KR101118740B1 - With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing - Google Patents

With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing Download PDF

Info

Publication number
KR101118740B1
KR101118740B1 KR1020110087531A KR20110087531A KR101118740B1 KR 101118740 B1 KR101118740 B1 KR 101118740B1 KR 1020110087531 A KR1020110087531 A KR 1020110087531A KR 20110087531 A KR20110087531 A KR 20110087531A KR 101118740 B1 KR101118740 B1 KR 101118740B1
Authority
KR
South Korea
Prior art keywords
billet
aluminum alloy
extrusion
strength
direct hot
Prior art date
Application number
KR1020110087531A
Other languages
Korean (ko)
Inventor
정선일
Original Assignee
신양금속공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신양금속공업 주식회사 filed Critical 신양금속공업 주식회사
Priority to KR1020110087531A priority Critical patent/KR101118740B1/en
Application granted granted Critical
Publication of KR101118740B1 publication Critical patent/KR101118740B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C33/00Feeding extrusion presses with metal to be extruded ; Loading the dummy block
    • B21C33/008Scalping billets, e.g. for removing oxide layers prior or during extrusion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Abstract

PURPOSE: A manufacturing method of a 7000-series aluminum alloy extrusion material using a direct hot extrusion process is provided to enable direct hot extrusion molding through the adjusting of the composition ratio of additive components and the inner processing of billet. CONSTITUTION: A manufacturing method of a 7000-series aluminum alloy extrusion material using a direct hot extrusion process comprises next steps. Billet is generated by Al-Zn-Mg-Cu based aluminum alloy. The generated billet is put in a heat furnace for thermal treatment and is naturally cooled to room temperature. The surface of billet exposed to air is removed. The surface-removed billet is preheated at 550~580°C to control the inner structure of the billet. The billet is extruded with a direct extruder. The post weld heat treatment(T6 treatment) of an extrusion material is progressed.

Description

직접 열간 압출 공법을 이용한 7000 계열 알루미늄 합금 압출 형상재의 제조방법{With a direct hot extrusion process 7000 series aluminum alloy extrusion Shape method of manufacturing}With a direct hot extrusion process 7000 series aluminum alloy extrusion Shape method of manufacturing}

본 발명은 인장강도 450 Mpa과 동등하거나 그 이상인 Al-Zn-Mg-Cu 기반 7000 계열 알루미늄 합금의 압출 형상재의 제조방법에 관한 것으로, 더욱 상세하게는 주요 합금 원소의 첨가량 조정 및 빌레트의 내부조직 처리 단계를 통해서 압출 성형을 용이하게 하는 직접 열간 압출 공법을 이용한 Al-Zn-Mg-Cu 기반의 알루미늄 합금 압출 형상재의 제조방법에 관한 것이다.The present invention relates to a method for producing an extruded shape member of an Al-Zn-Mg-Cu based 7000 series aluminum alloy having a tensile strength of 450 Mpa or more, and more specifically, to adjust the amount of addition of the main alloying elements and the internal structure of the billet. The present invention relates to a method for producing an Al-Zn-Mg-Cu-based aluminum alloy extruded shape member using a direct hot extrusion method for facilitating extrusion through a step.

알루미늄 합금 중에서 가장 높은 인장 강도와 항복 강도를 가진 Al-Zn-Mg 기반 7000 계열 알루미늄 합금은 알루미늄 기지에 아연(Zn)과 마그네슘(Mg)을 주요 합금 원소로 첨가하고 입자미세화 효과를 통한 용접특성을 개선하기 위해 크롬(Cr)과 지르코늄(Zr) 등의 천이원소를 첨가하였다. Al-Zn-Mg based 7000 series aluminum alloy, which has the highest tensile strength and yield strength among aluminum alloys, adds zinc (Zn) and magnesium (Mg) as the main alloying elements to the aluminum base and improves the welding characteristics through the particle refinement effect. To improve, transition elements such as chromium (Cr) and zirconium (Zr) were added.

상술한 알루미늄 합금은 보통 500 Mpa 이상의 우수한 강도 특성을 보유하고 있으나 상업용으로 많이 사용하고 있는 중공 형상재의 직접 열간 압출 성형에 있어서, 압출 변형 저항이 높아, 압출 성형이 좋지 못하여 중공형 압출 형상재의 생산 성이 매우 낮고 열간 균열 특성이 있어 제작하기 어렵다. 또한 상업용으로 많이 사 용하고 있는 직접 열간 압출 성형 장치(이하 “직접식 압출기”라 한다.)로 중공형 압출재를 압출할 때 발생하는 용접부의 접합 강도가 좋지 못하여 용접부의 균열이 발생하는 단점을 가지고 있었다. 이러한 용접부 균열을 해소하기 위해 직접식 압출기로 압출할 때 생기는 용접부가 발생하지 않는 간접 압출 방식에 의한 압출 장치(이하, “간접식 압출기”라 한다.)를 사용하여 용접부가 없는 Seamless 파이프를 제작하였다. 그러나 간접식 압출기라 하더라도 압출 비를 높게 할 경우, Al-Zn-Mg 기반 알루미늄 합금의 압출 변형저항 특성이 높아 파이프를 압출 성형할 때, 생산성이 저하되는 문제가 있어 압출 비를 작게 함으로써 압출 성형성을 개선하여 제작하고 있고, 크기가 큰 대형 중공형 압출재 제작에 한계가 있었다. The above-mentioned aluminum alloys usually have excellent strength characteristics of 500 Mpa or more, but in direct hot extrusion of hollow shaped materials that are widely used for commercial use, the extrusion deformation resistance is high, and extrusion molding is not good, so that the productivity of hollow extruded shaped materials is high. This very low and hot cracking property makes it difficult to fabricate. In addition, the direct hot extrusion device (hereinafter referred to as a “direct extruder”), which is widely used for commercial purposes, has a disadvantage in that weld weld cracking occurs due to poor joint strength generated when extruding hollow extruded materials. there was. In order to eliminate such weld cracks, a seamless pipe without a weld was manufactured by using an indirect extrusion method (hereinafter referred to as an “indirect extruder”) that does not generate welds when extruded by a direct extruder. . However, even in an indirect extruder, if the extrusion ratio is high, the extrusion resistance of Al-Zn-Mg-based aluminum alloy has high extrusion strain resistance, so there is a problem that productivity decreases when the pipe is extruded. To improve the production, there was a limit to the production of large hollow extrusion material large size.

