그룹에 할당된 DRS 포트들의 가중치들로 구성된 벡터를 다중화 OCC로 볼 수 있다. 예를 들어, 표 6를 참조하면, CDM 그룹 1에 할당된 DRS 포트 0, 1, 4, 6에 대한 wp(0)는 +1, +1, +1, +1이므로, CDM 그룹 1의 시작 DRS 부반송파 내 시작 DRS OFDM에 할당된 다중화 OCC는 [+1 +1 +1 +1]인 a에 해당한다. CDM 그룹 2에 할당된 DRS 포트 2, 3, 5, 7에 대한 wp(0)는 +1, +1, -1, -1이므로, CDM 그룹 2의 시작 DRS 부반송파 내 시작 DRS OFDM에 할당된 다중화 OCC는 [+1 +1 +1 +1]인 c에 해당한다. In Tables 5 and 6, w p (l ') means a weight multiplied by one layer in the DRS OFDM symbol l'. The DRS of one DRS port is extended to a spreading OCC [w p (0) w p (1) w p (2) w p (3)], corresponding to four DRS OFDM symbols in one subframe. Meanwhile, a vector composed of weights of DRS ports allocated to one CDM group may be regarded as a multiplexed OCC. For example, referring to Table 6, w p (0) for DRS ports 0, 1, 4, 6 assigned to CDM group 1 is +1, +1, +1, +1, The multiplexed OCC allocated to the starting DRS OFDM in the starting DRS subcarrier corresponds to a, which is [+1 +1 +1 +1]. Since w p (0) for DRS ports 2, 3, 5, and 7 assigned to CDM group 2 is +1, +1, -1, -1, it is assigned to the starting DRS OFDM within the starting DRS subcarrier of CDM group 2. The multiplexed OCC corresponds to c, which is [+1 +1 +1 +1].

도 31은 2개의 CDM 그룹 간에 소정 OCC 오프셋을 갖도록 OCC를 할당하는 본 발명의 실시예에 따른 다른 예들을 나타낸 것이다. 특히, 도 31(a)는 일 CDM 그룹에 실시예1(도 18 참조)에 따라 OCC가 할당될 때, 다른 CDM 그룹에 OCC 오프셋이 2가 되도록 OCC가 할당된 경우를 예시한 것이고, 도 31(b)는 일 CMD 그룹에 실시예4(도 20(b) 참조)에 따라 OCC가 할당될 때, 다른 CDM 그룹에 OCC 오프셋이 2가 되도록 OCC가 할당된 경우를 예시한 것이다.31 shows other examples according to an embodiment of the present invention for allocating an OCC to have a predetermined OCC offset between two CDM groups. In particular, FIG. 31 (a) illustrates a case in which an OCC is allocated such that an OCC offset becomes 2 in another CDM group when the OCC is allocated to one CDM group according to Embodiment 1 (see FIG. 18), and FIG. 31. (b) illustrates the case where the OCC is allocated such that the OCC offset is 2 in the other CDM group when the OCC is allocated to the CMD group according to Embodiment 4 (see FIG. 20 (b)).

도 31(a)를 참조하면, CDM 그룹 1에 속한 각 DRS 부반송파에는 a를 시작 OCC로 하여 [a b c d]가 순서대로 할당된다. CDM 그룹 2에 속한 각 부반송파에는 CDM 그룹 1의 DRS에 할당된 OCC 패턴 [a b c d]와 오프셋이 2인 [c d a b]가 순서대로 할당된다. 이는 다음과 같이 수학식으로 표현될 수 있다.Referring to FIG. 31 (a), [a b c d] is sequentially assigned to each DRS subcarrier belonging to CDM group 1 with a as a starting OCC. Each subcarrier belonging to the CDM group 2 is assigned an OCC pattern [a b c d] allocated to the DRS of the CDM group 1 and a [c d a b] having an offset of 2 in that order. This may be expressed as an equation as follows.

Figure 112011009495429-pat00018
Figure 112011009495429-pat00018

여기서, wp(i)는 표 5와 같이 주어진다. k'=0은 CDM 그룹 1에 할당되는 DRS 포트를 나타내며, k'=1은 CDM 그룹 2에 할당되는 DRS 포트를 나타낸다. DRS 포트 0~7은 도 10 및 도 16의 안테나 포트 7~14에 해당할 수 있다.Here, w p (i) is given as in Table 5. k '= 0 indicates a DRS port assigned to CDM group 1 and k' = 1 indicates a DRS port assigned to CDM group 2. The DRS ports 0 to 7 may correspond to the antenna ports 7 to 14 of FIGS. 10 and 16.

실시예1에 따라 일 CDM 그룹에 OCC를 할당하는 경우, 일 DRS OFDM 심볼 상에는 CDM 그룹별로 오직 1가지 OCC만 할당되므로, 2개의 CDM 그룹에 대해 일 DRS OFDM 심볼 상에서 오직 2개의 OCC만 사용된다. 2개의 CDM 그룹에 대해 일 DRS OFDM 심볼 상에 모든 OCC가 존재하도록 도 31(b)와 같이 OCC가 할당될 수도 있다.When OCCs are allocated to one CDM group according to Embodiment 1, since only one OCC is allocated per CDM group on one DRS OFDM symbol, only two OCCs are used on one DRS OFDM symbol for two CDM groups. OCC may be allocated as shown in FIG. 31 (b) so that all OCCs exist on one DRS OFDM symbol for two CDM groups.

도 31(b)를 참조하면, CDM 그룹 1에 속한 일 DRS 부반송파에는 a를 시작 OCC로 하여 [a b c d]가 순서대로 할당되며, 다음 DRS 부반송파에는 [a b c d]의 역순인 [d c b a] 순으로 OCC가 할당된다. 즉, 일 DRS 부반송파에 할당된 OCC 순서와 다음 DRS 부반송파에 할당된 OCC의 순서가 역순의 관계에 있다. 한편, CDM 그룹 2에 속한 각 DRS 부반송파에는 CDM 그룹 1에 속하는 부반송파들 중 인접 DRS 부반송파에 할당된 OCC 패턴과 2만큼의 오프셋을 갖도록 OCC가 할당된다. 예를 들어, CDM 그룹 1의 DRS 부반송파에 [a b c d] 순으로 OCC가 할당되면, CDM 그룹 2의 인접 DRS 부반송파에는 [c d a b]순으로 OCC가 할당된다. CDM 그룹 1의 DRS 부반송파에 [d c b a] 순으로 OCC가 할당되면, 그와 인접한 CDM 그룹 2의 DRS 부반송파에는 [b a d c] 순으로 OCC가 할당된다. 본 실시예에 의하면, CDM 그룹 1에서는 [a b c d]와 [d c b a]가 DRS 부반송파가 바뀔 때마다 교번하고, CDM 그룹 2에서는 [c d a b]와 [b a d c]가 DRS 부반송파가 바뀔 때마다 교번한다.Referring to FIG. 31 (b), [abcd] is sequentially assigned to one DRS subcarrier belonging to CDM group 1 with a as the starting OCC, and the next DRS subcarrier is assigned to [dcba] in the reverse order of [abcd]. Is assigned. That is, the order of the OCC assigned to one DRS subcarrier and the order of the OCC assigned to the next DRS subcarrier are in the reverse order. On the other hand, each DRS subcarrier belonging to CDM group 2 is allocated an OCC to have an offset equal to 2 and an OCC pattern allocated to an adjacent DRS subcarrier among subcarriers belonging to CDM group 1. For example, if the OCC is allocated to the DRS subcarriers of CDM group 1 in the order of [a b c d], the OCC is allocated to the adjacent DRS subcarriers of the CDM group 2 in order of [c d a b]. If the OCC is allocated to the DRS subcarriers of CDM group 1 in the order of [d c b a], the OCC is allocated to the DRS subcarriers of the CDM group 2 adjacent thereto in the order of [b a d c]. According to this embodiment, in CDM group 1, [a b c d] and [d c b a] are alternated each time the DRS subcarriers are changed, and in CDM group 2, [c d a b] and [b a d c] are alternated every time the DRS subcarriers are changed.

이는 다음과 같이 수학식으로 표현될 수 있다.This may be expressed as an equation as follows.

