KR100882307B1 - Preparation method of nanoclay reinforced polyurethane insulation foams - Google Patents

Preparation method of nanoclay reinforced polyurethane insulation foams Download PDF

Info

Publication number
KR100882307B1
KR100882307B1 KR1020070122780A KR20070122780A KR100882307B1 KR 100882307 B1 KR100882307 B1 KR 100882307B1 KR 1020070122780 A KR1020070122780 A KR 1020070122780A KR 20070122780 A KR20070122780 A KR 20070122780A KR 100882307 B1 KR100882307 B1 KR 100882307B1
Authority
KR
South Korea
Prior art keywords
parts
weight
polyol
nanoclay
foaming
Prior art date
Application number
KR1020070122780A
Other languages
Korean (ko)
Inventor
김병규
김성희
송진철
황적수
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020070122780A priority Critical patent/KR100882307B1/en
Application granted granted Critical
Publication of KR100882307B1 publication Critical patent/KR100882307B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/325Polyamines containing secondary or tertiary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A preparation method of nanoclay reinforced polyurethane insulation foams is provided to improve adiabaticity, mechanical strength and storage stability while not using the organic solvent, to simplify a manufacturing process by applying nanoclay peeled by using diol having a carboxy radical to polyurethane insulation foams. A preparation method of nanoclay reinforced polyurethane insulation foams comprise a step for manufacturing a mixture by mixing (i) at least one or two polyols 100.0 parts by weight selected from solbitol polyol, toluene diamine polyol, ethylenediamine polyol and sucrose/glycerine polyol, (ii) diol 0.05~2.0 parts by weight having a carboxy radical selected from a dimethylol propionic acid, dimethylol butanoic acid and their mixture, and (iii) tertiary amine 0.04~2.0 parts by weight; a step for manufacturing a nanoclay-polyol composite which is exfoliated by inserting diol having a carboxy radical in an interlayer, by mixing the mixed solution 100.0 parts by weight, and nanoclay 0.5~15 parts by weight selected from montmorillonite, hectorite, bentonite, vermiculate and volkonskoite; and a step for manufacturing polyurethane foam by mixing and foaming (i) the nanoclay-polyol composite 100.0 parts by weight, (ii) diisocyanate 100~180 parts by weight selected from crude-4,4'- diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, crude-2,6-toluene diisocyanate, 2,6-toluene diisocyanate and 2,4-toluene diisocyanate, (iii) surfactant 0.5~5 parts by weight as an additive for foaming, (iv) foaming agent 8~50 parts by weight and (v) foaming catalyst 0.2~2 parts by weight.

Description

나노클레이 보강 폴리우레탄 단열폼의 제조방법{Preparation method of Nanoclay Reinforced Polyurethane Insulation Foams}Preparation Method of Nanoclay Reinforced Polyurethane Insulation Foam {Preparation method of Nanoclay Reinforced Polyurethane Insulation Foams}

본 발명은 중화된 카르복시기를 갖는 디올을 사용하여 박리시킨 나노클레이를 함유하여, 단열성 및 기계적 강도의 향상뿐만 아니라 제조공정의 단순화 및 유기용매를 사용하지 않으면서 저장안정성을 향상시킨 폴리우레탄 단열폼의 제조방법에 관한 것이다.The present invention provides a polyurethane insulation foam containing nanoclay exfoliated using a diol having a neutralized carboxyl group, which not only improves insulation and mechanical strength but also simplifies the manufacturing process and improves storage stability without using an organic solvent. It relates to a manufacturing method.

발포폼을 이용한 단열재로는 스티로폼, 우레탄폼, 유리섬유 및 에폭시수지 단열재가 대부분이며, 이들의 기재는 열에 약한 열가소성 수지로 이루어져 있어 화재에 취약한 특징을 가지고 있다. Styrofoam, urethane foam, glass fiber and epoxy resin insulators are the most common thermal insulation materials using foam foam, and their substrates are made of thermoplastic resins that are weak to heat, and thus are susceptible to fire.

