KR101086240B1 - Composition of sulphate resistance polymer repair mortar - Google Patents

Composition of sulphate resistance polymer repair mortar Download PDF

Info

Publication number
KR101086240B1
KR101086240B1 KR20110046460A KR20110046460A KR101086240B1 KR 101086240 B1 KR101086240 B1 KR 101086240B1 KR 20110046460 A KR20110046460 A KR 20110046460A KR 20110046460 A KR20110046460 A KR 20110046460A KR 101086240 B1 KR101086240 B1 KR 101086240B1
Authority
KR
South Korea
Prior art keywords
weight
sulfate
cement
less
powder
Prior art date
Application number
KR20110046460A
Other languages
Korean (ko)
Inventor
이선영
김정훈
Original Assignee
진서건설(주)
이태범
주식회사 진화기술공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 진서건설(주), 이태범, 주식회사 진화기술공사 filed Critical 진서건설(주)
Priority to KR20110046460A priority Critical patent/KR101086240B1/en
Application granted granted Critical
Publication of KR101086240B1 publication Critical patent/KR101086240B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • C04B28/082Steelmaking slags; Converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2015Sulfate resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE: A sulfate-resistant polymer-repairing mortar composition is provided to suppress the abrasion of rebar and the generation of surface cracks on concrete due to sulfate by using granulated slag powder and air-cooled slag powder. CONSTITUTION: A sulfate-resistant polymer-repairing mortar composition includes 80-85 weight% of granulated slag powder, 6-13 weight% of gypsum, 3-8 weight% of lime, normal cement, sodium sulfuric acid or potassium sulfuric acid, and air-cooled slag powder. The contents of the normal cement, the sodium sulfuric acid or the potassium sulfuric acid, and air-cooled slag powder are respectively more than 0 weight% and are less than or equal to 2 weight%. Sulfate-resistant polymer-repairing mortar includes 43-55 weight% of sulfate-resistant cement, 38-53 weight% of silica, reinforcing fiber, silicon-based antifoaming agent, redispersion acryl powder, and a wetting agent. The contents of the silicon-based antifoaming agent and the wetting agent are respectively more than 0 weight% and are less than or equal to 1 weight%. The content of the redispersion acryl powder is more than 0 weight% and is less than or equal to 3 weight%.

Description

내 황산염 폴리머 보수 모르타르 조성물{Composition of sulphate resistance polymer repair mortar}Composition of sulphate resistance polymer repair mortar

본 발명은 지하 및 해안에 있는 철근 콘크리트 구조체가 황산염에 노출되었을 경우 침투된 황산염에 의한 손상된 콘크리트를 보수하기 위해 사용되는 내 황산염 폴리머 보수 모르타르 조성물에 관한 것으로 특히 터널이나 암거, 해안구조체 등 공동구조체에 적용 할 수 있는 내 황산염 폴리머 보수 모르타르 조성물에 관한 것이다.
The present invention relates to a sulfate-resistant polymer repair mortar composition used for repairing damaged concrete by infiltrated sulfate when reinforced concrete structures in the basement and the coast are exposed to sulphate. The present invention relates to a sulfate resistant polymer repair mortar composition that can be applied.

콘크리트의 주 결합재로 사용되는 보통 시멘트의 성분은 주로 칼슘 실리케이트(C3S, C2S) 및 칼슘 알루미네이트(C3A, C4AF)로 되어 있다(상기 C=CaO, S=SiO2, A=Al2O3, F=Fe2O3). 이 외에 수화 속도를 조절하기 위해 첨가된 약간의 석고로 구성되어 있다. The components of ordinary cement, which are used as the main binders of concrete, are mainly composed of calcium silicates (C 3 S, C 2 S) and calcium aluminates (C 3 A, C 4 AF) (C = CaO, S = SiO 2). , A = Al 2 O 3 , F = Fe 2 O 3 ). In addition, it consists of some gypsum added to control the rate of hydration.