Figure 112011009495429-pat00019
Figure 112011009495429-pat00019

여기서, wp(i)는 표 5와 같이 주어진다. k'=0은 CDM 그룹 1에 할당되는 DRS 포트를 나타내며, k'=1은 CDM 그룹 2에 할당되는 DRS 포트를 나타낸다. DRS 포트 0~7은 도 10 및 도 16의 안테나 포트 7~14에 해당할 수 있다.Here, w p (i) is given as in Table 5. k '= 0 indicates a DRS port assigned to CDM group 1 and k' = 1 indicates a DRS port assigned to CDM group 2. The DRS ports 0 to 7 may correspond to the antenna ports 7 to 14 of FIGS. 10 and 16.

실시예3-2에 따라 일 CDM 그룹에 OCC를 할당하고, 다른 그룹에는 일 CDM 그룹과 2개의 오프셋을 갖도록 OCC를 할당하면, 2개의 CDM 그룹에 대해 일 DRS OFDM 심볼 상에서 4개의 OCC가 모두 사용될 수 있다는 장점이 있다.If the OCC is allocated to one CDM group and the OCC is allocated to have one offset and two CDM groups according to the embodiment 3-2, all four OCCs are used on one DRS OFDM symbol for two CDM groups. There is an advantage that it can.

한편, CDM 그룹 간에 소정 OCC 오프셋을 갖도록 OCC가 할당되는 경우, 서로 다른 CDM 그룹에 속한 2개의 인접 DRS 부반송파에 할당될 수 있는 OCC 쌍은 2개로 제한된다. 예를 들어, 도 31을 참조하면, OCC 오프셋이 2이면, 서로 다른 CDM 그룹에 속한 2개의 인접 DRS 부반송파에 할당될 수 있는 OCC 쌍은 (a, c) 및 (b, d)뿐이다. On the other hand, when OCC is allocated to have a predetermined OCC offset between CDM groups, the number of OCC pairs that can be allocated to two adjacent DRS subcarriers belonging to different CDM groups is limited to two. For example, referring to FIG. 31, if the OCC offset is 2, only OCC pairs that can be allocated to two adjacent DRS subcarriers belonging to different CDM groups are (a, c) and (b, d).

도 32 내지 도 38은 본 발명의 실시예들에 따라, 2개의 CDM 그룹이 소정 OCC 오프셋을 갖도록 OCC가 할당될 때의 장점을 나타내기 위해 도시된 것이다.32 to 38 are diagrams illustrating the advantages of OCC being allocated such that two CDM groups have a predetermined OCC offset, in accordance with embodiments of the present invention.

8개의 DRS 포트가 8개의 레이어에 일대일로 대응하여 해당 레이어 및 DRS를 전송한다고 가정하자. 도 32와 같이 2개의 CDM 그룹에 OCC가 할당된다고 가정하자. 도 32와 같이 OCC가 맵핑되면, 모든 레이어들에 공통된 스크램블링 시퀀스가 적용되는 경우, 특정 OFDM 심볼에서 전력이 높아지거나, 소정 OFDM 심볼의 DRS 부반송파에서 DRS 신호가 상쇄되어 상기 소정 OFDM 심볼의 전력이 낮아지는 문제가 발생한다. Assume that eight DRS ports transmit corresponding layers and DRS in one-to-one correspondence to eight layers. Assume that an OCC is allocated to two CDM groups as shown in FIG. 32. When OCC is mapped as shown in FIG. 32, when a common scrambling sequence is applied to all layers, power is increased in a specific OFDM symbol, or a DRS signal is canceled in a DRS subcarrier of a predetermined OFDM symbol so that the power of the predetermined OFDM symbol is low. Losing problems occur.

레이어 m(layer m)에 대응하는 DRS 포트가 DRS 포트 m이라고 하면, 도 32와 같이 다중 OCC가 할당되는 경우, 각 레이어는 도 33(a)와 같이 확산될 수 있다. 도 33에서 si는 일 서브프레임 내 DRS OFDM 심볼 위치를 나타낸다. 일 레이어의 관점에서는 si 및 si +1, si +2, si +3가 모두 같은 값을 갖는다. 도 33에서 CDM#1은 CDM 그룹 1을 나타내고, CDM#2는 CDM 그룹 2를 나타낸다. If the DRS port corresponding to layer m is a DRS port m, when multiple OCCs are allocated as shown in FIG. 32, each layer may be spread as shown in FIG. 33 (a). In FIG. 33, s i represents the position of a DRS OFDM symbol in one subframe. In view of one layer, s i and s i +1 , s i +2 , and s i +3 all have the same value. In FIG. 33, CDM # 1 represents CDM group 1 and CDM # 2 represents CDM group 2. In FIG.

도 33을 참조하면, 해당 확산 OCC에 의해 확산된 각 레이어의 DRS는 프리코더(304)에 의해 프리코딩 행렬 W와 곱해져 송신 안테나#0 내지 안테나 #7에 대응하는 자원요소맵퍼(305)로 분배된다. 이를 수학식으로 표현하면 다음과 같다.Referring to FIG. 33, the DRS of each layer spread by the corresponding spreading OCC is multiplied by the precoding matrix W by the precoder 304 to the resource element mapper 305 corresponding to transmit antennas # 0 to # 7. Is distributed. This can be expressed as follows.

Figure 112011009495429-pat00020
Figure 112011009495429-pat00020

도 33(b)를 참조하면, 송신 안테나#0는 DRS OFDM 심볼 0에서 매우 높은 전력을 필요로 할 것이고, 송신 안테나#4는 DRS OFDM 심볼 2에서 매우 높은 전력을 필요로 함을 알 수 있다. 일 서브프레임 내 두 개의 PRB에 대해, 안테나#0에 할당된 OFDM 심볼들 사이의 전력비는 도 34와 같이 계산된다. 도 34는 데이터 RE에 할당된 전력을 1이라고 하여, 두 개의 PRB에 걸쳐 OFDM 심볼에 따라 RE당 전력을 계산한 것이다. 도 34를 참조하면, 안테나#0에서는 첫번째 DRS OFDM 심볼에서 피크 전력이 발생하고, 나머지 DRS OFDM 심볼에서는 전력이 할당되지 않아 DRS가 할당되지 않는 OFDM 심볼들에 비해 전력이 낮아짐을 알 수 있다.Referring to FIG. 33 (b), it can be seen that the transmit antenna # 0 needs very high power in the DRS OFDM symbol 0, and the transmit antenna # 4 needs very high power in the DRS OFDM symbol 2. For two PRBs in one subframe, a power ratio between OFDM symbols allocated to antenna # 0 is calculated as shown in FIG. 34. FIG. 34 shows that power allocated to data RE is 1, and power per RE is calculated according to OFDM symbols over two PRBs. Referring to FIG. 34, it can be seen that the peak power is generated in the first DRS OFDM symbol in antenna # 0, and the power is lower than the OFDM symbols in which the DRS is not allocated because power is not allocated in the remaining DRS OFDM symbols.

한편, 본 발명에 따라 두 CDM 그룹 사이에 소정 오프셋을 갖도록 OCC가 할당되는 경우, 예를 들어, 도 31(a)와 같이 OCC가 할당되는 경우, 안테나#0에서 안테나#7에 분배되는 DRS는 다음과 같이 나타낼 수 있다.Meanwhile, when the OCC is allocated to have a predetermined offset between two CDM groups according to the present invention, for example, when the OCC is allocated as shown in FIG. 31 (a), the DRS distributed from antenna # 0 to antenna # 7 is It can be expressed as:

Figure 112011009495429-pat00021
Figure 112011009495429-pat00021

수학식 7에 따라 분배된 안테나 특정 심볼들 중에서 안테나#0에 분배된 심볼들에 대한 전력을 일 서브프레임 내 2개의 RB 구간에서 나타내면 도 35과 같이 표현될 수 있다. 전력이 -3.01dB에서 3.98dB사이에서 OFDM 심볼 전력이 변화하는 도 34에 비해, 도 31(a)에 의하면, OFDM 심볼들에 따른 전력변화가 -3.01dB 에서 2.2dB로 줄어들게 됨을 알 수 있다. 수학식 7에 따라 분배된 안테나 특정 심볼들 중에서 안테나#0에 분배된 심볼들에 대한 전력을 일 서브프레임 내 1개의 RB 구간에서 나타내면 도 36과 같이 표현될 수 있다. If the powers of the symbols distributed to antenna # 0 among the antenna specific symbols distributed according to Equation 7 are represented in two RB intervals in one subframe, they may be expressed as shown in FIG. 35. Compared to FIG. 34 in which the OFDM symbol power varies from -3.01 dB to 3.98 dB, the power change according to OFDM symbols is reduced from -3.01 dB to 2.2 dB according to FIG. The power for the symbols distributed to antenna # 0 among the antenna-specific symbols distributed according to Equation 7 may be represented as shown in FIG. 36 when represented in one RB period in one subframe.