이들 중 종래의 폴리우레탄 단열폼은 응용면에서 기계적 물성의 보완을 위하여 유리섬유 등 첨가물을 사용하는 경우도 있으나, 이의 경우 단열성이 떨어지거나 제조공정이 복잡하고, 저장안정성이 떨어질 뿐만 아니라 유기용매를 사용하므로 환경오염 등의 문제가 있는 바, 단열성을 저하시키지 않고 기계적 강도를 향상시키 며, 제조공정을 단순화하면서 저장안정성을 향상시킨 폴리우레탄 단열폼의 제조방법에 대한 다양한 연구기 진행되고 있다.Among these, the polyurethane insulation foam of the related art may use additives such as glass fiber to supplement mechanical properties in terms of application, but in this case, the insulation property is poor, the manufacturing process is complicated, storage stability is poor, and organic solvents are used. Since there is a problem such as environmental pollution, various researches on the production method of the polyurethane insulation foam which improves the mechanical strength without reducing the thermal insulation, and improve the storage stability while simplifying the manufacturing process.

하기는 폴리우레탄 단열폼에 대한 다양한 공지 기술로 이를 구체적으로 살펴보면 다음과 같다.The following is a detailed description of various well-known technologies for polyurethane insulation foams.

대한민국 특허등록 제 642685호에는 클레이-폴리우레탄 나노복합재 및 그 제조방법에 대하여 제시되어 있으나, 이는 층상 클레이와 디이소시아네이트의 반응중에 물을 사용하여 원하지 않는 부산물이 발생할 수 있으므로 실험 과정중에 주의가 요구되고 반응시 용매의 사용이 불가피한 문제가 있다.Korean Patent Registration No. 642685 discloses a clay-polyurethane nanocomposite and a method for manufacturing the same, but this requires attention during the experiment process since unwanted by-products may occur during the reaction of the layered clay with the diisocyanate. There is an unavoidable problem of using a solvent in the reaction.

대한민국 특허등록 제 599197호에는 열배관 보온재용 클레이-폴리우레탄 폼 나노복합재 및 그 제조방법이 제시되어 있으나, 층상 클레이와 디이소시아네이트의 반응중에 초음파를 가하는 등의 물리적인 방법이 추가되어 과정이 복잡하다.Korean Patent Registration No. 599197 discloses a clay-polyurethane foam nanocomposite for heat pipe insulation and a method of manufacturing the same, but the process is complicated by the addition of a physical method such as applying ultrasonic waves during the reaction of the layered clay and diisocyanate. .

Polyurethane/clay nanocomposites form : processing, structure and properties 문헌에서는 효과적으로 층상 클레이를 박리시키기 위하여 층상 클레이를 톨루엔에서 티부틸디메톡시틴으로 개질하여 사용하고 있다. 그러나, 층상 클레이를 박리시킬 때 사용한 용매인 톨루엔은 폼의 물성에 나쁜 영향을 줄 뿐만 아니라 환경규제로 인한 제약이 있으므로 이의 사용을 배제하는 것이 요구된다.Polyurethane / clay nanocomposites form: processing, structure and properties Literature clay is modified from toluene to thibutyldimethoxytin in order to effectively remove the layered clay. However, toluene, which is a solvent used to peel the layered clay, not only has a bad effect on the physical properties of the foam but also has limitations due to environmental regulations, so it is required to exclude its use.

본 발명은 종래의 폴리우레탄 단열폼 나노복합체의 이러한 제반 문제를 근원 적으로 해결하기 위하여 다양하고 심도 있는 연구를 수행하였다. 카르복시기를 갖는 디올을 사용하여 박리시킨 나노클레이를 폴리우레탄 단열폼에 함유하여 유기용매를 사용하지 않으면서, 기계적 강도 및 단열성 향상시키고 저장안정성이 향상된다는 폴리우레탄 단열폼을 제조하는 것이다.The present invention has conducted a variety of in-depth studies to fundamentally solve these problems of the conventional polyurethane insulation foam nanocomposites. It is to prepare a polyurethane insulation foam that contains the nanoclay peeled using a diol having a carboxyl group in the polyurethane insulation foam to improve the mechanical strength and insulation and improve the storage stability without using an organic solvent.