상기의 문제를 해결하기 위해 그동안 Al-Zn-Mg 알루미늄 합금에 구리(Cu)를 첨가하여 압출 성형성을 향상시킨 7000 계열 알루미늄 합금으로 7005, 7020, 7021, 7039, 7029 등이 있으나, 기존 Al-Zn-Mg 기반 알루미늄 합금의 고강도에 크게 미치지 못하는 350 ~ 430 Mpa 의 강도를 나타내고 있다.In order to solve the above problems, 7000 series aluminum alloys, which have been extruded by adding copper (Cu) to Al-Zn-Mg aluminum alloys, have been developed such as 7005, 7020, 7021, 7039, 7029, etc. It shows strength of 350 ~ 430 Mpa, which is not much lower than that of Zn-Mg based aluminum alloy.

현재 자전거 스포크 튜브용 소재로 많이 사용되어 온 7005 알루미늄 합금은 간접식 압출기를 사용하여 제작되고 있으나, 비강도와 강성이 부족하여 제품을 제작할 때, 기존 철, 티타늄 소재를 사용한 자전거 스포크 튜브용 실린더 및 스티어링 파이프와 비교하여 제품의 외형 크기를 크게 함으로써 특성을 확보하였다. 그러나 이렇게 제작된 자전거 부품은 외형상 둔탁한 형상을 갖게 되어 디자인 특성을 저하시키고 있었다.7005 aluminum alloy, which has been widely used for bicycle spoke tube, is made by using indirect extruder. However, when making products due to lack of specific strength and rigidity, cylinder and steering for bicycle spoke tube using existing iron and titanium materials Compared with the pipe, the size of the product was increased to secure the characteristics. However, the bicycle parts thus produced had a dull shape in appearance and degraded design characteristics.

또한 기존 Al-Zn-Mg-Cu 기반 알루미늄 합금은 강도 특성을 향상시키고자 미 량 첨가 원소로 크롬(Cr), 망간(Mn) 등을 첨가하고 있으나, 크롬은 결정립 미세화 효과는 있으나 압출 성형성에 가장 악영향을 주고, 망간은 내식성을 개선하지만 결 정립을 조대화 하여 강도를 떨어뜨렸다.In addition, the existing Al-Zn-Mg-Cu-based aluminum alloy is added with chromium (Cr), manganese (Mn) as a trace additive element to improve the strength characteristics, but chromium is the most effective in extrusion formability, although it has a grain refinement effect It adversely affects and manganese improves the corrosion resistance but decreases the strength by coarsening the grains.

또한 간접식 압출기를 사용하여 압출 파이프의 제작 과정에 있어, 상술한 결정 립 미세화를 위해 압출속도 및 온도 조절을 통해 결정립의 조대화를 방지하는 노력이 시도되고 있으나, 이는 생산성 감소의 결과를 초래하는 문제가 있었다. In addition, in the process of manufacturing an extrusion pipe using an indirect extruder, efforts have been made to prevent coarsening of grains by controlling the extrusion speed and temperature in order to refine the grains described above, which results in a decrease in productivity. There was a problem.

본 발명은 상술한 바와 같은, 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, Al-Zn-Mg-Cu 기반 알루미늄 합금과 비교하여 450 Mpa 이상의 강도를 갖고, 압출 변형 저항을 낮춤으로써 직접 열간 압출 공법을 사용가능토록 하고, 이를 통해서 생산성을 높이는 데 있다. 또한 알루미늄 합금으로 자전거 핵심 부품과 같이 고 비강도, 고강성, 경량화를 요구하는 각종 산업 분야의 핵심 부품 제작에 본 발명을 적용하고자 한다.The present invention has been made to solve the problems of the prior art, as described above, has a strength of 450 Mpa or more compared to Al-Zn-Mg-Cu-based aluminum alloy, direct hot extrusion method by lowering the extrusion deformation resistance To make it available, thereby increasing productivity. In addition, the present invention is intended to apply the present invention to the core parts of various industries that require high specific strength, high rigidity, light weight, such as bicycle core parts.

