KR101147441B1 - High-strength binder composition using wastemine tailing - Google Patents

High-strength binder composition using wastemine tailing Download PDF

Info

Publication number
KR101147441B1
KR101147441B1 KR20090019692A KR20090019692A KR101147441B1 KR 101147441 B1 KR101147441 B1 KR 101147441B1 KR 20090019692 A KR20090019692 A KR 20090019692A KR 20090019692 A KR20090019692 A KR 20090019692A KR 101147441 B1 KR101147441 B1 KR 101147441B1
Authority
KR
South Korea
Prior art keywords
waste tailings
weight
waste
tailings
binder composition
Prior art date
Application number
KR20090019692A
Other languages
Korean (ko)
Other versions
KR20100101286A (en
Inventor
김영도
손세구
Original Assignee
김영도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영도 filed Critical 김영도
Priority to KR20090019692A priority Critical patent/KR101147441B1/en
Publication of KR20100101286A publication Critical patent/KR20100101286A/en
Application granted granted Critical
Publication of KR101147441B1 publication Critical patent/KR101147441B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 폐광미를 이용한 고강도 결합재 조성물에 관한 것으로, 인산염이 3~10중량% 첨가되었으며, 고로 슬래그 : 플라이 애쉬의 혼합비율이 70 : 30 내지 40 : 60인 혼합물에 폐광미를 10~80중량% 추가로 혼합한 고상 혼합물에, SiO2/M2O의 비율이 1.0~2.5로 조절된 규산나트륨 30~70중량%가 첨가되는 것을 특징으로 하며, 본 발명에 의하여 폐광미를 대량으로 재활용할 수 있게 되었으며, 또한 폐광미를 사용한 압축강도가 현저히 향상된 고강도 콘크리트 결합재 얻을 수 있게 되었다. 이러한 고강도 콘크리트 결합재는 시멘트 대용으로 효과적으로 사용될 수 있다.The present invention relates to a high-strength binder composition using the waste tailings, phosphate is added 3 ~ 10% by weight, 10 to 80 weight of the waste tailings in the mixture of blast furnace slag: fly ash mixing ratio of 70: 30 to 40: 60 30% to 70% by weight of sodium silicate, in which the ratio of SiO 2 / M 2 O is adjusted to 1.0 to 2.5, is added to the solid mixture which is further mixed with%, and the waste tailings can be recycled in bulk according to the present invention. It is also possible to obtain a high strength concrete binder with significantly improved compressive strength using the waste tailings. Such high strength concrete binders can be effectively used as a substitute for cement.

폐광미, 압축강도, 결합재, 고로슬래그, 플라이애쉬, 규산나트륨 Waste tailings, compressive strength, binder, blast furnace slag, fly ash, sodium silicate

Description

폐광미를 이용한 고강도 결합재 조성물{High-strength binder composition using wastemine tailing }High-strength binder composition using wastemine tailing}

본 발명은 폐광미를 이용한 고강도 결합재 조성물에 관한 것으로, 보다 상세하기로는 초기 및 후기 압축강도가 우수하고 급결지연 효과가 뛰어난 고강도 결합재 조성물에 관한 것이다.The present invention relates to a high-strength binder composition using waste tailings, and more particularly, to a high-strength binder composition having excellent initial and late compressive strength and excellent rapid delaying effect.

국내의 광업은 1980년대 중반 이후 광량의 소진, 채산성의 악화 및 노동 임금의 상승 등으로 인해 경쟁력을 상실하여 휴ㆍ폐광산이 발생하기 시작하였다. 현재 국내에는 금속광산(988개), 비금속 광산(669개) 및 석탄광산(379개)을 포함하여 총 2,036개소의 크고 작은 광산들이 산재되어 있으며, 이들 중에서 약 63.6%가 휴지광산 또는 폐광산에 속한다. Since the mid-1980s, domestic mining has lost its competitiveness due to the depletion of light, deterioration in profitability, and rising labor wages. Currently, there are 2,036 large and small mines scattered in Korea, including metal mines (988), nonmetallic mines (669) and coal mines (379), of which 63.6% belong to dormant or abandoned mines. .