한편, 도 31(b)와 같이 OCC가 할당되면, 도 36과 같이 전력을 OFDM 심볼들에 걸쳐 더 고르게 분포시킬 수 있다.
On the other hand, if the OCC is allocated as shown in FIG. 31 (b), power can be more evenly distributed over OFDM symbols as shown in FIG. 36.

- 실시예9Example 9

한편, 위상(phase) 오프셋이 전력 불균형 해소를 위해 사용될 수도 있다. CDM 그룹 중 적어도 하나에 위상 오프셋을 적용하여 OFDM 심볼들 사이의 전력 균형화를 도모하는 본 발명의 실시예 9는 OCC 오프셋을 적용하여 전력 불균형을 해소하는 전술한 실시예들 중 어느 하나와 결합하여 사용될 수 있다. 혹은, OCC 오프셋을 적용하지 않고, 위상 오프셋만이 사용되는 것도 가능하다.On the other hand, phase offset may be used for power unbalance cancellation. Embodiment 9 of the present invention, which applies a phase offset to at least one of the CDM groups to balance power among OFDM symbols, may be used in combination with any one of the above-described embodiments of applying an OCC offset to eliminate power imbalance. Can be. Alternatively, only the phase offset may be used without applying the OCC offset.

도 37 및 도 38은 위상 오프셋을 이용한 본 발명의 실시예들을 나타낸 것이다. 37 and 38 illustrate embodiments of the present invention using phase offset.

도 37은 OCC 오프셋을 사용하지 않고, 즉, OCC 오프셋을 0으로 하고, CDM 그룹 2에만 2개의 위상 오프셋을 교번하여 적용한 예를 나타낸 것이다. 도 37(a)를 참조하면, DRS 부반송파에 따라, 두 가지 위상 오프셋 θa와 θb가 CDM 그룹 2에 다중화되는 DRS에 교번하여 곱해진다. FIG. 37 shows an example in which the OCC offset is not used, that is, the OCC offset is 0, and two phase offsets are alternately applied only to the CDM group 2. Referring to FIG. 37A, according to the DRS subcarriers, two phase offsets θ a and θ b are alternately multiplied by the DRS multiplexed on the CDM group 2.

도 38은 OCC 오프셋을 2로 하고, CDM 그룹 2에 2개의 위상 오프셋을 교번하여 적용한 예를 나타낸 것이다. 특히, 도 38은 도 31(b)와 같이 OCC가 할당되고, 두 가지 우상 오프셋 θa와 θb가 DRS 부반송파에 따라 CDM 그룹 2에 다중화되는 DRS에 교번하여 곱해진 경우를 나타낸다. 38 shows an example in which the OCC offset is set to 2 and two phase offsets are alternately applied to the CDM group 2. In particular, FIG. 38 illustrates a case in which an OCC is allocated as shown in FIG. 31 (b), and two right-sided offsets θ a and θ b are alternately multiplied by a DRS multiplexed onto CDM group 2 according to a DRS subcarrier.

예를 들어, θa와 θb가 각각 0 및 π인 경우, 도 37(b) 및 도 38(b)에서와 같이, CDM 그룹 2에 다중화되는 DRS들에는 DRS 부반송파에 따라 1과 -1이 교번하여 곱해진다.
For example, when θ a and θ b are 0 and π, respectively, as shown in FIGS. 37B and 38B, DRSs multiplexed onto CDM group 2 have 1 and −1 depending on the DRS subcarriers. Multiply alternately.

- 실시예10Example 10

위상 오프셋을 적용하되, DRS 포트에 따라 다른 위상 오프셋을 적용하는 것도 가능하다. 실시예9은 일 CDM 그룹에 할당된 모든 DRS 포트에 DRS 부반송파별로 동일한 위상 오프셋이 적용됨에 반해, 실시예10은 DRS 포트에 따라 위상 오프셋이 적용된다. 즉, 본 발명의 실시예10에 의하면, 동일 DRS 부반송파 상에서 레이어별로 다른 위상 오프셋이 곱해지게 된다. 또한, 본 발명의 실시예10은 동일 확산 OCC로 확산되는 레이어들과 해당 DRS들은 동일한 위상 오프셋을 적용한다. 참고로, 본 발명의 실시예10에서 위상 오프셋은, 소정 개수의 RB마다 동일한 OCC 패턴이 반복될 수 있도록, 상기 소정 개수와 RB당 DRS 부반송파의 곱이 2의 정수배가 되도록 정의될 수 있다. It is possible to apply a phase offset, but different phase offsets depending on the DRS port. In the ninth embodiment, the same phase offset is applied to each DRS subcarrier to all the DRS ports assigned to one CDM group, whereas in the tenth embodiment, the phase offset is applied according to the DRS port. That is, according to the tenth embodiment of the present invention, different phase offsets are multiplied for each layer on the same DRS subcarrier. In addition, Embodiment 10 of the present invention applies the same phase offset to layers and corresponding DRSs that are spread by the same diffusion OCC. For reference, in Embodiment 10 of the present invention, the phase offset may be defined such that the product of the predetermined number and the DRS subcarriers per RB is an integer multiple of 2 so that the same OCC pattern may be repeated for each predetermined number of RBs.

도 39는 DRS 포트별 DRS 부반송파에 따른 위상 오프셋을 예시한 것이다. 특히, 도 39는 각 DRS 포트의 레이어 및 DRS는 표 3에 따른 확산 OCC에 의해 확산되는 경우를 예시한 것이다. 도 39에서 부반송파 0, 5, 10은 일 RB에 속한 부반송파들의 논리 인덱스로서, DRS 부반송파 0, 1, 2에 대응한다. 39 illustrates a phase offset according to DRS subcarriers for each DRS port. In particular, FIG. 39 illustrates a case in which a layer and a DRS of each DRS port are spread by a spreading OCC according to Table 3. In FIG. 39, subcarriers 0, 5, and 10 are logical indexes of subcarriers belonging to one RB and correspond to DRS subcarriers 0, 1, and 2. FIG.

도 39를 참조하면, DRS 포트 0 및 2에 해당하는 레이어와 DRS에는 CDM 그룹에 관계없이 동일한 패턴으로 위상 오프셋이 적용되고, DRS 포트 1 및 3에 해당하는 레이어와 DRS에는 CDM 그룹에 관계없이 동일한 패턴으로 위상 오프셋이 적용되고, DRS 포트 4 및 5에 해당하는 레이어와 DRS에는 CDM 그룹에 관계없이 동일한 패턴으로 위상 오프셋이 적용되고, DRS 포트 6 및 7에 해당하는 레이어와 DRS에는 CDM 그룹에 관계없이 동일한 패턴으로 위상 오프셋이 적용된다. 도 39(a)를 참조하면, 각 DRS 포트에 대해, DRS 부반송파들 사이의 위상 오프셋은 0이며, 도 39(b)를 참조하면, 각 DRS 포트에 대해, DRS 부반송파들 사이의 위상 오프셋은 π이다. 도 39(c) 및 도 39(d)에서 ω는 ej (π/3)로, 도 39(c)의 경우에는 각 DRS 포트에 대해 DRS 부반송파들 사이의 위상 오프셋은 π/3이고, 도 39(d)의 경우에는 각 DRS 포트에 대해 DRS 부반송파들 사이의 위상 오프셋이 -π/3이다.Referring to FIG. 39, a phase offset is applied to a layer corresponding to DRS ports 0 and 2 and a DRS in the same pattern regardless of a CDM group, and a layer corresponding to DRS ports 1 and 3 and a DRS is identical to a layer regardless of a CDM group. The phase offset is applied to the pattern, the layer corresponding to DRS ports 4 and 5, and the DRS is applied to the phase with the same pattern regardless of the CDM group, and the layer corresponding to the DRS ports 6 and 7 and the CDM group to the DRS. The phase offset is applied in the same pattern without. Referring to FIG. 39 (a), for each DRS port, the phase offset between the DRS subcarriers is 0. Referring to FIG. 39 (b), for each DRS port, the phase offset between the DRS subcarriers is π. to be. 39 (c) and 39 (d), ω is e j (π / 3) , and in the case of FIG. 39 (c), the phase offset between the DRS subcarriers is π / 3 for each DRS port. In the case of 39 (d), the phase offset between the DRS subcarriers is −π / 3 for each DRS port.