이러한 목적으로 이루어진 본 발명은, Zn 5.40~6.50 wt%, Mg 1.50~1.80 wt%, Cu 0.60~0.90 wt%, Fe 0.05~0.20 wt%, Cr 0.10 이하 wt%(0초과), Ti 0.10 이하 wt%(0초과), Si 0.10 이하 wt%(0초과), 나머지 Al과 불순물로 조성되는 Al-Zn-Mg-Cu 기반 알루미늄 합금으로 발레트(30)를 생성하는 S1단계; 상기 S1단계에서 생성된 빌레트를 열처리로에 넣어 열처리하고 상온까지 자연 공냉으로 냉각하는 S2단계; 상기 S2단계에서 공기에 노출된 빌레트의 표면을 제거하는 S3단계; 상기 S3단계의 표면을 제거한 빌레트를 550~600℃로 예열하여 빌레트의 내부조직을 제어하는 S4단계; 직접식 압출기(40)를 이용하여 상기 빌레트를 압출하는 S5단계; 상기 S5단계에서 나온 압출 형상재의 후열처리(T6 처리)를 하는 S6단계로 구성된다.The present invention made for this purpose, Zn 5.40 ~ 6.50 wt%, Mg 1.50 ~ 1.80 wt%, Cu 0.60 ~ 0.90 wt%, Fe 0.05 ~ 0.20 wt%, Cr 0.10 or less wt% (greater than 0), Ti 0.10 or less wt S1 step of generating a valet 30 from Al-Zn-Mg-Cu based aluminum alloy composed of% (greater than 0), Si 0.10 wt% or less (greater than 0), and remaining Al and impurities; S2 step of heat-treating the billet generated in the step S1 into a heat treatment furnace and cooling by natural air cooling to room temperature; S3 step of removing the surface of the billet exposed to the air in the step S2; S4 step of controlling the internal structure of the billet by preheating the billet removing the surface of the step S3 to 550 ~ 600 ℃; S5 step of extruding the billet using a direct extruder (40); It is composed of the step S6 to perform the post-heat treatment (T6 treatment) of the extruded shape member from the step S5.

상기 S1단계에서는 도 1a에서 보이는 용해주조장치(10)와 빌레트의 주조틀(20)을 이용해서 빌레트를 제조하고 있고 이 공정을 도 1b에서 보여주고 있으며, 이렇게 제작된 빌레트(30)들의 형상이 도 2에 나타나 있다. S2단계에서는 S1단계에서 생성된 빌레트를 팬에 의한 강제순환식열처리로에 넣어 400~500℃ 범위에서 열처리하고 상온까지 자연 공냉으로 냉각을 한다. S3단계는 S1단계에서부터 빌레트에 생성되는 역편석층과 핀홀, 이물질 등과 같은 표면 결함을 제거하기 위해 실시하는 단계이다. S4단계는 열간 압출 성형성을 높이기 위해서 빌레트의 내부조직을 제어하는 단계로 저주파의 전기유도가열장치를 사용하여 550~600℃로 빌레트 내부부터 예열함으로써 단시간에 빌레트 내부에 존재하는 금속간화합물의 확산을 통한 알루미늄 기지로의 분산이 이루어져 압출유종응력 저항을 낮추는 효과가 있다. S5단계는 도 3에 나타나 있는 직접식 압출기(40)를 통해서 압출하는 단계이고, S6단계는 압출되어 나온 알루미늄 합금 압출재를 후열처리(T6 처리)하는 단계이다.In step S1, the billet is manufactured using the melt casting device 10 and the billet casting mold 20 shown in FIG. 1A, and the process is illustrated in FIG. 1B, and the shape of the billets 30 thus manufactured is 2 is shown. In step S2, the billet generated in step S1 is put into a forced circulation heat treatment furnace by a fan, heat-treated in the range of 400 to 500 ° C, and cooled by natural air cooling to room temperature. Step S3 is a step performed to remove surface defects such as reverse segregation layer, pinhole, and foreign substances generated in the billet from step S1. Step S4 is to control the internal structure of the billet in order to increase hot extrudability. The intermetallic compound diffusion in the billet in a short time by preheating the billet inside the billet using a low frequency electric induction heating device at 550 ~ 600 ℃. Dispersion to the aluminum base through the has the effect of reducing the extrusion oil stress resistance. Step S5 is a step of extruding through the direct extruder 40 shown in Figure 3, step S6 is a step of post-heat treatment (T6 treatment) of the extruded aluminum alloy extruded material.

본 발명은 기존의 상업용 알루미늄 합금이 가지는 강도부족 문제와 용접부의 접합강도문제, 압출 변형 저항이 높아 생산성이 저하되는 문제, 크기가 큰 대형 중공형 압출재 제작의 문제를 극복할 수 있도록 해주는 것으로, 첨가 성분들의 조성비 조정과 빌레트의 내부조직 처리를 통해서 직접 열간 압출 성형을 가능하게 해 주는 효과가 있다. 본 발명을 활용하면 450 Mpa 이상의 고강도를 요구하는 다양한 모양의 산업 용재를 압출 성형할 수 있도록 하여 산업 전반에 사용할 수 있도록 하는 효과가 있다.The present invention is to overcome the problem of the lack of strength of the conventional commercial aluminum alloy, the problem of joint strength of the weld, the problem of low productivity due to high extrusion deformation resistance, the problem of manufacturing large hollow extruded material of large size, added By adjusting the composition ratio of the components and the internal structure of the billet, there is an effect that enables direct hot extrusion. By utilizing the present invention, it is possible to extrude various industrial shapes of various shapes requiring high strength of 450 Mpa or more, thereby enabling the use throughout the industry.