광산 폐기물은 광석채굴시 발생하는 폐석(waste rock)과 광석광물(ore mineral)을 회수하기 위한 선광공정에서 발생하는 광미(tailings)가 있다. 휴ㆍ폐광 이후 광산폐기물에 대한 적절한 환경복원시설을 설치하지 않아 광산주변에 그대로 방치되거나 광산 및 주변지역에 매립되어 있어 집중강우나 강풍에 의해 주변지 역으로 이동 분산되어 농경지와 수계의 환경오염 등 주변생태계가 위협을 받고 있는 실정이다. Mining waste includes tailings from the mineral processing process to recover waste rock and ore minerals from ore mining. After the abandoned and abandoned mines, proper environmental restoration facilities for mine wastes are not installed, so they are left unattended around the mines or buried in the mines and surrounding areas.They are dispersed and distributed to the surrounding areas by heavy rainfall or strong winds. The surrounding ecosystem is under threat.

이에 대해 정부는 가행광산 및 휴ㆍ폐광산에서 발생하는 광산폐기물 등의 광해로부터 자연환경 및 국민건강을 보호하고 안전사고를 예방하기 위하여 “광산피해의 방지 및 복구에 관한 법률”을 제정 공표(2005. 5. 31)하였으며, 광산지역 환경오염 방지사업에 많은 예산을 투자하고 있다. 광산 폐기물의 처리방법에는 위생매립처리와 재활용법으로 대별할 수 있다. 위생매립처리의 경우 폐기물을 차단 매립함으로써 무해화할 수 있으나 침출수의 처리 등 이차적인 환경문제를 유발시킬 수 있다. In response, the government enacted the “Act on the Prevention and Recovery of Mine Damages” to protect the natural environment and public health and to prevent safety accidents from mines such as mines and wastes generated from abandoned and abandoned mines (2005. 5. 31) It is investing a lot of budget in environmental pollution prevention projects in mining areas. The treatment of mine waste can be roughly divided into sanitary landfill and recycling. Sanitary landfill can be harmless by blocking landfill, but it can cause secondary environmental problems such as the treatment of leachate.

재활용법에는 물질회수(Materials recovery)법과 물질전환(Materials conversion)법으로 분류된다. 물질회수법은 유가물질회수 차원에서는 경제적으로 유리하나 폐기물 전량을 재활용할 수 없을 뿐만 아니라 유가물질 회수공정에서 2차 오염을 발생시킬 수 있다. 따라서 광미 자체를 폐기물이 아닌 미활용 에너지로 접근하여 순환자원화하는 방안으로 물질전환법에 대한 연구가 활발히 진행되고 있다. Recycling methods fall into two categories: material recovery and material conversion. The material recovery method is economically advantageous in terms of recovering valuable materials, but it is not possible to recycle the entire amount of waste, and it may cause secondary pollution in the recovery of valuable materials. Therefore, research on the material conversion method has been actively conducted as a way to recycle the tailings itself as recycling resources by using unused energy instead of waste.

그간 폐광미로부터 유용자원 회수 및 자원으로의 재활용 노력이 일부 있었으나, 이는 금, 은과 같은 귀금속 성분 및 기타 금속 성분을 회수하거나 석영 광물 등을 분리 활용하는데 불과하며, 회수 과정에서 2차적 부산물을 대량으로 발생시킴으로써 폐광미를 처리하기 위한 근본적인 해결책은 되지 못하였다.There have been some efforts to recover useful resources from waste tailings and recycle them into resources, but this is only to recover precious metals such as gold and silver and other metals, or to separate and utilize quartz minerals. It has not been a fundamental solution for treating waste tailings.