본 발명은 폴리올, 디이소시아네이트, 정포제, 발포제 및 촉매를 발포시켜 폴리우레탄 단열폼을 제조하는 방법에 있어서,The present invention is a method for producing a polyurethane insulation foam by foaming a polyol, diisocyanate, foam stabilizer, blowing agent and catalyst,

상기 폴리올 성분으로 폴리올 100 중량부에, 카르복시기를 갖는 디올 0.05 ∼ 2.0 중량부, 및 아민 0.05 ∼ 2.0 중량부를 혼합하여 혼합용액을 제조하고, 상기 혼합용액 100 중량부와, 나노클레이 0.5 ∼ 15 중량부를 혼합하여 카르복시기를 갖는 디올이 층간에 삽입되어 박리된 나노클레이-폴리올 복합체를 사용하는 폴리우레탄 단열폼의 제조방법에 그 특징이 있다.The polyol component was mixed with 100 parts by weight of polyol, 0.05 to 2.0 parts by weight of diol having a carboxyl group, and 0.05 to 2.0 parts by weight of amine to prepare a mixed solution, 100 parts by weight of the mixed solution and 0.5 to 15 parts by weight of nanoclay. There is a feature in the method for producing a polyurethane insulation foam using a nanoclay-polyol composite in which diols having a carboxyl group are inserted into and separated from each other by intercalation.

또한, 본 발명은 상기 방법으로 제조된 폴리우레탄 단열폼으로, 압축강도가 1.2 ∼ 1.8 MPa범위이고, 열전도도가 0.02 ∼ 0.025 Kcal/mhr℃범위이며, 저장안정성 0.02 ∼ 0.09 범위(15일 후 XRD의 θ변화값)인 폴리우레탄 단열폼에 또 다른 특징이 있다.In addition, the present invention is a polyurethane insulation foam prepared by the above method, the compressive strength is in the range of 1.2 ~ 1.8 MPa, the thermal conductivity is in the range of 0.02 ~ 0.025 Kcal / mhr ℃, storage stability 0.02 ~ 0.09 range (XRD after 15 days Another characteristic is the polyurethane insulation foam, which is the θ change value of.

상기에서 상술한 바와 같이, 본 발명의 박리된 폴리우레탄 단열폼 나노복합 체의 제조 방법은 카르복시기를 가진 디올이 클레이 층간에 삽입되어 보다 박리가 용이하게 일어나게 하여 분산성을 향상시킴으로써 단열성, 기계적 강도가 향상 될 뿐 아니라 제조공정을 단순화하고, 유기용매를 사용하지 않으면서 저장안정성을 향상시킨 폴리우레탄 단열폼 나노복합체 제조를 가능하게 하여, 이러한 기술은 단열폼 제조는 물론 도료, 접착제, 섬유처리제, 프라이머 등 다양한 산업적 용도로 적용이 가능하다. As described above, in the method of manufacturing the exfoliated polyurethane insulation foam nanocomposite of the present invention, the diol having a carboxyl group is inserted between the clay layers to make the peeling more easily, thereby improving dispersibility and improving heat insulation and mechanical strength. This technology not only improves the manufacturing process, but also enables the production of polyurethane insulation foam nanocomposites with improved storage stability without the use of organic solvents. It can be applied to various industrial purposes.

본 발명은 폴리올, 디이소시아네이트를 발포시켜 폴리우레탄 단열폼을 제조하는 방법에 있어서, 상기 단열폼의 기계적, 열적 물성 및 장기 안정성을 향상시키기 위하여 폴리올 성분으로 카르복시기를 갖는 디올 및 아민을 사용하여 층간에 삽입되어 박리된 나노클레이-폴리올 복합체를 사용한 것이다.The present invention is a method for producing a polyurethane insulation foam by foaming a polyol, diisocyanate, in order to improve the mechanical, thermal properties and long-term stability of the insulation foam using a diol and an amine having a carboxyl group as a polyol component between layers Inserted and exfoliated nanoclay-polyol complexes were used.

본 발명에 따른 폴리우레탄 단열폼의 제조 방법을 보다 구체적으로 살펴보면 다음과 같다.Looking at the manufacturing method of the polyurethane insulation foam according to the invention in more detail as follows.

폴리올에, 카르복시기를 갖는 디올, 및 아민을 혼합하여 혼합용액을 제조한다. 상기 혼합은 온도 20 ∼ 40 ℃에서 1 ∼ 5 시간 동안 300 ∼ 700 rpm 속도의 조건하에서 수행한다.A mixed solution is prepared by mixing a polyol with a diol having a carboxyl group and an amine. The mixing is carried out at a temperature of 20 to 40 ° C. for 1 to 5 hours under conditions of a speed of 300 to 700 rpm.