도 40 내지 도 42는 본 발명의 실시예들에 따라, DRS 부반송파에 따라 레이어별로 위상 오프셋이 적용될 때의 장점을 나타내기 위해 도시된 것이다.40 to 42 illustrate the advantages of applying a phase offset for each layer according to a DRS subcarrier according to embodiments of the present invention.

도 40은 CDM 그룹 사이에 OCC 오프셋을 적용하지 않고, 레이어별 위상 오프셋을 적용한 경우, 일 서브프레임 내 2개의 RB 구간에서 안테나#0에 분배된 DRS 신호를 나타낸 것이다. 도 40에서, 각 레이어에는 도 39에서 예시된 DRS 부반송파에 따른 위상 오프셋이 사용되었고, 프리코딩 행렬은 도 34에 예시된 프리코딩 행렬과 동일한 행렬이 사용되었다.FIG. 40 illustrates a DRS signal distributed to antenna # 0 in two RB sections in one subframe when the layer-based phase offset is applied without applying the OCC offset between CDM groups. In FIG. 40, the phase offset according to the DRS subcarrier illustrated in FIG. 39 is used for each layer, and the same matrix as the precoding matrix illustrated in FIG. 34 is used for the precoding matrix.

도 41을 참조하면, 레이어별로 DRS 부반송파에 따라 위상 오프셋을 적용하면, 2개의 RB 구간에 걸쳐서는 OFDM 심볼들에 걸쳐 고른 전력 분포를 획득할 수 있다. 다만, 본 실시예에 의하면, DRS 부반송파에 따라 위상 오프셋이 변동하여야 함은 물론, 레이어별로도 다른 오프셋을 적용하여야 하므로, 복수의 레이어를 다중화하는 과정이 복잡해진다는 단점이 있다. 즉, 본 실시예는, CDM 그룹 사이의 OCC 오프셋을 이용한 전력 균형화에 관한 실시예들에 비해, 송신장치와 수신장치 모두에서 더 높은 성능을 갖는 프로세서(400a, 400b)를 필요로 한다.Referring to FIG. 41, if a phase offset is applied according to a DRS subcarrier for each layer, an even power distribution may be obtained over OFDM symbols over two RB intervals. However, according to the present embodiment, the phase offset must be varied according to the DRS subcarrier, and different offsets must be applied for each layer, and thus, a process of multiplexing a plurality of layers is complicated. In other words, the present embodiment requires processors 400a and 400b having higher performance in both the transmitter and the receiver, as compared to embodiments regarding power balancing using OCC offsets between CDM groups.

한편, 도 41에서 알 수 있듯이, 짝수개의 RB 구간에 걸쳐서는 OFDM 심볼들에 걸쳐 고른 전력 분포를 획득할 수 있다. 그러나, 홀수 개의 RB 구간에 걸쳐서는 도 42에서 알 수 있듯이 전력 불균형이 여전히 존재하게 된다. 홀수 개의 RB에 대해서는 위상 오프셋만으로는 완벽 전력 균형을 얻을 수 없다.On the other hand, as shown in Figure 41, even power distribution can be obtained over the OFDM symbols over an even number of RB intervals. However, power odds still exist over odd RB intervals as shown in FIG. For an odd number of RBs, phase offset alone does not provide perfect power balance.

도 43은 본 발명의 실시예들에 따라, 2개의 CDM 그룹이 소정 OCC 오프셋을 갖도록 OCC가 할당되고, DRS 부반송파에 따라 레이어별로 위상 오프셋이 적용될 때의 장점을 나타내기 위해 도시된 것이다.FIG. 43 is a diagram for illustrating an advantage when an OCC is allocated such that two CDM groups have a predetermined OCC offset, and a phase offset is applied for each layer according to a DRS subcarrier according to embodiments of the present invention.

도 43에서 알 수 있듯이, OCC 오프셋과 위상 오프셋을 함께 적용하면, 홀 수 RB에 대해서도, 보다 고른 전력 분포를 얻을 수 있다.As can be seen in FIG. 43, when the OCC offset and the phase offset are applied together, even power distribution can be obtained even for the odd RB.

본 발명의 BS는 전술한 실시예들 중 어느 하나에 따라 할당된 OCC를 기반으로, 각 레이어의 DRS를 해당 확산 OCC로 확산할 수 있다. 상기 BS는 확산된 DRS를 소정 프리코딩 행렬을 사용하여 프리코딩함으로써, 안테나 특정 심볼로서 출력한다. 예를 들어, 도 33을 참조하면, BS는 레이어0 내지 레이어8의 일부 또는 전부를 해당 왈쉬 코드로 확산하고, 프리코딩 행렬 W로 프리코딩 함으로써 전송 안테나#0 내지 안테나#7 중 일부 또는 전부로 분배할 수 있다. 상기 분배된 신호는 OFDM 신호로 변환되어, 상기 BS의 커버리지 내 UE(들)에 전송된다. The BS of the present invention may spread the DRS of each layer to the corresponding spreading OCC based on the allocated OCC according to any one of the above embodiments. The BS outputs the spread DRS as an antenna specific symbol by precoding the spread DRS using a predetermined precoding matrix. For example, referring to FIG. 33, the BS spreads some or all of layers 0 through 8 to a corresponding Walsh code, and precodes the precoding matrix W to some or all of transmit antennas # 0 to # 7. Can be distributed. The distributed signal is converted into an OFDM signal and transmitted to the UE (s) in coverage of the BS.

본 발명에 따른 BS 프로세서(400b)는 소정 서브프레임에 하나 이상의 레이어를 할당할 수 있다. 이 경우, 상기 BS 프로세서(400b)는 각 레이어의 복조를 위한 DRS를 상기 소정 서브프레임에 할당할 수 있다. BS 송신기(100b)는 상기 BS 프로세서(400b)의 제어 하에 상기 할당된 레이어를 해당 DRS와 함께 전송한다. BS processor 400b according to the present invention may allocate one or more layers to a given subframe. In this case, the BS processor 400b may allocate a DRS for demodulation of each layer to the predetermined subframe. The BS transmitter 100b transmits the allocated layer together with the corresponding DRS under the control of the BS processor 400b.

본 발명에 따른 BS 프로세서(400b)는 전술한 실시예들 중 어느 하나에 따라 DRS를 하나 이상의 CDM 그룹을 통해 전송하도록 상기 BS 송신기(100b)를 제어할 수 있다. 이를 위해, 본 발명에 따른 BS 프로세서(400b)는 전술한 실시예들 중 어느 하나에 따라 확산 OCC를 각 레이어에 할당하도록 구성될 수 있다. 상기 BS 프로세서(400b)는 함께 전송할 레이어(들)의 해당 DRS(들)을 대응하는 확산 OCC로 확산하고, 상기 확산된 DRS를 해당 CDM 그룹에 할당하도록 BS 송신기(100b)를 제어한다. 상기 BS 송신기(100b)는, 상기 BS 프로세서(400b)의 제어하에, 확산된 DRS를 해당 CDM 그룹을 통해 전송할 수 있다. 자원요소맵퍼(305)는, 상기 BS 프로세서(400b)의 제어하에, 상기 확산된 DRS 시퀀스의 각 부분을 상기 해당 CDM 그룹 내 DRS RE에 맵핑한다.The BS processor 400b according to the present invention may control the BS transmitter 100b to transmit the DRS through one or more CDM groups according to any one of the above-described embodiments. To this end, the BS processor 400b according to the present invention may be configured to allocate a spreading OCC to each layer according to any one of the above-described embodiments. The BS processor 400b controls the BS transmitter 100b to spread the corresponding DRS (s) of the layer (s) to be transmitted together to the corresponding spreading OCC, and assign the spread DRS to the corresponding CDM group. The BS transmitter 100b may transmit the spread DRS through the corresponding CDM group under the control of the BS processor 400b. The resource element mapper 305 maps each part of the spread DRS sequence to a DRS RE in the corresponding CDM group under the control of the BS processor 400b.