한국 특허등록 제10-0602728호는 아연화합물 분말 5~50중량%, 폐광미 50~95중량%, 철, 동, 니켈, 코발트 등에서 선택되는 화합물 1~5중량%로 구성되는 저흡수 성 세라믹 소결체가 개시되어 있다. 그러나 이 소결체를 얻기 위해서는 1000℃ 이상의 온도에서 소성되어야 하므로 폐광미의 처리에 많은 에너지가 소요된다는 문제점을 가지고 있다.Korean Patent Registration No. 10-0602728 is a low absorbing ceramic sintered body composed of 5 to 50% by weight of zinc compound powder, 50 to 95% by weight of waste tailings, and 1 to 5% by weight of a compound selected from iron, copper, nickel, cobalt, etc. Is disclosed. However, in order to obtain this sintered body, it has to be fired at a temperature of 1000 ° C. or higher, and thus has a problem in that a large amount of energy is required to treat the waste tailings.

한국 특허등록 제10-0554684호는 광미 등에서 발생되는 산성수 및 중금속의 유출을 방지하고 광미 등을 생태적으로 안정하게 처리하기 위하여 하단 바닥층에 차수제가 혼합된 중금속 불활성 차수제를 그라우팅하여 차주층을 형성시키고, 중금속 불활성제를 투입하고, 표면부에 중금속 불활성제와 식생토와 양질토사를 포함하는 성토층을 형성시키는 방법을 개시하고 있다. 그러나 이 기술은 폐광미로부터 중금속의 침출 등을 방지하는 소극적인 방법에 불과하여 폐광미를 효과적인 재활용 방법은 되지 못한다.Korean Patent Registration No. 10-0554684 is to form an indwelling layer by grouting heavy metal inert watering agent mixed with watering agent on the bottom bottom layer to prevent acid water and heavy metals from the tailings and to treat the tailings ecologically. A method of adding a heavy metal inert, and forming a fill layer comprising a heavy metal inert, vegetated soil, and high quality soils on its surface portion is disclosed. However, this technique is only a passive way to prevent the leaching of heavy metals from the waste tailings, which is not an effective recycling method.

한국 특허공개 제10-2006-0102756호에는 폐광미를 고로 슬래그, 플라이 애쉬 등에 혼합하고 수산화나트륨, 무수석고 등의 자극제와 감수제를 첨가하여 콘크리트 혼화재로 사용하는 기술이 개시되어 있다. 그러나 이러한 혼화재는 시멘트의 대체용으로 사용되며, 그 대체량도 시멘트의 1/4 정도에 불과하여 역시 효과적인 폐광미의 재활용 방안은 되지 못한다.Korean Patent Publication No. 10-2006-0102756 discloses a technique in which waste tailings are mixed with blast furnace slag, fly ash, etc., and used as concrete admixtures by adding a stimulant and a water reducing agent such as sodium hydroxide and anhydrous gypsum. However, these admixtures are used as a substitute for cement, and the replacement amount is only about 1/4 of the cement, which is also not an effective way to recycle waste tailings.

본 발명은 상기 선행기술들의 문제점을 해결하기 위한 것으로, 폐광미를 효과적으로 재활용하는 것을 목적으로 한다. 본 발명의 다른 목적은 고강도 결합재를 제공하는 것이다. 본 발명의 또 다른 목적은 급결 지연효과가 향상된 콘크리트용 결합재를 제공하는 것이다.The present invention aims to solve the problems of the prior arts, and aims to effectively recycle the waste tailings. Another object of the present invention is to provide a high strength binder. Still another object of the present invention is to provide a binder for concrete having an improved quench delay effect.