위의 성분 중 칼슘 알루미네이트(Calcium aluminate) 계통의 광물이 지하수나 해수 중에 포함되어 있는 황산염과 만나면 상호 반응하여 침상 구조의 팽창 결정체인 에트링자이트(Ettringite)를 형성하게 되는데 이처럼 철근 콘크리트가 양생된 이후 발생되는 에트링자이트가 철근 콘크리트 표면에 망상형의 균열을 발생시키게 된다. 이 균열은 계속하여 황산염과 반응하여 그 크기가 커지게 되며, 이 균열을 통해 수분이나 염화물이 침투하여 결국 콘크리트 구조체의 안정성에 치명적인 손상을 발생시킨다. When calcium aluminate minerals meet sulfates contained in groundwater or seawater, they react with each other to form Ettringite, an acicular expansion crystal. The ettringite, which is generated after it has been used, generates reticular cracks on the reinforced concrete surface. The cracks continue to react with sulphates, which increase in size, which penetrates water and chlorides, eventually causing catastrophic damage to the stability of the concrete structure.

이 때 대부분의 보수 방법은 콘크리트의 표면을 제거하고, 산화된 철근의 교체 및 일반 보수용 시멘트 모르타르로 보수 보강조치를 한다. At this time, most repair methods remove the surface of concrete and repair reinforcement with oxidized rebar and cement mortar for general repair.

이처럼 현존하는 대부분의 보수용 모르타르가 보통 시멘트를 사용하고 있어 황산염이 녹아 있는 지하수나 해수에 무방비 상태이다. 내 황산염 성질을 향상시키기 위해서는 5종 시멘트를 사용해야 하나 국내에서는 이미 5종 시멘트 생산이 미비하다. 일부에서 시멘트의 일부를 고로 슬래그 분말과 혼용(치환)하여 사용하고 있다.
As such, most existing repair mortars usually use cement and are therefore unprotected in the groundwater or seawater where sulfate is dissolved. Five kinds of cement should be used to improve the sulfate resistance, but domestic production of five kinds of cement is insufficient. Some of the cement is mixed (substituted) with blast furnace slag powder.

본 발명은 상기와 같이 철근 콘크리트가 황산염에 노출되어 손상을 입은 부위의 보수나, 노출의 위험이 있는 지하구조 및 해안 구조물의 철근콘크리트 보수에 관한 문제점을 해결하기 위해 안출 된 것으로서, 철근콘크리트가 황산염에 노출되었을 때 생성되는 에트링자이트에 의해 콘크리트의 표면 균열을 발생시키고 이 균열을 통해 수분 및 염분이 침투하여 철근의 부식을 증진하는 것을 억제하여 구조적인 안정을 발휘하도록 하기 위하여, 황산염에 대한 저항성이 높은 보수 모르타르 조성물을 제공하는데 그 목적이 있다. 이러한 목적의 효과적인 달성을 위해 초기 경화 속도를 빠르게 하고, 표면 강도를 증가시키고자 한다.
The present invention has been made to solve the problems related to the repair of the site damaged by exposure to the reinforced concrete exposed to sulphate, or to the reinforced concrete repair of underground structures and coastal structures that may be exposed to exposure, the reinforced concrete sulfate Ethringite, which is produced when exposed to concrete, causes cracks on the surface of the concrete and prevents moisture and salts from penetrating through the cracks, thereby enhancing structural corrosion. It is an object to provide a repair mortar composition having high resistance. In order to achieve this goal effectively, it is intended to speed up the initial curing and increase the surface strength.

본 발명에 따른 내 황산염 폴리머 보수 모르타르 조성물은 보수에 필요한 강도 이상을 발현하며 콘크리트 열화와 관련된 시험 항목에서 우수한 결과를 보였다. 상대적으로 일반 보수 모르타르와 비교한 결과 이는 매우 우수한 성능이며 염화물의 침투가 예상되는 교량 및 주차장, 해안 건축물의 보수에 우수하게 사용될 수 있음을 보여주고 있다.
The sulfate resistant polymer repair mortar composition according to the present invention exhibited more than the strength required for repair and showed excellent results in test items related to concrete deterioration. Compared with the general repair mortars, this shows a very good performance and can be used to repair bridges, parking lots and coastal structures where chloride penetration is expected.