즉, 본 발명에 따른 BS 프로세서(400b)는 전술한 실시예들 중 어느 하나에 따라 다중화 OCC를 하나 이상의 CDM 그룹에 할당할 수 있다. 상기 BS 송신기(400b)는, 상기 BS 프로세서(400b)의 제어 하에, 복수의 DRS를 상기 하나 이상의 CDM 그룹에 다중화할 수 있다. 일 DRS RE에 복수의 DRS를 다중화함에 있어서, 상기 BS 프로세서(400b)는 상기 DRS RE에 할당된 다중화 OCC를 이용하여 상기 복수의 DRS를 다중화한다. 상기 BS 송신기(400b)는 상기 DRS RE를 통해 상기 다중화된 DRS를 전송한다. That is, the BS processor 400b according to the present invention may allocate the multiplexed OCC to one or more CDM groups according to any one of the above-described embodiments. The BS transmitter 400b may multiplex a plurality of DRSs into the one or more CDM groups under the control of the BS processor 400b. In multiplexing a plurality of DRSs in one DRS RE, the BS processor 400b multiplexes the plurality of DRSs using a multiplexed OCC allocated to the DRS RE. The BS transmitter 400b transmits the multiplexed DRS through the DRS RE.

상기 BS 프로세서(400b)의 제어 하에, 상기 BS 송신기(100b)는 각 레이어의 DRS를 확산하는 한편, 확산된 DRS의 각 요소를 DRS RE에 하나씩 맵핑하고, 상기 확산된 DRS를 해당 DRS RE(들)에서 전송할 수 있다. 자원요소맵퍼(305)에 의해, 일 서브프레임에 맵핑된 레이어(들) 및 해당 DRS(들)은, OFDM/SC-FDM 신호 생성기(306)에 의해 OFDM 신호로 변환되어 상기 BS의 커버리지 내 UE(들)에 전송된다.Under the control of the BS processor 400b, the BS transmitter 100b spreads the DRS of each layer, maps each element of the spread DRS to one DRS RE, and maps the spread DRS to corresponding DRS RE (s). ) Can be sent. The layer element (s) and corresponding DRS (s) mapped to one subframe by the resource element mapper 305 are converted into an OFDM signal by the OFDM / SC-FDM signal generator 306 to be a UE in coverage of the BS. Is sent to (s).

UE는 상기 BS로부터 OFDM 신호를 수신하고, 상기 OFDM 신호를 안테나 특정 심볼로 복원한다. 상기 UE는 상기 복원된 안테나 특정 심볼을 상기 BS에서 사용된 상기 프리코딩 행렬 W를 이용하여 하나 이상의 레이어 신호로 복원된다. 상기 프리코딩 행렬 W는 UE와 BS 사이에 미리 정해진 것일 수도 있고, UE 또는 BS가 적절한 W를 선정하고 BS 또는 UE로 시그널링함으로써 정해지는 것일 수도 있다. The UE receives an OFDM signal from the BS and restores the OFDM signal to an antenna specific symbol. The UE reconstructs the recovered antenna specific symbol into one or more layer signals using the precoding matrix W used in the BS. The precoding matrix W may be predetermined between the UE and the BS, or may be determined by the UE or BS selecting an appropriate W and signaling to the BS or the UE.

상기 UE는 복원된 레이어 신호 중에서 상기 UE를 위한 레이어 및/또는 DRS를 검출할 수 있다. 예를 들어, 도 33을 참조하면, UE는 수신한 OFDM 신호를 안테나 특정 심볼로 복원함으로써 도 33(b)와 같이 소정 DRS RE별 신호로 복원할 수 있다. 상기 UE는 상기 복원된 신호를 프리코딩 행렬 W를 이용하여 하나 이상의 레이어 신호로 복원한다. BS가 다수의 레이어를 전송한 경우, DRS RE에는 다수의 DRS가 다중화된 형태로 존재한다. 상기 UE는 상기 다중화된 신호에 상기 UE에 대한 레이어들의 확산에 이용된 확산 OCC를 곱함으로써 해당 레이어 신호의 정수배에 해당하는 값을 얻을 수 있다. The UE may detect a layer and / or DRS for the UE among the reconstructed layer signals. For example, referring to FIG. 33, the UE may restore the received OFDM signal to a specific DRS RE signal as shown in FIG. 33B by restoring the received OFDM signal to an antenna specific symbol. The UE reconstructs the recovered signal into one or more layer signals using a precoding matrix W. When the BS transmits a plurality of layers, a plurality of DRSs exist in a multiplexed form in the DRS RE. The UE may obtain a value corresponding to an integer multiple of the corresponding layer signal by multiplying the multiplexed signal by a spreading OCC used for spreading of layers for the UE.

예를 들어, 도 33(a)를 참조하면, CDM 그룹 1(CDM#1)의 일 DRS 부반송파에서, 레이어 0 및 레이어 1, 레이어 4, 레이어 6의 확산 DRS를 4개의 DRS OFDM 심볼에 걸쳐 수신하였다고 가정하자. DRS i를 레이어 i를 위한 참조신호라고 가정하면, UE는 CDM 그룹 1을 통해 수신한 신호는 (DRS 0)×[+1 +1 +1 +1]+(DRS 1)×[+1 -1 +1 -1]+(DRS 4)×[+1 +1 -1 -1]+(DRS 6)×[+1 -1 -1 +1]와 연관된 신호가 될 것이다. 상기 UE에 전송된 레이어가 레이어 1이면, 상기 UE는 레이어 1의 다중화에 사용된 확산 OCC인 [+1 -1 +1 -1]T을 상기 신호에 곱하여 DRS 1을 추출할 수 있다. 상기 UE는 상기 UE를 위한 레이어별 DRS를 이용하여 해당 레이어를 복조할 수 있다.For example, referring to FIG. 33 (a), in one DRS subcarrier of CDM group 1 (CDM # 1), spread DRSs of layer 0 and layer 1, layer 4, and layer 6 are received over four DRS OFDM symbols. Suppose you did. Assuming that DRS i is a reference signal for layer i, the UE receives signals through CDM group 1 such that (DRS 0) × [+1 +1 +1 +1] + (DRS 1) × [+1 −1 +1 -1] + (DRS 4) x [+1 +1 -1 -1] + (DRS 6) x [+1 -1 -1 +1]. If the layer transmitted to the UE is layer 1, the UE may extract DRS 1 by multiplying the signal by [+1 -1 +1 -1] T which is a spreading OCC used for multiplexing of layer 1. The UE may demodulate a corresponding layer by using layer-specific DRS for the UE.