본 발명의 결합재는 인산염이 3~10중량% 첨가되었으며, 고로 슬래그 : 플라이 애쉬의 혼합비율이 70 : 30 내지 40 : 60인 혼합물에 폐광미를 10~80중량% 추가로 혼합한 고상 혼합물에, SiO2/M2O의 비율이 1.0~2.5로 조절된 규산나트륨 30~70중량%가 첨가된다. 여기서 M은 Na, K 중 선택된 1종 또는 이들 혼합물이다.In the binder of the present invention, phosphate is added in 3 ~ 10% by weight, blast furnace slag: fly ash in the mixture ratio of 70: 30 to 40: 60 to a solid mixture of 10 to 80% by weight of the waste tailings in addition, 30 to 70% by weight of sodium silicate in which the ratio of SiO 2 / M 2 O is adjusted to 1.0 to 2.5 is added. Wherein M is one selected from Na, K, or a mixture thereof.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 본 발명자들에 의한 한국 특허출원 제10-2008-128970호의 이용발명으로서, 상기 출원발명의 결합재를 이용하되 결합재 중 고상 혼합물의 10~80중량%를 폐광미로 대체한 것이다. 다만 강도 저하를 방지하기 위하여 상기 출원발명의 고로 슬래그 : 플라이 애쉬의 혼합비율을 90 : 10 ~ 10 : 90에서 70 : 30 ~ 40 : 60으로 변경하였다. 이 범위를 벗어나게 되면 원하는 강도를 얻을 수 없게 된다.The present invention is the invention of the Korean Patent Application No. 10-2008-128970 by the present inventors, using the binder of the present invention, replacing 10 to 80% by weight of the solid mixture in the binder with waste tailings. However, the mixing ratio of the blast furnace slag: fly ash of the present invention was changed from 90:10 to 10:90 to 70:30 to 40:60 in order to prevent a decrease in strength. Outside this range, the desired strength will not be achieved.

본 발명에서 사용되는 인산염은 분상 혼합물들이 성형 전에 굳어버리는 문제점을 해결하기 위하여 급결지연용으로 사용되며, 사용 가능한 인산염으로는 1인산칼륨, 2인산칼륨, 3인산칼륨, 1인산소다, 2인산소다, 인산알루미늄, 인산아연, 폴리인산암모늄, 소디움헥사메타포스페이트, 1인산칼슘, 2인산칼슘, 3인산칼륨 등을 들 수 있다.Phosphate used in the present invention is used as a delay in delay in order to solve the problem that the powdery mixture is hardened before molding, usable phosphates include potassium monophosphate, potassium diphosphate, potassium triphosphate, sodium phosphate, sodium diphosphate Aluminum phosphate, zinc phosphate, ammonium polyphosphate, sodium hexametaphosphate, calcium monophosphate, calcium diphosphate, potassium triphosphate and the like.

인산염을 첨가할 경우 초결시간이 연장되는 것을 확인할 수 있는데, 초결시간의 연장으로 제품의 성형이 가능하게 되며, 원료의 재배열이 유도되어 제품 내의 크랙발생이 억제된다. 사용되는 인산염의 종류에 따라 초결종결시간이 다양하게 연장될 수 있으며, 현장상황에 맞는 적절한 인산염을 채택할 수 있다.It can be seen that when the phosphate is added, the initial time is extended. The extension of the initial time enables the molding of the product, and the rearrangement of the raw materials is induced to suppress cracking in the product. Depending on the type of phosphate used, the initial termination time can be extended in various ways, and an appropriate phosphate can be adopted for the site situation.

또한, 본 발생에서 사용되는 규산나트륨은 NaOH, KOH 등을 이용하여 SiO2/M2O의 비율(몰비)이 3.2인 시판되고 있는 공업용 물유리를 SiO2/M2O의 비율이 1.0~2.5가 되도록 조절하여 pH가 13.0 이상이 되도록 한 상태에서 사용하는 것이 바람직하다. 사용되는 규산나트륨의 SiO2/M2O의 비율이 상기 범위 미만의 경우에는 크랙이 발생되고 강도가 발현되지 않으며, 상기 범위를 초과하는 경우에는 성형 전 급결현상이 발생하여 강도가 급격히 저하된다.In addition, the sodium silicate used in the present generation is commercially available industrial water glass having a ratio (molar ratio) of SiO 2 / M 2 O of 3.2 using NaOH, KOH, etc., in which the ratio of SiO 2 / M 2 O is 1.0 to 2.5. It is preferable to use it in the state which adjusted so that it might be set to pH 13.0 or more. When the ratio of SiO 2 / M 2 O in the sodium silicate used is less than the above range, cracks are generated and strength is not expressed. When the ratio exceeds the above range, rapid freezing occurs before molding and the strength is sharply reduced.