상기 폴리올은 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 솔비톨폴리올, 톨루엔디아민폴리올, 에틸렌디아민폴리올 및 수크로즈/글리세린 폴리올 중에서 선택된 1종 또는 2종 이상을 사용할 수 있다.The polyol is generally used in the art, but is not particularly limited, and specifically, one or two or more selected from sorbitol polyol, toluenediamine polyol, ethylenediamine polyol, and sucrose / glycerine polyol may be used.

상기 카르복시기를 갖는 디올은 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 디메틸올 프로피온산, 디메틸올 부타논산 및 이들의 혼합물을 사용할 수 있다. 이러한 카르복시기를 갖는 디올은 폴리올 100 중량부에 대하여 0.05 ∼ 2.0 중량부, 바람직하기로는 0.05 ∼ 0.67 중량부 범위로 사용하는 바, 상기 사용량이 0.05 중량부 미만이면 클레이 층간에 삽입되는 정도가 적고 3.0 중량부를 초과하는 경우에는 미반응 카르복시기를 가진 디올이 불순물로 남게되는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The diol having the carboxyl group is generally used in the art, but is not particularly limited, and specifically, dimethylol propionic acid, dimethylol butanoic acid, and mixtures thereof may be used. The diol having such a carboxyl group is used in the range of 0.05 to 2.0 parts by weight, preferably 0.05 to 0.67 parts by weight, based on 100 parts by weight of the polyol. If the amount is less than 0.05 parts by weight, the degree of insertion between the clay layers is small and 3.0 parts by weight. When the amount is exceeded, it is preferable to maintain the above range because a problem occurs that the diol having an unreacted carboxyl group remains as an impurity.

상기 아민은 카르복시기를 갖는 디올을 중화하여 클레이 층간 삽입 효과를 증대시키기 위하여 사용되는 것으로 구체적으로 3급 아민을 사용할 수 있다. 이때, 아민을 사용하여 pH를 약 7 ∼ 8 범위로 유지한다. 이러한 아민은 폴리올 100 중량부에 대하여 0.04 ∼ 2.0 중량부, 바람직하기로는 0.046 ∼ 0.456 중량부 범위로 사용하는 바, 상기 사용량이 0.04 중량부 미만이면 카르복시기가 효과적으로 중화되지 못하여 나노클레이에 삽입효과가 감소하고 2.0 중량부를 초과하는 경우에는 담가 증가의 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The amine is used to increase the clay intercalation effect by neutralizing the diol having a carboxyl group may specifically use a tertiary amine. At this time, the pH is maintained in the range of about 7-8 using an amine. The amine is used in an amount of 0.04 to 2.0 parts by weight, preferably 0.046 to 0.456 parts by weight, based on 100 parts by weight of polyol. When the amount of the amine is less than 0.04 parts by weight, the carboxyl group is not effectively neutralized, and thus the insertion effect is reduced in the nanoclay. When it exceeds 2.0 parts by weight, it is preferable to maintain the above range because the problem of soaking increases.

다음으로, 상기 혼합용액과, 나노클레이를 혼합하여 카르복시기를 갖는 디올이 층간에 삽입되어 박리된 나노클레이-폴리올 복합체를 제조한다. 상기 혼합은 50 ∼ 70 ℃로 1 ∼ 5 시간 동안 1000 ∼ 3000 rpm의 조건하에서 수행한다.Next, the mixed solution and the nanoclay are mixed to prepare a nanoclay-polyol complex in which a diol having a carboxyl group is inserted between layers to be peeled off. The mixing is carried out at 50 to 70 ° C. for 1 to 5 hours under conditions of 1000 to 3000 rpm.

상기 나노클레이는 당 분야에서 일반적으로 사용되는 것을 특별히 한정하지는 않으나, 구체적으로 몬모릴로라이트, 헥토라이트, 벤토나이트, 버미큘라이트 및 볼콘스코이트 등을 사용할 수 있다. 상기 몬모릴로라이트는 유기화합물로 개질 된 형태 구체적으로 Southern Clay Products사의 제품의 Cloisite® 10A, Cloisite® 15A, Cloisite® 20A, Cloisite® 25A, Cloisite® 30B, Cloisite® 93A 등을 사용할 수 있다. The nanoclay is not particularly limited to those commonly used in the art, and specifically, montmorillonite, hectorite, bentonite, vermiculite, and volconscote may be used. The montmorillonite may be a form modified with organic compounds, specifically Cloisite® 10A, Cloisite® 15A, Cloisite® 20A, Cloisite® 25A, Cloisite® 30B, Cloisite® 93A, and the like, manufactured by Southern Clay Products.