본 발명에 따른 UE 수신기(300a)는 BS로부터 하나 이상의 레이어를 수신할 수 있다. 또한, 상기 UE 수신기(300a)는, 전술한 본 발명 실시예들 중 어느 하나에 따라 하나 이상의 CDM 그룹에 다중화되어 상기 UE로 전송되는, 하나 이상의 DRS를 상기 BS로부터 수신할 수 있다. UE 프로세서(400a)는 상기 UE가 수신한 OFDM 신호를 기저대역 신호로 복원하도록 상기 UE 수신기(300a)를 제어한다. 상기 UE 프로세서(400a)의 제어 하에, 상기 UE 수신기(300a)는 자원요소들로부터 상기 기저대역 신호를 디맵핑하여 안테나 특정 심볼들을 생성한다. 상기 UE 프로세서(400a)의 제어 하에, 상기 UE 수신기(300a)는 상기 BS가 프리코딩에 사용한 프리코딩 행렬을 사용하여 상기 안테나 특정 심볼들을 상기 BS가 전송한 상기 하나 이상의 레이어로 복원한다. 상기 하나 이상의 레이어 중 상기 UE를 위해 전송된 레이어를 복조하기 위하여, 상기 UE 프로세서(400a)의 제어 하에, 상기 UE 수신기(300a)는 상기 레이어에 대응하는 확산 OCC를 이용하여 상기 레이어의 DRS를 검출한다. 이때, 상기 레이어를 검출에 사용되는 상기 확산 OCC는 전술한 본 발명의 일 실시예에 따라 정해진다. 상기 UE 프로세서(400a)는 상기 검출된 DRS를 이용하여 상기 레이어를 복조하도록 상기 UE 수신기(300a)를 제어할 수 있다. The UE receiver 300a according to the present invention may receive one or more layers from the BS. In addition, the UE receiver 300a may receive one or more DRS from the BS, multiplexed in one or more CDM groups and transmitted to the UE according to any one of the above-described embodiments of the present invention. The UE processor 400a controls the UE receiver 300a to restore the OFDM signal received by the UE to a baseband signal. Under the control of the UE processor 400a, the UE receiver 300a demaps the baseband signal from resource elements to generate antenna specific symbols. Under the control of the UE processor 400a, the UE receiver 300a reconstructs the antenna specific symbols into the one or more layers transmitted by the BS using the precoding matrix used by the BS for precoding. In order to demodulate one of the one or more layers transmitted for the UE, under the control of the UE processor 400a, the UE receiver 300a detects the DRS of the layer using a spreading OCC corresponding to the layer. do. In this case, the diffusion OCC used to detect the layer is determined according to the embodiment of the present invention described above. The UE processor 400a may control the UE receiver 300a to demodulate the layer using the detected DRS.

전술한 실시예들에서는 길이가 4인 OCC를 2개의 CDM 그룹에 다중화하는 방법을 예로 하여 본 발명을 설명하였으나, 본 발명의 실시예들은 다른 길이의 OCC를 다른 개수의 CDM 그룹에 다중화하는 경우에도 마찬가지로 적용될 수 있다. 예를 들어, 4보다 긴 OCC를 1개 또는 2개의 CDM 그룹에 다중화하는 경우, 또는 4보다 긴 OCC를 3개 이상의 CDM 그룹에 다중화하는 경우에도, 본 발명의 실시예들을 적용함으로써, OFDM 심볼들 간 전력 균형화를 도모할 수 있다. In the above-described embodiments, the present invention has been described by taking a method of multiplexing an OCC having a length of 4 into two CDM groups as an example. However, embodiments of the present invention may be used even when multiplexing OCCs having different lengths into multiple CDM groups It can be applied as well. For example, even when multiplexing OCCs longer than 4 into one or two CDM groups, or multiplexing OCCs longer than 4 into three or more CDM groups, by applying embodiments of the present invention, OFDM symbols Power balance can be achieved.

상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The foregoing description of the preferred embodiments of the invention disclosed herein has been presented to enable any person skilled in the art to make and use the present invention. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Accordingly, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

본 발명의 실시예들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

100a, 100b: 송신기 200a, 200b: 메모리
300a, 300b: 수신기 400a, 400b: 프로세서
500a, 500b: 안테나
301: 스크램블러 302: 변조맵퍼
303: 레이어맵퍼 304: 프리코더
305: 자원요소맵퍼 306: OFDM/SC-FDM 신호 생성기
100a, 100b: transmitter 200a, 200b: memory
300a, 300b: receiver 400a, 400b: processor
500a, 500b: antenna
301: scrambler 302: modulation mapper
303: layer mapper 304: precoder
305: resource element mapper 306: OFDM / SC-FDM signal generator

Claims (16)

무선 통신 시스템에서 기지국이 사용자기기에 복수의 참조신호(RS)를 전송하는 방법에 있어서,
상기 복수의 RS를 확산 직교 시퀀스들을 이용하여 확산하는 단계; 및
상기 복수의 RS를 2개의 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 전송하는 단계를 포함하되,
상기 복수의 RS 중 상기 제1 CDM 그룹에서 전송되는 RS는 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나에 따라 확산되어 상기 제1 CDM 그룹에 속한 부반송파를 통해 전송되고
Figure 112012068576919-pat00022
,
상기 복수의 RS 중 상기 제2 CDM 그룹에서 전송되는 RS는 다음 표와 같이 정의된 확산 직교 시퀀스들 중 어느 하나에 따라 확산되어 상기 제2 CDM 그룹에 속한 부반송파를 통해 전송되는
Figure 112012068576919-pat00023
,
참조신호 전송방법.
In the method of transmitting a plurality of reference signals (RS) to the user equipment in the base station in a wireless communication system,
Spreading the plurality of RSs using spreading orthogonal sequences; And
Transmitting the plurality of RSs through at least one of a first CDM group and a second CDM group, which are two Code Division Multiplexing (CDM) groups,
RS transmitted in the first CDM group among the plurality of RSs is spread according to one of spreading orthogonal sequences defined as shown in the following table and transmitted through subcarriers belonging to the first CDM group.
Figure 112012068576919-pat00022
,
The RS transmitted in the second CDM group among the plurality of RSs is spread according to any one of spreading orthogonal sequences defined as shown in the following table and transmitted through subcarriers belonging to the second CDM group.
Figure 112012068576919-pat00023
,
Reference signal transmission method.
제1항에 있어서,
상기 복수의 RS는 다음 표에 따라 확산되어 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나를 통해 전송되며,
Figure 112012068576919-pat00024
,
여기서, RS 0 ~ RS 7은 사용자기기-특정 RS의 전송을 위한 8개의 안테나 포트에 일대일로 대응하는,
참조신호 전송방법.
The method of claim 1,
The plurality of RSs are spread according to the following table and transmitted through at least one of the first CDM group and the second CDM group,
Figure 112012068576919-pat00024
,
Here, RS 0 to RS 7 correspond one-to-one to eight antenna ports for transmission of user equipment-specific RS,
Reference signal transmission method.
제1항 또는 제2항에 있어서,
상기 복수의 RS는 다음과 같이 정의된 다중화 직교 시퀀스 a 및 b, c, d에 의해
Figure 112012068576919-pat00025
,
상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나에서 다중화되어 전송되되,
RS 0 및 RS 1, RS 4, RS 6는 다음식
Figure 112012068576919-pat00026
,
을 사용하여 상기 제1 CDM 그룹에 다중화되고, RS 2 및 RS 3, RS 5, RS 7은 다음식
Figure 112012068576919-pat00027

을 사용하여 상기 제2 CDM 그룹에 다중화되는,참조신호 전송방법.
The method according to claim 1 or 2,
The plurality of RSs are represented by multiplexed orthogonal sequences a and b, c, and d defined as follows.
Figure 112012068576919-pat00025
,
Are multiplexed and transmitted in at least one of the first CDM group and the second CDM group,
RS 0 and RS 1, RS 4, RS 6 are
Figure 112012068576919-pat00026
,
Multiplexed to the first CDM group by using RS 2 and RS 3, RS 5, RS 7
Figure 112012068576919-pat00027