지금까지의 폐광미 활용을 위한 대부분의 기술들은 폐광미를 10중량% 이상 함유시키지는 못하였다. 폐광미가 이 범위 이상 첨가되는 경우에는 원하는 물성 또는 폐광미가 첨가되기 전의 물성이 급격히 감소하기 때문이다.Most of the techniques for the utilization of waste tailings up to now have not contained more than 10% by weight of waste tailings. If the waste tailings are added above this range, it is because the desired physical properties or the properties before the waste tailings are added are drastically reduced.

본 발명에서는 폐광미를 80중량%까지 대체하여도 물성의 큰 저하를 보이지 않는다. 폐광미가 고상 혼합물의 80중량% 대체한 경우에, 28일 압축강도는 73.8 MPa로서, 시멘트 결합재로 통상 사용되고 있는 포틀란트 시멘트의 28일 압축강도 40~45 MPa보다 현저하게 우수하다.In the present invention, even when the waste tailings is replaced by 80% by weight, there is no significant decrease in physical properties. When the waste tailings replaced 80% by weight of the solid mixture, the 28-day compressive strength was 73.8 MPa, which is significantly better than the 28-day compressive strength of 40-45 MPa of Portland cement commonly used as cement binder.

폐광미를 80중량%까지 혼합하여도 우수한 강도를 보이는 이유는 바인더로 사용되는 geopolymer의 구성성분과 폐광미의 화학성분이 서로 부족한 부분을 보충하는 역할로 작용하고, 평균 입자크기가 각각 25.38㎛, 10.6㎛ 의 입자특성이 결합재 내에서 골격유지 및 충진성을 향상시키고, 폐광미 내에 존재하는 단단한 규석입자 등이 강도를 향상시키기 때문에 geopolymer 바인더의 물성을 유지하여 강도를 발휘하는 것으로 보여진다. The reason why it shows excellent strength even when the waste tailings is mixed up to 80% by weight is to compensate for the lack of constituents of the geopolymer used as the binder and the chemical components of the waste tailings.The average particle size is 25.38㎛, The particle characteristics of 10.6 占 퐉 improve the skeleton retention and packing in the binder, and the hard silica particles present in the waste tailings enhance the strength, thus maintaining the physical properties of the geopolymer binder to exhibit strength.

표 1에 폐광미와 geopolymer 바인더의 화학성분 분석결과를 나타내었다. 또한 폐광미와 geopolymer 분말을 혼합한 화학성분 조성 역시 geopolymeric matrix의 기본 골격구조인 Mn[(-SiO2)z-AlO2]nwH2O의 SiO2와 Al2O3 의 함량이 약 60%에 달하는 것을 알 수가 있다. Table 1 shows the results of chemical analysis of the waste tailings and geopolymer binder. In addition, the chemical composition of the waste tailings and the geopolymer powder is about 60% of the content of SiO 2 and Al 2 O 3 of Mn [(-SiO 2 ) z-AlO 2 ] nwH 2 O, which is the basic skeletal structure of the geopolymeric matrix. I can see that.

또한 폐광미에는 다량의 양이온이 존재하기 때문에 geopolymer를 위한 알칼리성 액상이 첨가될 때 이 양이온은 용출 및 용탈되어 반응에 참여함으로써 새로운 2차상을 생성시키게 된다. 이 2차상 예를 들면 중금속인 Pb가 불용성화합물인 PbSiO3 를 생성함으로써 중금속을 효율적으로 고정화함과 동시에 이 상에 의해서 압축강도가 상승하는 것으로 알려져 있다. Also, due to the presence of large amounts of cations in the waste tailings, when an alkaline liquid phase for the geopolymer is added, these cations are eluted and eluted to participate in the reaction, creating a new secondary phase. It is known that, for example, Pb, which is a heavy metal, forms PbSiO 3 , which is an insoluble compound, to efficiently fix heavy metals and to increase compressive strength by phase.