도 1a는 본 발명을 위한 빌레트 제작 장치로 용해주조장치(10)와 빌레트(20) 주조틀을 나타낸 것이다.
도 1b는 본 발명을 위한 빌레트를 제작하는 공정을 나타낸 것이다.
도 2는 도 1의 장치로 제작된 본 발명 합금의 빌레트(30) 들이다.
도 3은 도 2의 빌레트로 압출파이프 성형에 사용한 1500톤의 직접식 압출기(40)를 나타낸 것이다.
도 4는 바깥지름 37.5 mm, 두께 2.25 mm 의 압출 파이프를 제작하기 위해 도 3의 장치에 부착한 압출 금형(50)이다.
도 5는 도 4의 압출 금형(50)을 도 3의 압출기에 부착하고 도 2의 빌레트(30)를 사용하여 표 2의 압출 공정조건으로 압출해서 얻은 압출 파이프(60)이다.
도 6은 도 5의 압출파이프로 120℃에서 시간에 따른 경도변화를 곡선을 나타낸 것이다.
도 7은 도 6의 최적화된 열처리 조건에서 인장시험용으로 열처리된 인장시험편의 규격이다.
Figure 1a is a billet manufacturing apparatus for the present invention shows the melt casting device 10 and the billet 20 casting mold.
Figure 1b shows a process for producing a billet for the present invention.
FIG. 2 shows billets 30 of the alloy of the invention made with the apparatus of FIG. 1.
FIG. 3 shows a 1500 ton direct extruder 40 used for forming the bieletro extrusion pipe of FIG. 2.
FIG. 4 is an extrusion mold 50 attached to the apparatus of FIG. 3 to produce an extrusion pipe having an outer diameter of 37.5 mm and a thickness of 2.25 mm.
FIG. 5 is an extrusion pipe 60 obtained by attaching the extrusion die 50 of FIG. 4 to the extruder of FIG. 3 and extruding it under the extrusion process conditions of Table 2 using the billet 30 of FIG. 2.
Figure 6 shows the curve of the hardness change with time at 120 ℃ to the extrusion pipe of FIG.
7 is a specification of a tensile test piece heat-treated for tensile testing in the optimized heat treatment conditions of FIG.

표 1과 표 3에 나타낸 것과 같이, 본 발명의 일실시 예에 따른 고강도 고강성을 갖춘 압출용 알루미늄 합금(이하, "합금"이라 칭한다.)은 자전거 스포크 튜브용 실린더 튜브와 스티어링 파이프에 적합한 강도를 갖고 직접 열간 압출 성형에 적합하도록 한 합금으로 Zn 5.40~6.50 wt%, Mg 1.50~1.80 wt%, Cu 0.60~0.90 wt%, Fe 0.05~0.20 wt%, Cr 0.10 이하 wt%(0초과), Ti 0.10 이하 wt%(0초과), Si 0.10 이하 wt%(0초과), 나머지 Al과 불순물로 구성된다.As shown in Table 1 and Table 3, an extruded aluminum alloy (hereinafter referred to as "alloy") having high strength and high rigidity according to one embodiment of the present invention is suitable for a cylinder tube and a steering pipe for a bicycle spoke tube. Zn 5.40 ~ 6.50 wt%, Mg 1.50 ~ 1.80 wt%, Cu 0.60 ~ 0.90 wt%, Fe 0.05 ~ 0.20 wt%, Cr 0.10 or less wt% (greater than 0) Ti 0.10 or less wt% (greater than 0), Si 0.10 or less wt% (greater than 0), and the remaining Al and impurities.

아연(Zn)은 상술한 Al-Zn-Mg-Cu 기반의 고강도 합금을 구성하는 기본 원소로서, 직접 열간 압출 소성된 알루미늄 기지 내에 불균일 분산된 마그네슘(Mg)과의 금속간화합물 Mg2Zn11 과 불균일 고용된 구리(Cu) 금속입자들은 용체화 열처리를 통해 알루미늄 기지 내로 균일 확산 고용시키고 급냉 처리를 하여 고용된 상태를 유지한 후, 시효 열처리를 통해 결정립 내부와 입계에 미세 균일한 Mg2Zn11과 Cu-Zn 계 금속간화합물을 형성하여 강도를 증가시킨다.Zinc (Zn) is a basic element constituting the Al-Zn-Mg-Cu-based high-strength alloy as described above, and the intermetallic compound Mg 2 Zn 11 with magnesium (Mg) heterogeneously dispersed in a direct hot-extruded aluminum matrix; Non-uniformly dissolved copper (Cu) metal particles are uniformly diffused into the aluminum matrix through the solution heat treatment and quenched to maintain the solid solution state, and then through aging heat treatment, finely uniform Mg 2 Zn 11 in the grains and grain boundaries. And Cu-Zn-based intermetallic compound is formed to increase the strength.

압출용 알루미늄 합금이 구조재로 이용되는 경우, 조성이 5.4 wt% 미만이면 마그네슘(Mg), 구리(Cu)와 각각 결합하여 강도 향상에 필요한 Mg-Zn, Cu-Zn 계와 같은 금속간 화합물을 각각 충분히 형성시키지 못하므로 효과가 낮고, 6.5 wt%를 초과하게 되면, 압출 소성변형 저항이 증가하여 생산성을 저하시키기 때문에, 5.40 ~ 6.50 wt%부로 첨가하는 것이 바람직하다.When the aluminum alloy for extrusion is used as a structural material, when the composition is less than 5.4 wt%, intermetallic compounds, such as Mg-Zn and Cu-Zn, which are required for strength improvement by combining with magnesium (Mg) and copper (Cu), respectively, respectively. Since the effect is low because it is not sufficiently formed, and exceeds 6.5 wt%, the extrusion plastic deformation resistance is increased and the productivity is lowered, so it is preferably added at 5.40 to 6.50 wt%.

마그네슘(Mg)는 Al-Zn-Mg-Cu 합금 계를 구성하는 기본 원소로서, 시효 열처리를 할 때, 아연(Zn)과 결합하여 Mg2Zn11 를 형성하며 강도를 향상시키는 것으로서, 아연(Zn)와 마그네슘(Mg)의 결합비율이 11 : 2 가 이상적이지만, 본 발명에 따른 합금에서는 강도 향상과 압출성에 효과가 좋은 적절한 적정비율을 첨가하여 강도 향상과 압출성을 향상시켰다.Magnesium (Mg) is a basic element constituting the Al-Zn-Mg-Cu alloy system, which combines with zinc (Zn) to form Mg 2 Zn 11 and improves strength when aging heat-treated. 11: 2 is ideal, but the alloy according to the present invention was added to the appropriate titration ratio that is effective in improving the strength and extrudability to improve the strength and extrudability.