본 발명에 사용된 내 황산염 보수 모르타르에 사용된 내 황산염 시멘트는 슬래그(수쇄 슬래그)를 사용하였으며 여기에 시멘트의 경화를 조정하기 위한 자극제로 황산나트륨 혹은 황산칼륨과 함께 분말 괴재 슬래그를 사용하여 높은 조기 강도 발현 및 강도 발현의 지속성을 유지하였다. 이렇게 만든 내 황산염 시멘트는 일반 시멘트와 비교하여 수화 발열 속도가 낮으며, 알칼리 골재 반응을 억제하는 효과가 있으며, 수밀성, 염분 차단성, 내해수성, 내약품성을 가지고 있다.
The sulfate resistant cement used in the sulfate resistant mortar used in the present invention used slag (hydrogenated slag) and high early strength using powdered aggregate slag together with sodium sulfate or potassium sulfate as a stimulant to control the hardening of cement. The persistence of expression and intensity expression was maintained. The sulphate-resistant cement made in this way has a lower hydration exotherm rate than general cement, has an effect of suppressing alkali aggregate reaction, and has watertightness, salt barrier property, seawater resistance and chemical resistance.

슬래그(수쇄 슬래그)는 제철 산업에서 발생되는 산업 부산물로 그 성분이 잠재 수경성을 가지고 있어 시멘트와 혼합하여 사용하는 방법이 많이 있었으나 본 발명에서는 수쇄 슬래그에 적정한 자극제인 황산나트륨 혹은 황산칼륨과 괴재 슬래그 분말을 사용하여 내 황산염 시멘트를 만들었다. Slag (hybrid slag) is an industrial by-product generated in the steel industry, and its components have potential hydraulic properties, so there are many methods of mixing it with cement. Was used to create a sulfate resistant cement.

괴재 슬래그는 광양, 현대 제철소에서 괴상으로 얻을 수 있으며 이를 볼밀에서 약 3500brain 정도의 입자로 분말화 시킨 것을 사용하였다. Aggregate slag can be obtained as a mass in Gwangyang, Hyundai Steel Works, and powdered into particles of about 3500brain in a ball mill.

이렇게 만든 내 황산염 시멘트를 주 결합재로하여 골재로는 dolomite계 규사를 사용하였으며 재분산성 폴리머 및 섬유, 웨팅제(wetting agent)를 첨가하여 내 황산염 보수 모르타르를 만들었다.
Dolomite-based silica sand was used as the main binder as the main sulphate cement, and redispersant repair mortar was made by adding redispersible polymer, fiber, and wetting agent.

내 황산염 보수 모르타르를 제조 시, 접착성 증진과 골재의 침강(segregation)을 방지하고자 소량의 폴리머(Polymer)를 첨가하였다. 이와 같은 조성은 수분의 침투 억제가 매우 좋으며 우수한 황산염 저항성을 발현함과 동시에 안정된 물성, 특히 강도를 발현하며 황산염에 노출되었을 경우 콘크리트 구조체의 열화(균열)를 감소시켜 보다 안정된 구조체를 유지하는데 매우 유용한 효과를 얻을 수 있다.
In preparing the sulfate-resistant mortar, a small amount of polymer was added to improve adhesion and prevent segregation of aggregates. Such a composition is very useful in maintaining a more stable structure by exhibiting excellent inhibition of moisture penetration and excellent sulphate resistance and stable physical properties, particularly strength and reducing deterioration (cracking) of concrete structures when exposed to sulphate. The effect can be obtained.

내 황산염 시멘트 제조를 위한 시험을 다음과 같이 하였다.
The test for the production of sulfate resistant cement was as follows.

시험에 사용된 시료의 조성을 하기 표1에 나타내었다.
The composition of the samples used in the test is shown in Table 1 below.

(단위 : 중량%)(Unit: weight%)
원료 / 시료Raw Material / Sample

1One

22

33

44

55

66

77

수쇄 슬래그 미분말

Crushed slag fine powder

85

85

84

84

84

84

84

84

83

83

84

84

83

83

석고

gypsum

10

10

10

10

10

10

10

10

10

10

10

10

10

10

석회

lime

5

5

5

5

5

5

5

5

5

5

5

5

5

5

황산나트륨

Sodium sulfate

1

One

1

One

황산칼륨

Potassium sulfate

1

One

1

One

괴재 슬래그 분말

Aggregate slag powder

1

One

1

One

1

One

보통 시멘트(1종)