[표 1][Table 1]

원료Raw material SiO2 SiO 2 Al2O3 Al 2 O 3 CaOCaO Fe2O3 Fe 2 O 3 MgOMgO Na2ONa 2 O 입자크기Particle size 폐광미Abandoned tailings 53.953.9 12.012.0 12.412.4 11.911.9 2.542.54 0.3140.314 25.38㎛25.38 μm GeopolymerGeopolymer 33.733.7 12.512.5 36.436.4 2.222.22 2.652.65 4.344.34 10.6㎛10.6㎛ 폐광미+geopolymer=80:20Waste tailings + geopolymer = 80: 20 49.049.0 10.310.3 18.018.0 8.668.66 2.292.29 4.924.92 21.5㎛21.5 ㎛

폐광미를 10중량% 미만 사용하는 경우에는 종래의 기술들과 마찬가지로 폐광미를 대량으로 재활용하지 못한다는 문제점이 있으며, 폐광미를 80중량% 이상 사용 하게 되면 압축강도 급격하게 저하하게 된다.When the waste tailings are used less than 10% by weight, there is a problem in that the waste tailings cannot be recycled in a large amount as in the conventional arts, and when the waste tailings are used in an amount of 80% by weight or more, the compressive strength rapidly decreases.

본 발명에 의하여 폐광미를 대량으로 재활용할 수 있게 되었으며, 또한 폐광미를 사용한 압축강도가 현저히 향상된 고강도 콘크리트 결합재 얻을 수 있게 되었다. 이러한 고강도 콘크리트 결합재는 시멘트 대용으로 효과적으로 사용될 수 있다.According to the present invention, it is possible to recycle a large amount of waste tailings, and also to obtain a high-strength concrete binder with significantly improved compressive strength using the waste tailings. Such high strength concrete binders can be effectively used as a substitute for cement.

본 발명의 실시예는 아래와 같다.An embodiment of the present invention is as follows.

(실시예 1~8 및 비교예 1)(Examples 1-8 and Comparative Example 1)

고로 슬래그 : 플라이 애시의 혼합비율을 70 : 30으로 한 혼합물에 인산칼륨 3중량%를 첨가하고, 여기에 폐광미를 10~80중량% 혼합하였다. 이 고상 혼합물에 SiO2/M2O의 비율을 1.8로 조절한 규산나트륨을 첨가하고 혼합한 다음 5X5X5cm의 3연형 큐브 몰드로 성형하고 50℃의 온도에서 8시간 동안 양생시킨 다음 측정한 시편의 압축강도는 아래의 표2와 같았다.To the mixture having a blast furnace slag: fly ash mixing ratio of 70:30, 3% by weight of potassium phosphate was added, and the waste tailings were mixed with 10 to 80% by weight. To this solid mixture was added sodium silicate with a SiO 2 / M 2 O ratio of 1.8, mixed, molded into a 5 × 5 × 5 cm triple cube mold, cured at 50 ° C. for 8 hours, and then compressed. The intensity is shown in Table 2 below.

[표 2]TABLE 2

구 분division 고로 슬래그 플라이애시Blast Furnace Slag Fly Ash 폐광미Abandoned tailings 규산나트륨Sodium silicate 압축강도(MPa)Compressive strength (MPa) (7:3),인산칼륨3중량%(7: 3), potassium phosphate 3% by weight 3일3 days 7일7 days 28일28 days 실시예1Example 1 60.360.3 6.76.7 33.033.0 105.4105.4 122.8122.8 148.6148.6 실시예2Example 2 53.653.6 13.113.1 33.333.3 107.8107.8 129.0129.0 141.3141.3 실시예3Example 3 46.946.9 20.120.1 33.033.0 93.393.3 119.4119.4 135.2135.2 실시예4Example 4 40.240.2 26.826.8 33.033.0 87.687.6 112.5112.5 124.3124.3 실시예5Example 5 33.533.5 33.533.5 33.033.0 80.680.6 96.996.9 119.2119.2 실시예6Example 6 26.826.8 40.240.2 33.033.0 74.474.4 92.592.5 110.8110.8 실시예7Example 7 20.120.1 46.946.9 33.033.0 70.870.8 87.787.7 98.698.6 실시예8Example 8 13.113.1 53.653.6 33.333.3 53.553.5 66.266.2 73.873.8 비교예1Comparative Example 1 6.76.7 60.360.3 33.033.0 22.522.5 34.434.4 42.542.5

(비교예 2)(Comparative Example 2)

실시예 1과 동일하게 시행하되 규산나트륨의 첨가량을 25중량%로 낮추었다. 그 결과 시료를 금형에 충전할 수가 없었다.The same procedure as in Example 1 was carried out to reduce the amount of sodium silicate added to 25% by weight. As a result, the sample could not be filled into the mold.