이러한 나노클레이는 혼합용액 100 중량부에 대하여 0.5 ∼ 15 중량부, 바람직하기로는 0.5 ∼ 5 중량부 범위로 사용되는 바, 상기 사용량이 0.5 중량부 미만이면 압축강도 등의 기계적 물성 보완효과가 없으며, 15 중량부를 초과하는 경우에는 클레이의 분산효과가 떨어져 클레이 끼리 뭉치는 현상이 증가하므로 압축강도 등의 기계적 물성을 저하되는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The nanoclay is used in the range of 0.5 to 15 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the mixed solution. If the amount is less than 0.5 parts by weight, there is no effect of compensating mechanical properties such as compressive strength. When the amount exceeds 15 parts by weight, the dispersion effect of the clay is reduced, so that the aggregates of clay increase, so that a problem of deterioration of mechanical properties such as compressive strength occurs, so it is preferable to maintain the above range.

다음으로 상기에서 제조된 나노클레이-폴리올 복합체, 디이소시아네이트, 정포제, 발포제 및 촉매를 혼합함과 동시에 발포시켜 폴리우레탄 단열폼을 제조한다. 이때, 상기 혼합 및 발포는 20 ∼ 40 ℃, 2000 ∼ 8000 rpm의 조건하에서 수행되는 바, 일반적으로 원샷방법으로 수행하는 것이 좋다.Next, a polyurethane insulation foam is prepared by mixing and foaming the nanoclay-polyol composite, diisocyanate, foam stabilizer, foaming agent, and catalyst prepared above. At this time, the mixing and foaming is carried out under the conditions of 20 to 40 ℃, 2000 to 8000 rpm, it is generally good to perform by one-shot method.

상기 디이소시아네이트는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 크루드-4,4'-디페닐메탄디이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, 크루드-2,6-톨루엔디이소시아네이트, 2,6-톨루엔디이소시아네이트, 및 2,4-톨루엔디이소시아네이트 등을 사용할 수 있다. 이러한 디이소시아네이트는 나노클레이-폴리올 복합체 100 중량부에 대하여 디이소시아네이트 100 ∼ 180 중량부, 바람직하기로는 119 ∼ 151 중량부 범위로 사용되는 바, 상기 사용량이 100 중량부 미만이면 압축강도 등의 기계적 물성이 떨어지고 180 중량부를 초과하는 경우에는 미반응한 디이소시아네이트가 남아 기계적 물성을 저하시키는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The diisocyanate is generally used in the art and is not particularly limited, but specifically, crude-4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, and crude-2,6 -Toluene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, etc. can be used. The diisocyanate is used in the range of 100 to 180 parts by weight of diisocyanate, preferably 119 to 151 parts by weight, based on 100 parts by weight of the nanoclay-polyol composite. If the amount of the diisocyanate is less than 100 parts by weight, mechanical properties such as compressive strength may be used. If it falls and exceeds 180 parts by weight, it is preferable to maintain the above range because unreacted diisocyanate remains and a problem of lowering mechanical properties occurs.

상기 정포제는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 실리콘계 정포제를 사용할 수 있으며, 보다 바람직하기로는 Goldschmidt AG 제조사의 B 8462®, B 8409® 및 B 8404® 제품 등을 사용할 수 있다. 이러한 정포제는 나노클레이-폴리올 복합체 100 중량부에 대하여 0.5 ∼ 5 중량부, 바람직하기로는 0.5 ∼ 3 중량부 범위로 사용되는 바, 상기 사용량이 0.5 중량부 미만이면 닫힌 셀의 양이 줄고 불규칙한 셀 구조가 많이 생기게 되어 기계적 강도가 떨어지는 등에 악영향을 미치고, 5 중량부를 초과하는 경우에는 셀벽이 얇아져 기계 강도가 떨어지는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The foam stabilizer is generally used in the art, but is not particularly limited, and specifically, a silicone foam stabilizer may be used, and more preferably, B 8462®, B 8409®, and B 8404® products, such as those manufactured by Goldschmidt AG, may be used. Can be. Such foam stabilizers are used in the range of 0.5 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the nanoclay-polyol composite. When the amount is less than 0.5 parts by weight, the amount of closed cells is reduced and irregular cells are used. It is preferable to maintain the above range because a large number of structures will adversely affect the mechanical strength and the like, and if it exceeds 5 parts by weight, the cell wall will become thinner and the mechanical strength will drop.