Normal cement (one kind)

1

One

강도 시험에 있어, 시멘트 : 5호 규사 : 물 의 비율을 1 : 1 : 0.18 로 조절하여 시편을 제작하였다. KSF 4042 콘크리트 구조물 보수용 폴리머 시멘트 모르타르 시험 규정을 통한 압축강도 시험을 실시하였다. 시험 결과, 자극제로써 황산나트륨 혹은 황산칼륨과 괴재 슬래그 분말을 혼용한 결과 초기 강도 발현 및 표면 경도가 우수하게 나타났으며 두 자극제의 사용량이 증가 할수록 초기경화 속도가 빠르게 나타났고 표면 강도도 증가하였다. 이는 하기 표 2를 통해 나타내었다.
In the strength test, the specimen was prepared by adjusting the ratio of cement: No. 5 silica sand: water to 1: 1: 0.18. The compressive strength test was performed using the KSF 4042 concrete cement mortar test specification for repairing concrete structures. As a result, the use of sodium sulfate or potassium sulfate as a stimulant and the aggregate slag powder showed excellent initial strength and surface hardness. The initial curing rate was increased and the surface strength increased as the amount of both stimulants increased. This is shown through Table 2 below.

(단위 : Kg/Cm2)(Unit: Kg / Cm 2 )
강도 / 시편Strength / Specimen

1One

22

33

44

55

66

77

1일 강도

1 day robbery

40

40

80

80

65

65

85

85

100

100

80

80

95

95

3일 강도

3 days robbery

85

85

140

140

170

170

185

185

205

205

180

180

195

195

7일 강도

7 days robbery

180

180

185

185

197

197

201

201

221

221

212

212

223

223

28일 강도

28 days strength

296

296

312

312

354

354

385

385

396

396

384

384

392

392

내 황산 시험을 진행하기 위해 5% H2SO4 을 사용하였다. 5% H 2 SO 4 to run the sulfuric acid test Was used.

보통 시멘트를 사용하여 만든 보수모르타르 시편을 Plain으로 하고, 내 황산염 슬래그 시멘트를 이용한 내 황산염 폴리머 보수 모르타르의 각 배합 중 4 내지 7의 시멘트를 사용한 가로 5 ㎝, 세로 5 ㎝, 높이 5 ㎝의 시편을 준비하였다. 각 시편을 7일간 양생시킨 후 무게를 측정하였다. 각 시멘트를 이용하여 만든 시편을 이미 만든 5% H2SO4 용액에 침적시켰다. 7일이 경과 후 시편을 꺼내어 7일간 건조 시킨 후 압축 강도를 측정하여 비교하였다. 강도변화는 하기의 식으로 계산되었다.
In general, a repair mortar specimen made of cement is used as a plain, and a 5 cm wide, 5 cm wide, 5 cm high specimen using cements of 4 to 7 in each formulation of the sulfate resistant polymer repair mortar using sulfate resistant slag cement. Ready. Each specimen was cured for 7 days and then weighed. Specimens made with each cement were immersed in the 5% H 2 SO 4 solution already made. After 7 days, the specimens were taken out and dried for 7 days, and then the compressive strength was measured and compared. Intensity change was calculated by the following equation.

Figure 112011036674541-pat00001

Figure 112011036674541-pat00001

시험 결과, 일반 시멘트(포틀랜드 1종 시멘트)를 사용하여 만든 시편(Plain)과 비교하여 내 황산염 시멘트를 이용하여 만든 시편이 7일차 강도 발현은 낮게 나왔지만 5% H2SO4 침적시험에는 더 우수한 성능을 발현하였다. 이는 하기 표 3에 나타내었다.
The test results showed that the specimens made with sulfate-resistant cement had lower strength on the 7th day than the plains made with ordinary cement (Portland Class 1 cement), but better performance in 5% H 2 SO 4 deposition test. Was expressed. This is shown in Table 3 below.