아연(Zn)과 더불어 강도향상을 위한 주요 첨가 원소로 사용되는 마그네슘(Mg)은 압출 소성 변형 저항과 강도 증가를 고려하여 적절한 첨가량으로 1.50 ~ 1.80 wt%로 한다. 마그네슘(Mg) 첨가량이 1.80 wt%를 초과할 경우, 강도 향상에는 큰 영향을 주나, 압출 변형 저항이 급격히 상승하여 압출 생산성을 저해하고, 1.50 wt% 이하일 경우 압출 생산성은 개선되지만, 강도 부족의 원인으로 영향을 준다.In addition to zinc (Zn), magnesium (Mg), which is used as a main additive element for strength improvement, is 1.50 to 1.80 wt% in an appropriate amount in consideration of extrusion plastic deformation resistance and strength increase. When the magnesium (Mg) content exceeds 1.80 wt%, it has a great influence on the strength improvement, but the extrusion deformation resistance is sharply increased to inhibit the extrusion productivity. When the amount is less than 1.50 wt%, the extrusion productivity is improved, but the cause of the lack of strength Affects.

또한, 구리(Cu)는 필수적으로 첨가되는 원소 중, 가장 중요한 원소로서 알루미늄 기지의 결정립 내부와 입계에 마그네슘(Mg)과 결합하여 1 미크론 이하 크기의 금속간화합물인 CuMg2와 10 미크론 이하 크기의 Cu-Zn 계 금속간 석출물을 형성하여 Orowan 기구에 의한 전위 이동의 방해자 역활을 하여 결정립 조대화를 막아주는 배리어(Barrier) 역할을 한다.In addition, copper (Cu) is the most important element added, CuMg 2 and the size of less than 10 microns of intermetallic compounds of 1 micron or less combined with magnesium (Mg) in the grains and grain boundaries of the aluminum matrix It forms a Cu-Zn type intermetallic precipitate and acts as a barrier to prevent grain coarsening by acting as an interferer of dislocation movement by the Orowan mechanism.

마그네슘(Mg) 합금 원소의 강도향상대비 구리(Cu)는 마그네슘 첨가량과 동일한 함량을 첨가할 경우, 60 ~ 70 %의 강도증가에 영향을 주며, 특히 150℃ 이하의 저온에서 장시간 열처리를 할 경우 강도향상에 큰 기여를 한다.Copper (Cu), when added in the same amount as magnesium, increases the strength of 60 ~ 70%, especially when heat treatment is performed at low temperature below 150 ℃ for a long time. Make a significant contribution to improvement.

이때, 미량 합금 원소로 존재하는 규소(Si)와 철(Fe)의 함량을 각각 0.10, 0.20 wt%이하로 최소화하여 마그네슘(Mg)과 결합하여 형성되는 Mg2Si 및 Al-Fe-Si 계 금속간화합물의 형성비율을 감소시킴으로써, 강도 저하를 억제한다. 이렇게 억제된 효과는 강도 향상을 위해 첨가되는 합금 원소 아연(Zn)과 마그네슘(Mg), 구리(Cu)와 마그네슘(Mg), 구리(Cu)와 아연(Zn) 의 결합으로 구성되는 Mg2Zn11, CuMg2 Cu-Zn 계 미세 금속간화합물을 각각 석출하고 그 석출 분산 비율을 최대로 증가시켜 고강도의 기계적 특성을 가진 알루미늄 합금을 만든다.At this time, Mg 2 Si and Al-Fe-Si-based metals formed by combining with magnesium (Mg) by minimizing the content of silicon (Si) and iron (Fe) present as a trace alloy element to 0.10 and 0.20 wt% or less, respectively By reducing the formation rate of the liver compound, the decrease in strength is suppressed. This suppressed effect is Mg 2 Zn consisting of a combination of alloying elements zinc (Zn) and magnesium (Mg), copper (Cu) and magnesium (Mg), and copper (Cu) and zinc (Zn) added to improve strength. 11 , CuMg 2 Cu-Zn-based fine intermetallic compounds are precipitated and the precipitation dispersion ratio is increased to the maximum to form an aluminum alloy with high mechanical strength.

입자미세화제인 Ti(티타늄)은 비중 4.5, 융점 1800℃, 상자성체 (常磁性體)로서 매우 경도(硬度)가 높으며, 강도는 거의 탄소강과 같고, 비강도(非 强度)는 비중이 철보다 작으므로 철의 약 2 배가 되고 열전도도와 열팽창률도 작으며 내식성이 뛰어나다. Ti (Titanium), a particle micropowder, has a specific gravity of 4.5, a melting point of 1800 ° C, a paramagnetic body, and is very hard. The strength is almost the same as that of carbon steel, and the specific strength is less than that of iron. Therefore, it is about twice as much as iron, and its thermal conductivity and thermal expansion rate are also small and its corrosion resistance is excellent.

따라서, 이와 같은, Ti(티타늄)은 압출성에 해가 되지 않는 범위 내에서 최소화하여 0.10 wt% 이하로 첨가한다. 또한 압출성을 감소시키지 않는 범위 내에서 크롬(Cr) 첨가량을 0.10 wt% 이하로 첨가한다. Therefore, such Ti (titanium) is added to a minimum of 0.10 wt% in a range that does not harm the extrudability. Moreover, the amount of chromium (Cr) addition is added at 0.10 wt% or less within the range which does not reduce extrudability.