Multiplexed into the second CDM group by using.
제3항에 있어서,
상기 복수의 RS는 (a, c) 또는 (b, d)의 다중화 직교 시퀀스 쌍 중 하나에 의해 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹에 각각 속하는 인접한 2개의 부반송파에 다중화되는,
참조신호 전송방법.
The method of claim 3,
Wherein the plurality of RSs are multiplexed onto two adjacent subcarriers belonging to the first CDM group and the second CDM group, respectively, by one of the multiplexed orthogonal sequence pairs of (a, c) or (b, d),
Reference signal transmission method.
무선 통신 시스템에서 사용자기기가 기지국으로부터 복수의 참조신호(RS)를 수신하는 방법에 있어서,
상기 기지국으로부터 상기 복수의 RS를 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 수신하는 단계; 및
상기 복수의 RS로부터 상기 사용자기기를 위한 제1 RS를 상기 사용자기기의 RS의 확산에 사용된 제1 확산 직교 시퀀스를 이용하여 검출하는 단계를 포함하되,
상기 제1 확산 직교 시퀀스는, 상기 제1 RS가 상기 제1 CDM 그룹을 통해 수신되는 경우, 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나이고
Figure 112012068576919-pat00028
,
상기 제1 RS가 상기 제2 CDM 그룹을 통해 수신되는 경우, 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나인
Figure 112012068576919-pat00029
,
참조신호 수신방법.
In the wireless communication system, a user equipment receives a plurality of reference signals (RS) from a base station,
Receiving the plurality of RSs from the base station through at least one of a first CDM group and a second CDM group, which are Code Division Multiplexing (CDM) groups; And
Detecting a first RS for the user equipment from the plurality of RSs using a first spreading orthogonal sequence used for spreading the RS of the user equipment;
The first spreading orthogonal sequence is any one of spreading orthogonal sequences defined as shown in the following table when the first RS is received through the first CDM group.
Figure 112012068576919-pat00028
,
When the first RS is received through the second CDM group, it is any one of spreading orthogonal sequences defined as shown in the following table.
Figure 112012068576919-pat00029
,
Receiving reference signal.
제5항에 있어서,
상기 사용자기기는 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나를 통해 수신한 상기 복수의 RS를 다음 표에 따라 검출하며
Figure 112012068576919-pat00030
,
여기서, RS 0 ~ RS 7은 사용자기기-특정 참조신호의 전송을 위한 8개의 안테나 포트에 일대일로 대응하는,
참조신호 수신방법.
The method of claim 5,
The user equipment detects the plurality of RSs received through at least one of the first CDM group and the second CDM group according to the following table.
Figure 112012068576919-pat00030
,
Here, RS 0 to RS 7 correspond one-to-one to eight antenna ports for transmitting user equipment-specific reference signals.
Receiving reference signal.
제5항 또는 제6항에 있어서,
상기 복수의 RS는 다음과 같이 정의된 다중화 직교 시퀀스 a 및 b, c, d에 의해
Figure 112011009495429-pat00031
,
상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나에서 다중화된 채로 상기 사용자기기에 의해 수신되며,
RS 0 및 RS 1, RS 4, RS 6는 다음식
Figure 112011009495429-pat00032
,
을 사용하여 상기 제1 CDM 그룹에 다중화되어 있고, RS 2 및 RS 3, RS 5, RS 7은 다음식
Figure 112011009495429-pat00033

을 사용하여 상기 제2 CDM 그룹에 다중화되어 있는,
참조신호 수신방법.
The method according to claim 5 or 6,
The plurality of RSs are represented by multiplexed orthogonal sequences a and b, c, and d defined as follows.
Figure 112011009495429-pat00031
,
Received by the user equipment multiplexed in at least one of the first CDM group and the second CDM group,
RS 0 and RS 1, RS 4, RS 6 are
Figure 112011009495429-pat00032
,
Multiplexed to the first CDM group by using, RS 2 and RS 3, RS 5, RS 7 is
Figure 112011009495429-pat00033

Multiplexed to the second CDM group using
Receiving reference signal.
제7항에 있어서,
상기 복수의 RS는 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹에 각각 속하는 인접한 2개의 부반송파에 (a, c) 또는 (b, d)의 다중화 직교 시퀀스 쌍 중 하나로 다중화되어 있는,
참조신호 수신방법.
The method of claim 7, wherein
Wherein the plurality of RSs are multiplexed with one of multiplexed orthogonal sequence pairs of (a, c) or (b, d) to two adjacent subcarriers belonging to the first CDM group and the second CDM group, respectively;
Receiving reference signal.
무선 통신 시스템에서 기지국이 사용자기기에 복수의 참조신호(RS)를 전송함에 있어서,
송신기; 및
상기 송신기를 제어하도록 구성된 프로세서를 포함하되,
상기 프로세서는, 상기 복수의 RS를 확산 직교 시퀀스들을 이용하여 확산하고 상기 복수의 RS를 2개의 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 전송하도록, 상기 송신기를 제어하되,
상기 프로세서는 상기 복수의 RS 중 상기 제1 CDM 그룹에서 전송되는 RS를 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나에 따라 확산하고, 상기 송신기를 제어하여 상기 확산된 RS를 상기 제1 CDM 그룹에 속한 부반송파를 통해 전송하도록 구성된
Figure 112012068576919-pat00034
,
상기 복수의 RS 중 상기 제2 CDM 그룹에서 전송되는 RS를 다음 표와 같이 정의된 확산 직교 시퀀스들 중 어느 하나에 따라 확산하고, 상기 송신기를 제어하여 상기 제2 CDM 그룹에 속한 일 부반송파를 통해 전송하도록 구성된
Figure 112012068576919-pat00035
,
기지국.
In the base station transmits a plurality of reference signals (RS) to the user equipment in a wireless communication system,
transmitter; And
A processor configured to control the transmitter;
The processor is configured to spread the plurality of RSs using spreading orthogonal sequences and to distribute the plurality of RSs through at least one of a first CDM group and a second CDM group, which are two Code Division Multiplexing (CDM) groups. Control the transmitter to transmit,
The processor spreads the RS transmitted from the first CDM group among the plurality of RSs according to any one of a spreading orthogonal sequence defined as shown in the following table, and controls the transmitter to spread the spread RS to the first CDM group. Configured to transmit on subcarriers belonging to
Figure 112012068576919-pat00034
,
The RS transmitted from the second CDM group among the plurality of RSs is spread according to one of spreading orthogonal sequences defined as shown in the following table, and the transmitter is controlled and transmitted through a subcarrier belonging to the second CDM group. Configured to
Figure 112012068576919-pat00035
,
Base station.
제9항에 있어서,
상기 프로세서는, 상기 복수의 RS를 다음 표에 따라 확산하고, 상기 송신기를 제어하여 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나를 통해 전송하도록 구성된
Figure 112012068576919-pat00036
,
여기서, RS 0 ~ RS 7은 사용자기기-특정 참조신호의 전송을 위한 8개의 안테나 포트에 일대일로 대응하는,
기지국.
10. The method of claim 9,
The processor is configured to spread the plurality of RSs according to the following table, and to control the transmitter to transmit through at least one of the first CDM group and the second CDM group.
Figure 112012068576919-pat00036
,
Here, RS 0 to RS 7 correspond one-to-one to eight antenna ports for transmitting user equipment-specific reference signals.
Base station.
제9항 또는 제10항에 있어서,
상기 프로세서는, 다음과 같이 정의된 다중화 직교 시퀀스 a 및 b, c, d를 사용하여
Figure 112012068576919-pat00037
,
상기 복수의 RS를 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나에 다중화하되,
RS 0 및 RS 1, RS 4, RS 6는 다음식
Figure 112012068576919-pat00038
,
에 의해, 상기 제1 CDM 그룹에 다중화하고, RS 2 및 RS 3, RS 5, RS 7은 다음식
Figure 112012068576919-pat00039

에 의해, 상기 제2 CDM 그룹에 다중화하도록 구성된,
기지국
11. The method according to claim 9 or 10,
The processor uses multiplexed orthogonal sequences a and b, c, d defined as
Figure 112012068576919-pat00037
,
Multiplexing the plurality of RSs into at least one of the first CDM group and the second CDM group;
RS 0 and RS 1, RS 4, RS 6 are
Figure 112012068576919-pat00038
,
By multiplexing to the first CDM group, and RS 2 and RS 3, RS 5, RS 7
Figure 112012068576919-pat00039