( Plain은 일반 시멘트를 사용하여 만든 시편임.)(Plain is a specimen made using ordinary cement.)
항복 / 시편Yield / Psalm

44

55

66

77

PlainPlain


압축강도
(Kg/Cm2)


Compressive strength
(Kg / Cm 2 )

7일 강도

7 days robbery

201

201

221

221

212

212

223

223

325

325

시험 후 강도

Strength after test

183

183

208

208

201

201

222

222

258

258

5% H2SO4 침적 시험에 대한 강도 변화 %

5%% change in strength for H2SO4 deposition test

0.910

0.910

0.941

0.941

0.948

0.948

0.996

0.996

0.793

0.793

본 시험에서 사용된 재료의 성분은 다음과 같다.The components of the material used in this test are as follows.

밀도가 2.90 kg/m3이고, 비표면적이 4000 cm2/g 이상이며, 산화마그네슘 함량이 10.0 중량% 이하이고, 삼산화황 (SO3) 함량이 4.0 중량% 이하인 고로 슬래그 미분말(KSF2563 3종); 무색 결정의 형상을 갖는 비중 2.70의 황산나트륨; 무색의 가루형 결정인 비중 2.60의 황산칼륨; 회색 분말이고, 비표면적 3500 cm2/g 이상인 괴재 슬래그; 백색 분말 형상의 석고; 백색분말 형상의 석회; 길이가 4 내지 6mm이고, 폴리프로필렌 섬유 재질이며, 케미우스 코리아 (수입판매)사의 보강 섬유; 및 백색 결정체이고, 물에 용해되며, 비중이 1.06인 Dimethylolpropane (HOCH2C(CH3)2CH2OH).Density is 2.90 kg / m 3 , Blast furnace slag fine powder (3 kinds of KSF2563) having a specific surface area of 4000 cm 2 / g or more, magnesium oxide content of 10.0% by weight or less, and sulfur trioxide (SO 3 ) content of 4.0% by weight or less; Sodium sulfate with a specific gravity of 2.70 having the shape of colorless crystals; Potassium sulfate with a specific gravity of 2.60, which is a colorless powdery crystal; Aggregate slag, which is a gray powder and has a specific surface area of 3500 cm 2 / g or more; White powdery gypsum; White powder lime; 4 to 6 mm in length, made of polypropylene fiber, reinforcing fiber of Chemius Korea (importer); And Dimethylolpropane (HOCH 2 C (CH 3 ) 2 CH 2 OH), white crystals, soluble in water, specific gravity 1.06.

본 시험에서 사용된 재료는 KSF 2563에 따라 분류된 고로 슬래그 미분말 3종을 사용하였으며 자극제로써 황산나트륨, 황산칼륨 및 괴재슬래그 분말 이용하였다. 또 활성제로 석고를 사용하였다. 일반 골재로는 등급화된 dolomite계 규사를 사용하였으며. 접착 성능의 개선 및 몰탈 자체의 점착력 증가 및 리올로지(Rheology) 증가를 위하여 폴리머를 첨가하였으며 폴리머는 재 분산성 아크릴 분말분지를 사용하였다. 모르타르의 균열을 막기 위하여 보강 화이버를 첨가하였다. Plastic crack을 감소시키기 위해 수축저감제(wetting agent)를 사용하였으며 본 시험에서는 수축저감제로 디메틸올프로판 (Dimethylolpropane :HOCH2C(CH3)2CH2OH)를 사용했다. The materials used in this test were three types of blast furnace slag powder classified according to KSF 2563. Sodium sulfate, potassium sulfate and lumped slag powder were used as stimulants. Gypsum was also used as an activator. Graded dolomite silica was used as general aggregate. A polymer was added to improve adhesion performance, increase adhesion of mortar itself, and increase rheology, and the polymer used re-dispersible acrylic powder branch. Reinforcement fibers were added to prevent cracking of the mortar. Wetting agent was used to reduce plastic crack and dimethylolpropane (HOCH 2 C (CH 3 ) 2 CH 2 OH) was used as shrink reducing agent in this test.

본 발명에 사용된 내 황산염 시멘트 및 이 시멘트를 사용한 폴리머 보수 몰탈의 조성비는 아래와 같다.
The composition ratio of the sulfate resistant cement used in the present invention and the polymer repair mortar using the cement is as follows.