이상 살펴본바와 같이 바람직한 조성은 Zn 5.40~6.50 wt%, Mg 1.50~1.80 wt%, Cu 0.60~0.90 wt%, Fe 0.05~0.20 wt%, Cr 0.10 이하 wt%(0초과), Ti 0.10 이하 wt%(0초과), Si 0.10 이하 wt%(0초과), 나머지 Al과 불순물로 구성된다 할 것이다.As described above, the preferred composition is Zn 5.40 ~ 6.50 wt%, Mg 1.50 ~ 1.80 wt%, Cu 0.60 ~ 0.90 wt%, Fe 0.05 ~ 0.20 wt%, Cr 0.10 or less wt% (greater than 0), Ti 0.10 or less wt% (More than 0), Si 0.10 wt% or more (greater than 0), and the remaining Al and impurities.

상술한 내용에 따라 본 발명을 검증하기 위한 실시 예는 다음과 같다. 표 1에 나타낸 것은 본 발명을 위해 제작된 Al-Zn-Mg-Cu 계 알루미늄 합금 들로 도 1a와 도 1b의 용해주조장치(10)과 주조틀(20)을 사용하여 도 2의 바깥지름 165 mm, 길이 600 mm 인 빌레트(20)를 제작하였다. 이렇게 제작된 빌레트는 열처리로에 넣어 470℃로 승온한 후, 24시간 유지하여 균질 열처리를 하였고, 상온까지 자연 공냉으로 다시 냉각하였다. 상기와 같이 열처리된 빌레트를 바깥지름 155 mm, 길이 400 mm 로 선삭 가공하였다. 이렇게 제작된 빌레트는 열간 압출 성형을 하기 위한 적절한 온도범위로 예열하기 위하여 유도가열방식의 Induction 장치로 550 ~ 600℃로 예열하여 도 3과 같은 상업용으로 많이 사용하고 있는 컨테이너 안쪽지름 165 mm 인 1500톤의 직접식 압출기(40)에 바깥지름 37.5 mm, 두께 2.25 mm 인 파이프를 제작할 수 있는 도 4의 압출금형(50)을 부착하여 표 2와 같은 압출 공정 조건 하에서 도 5의 압출 파이프(60)를 제작하였다. 기존공정에서는 빌레트 온도를 250~430℃로 하여 압출시 압출 저항이 상당히 큰 문제가 있었다. 따라서 본 발명에서는 이와 같은 문제를 극복하고자 보다 높은 온도로의 예열을 통해서 내부조직을 제어함으로써 압출 저항을 줄이고자 하였다. 제작된 압출 파이프(60)를 열처리로에 넣어 다시 525 ~ 535 도까지 승온하여 용체화 열처리를 한 후, 찬 물에 넣어 급냉처리하고 저온에서 장시간 유지하여 도 6과 같은 시간에 따른 경도변화를 통해 본 발명 합금의 최적화된 120℃, 18 ~ 22 시간의 열처리 조건을 안출하였다. 그리고 인장시험편을 제작하기 위한 압출 파이프(60)를 상기 과정에서 안출된 열처리 방법으로 다시 열처리하여 도 7과 같은 시험편 규격으로 가공하고 KOLAS가 인정한 검교정기관에서 검교정한 인장시험기로 ASTME 8M 의 규격에 의거하여 인장 시험 평가한 결과를 표 3에 나타내었다.Embodiments for verifying the present invention according to the above description are as follows. Table 1 shows Al-Zn-Mg-Cu based aluminum alloys manufactured for the present invention using the melt casting apparatus 10 and the casting mold 20 of FIGS. 1A and 1B. A billet 20 having a length of 600 mm was produced. The billet thus prepared was put into a heat treatment furnace, heated to 470 ° C., maintained for 24 hours, homogeneous heat treatment, and cooled again by natural air cooling to room temperature. The billet was heat-treated as described above was turned to an outer diameter of 155 mm, length 400 mm. This manufactured billet is 1500 tons with inner diameter of 165 mm, which is widely used for commercial purposes as shown in FIG. 3 by preheating at 550 ~ 600 ℃ with induction heating method of induction heating method to preheat to an appropriate temperature range for hot extrusion. The extruded mold 50 of FIG. 4 is attached to the direct extruder 40 of FIG. 4 to manufacture a pipe having an outer diameter of 37.5 mm and a thickness of 2.25 mm. The extruded pipe 60 of FIG. Produced. In the conventional process, the extrusion resistance at the time of extruding at a billet temperature of 250 to 430 ° C. had a significant problem. Therefore, in the present invention, in order to overcome such a problem, to reduce the extrusion resistance by controlling the internal structure through preheating to a higher temperature. The extruded pipe 60 was put in a heat treatment furnace and heated again to 525 to 535 degrees, followed by solution heat treatment, and then quenched in cold water and maintained at a low temperature for a long time. Optimized 120 ° C., 18-22 hours heat treatment conditions of the inventive alloys were devised. In addition, the extruded pipe 60 for fabricating the tensile test piece was heat-treated again by the heat treatment method drawn in the above process, and processed into the test piece standard as shown in FIG. 7, and the tensile tester was calibrated by KOLAS accredited calibration test laboratory based on the standard of ASTME 8M. The tensile test evaluation results are shown in Table 3.

표3에서 나타난 결과와 같이 합금성분들의 조성변화와 빌레트의 내부조직 제어과정을 통해서 인장강도 450Mpa의 압출재를 만들어 낼 수 있음을 증명하였다.As shown in Table 3, it was proved that the extruded material with tensile strength of 450Mpa could be produced by changing the composition of alloying elements and controlling the internal structure of billet.