Configured to multiplex to the second CDM group by
Base station
제11항에 있어서,
상기 프로세서는, 상기 복수의 RS를 (a, c) 또는 (b, d)의 다중화 직교 시퀀스 쌍 중 하나에 의해 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹에 각각 속하는 인접한 2개의 부반송파에 다중화하도록 구성된,
기지국.
The method of claim 11,
The processor is further configured to multiplex the plurality of RSs to two adjacent subcarriers belonging to the first CDM group and the second CDM group, respectively, by one of the multiplexed orthogonal sequence pairs of (a, c) or (b, d). Configured,
Base station.
무선 통신 시스템에서 사용자기기가 기지국으로부터 복수의 참조신호(RS)를 수신함에 있어서,
수신기; 및
상기 수신기를 제어하도록 구성된 프로세서를 포함하되,
상기 수신기는 상기 기지국으로부터 상기 복수의 RS를 코드분할다중화(Code Division Multiplexing, CDM) 그룹인 제1 CDM 그룹과 제2 CDM 그룹 중 적어도 하나를 통해 수신하도록 구성되고;
상기 프로세서는, 상기 복수의 RS로부터 상기 사용자기기를 위한 제1 RS를 상기 사용자기기의 RS의 확산에 사용된 제1 확산 직교 시퀀스를 이용하여 검출하도록 구성되되,
상기 제1 확산 직교 시퀀스는, 상기 제1 RS가 상기 제1 CDM 그룹을 통해 수신되는 경우, 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나이고
Figure 112012068576919-pat00040
,
상기 제1 RS가 상기 제2 CDM 그룹을 통해 수신되는 경우, 다음 표와 같이 정의된 확산 직교 시퀀스 중 어느 하나인
Figure 112012068576919-pat00041
,
사용자기기.
In the user equipment receiving a plurality of reference signals (RS) from the base station in a wireless communication system,
receiving set; And
A processor configured to control the receiver,
The receiver is configured to receive from the base station via at least one of a first CDM group and a second CDM group, which are Code Division Multiplexing (CDM) groups;
The processor is configured to detect a first RS for the user equipment from the plurality of RSs using a first spreading orthogonal sequence used for spreading the RS of the user equipment,
The first spreading orthogonal sequence is any one of spreading orthogonal sequences defined as shown in the following table when the first RS is received through the first CDM group.
Figure 112012068576919-pat00040
,
When the first RS is received through the second CDM group, it is any one of spreading orthogonal sequences defined as shown in the following table.
Figure 112012068576919-pat00041
,
User device.
제13항에 있어서,
상기 프로세서는, 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나를 통해 수신한 상기 복수의 RS를 다음 표를 기반으로 검출하도록 구성되며
Figure 112012068576919-pat00042
,
여기서, RS 0 ~ RS 7은 사용자기기-특정 RS 전송을 위한 8개의 안테나 포트에 일대일로 대응하는,
사용자기기.
The method of claim 13,
The processor is configured to detect the plurality of RSs received through at least one of the first CDM group and the second CDM group based on the following table:
Figure 112012068576919-pat00042
,
Here, RS 0 to RS 7 correspond one-to-one to eight antenna ports for user equipment-specific RS transmission.
User device.
제13항 또는 제14항에 있어서,
상기 복수의 RS는 다음과 같이 정의된 다중화 직교 시퀀스 a 및 b, c, d에 의해
Figure 112011009495429-pat00043
,
상기 제1 CDM 그룹 및 상기 제2 CDM 그룹 중 적어도 하나에서 다중화된 채로 상기 수신기에 의해 수신되며,
RS 0 및 RS 1, RS 4, RS 6는 다음식
Figure 112011009495429-pat00044
,
을 사용하여 상기 제1 CDM 그룹에 다중화되어 있고, RS 2 및 RS 3, RS 5, RS 7은 다음식
Figure 112011009495429-pat00045

을 사용하여 상기 제2 CDM 그룹에 다중화되어 있는,
사용자기기.
The method according to claim 13 or 14,
The plurality of RSs are represented by multiplexed orthogonal sequences a and b, c, and d defined as follows.
Figure 112011009495429-pat00043
,
Received by the receiver multiplexed in at least one of the first CDM group and the second CDM group,
RS 0 and RS 1, RS 4, RS 6 are
Figure 112011009495429-pat00044
,
Multiplexed to the first CDM group by using, RS 2 and RS 3, RS 5, RS 7 is
Figure 112011009495429-pat00045

Multiplexed to the second CDM group using
User device.
제15항에 있어서,
상기 복수의 RS는 상기 제1 CDM 그룹 및 상기 제2 CDM 그룹에 각각 속하는 인접한 2개의 부반송파에 (a, c) 또는 (b, d)의 다중화 직교 시퀀스 쌍 중 하나로 다중화된 채로 상기 수신기에 의해 수신되는,
사용자기기.
16. The method of claim 15,
The plurality of RSs are received by the receiver while being multiplexed with one of multiplexed orthogonal sequence pairs of (a, c) or (b, d) to two adjacent subcarriers belonging to the first CDM group and the second CDM group, respectively. felled,
User device.
KR1020110011806A 2010-03-16 2011-02-10 A method and a base station for transmitting reference signals, and a method and a user equipment for receiving reference signals KR101241917B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11001911.4A EP2369775B1 (en) 2010-03-16 2011-03-08 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
PL11001911T PL2369775T3 (en) 2010-03-16 2011-03-08 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
TR2019/07819T TR201907819T4 (en) 2010-03-16 2011-03-08 The method for transmitting reference signals and the base station and the method and user equipment for receiving reference signals.
JP2011054829A JP5178866B2 (en) 2010-03-16 2011-03-11 Method and base station for transmitting downlink reference signal, method and user equipment for receiving downlink reference signal
CN201110069542.0A CN102195923B (en) 2010-03-16 2011-03-16 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US13/049,847 US9019904B2 (en) 2010-03-16 2011-03-16 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US14/672,421 US9288005B2 (en) 2010-03-16 2015-03-30 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US15/018,741 US9559799B2 (en) 2010-03-16 2016-02-08 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US15/389,985 US9967046B2 (en) 2010-03-16 2016-12-23 Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US31454410P 2010-03-16 2010-03-16
US61/314,544 2010-03-16
US31502310P 2010-03-18 2010-03-18
US61/315,023 2010-03-18
US31539810P 2010-03-19 2010-03-19
US61/315,398 2010-03-19
US32423410P 2010-04-14 2010-04-14
US61/324,234 2010-04-14
US33131410P 2010-05-04 2010-05-04
US61/331,314 2010-05-04
US37617410P 2010-08-23 2010-08-23
US61/376,174 2010-08-23

Publications (2)

Publication Number Publication Date
KR20110104424A KR20110104424A (en) 2011-09-22
KR101241917B1 true KR101241917B1 (en) 2013-03-11

Family

ID=44955208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110011806A KR101241917B1 (en) 2010-03-16 2011-02-10 A method and a base station for transmitting reference signals, and a method and a user equipment for receiving reference signals

Country Status (2)

Country Link
KR (1) KR101241917B1 (en)
TR (1) TR201907819T4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175545B1 (en) * 2014-03-21 2020-11-06 삼성전자주식회사 Method and apparatus for decoding a received signalin a wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109906A1 (en) 2007-10-30 2009-04-30 Motorola Inc Allocating downlink acknowledgement resources in wireless communication networks
KR100964185B1 (en) 2007-05-01 2010-06-17 한국전자통신연구원 Interference Averaging Method with Different Repetition Code per each UE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964185B1 (en) 2007-05-01 2010-06-17 한국전자통신연구원 Interference Averaging Method with Different Repetition Code per each UE
US20090109906A1 (en) 2007-10-30 2009-04-30 Motorola Inc Allocating downlink acknowledgement resources in wireless communication networks

Also Published As

Publication number Publication date
TR201907819T4 (en) 2019-06-21
KR20110104424A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US9967046B2 (en) Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
KR101823485B1 (en) Method and base station for transmitting downlink signals, and method and user equipment for receiving downlink signals
US9843466B2 (en) Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
US8982848B2 (en) Method and apparatus for transmitting downlink reference signal
KR101276862B1 (en) A method for transmitting downlink reference signal in multi-carrier supporting wireless communication system and an apparatus for the same
US8934446B2 (en) Transmission method and device for a downlink reference signal
US9065585B2 (en) Method and apparatus for generating a reference signal sequence in a wireless communication system
US8964623B2 (en) Transmission method of downlink reference signal and apparatus thereof
JP5649650B2 (en) Method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas
WO2011132942A2 (en) Method and device for transmitting reference signal in wireless communication system
KR20110017830A (en) A method for transmitting downlink reference signal and in multi-carrier supporting wireless communication system an apparatus for the same
WO2011096646A2 (en) Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
KR20110000536A (en) A method for transmitting reference signal in a uplink mimo transmission
WO2011028079A2 (en) Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
KR20110095823A (en) Method and apparatus for mapping multiple layers to mutilple antenna ports
KR20110117032A (en) Method and apparatus of transmitting reference signal in wireless communication system
KR101241917B1 (en) A method and a base station for transmitting reference signals, and a method and a user equipment for receiving reference signals

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 7