내 황산염 시멘트  Sulfate resistant cement

슬래그 분말 : 80 ~ 85 중량%     Slag Powder: 80 ~ 85 wt%

석고(Dead burnt gypsum) : 6 ~ 13 중량%     Dead burnt gypsum: 6 ~ 13 wt%

석회 : 3 ~ 8 중량%     Lime: 3 to 8 wt%

일반 시멘트 : 2 중량% 이내     General Cement: Within 2 wt%

자극제 (황산나트륨, 황산칼륨) : 2 중량% 이내     Stimulants (sodium sulfate, potassium sulfate): within 2% by weight

괴재 슬래그 분말 : 2 중량% 이내
Aggregate slag powder: Within 2% by weight

내 황산염 폴리머 보수모르타르  Sulphate resistant polymer conservative mortar

내 황산염 시멘트 : 43 ~ 55 중량%     Sulfate Cement: 43 ~ 55 wt%

규사 (dolomite 골재) : 38 ~ 53 중량%     Silica (dolomite aggregate): 38 ~ 53 wt%

보강섬유 : ~ 0.3 중량%     Reinforcing fiber: ~ 0.3 wt%

소포제 (물과의 반응 시 발생하는 기포 제거 : Silicone계 ): ~ 1 중량%      Defoamer (bubble generated during reaction with water: Silicone): ~ 1 wt%

폴리머 (점착력 및 Rheology 증가: Redispersion acryl powder ) : ~ 3 중량%     Polymer (Increased adhesion and Rheology: Redispersion acryl powder): ~ 3% by weight

Wetting 제 (Dimethylolpropane :HOCH2C(CH3)2CH2OH) : ~ 1 중량%
Wetting agent (Dimethylolpropane: HOCH2C (CH3) 2CH2OH): ~ 1% by weight

상기는 발명의 내용을 구체적으로 설명하기 위한 하나의 실시 예에 불과하며, 본 발명의 범위는 상기 실시 예에 한정되지 않는다. 특허청구범위에 기재된 범위 내에서 세부사항에 있어서 다양한 변형이 가능하다.
The above is only one embodiment for explaining the content of the invention in detail, the scope of the present invention is not limited to the above embodiment. Various modifications may be made in the details within the scope of the claims.

Claims (4)

내 황산염 시멘트로서,
수쇄 슬래그 분말을 80 중량% 내지 85 중량%, 석고(Dead burnt gypsum)를 6 중량% 내지 13 중량%, 석회를 3 중량% 내지 8 중량%, 일반 시멘트를 0 중량% 초과 2 중량% 이하, 황산나트륨 및 황산칼륨 중 어느 하나 이상을 0 중량% 초과 2 중량% 이하, 괴재 슬래그 분말을 0 중량% 초과 2 중량% 이하로 포함하는, 내 황산염 시멘트.
As sulfate cement,
80 to 85% by weight of crushed slag powder, 6 to 13% by weight of dead burnt gypsum, 3 to 8% by weight of lime, more than 0% by weight to 2% by weight of general cement, sodium sulfate And at least one of potassium sulfate greater than 0% by weight and less than 2% by weight and aggregated slag powder greater than 0% by weight and less than 2% by weight.
삭제delete 내 황산염 폴리머 보수 모르타르로서,
청구항 제 1 항에 따른 내 황산염 시멘트를 43 중량% 내지 55 중량%, 규사(dolomite 골재)를 38 중량% 내지 53 중량%, 보강 섬유를 0 중량% 초과 0.3 중량% 이하, 실리콘계 소포제를 0 중량% 초과 1 중량% 이하, 재분산 아크릴 분말(Redispersion acryl powder)을 0 중량% 초과 3 중량% 이하, 웨팅제를 0 중량% 초과 1 중량% 이하로 포함하는, 내 황산염 폴리머 보수 모르타르.
As sulfate resistant polymer repair mortar,
43% to 55% by weight of sulfate resistant cement according to claim 1, 38% to 53% by weight of silica sand (dolomite aggregate), more than 0% by weight of 0.3% by weight of reinforcing fibers, 0% by weight of silicone antifoaming agent Sulfate polymer repair mortar comprising greater than 1 wt% or less, greater than 0 wt% and less than 3 wt% of redispersible acryl powder and greater than 0 wt% and less than 1 wt% of a wetting agent.
청구항 제 3 항에 있어서,
상기 내 황산염 시멘트는 내 황산염 슬래그 시멘트인 것을 특징으로 하는 내 황산염 폴리머 보수 모르타르.
The method according to claim 3,
The sulfate resistant cement mortar is a sulfate resistant polymer repair, characterized in that the sulfate resistant slag cement.
KR20110046460A 2011-05-17 2011-05-17 Composition of sulphate resistance polymer repair mortar KR101086240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110046460A KR101086240B1 (en) 2011-05-17 2011-05-17 Composition of sulphate resistance polymer repair mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110046460A KR101086240B1 (en) 2011-05-17 2011-05-17 Composition of sulphate resistance polymer repair mortar