(비교예 3)(Comparative Example 3)

실시예 1과 동일하게 시행하되, 규산나트륨의 첨가량을 25중량%로 하고 여기에 물을 8중량% 별도로 첨가하였다. 얻어진 시편의 물성은 3, 7, 28일 압축강도가 각각 12.2, 15.1, 22.4MPa였다.In the same manner as in Example 1, the amount of sodium silicate was added to 25% by weight and water was added separately to 8% by weight. The physical properties of the obtained specimens were 12.2, 15.1 and 22.4 MPa, respectively.

(비교예 4)(Comparative Example 4)

실시예 1과 동일하게 시행하되 인산칼륨을 첨가하지 아니하였다. 그 결과는 성형 전 수초 내에 경화되어 성형이 불가능하였다.In the same manner as in Example 1, but did not add potassium phosphate. The result was cured within a few seconds before molding and molding was impossible.

Claims (4)

인산염이 3~10중량% 첨가되었으며, 고로 슬래그 : 플라이 애쉬의 혼합비율이 70 : 30 내지 40 : 60인 혼합물에 폐광미를 10~80중량% 추가로 혼합한 고상 혼합물에, SiO2/M2O의 비율이 1.0~2.5로 조절된 규산나트륨 30~70중량%가 첨가된 폐광미를 이용한 고강도 결합재 조성물.Phosphate was added to 3 to 10% by weight, blast furnace slag: fly ash in a mixture of 70: 30 to 40: 60 to a solid mixture of 10 to 80% by weight of the waste tailings, SiO 2 / M 2 A high-strength binder composition using waste tailings in which 30 to 70% by weight of sodium silicate, in which the ratio of O is adjusted to 1.0 to 2.5, is added. (단, M은 Na 또는 K 중 선택된 1종 또는 이들의 혼합물이다.)(Wherein M is one selected from Na or K or a mixture thereof) 제1항에 있어서, 규산나트륨의 pH는 13.0 이상인 것을 특징으로 하는 폐광미를 이용한 고강도 결합재 조성물.The high strength binder composition using waste tailings according to claim 1, wherein the pH of sodium silicate is 13.0 or more. 제1항에 있어서, 인산염은 1인산칼륨, 2인산칼륨, 3인산칼륨, 1인산소다, 2인산소다, 인산알루미늄, 인산아연, 폴리인산암모늄, 소디움헥사메타포스페이트, 1인산칼슘, 2인산칼슘, 3인산칼륨을 포함하는 것을 특징으로 하는 폐광미를 이용한 고강도 결합재 조성물.The method of claim 1, wherein the phosphate is potassium monophosphate, potassium diphosphate, potassium triphosphate, sodium monophosphate, sodium diphosphate, aluminum phosphate, zinc phosphate, ammonium polyphosphate, sodium hexametaphosphate, calcium monophosphate, calcium diphosphate High strength binder composition using waste tailings, characterized in that it comprises potassium triphosphate. 제1항에 있어서, 3일 압축강도가 50MPa 이상인 것을 특징으로 하는 폐광미를 이용한 고강도 결합재 조성물.The high strength binder composition using waste tailings according to claim 1, wherein the compressive strength is at least 50 MPa.
KR20090019692A 2009-03-09 2009-03-09 High-strength binder composition using wastemine tailing KR101147441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090019692A KR101147441B1 (en) 2009-03-09 2009-03-09 High-strength binder composition using wastemine tailing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090019692A KR101147441B1 (en) 2009-03-09 2009-03-09 High-strength binder composition using wastemine tailing

Publications (2)

Publication Number Publication Date
KR20100101286A KR20100101286A (en) 2010-09-17
KR101147441B1 true KR101147441B1 (en) 2012-05-21