본 발명을 위하여 제작된 압출용 Billet 합금조성들Billet alloy compositions for extrusion produced for the present invention
화학성분(wt%)Chemical composition (wt%)
SiSi FeFe CuCu MnMn MgMg CrCr ZnZn TiTi
SY01

SY01

0.02

0.02

0.10

0.10

0.54

0.54

0.00

0.00

2.37

2.37

0.00

0.00

5.50

5.50

0.03

0.03

SY02

SY02

0.03

0.03

0.10

0.10

0.67

0.67

0.00

0.00

1.58

1.58

0.01

0.01

6.45

6.45

0.01

0.01

SY03

SY03

0.03

0.03

0.09

0.09

0.66

0.66

0.00

0.00

1.64

1.64

0.00

0.00

5.46

5.46

0.02

0.02

SY04

SY04

0.03

0.03

0.09

0.09

0.68

0.68

0.00

0.00

1.65

1.65

0.00

0.00

5.56

5.56

0.02

0.02

SY05

SY05

0.15

0.15

0.09

0.09

0.70

0.70

0.02

0.02

1.32

1.32

0.01

0.01

4.93

4.93

0.02

0.02

표 1.의 합금조성 빌레트로 압출할 때의 공정조건들Process conditions when extruding into alloy composition billet of Table 1. 합금 No.Alloy No. 컨테너온도
(℃)
Container Temperature
(℃)
금형온도
(℃)
Mold temperature
(℃)
Billet온도
(℃)
Billet Temperature
(℃)
초기압출압력
(kgf/cm2)
Initial extrusion pressure
(kgf / cm2)
압출재 속도
(mm/Min)
Extruded material speed
(mm / Min)
출구온도
(℃)
Outlet temperature
(℃)
SY01SY01 447
447
450 ~ 456
450 to 456
560 ~ 575
560 to 575
182 ~ 192
182-192
5.0 ~ 5.5
5.0 to 5.5
520 ~ 540
520 ~ 540
SY02SY02 SY03SY03 447447 450 ~ 456450 to 456 550 ~ 580550-580 182 ~ 191182-191 4.5 ~ 5.04.5 to 5.0 516 ~ 537516 to 537 SY04SY04 SY05SY05 446446 440 ~ 445440-445 550 ~ 586550-586 216 ~ 226216-226 7.5 ~ 10.07.5-10.0 530 ~ 540530-540

표 2.의 압출공정조건으로 압출된 파이프의 열처리 인장시험편의 시험평가 결과Test evaluation results of heat treated tensile test pieces of extruded pipe under the extrusion process conditions shown in Table 2. 인장강도(Mpa)Tensile Strength (Mpa) 연신율(%)Elongation (%) SY01SY01 476.2476.2 11.311.3 SY02SY02 490.1490.1 12.212.2 SY03SY03 464.2464.2 13.213.2 SY04SY04 463.4463.4 13.313.3 SY05SY05 406.5406.5 13.913.9

본 발명은 상술한 특정 바람직한 실시 예에 한정되지 아니하며, 청구범위에 서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통 상의 지식을 가진 자라면 누구든지 용이하게 변형실시가 가능한 것은 물론이고, 그 와 같은 변경은 청구항 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and can be easily modified by anyone having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes are intended to fall within the scope of the claims.

10: 용해주조장치 20: 빌레트의 주조틀
30: 빌레트 40: 직접식 압출기
50: 압출 금형 60: 압출 파이프
10: melt casting apparatus 20: billet casting mold
30: billet 40: direct extruder
50: extrusion mold 60: extrusion pipe

Claims (2)

삭제delete Al-Zn-Mg-Cu 기반 알루미늄 합금으로 발레트(30)를 생성하는 S1단계;
상기 S1단계에서 생성된 빌레트를 열처리로에 넣어 열처리하고 상온까지 자연 공냉으로 냉각하는 S2단계;
상기 S2단계에서 공기에 노출된 빌레트의 표면을 제거하는 S3단계;
상기 S3단계의 표면을 제거한 빌레트를 550~580℃로 예열하여 빌레트의 내부조직을 제어하는 S4단계;
직접식 압출기(40)를 이용하여 상기 빌레트를 압출하는 S5단계;
상기 S5단계에서 나온 압출 형상재의 후열처리(T6 처리)하는 S6단계를 포함하고, 상기 Al-Zn-Mg-Cu 기반 알루미늄 합금은 Zn 5.40~6.50 wt%, Mg 1.50~1.80 wt%, Cu 0.60~0.90 wt%, Fe 0.05~0.20 wt%, Cr 0.10 이하 wt%(0초과), Ti 0.10 이하 wt%(0초과), Si 0.10 이하 wt%(0초과), 나머지 Al과 불순물로 조성되는 알루미늄 합금인 것을 특징으로 하는 알루미늄 합금 압출 형상재 제조 방법.
S1 step of producing a valet 30 from Al-Zn-Mg-Cu-based aluminum alloy;
S2 step of heat-treating the billet generated in the step S1 into a heat treatment furnace and cooling by natural air cooling to room temperature;
S3 step of removing the surface of the billet exposed to the air in the step S2;
S4 step of preheating the billet removing the surface of the step S3 to 550 ~ 580 ℃ to control the internal structure of the billet;
S5 step of extruding the billet using a direct extruder (40);
It includes a step S6 step of post-heat treatment (T6 treatment) of the extruded shape member from the step S5, the Al-Zn-Mg-Cu based aluminum alloy is Zn 5.40 ~ 6.50 wt%, Mg 1.50 ~ 1.80 wt%, Cu 0.60 ~ 0.90 wt%, Fe 0.05 ~ 0.20 wt%, Cr 0.10 or less wt% (more than 0), Ti 0.10 or less wt% (more than 0), Si 0.10 or less wt% (more than 0), aluminum alloy composed of remaining Al and impurities The aluminum alloy extrusion shape material manufacturing method characterized by the above-mentioned.
KR1020110087531A 2011-08-31 2011-08-31 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing KR101118740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110087531A KR101118740B1 (en) 2011-08-31 2011-08-31 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110087531A KR101118740B1 (en) 2011-08-31 2011-08-31 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing

Publications (1)

Publication Number Publication Date
KR101118740B1 true KR101118740B1 (en) 2012-03-12

Family

ID=46141370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110087531A KR101118740B1 (en) 2011-08-31 2011-08-31 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing

Country Status (1)

Country Link
KR (1) KR101118740B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243514A (en) * 2017-06-26 2017-10-13 中北大学 A kind of light-alloy cup shell rotary extrusion forming method
CN108672705A (en) * 2018-04-27 2018-10-19 北京航星机器制造有限公司 A kind of manufacturing process of complex structural member
CN111411272A (en) * 2020-03-23 2020-07-14 西安交通大学 Al-Zn-Mg series aluminum alloy welding wire for electric arc additive manufacturing and preparation method thereof
KR20210009056A (en) * 2019-07-16 2021-01-26 한국재료연구원 Method of manufacturing metal exterior material for smart device
CN113512672A (en) * 2021-06-28 2021-10-19 苏州铭德铝业有限公司 Processing method and application of 4-series aluminum alloy and pipe
KR102483729B1 (en) * 2022-02-22 2023-01-02 후덕한금속 주식회사 Homogenizing Device to Improve the Properties of Brass Bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121569B1 (en) * 1994-12-13 1997-12-04 유재원 Method of manufacturing aluminium sheet
JPH1030147A (en) 1996-07-17 1998-02-03 Furukawa Electric Co Ltd:The Aluminum-zinc-magnesium alloy extruded material and its production
JP2001131720A (en) 1999-11-04 2001-05-15 Nippon Light Metal Co Ltd Aluminum alloy extruded material excellent in chip breakability, finish machinability, corrosion resistance and extrudability
KR20080046974A (en) * 2006-11-24 2008-05-28 현대자동차주식회사 Manufacturing method of extruded aluminium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121569B1 (en) * 1994-12-13 1997-12-04 유재원 Method of manufacturing aluminium sheet
JPH1030147A (en) 1996-07-17 1998-02-03 Furukawa Electric Co Ltd:The Aluminum-zinc-magnesium alloy extruded material and its production
JP2001131720A (en) 1999-11-04 2001-05-15 Nippon Light Metal Co Ltd Aluminum alloy extruded material excellent in chip breakability, finish machinability, corrosion resistance and extrudability
KR20080046974A (en) * 2006-11-24 2008-05-28 현대자동차주식회사 Manufacturing method of extruded aluminium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243514A (en) * 2017-06-26 2017-10-13 中北大学 A kind of light-alloy cup shell rotary extrusion forming method
CN108672705A (en) * 2018-04-27 2018-10-19 北京航星机器制造有限公司 A kind of manufacturing process of complex structural member
KR20210009056A (en) * 2019-07-16 2021-01-26 한국재료연구원 Method of manufacturing metal exterior material for smart device
KR102345418B1 (en) * 2019-07-16 2021-12-30 한국재료연구원 Method of manufacturing metal exterior material for smart device
CN111411272A (en) * 2020-03-23 2020-07-14 西安交通大学 Al-Zn-Mg series aluminum alloy welding wire for electric arc additive manufacturing and preparation method thereof
CN111411272B (en) * 2020-03-23 2021-10-01 西安交通大学 Al-Zn-Mg series aluminum alloy welding wire for electric arc additive manufacturing and preparation method thereof
CN113512672A (en) * 2021-06-28 2021-10-19 苏州铭德铝业有限公司 Processing method and application of 4-series aluminum alloy and pipe
CN113512672B (en) * 2021-06-28 2022-07-22 中亿丰金益(苏州)科技有限公司 Processing method and application of 4-series aluminum alloy and pipe
KR102483729B1 (en) * 2022-02-22 2023-01-02 후덕한금속 주식회사 Homogenizing Device to Improve the Properties of Brass Bar

Similar Documents

Publication Publication Date Title
CN101855376B (en) Al-Cu-Li alloy product suitable for aerospace application
CN106319308B (en) The manufacture method of 7000 series alloys section bars of vehicle body
KR101277297B1 (en) High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
CN104018038A (en) Aluminium alloy used for automobile anti-collision beam, and manufacturing method for product thereof
KR101118740B1 (en) With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing
CN108251723B (en) Al-Zn-Mg alloy profile for rail transit vehicle and preparation method thereof
KR101931672B1 (en) High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
TWI299755B (en)
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
US20140261909A1 (en) High-strength aluminum-magnesium silicon alloy and manufacturing process thereof
KR101594729B1 (en) High strength and high corrosion-resistant aluminum alloy for heat exchanger tube and heat exchanger tube prepared from the same
CN110983216A (en) Process for reducing coarse crystal generation on surface of automotive extrusion forging rod
CN106756330A (en) The aluminium alloy extrusions and manufacture method of a kind of body of a motor car
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
EP0936278B2 (en) Method of producing a product of an ALMGSI-alloy
KR101909152B1 (en) Heat resistant aluminium base alloy and fabrication method
CN105838944A (en) High-strength weldable aluminum alloy for vehicle bodies and preparation method thereof
KR101400140B1 (en) Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby
CN101590591B (en) Manufacturing method of aluminium alloy section with easy weld and high strength
KR20190030296A (en) Methods of treating aluminum alloy
US8313590B2 (en) High strength aluminium alloy extrusion
JPH08120387A (en) Aluminum alloy extruded material excellent in surface property, its production and frame for two-wheeler made of aluminum alloy
KR101144100B1 (en) How to predict the strength of 7000 series aluminum alloy
JP2009221531A (en) Al-Mg BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR COLD WORKING, AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170209

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 8