Publications (1)

Publication Number Publication Date
KR101086240B1 true KR101086240B1 (en) 2011-11-23

Family

ID=45398118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110046460A KR101086240B1 (en) 2011-05-17 2011-05-17 Composition of sulphate resistance polymer repair mortar

Country Status (1)

Country Link
KR (1) KR101086240B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365542A (en) * 2016-08-31 2017-02-01 中国水利水电第十工程局有限公司 Sulfate-resistant concrete and construction method thereof
KR20190051207A (en) 2017-11-06 2019-05-15 주식회사 삼명이엔씨 Composition of mortar powder for sewage treatment plant with amine derivatives and ionic reactions
KR102259809B1 (en) * 2020-10-26 2021-06-02 공병하 High sulfate cement and concrete repair mortar using the same, and its construction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003249A (en) 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003249A (en) 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365542A (en) * 2016-08-31 2017-02-01 中国水利水电第十工程局有限公司 Sulfate-resistant concrete and construction method thereof
CN106365542B (en) * 2016-08-31 2020-05-01 中国水利水电第十一工程局有限公司 Sulfate-resistant concrete and construction method thereof
KR20190051207A (en) 2017-11-06 2019-05-15 주식회사 삼명이엔씨 Composition of mortar powder for sewage treatment plant with amine derivatives and ionic reactions
KR102259809B1 (en) * 2020-10-26 2021-06-02 공병하 High sulfate cement and concrete repair mortar using the same, and its construction method

Similar Documents

Publication Publication Date Title
Panesar Supplementary cementing materials
Vafaei et al. Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration
Langaroudi et al. Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures
Hanif et al. Utilization of fly ash cenosphere as lightweight filler in cement-based composites–A review
Nuaklong et al. Influence of recycled aggregate on fly ash geopolymer concrete properties
Bederina et al. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions
Ghalehnovi et al. Self-compacting architectural concrete production using red mud
Turk et al. Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC
Nazari et al. RETRACTED: The effects of TiO2 nanoparticles on properties of binary blended concrete
Binici et al. Performance of ground blast furnace slag and ground basaltic pumice concrete against seawater attack
Al-Swaidani et al. Effect of adding scoria as cement replacement on durability-related properties
KR101095349B1 (en) Geopolymer cement using zirconyl chloride or zirconyl nitrate hydrate as activater and composition of acid resistance polymer repair mortar comprising the same
CN103896527A (en) Lightweight high-strength cement based composite material
Ren et al. Fresh and hardened properties of self-compacting concrete using silicon carbide waste as a viscosity-modifying agent
Nazari et al. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder
Farzadnia et al. Incorporation of mineral admixtures in sustainable high performance concrete
CN105272004A (en) Light-weight high-strength cement-based composite material
Haque et al. Evaluating the physical and strength properties of fibre reinforced magnesium phosphate cement mortar considering mass loss
Temiz et al. Investigation of durability of CEM II BM mortars and concrete with limestone powder, calcite powder and fly ash
Barbero-Barrera et al. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes
Anwar et al. Improved concrete properties to resist the saline water using environmental by-product
Xu et al. Combined effect of isobutyltriethoxysilane and silica fume on the performance of natural hydraulic lime-based mortars
Mansour et al. The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review
Boukhelkhal et al. Combined effects of mineral additions and curing conditions on strength and durability of self-compacting mortars exposed to aggressive solutions in the natural hot-dry climate in North African desert region
Silva et al. Sulfate attack resistance of self-compacting concrete with residue of masonry

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 5

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20161109

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181027

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191205

Year of fee payment: 9