Family

ID=43006829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090019692A KR101147441B1 (en) 2009-03-09 2009-03-09 High-strength binder composition using wastemine tailing

Country Status (1)

Country Link
KR (1) KR101147441B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851220A (en) * 2021-02-04 2021-05-28 清华大学 Concrete prepared from industrial production waste and preparation method thereof
KR102435539B1 (en) * 2022-06-08 2022-08-22 지피이엔씨(주) Manufacturing method of cement-free water blocking grout forming silica-sol phase and grouting method using the same
KR102457852B1 (en) * 2022-07-27 2022-10-21 지피이엔씨(주) Manufacturing method of environment-friendly and non-shrinkable grout of silica-sol phase and grouting method using the same
CN115849811B (en) * 2022-12-01 2024-04-19 伊春鹿鸣矿业有限公司 High-stability self-compaction concrete and preparation method thereof
CN116903329B (en) * 2023-07-14 2024-01-23 南京水科院瑞迪科技集团有限公司 High-strength anti-corrosion concrete pipe pile and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850001129A (en) * 1983-07-14 1985-03-16 이광조, (외 1) Light Hardening Method
KR100415006B1 (en) 2003-09-08 2004-01-13 지오콘머테리얼 주식회사 Cement replacement agent
KR20060102756A (en) * 2005-03-24 2006-09-28 지오콘머테리얼 주식회사 A concrete admixture using waste tailing and methode of thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850001129A (en) * 1983-07-14 1985-03-16 이광조, (외 1) Light Hardening Method
KR100415006B1 (en) 2003-09-08 2004-01-13 지오콘머테리얼 주식회사 Cement replacement agent
KR20060102756A (en) * 2005-03-24 2006-09-28 지오콘머테리얼 주식회사 A concrete admixture using waste tailing and methode of thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1-대한건축학회 *

Also Published As

Publication number Publication date
KR20100101286A (en) 2010-09-17

Similar Documents

Publication Publication Date Title
CN107382239B (en) All-solid-waste filling material for stabilizing incineration fly ash containing dioxin and preparation method thereof
Gu et al. Road base materials prepared by multi-industrial solid wastes in China: A review
KR101840470B1 (en) Grouting agent and method
Tariq et al. A review of binders used in cemented paste tailings for underground and surface disposal practices
CN104909677B (en) A kind of filling in mine sial base tailings cementing agent and preparation method thereof
Malatse et al. The viability of using the Witwatersrand gold mine tailings for brickmaking
Kim et al. Stabilization of a residual granitic soil using various new green binders
Pliaka et al. Potential uses of phosphogypsum: A review
KR101147441B1 (en) High-strength binder composition using wastemine tailing
CN108203271B (en) Baking-free and steaming-free brick prepared by treating sludge with lead-zinc smelting wastewater and preparation method thereof
CN111167829A (en) Electrolytic manganese slag curing treatment method
CN107352907A (en) A kind of preparation method of colliery filling slurry
KR101356619B1 (en) Filling agent composition
AU2020104368A4 (en) Cement Filling Material for Co-solidifying Antimony and Preparation Method Thereof
CN107010915A (en) It is a kind of to cooperate with cemented filling material of solidification antimony and preparation method thereof
CN107285702A (en) A kind of filling slurry of colliery doping discarded concrete aggregate
Ban et al. Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation
KR101638079B1 (en) Deep cement mixing materials
Andrews et al. Reuse and stabilization of sulphide mine tailings as fine aggregate for construction mortar
Maruthupandian et al. Recycling mine tailings for a sustainable future built environment
KR20140131698A (en) The manufacturing method of block using industrial byproducts
KR101356620B1 (en) Method for manufacturing the filling agent composition and system therefor
Jiang et al. Recycling, reusing and environmental safety of industrial by-product gypsum in construction and building materials
Beniddar et al. Sustainable utilization of phosphate mine waste rocks as sand substitutes in cement mortar production
CN109836128B (en) Ceramsite produced by utilizing aggregate sandstone tailings and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150512

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170510

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190514

Year of fee payment: 8