상기 발포제는 당 분야에서 일반적으로 사용되는 것을 특별히 한정하지는 않으나, 오존층을 파괴하는 염소기가 없는 친환경을 사용하는 것이 좋다. 구체적으로 HCFC계 발포제, 펜탄계 발포제, 물 등을 사용할 수 있으며, 바람직하기로는 물, Solvay Chemicals사의 HFC 365mfc®, Honeywell Specialty Chemicals사의 HFC 245fa®, 사이클로 펜탄 제품을 사용하는 것이 바람직하다. 이러한 발포제는 나노클레이-폴리올 복합체 100 중량부에 대하여 발포제 8 ∼ 50 중량부, 바람직하기로는 8 ∼ 30 중량부 범위로 사용되는 바, 상기 사용량이 8 중량부 미만이면 셀 생성이 감소하여 단열성이 떨어지고 50 중량부를 초과하는 경우에는 낮은 밀도로 기계적 물성이 떨어지는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하 다. 이때, 발포제로 물을 사용하는 경우에는 1 ∼ 6 중량부 범위로 사용하는 것이 좋다. The blowing agent is not particularly limited to those generally used in the art, but it is preferable to use an environment-friendly chlorine group without destroying the ozone layer. Specifically, HCFC-based blowing agent, pentane-based blowing agent, water, and the like may be used. Preferably, water, HFC 365mfc® from Solvay Chemicals, HFC 245fa® from Honeywell Specialty Chemicals, cyclopentane products are preferably used. The blowing agent is used in the range of 8 to 50 parts by weight, preferably 8 to 30 parts by weight with respect to 100 parts by weight of the nanoclay-polyol composite. When the amount of the blowing agent is less than 8 parts by weight, the cell production is reduced and heat insulation is deteriorated. If it exceeds 50 parts by weight, it is preferable to maintain the above range because a problem occurs that the mechanical properties are degraded at a low density. At this time, when water is used as the blowing agent, it is preferable to use it in the range of 1 to 6 parts by weight.

상기 촉매는 수지화 반응과 발포 반응을 촉진시키고 반응시간을 조절하여 공정특성에 맞추기 위하여 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 디메틸렌 사이클로 헥산아민, 트리에틸렌디아민 등 3급 아민이 주로 사용되며, 티부틸틴, 주석 함유 옥타에이트(stannous octaoate) 등을 사용할 수 있다. 이러한 촉매는 나노클레이-폴리올 복합체 100 중량부에 대하여 촉매 0.2 ∼ 2 중량부, 바람직하기로는 0.2 ∼ 1.5 중량부 범위로 사용되는 바, 상기 사용량이 0.2 중량부 미만이면 수지화 반응이 충분히 일어나지 않아 폼이 쉽게 찢어지고, 2 중량부를 초과하는 경우에는 폼의 수축이 일어나는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The catalyst is used to promote the resination reaction and the foaming reaction and to adjust the reaction time to meet the process characteristics, but is not particularly limited, specifically, tertiary amines such as dimethylene cyclohexaneamine, triethylenediamine is mainly used, Thibutyltin, tin-containing octaoate, and the like. The catalyst is used in the range of 0.2 to 2 parts by weight, preferably 0.2 to 1.5 parts by weight, based on 100 parts by weight of the nanoclay-polyol composite. If the amount of the catalyst is less than 0.2 part by weight, the resination reaction does not sufficiently occur and the foam When this easily tears and exceeds 2 parts by weight, the shrinkage of the foam occurs, so it is preferable to maintain the above range.

이상의 과정으로 제조된 폴리우레탄 단열폼은 압축강도가 1.2 ∼ 1.8 MPa범위이고, 열전도도가 0.02 ∼ 0.025 Kcal/mhr℃범위이며, 저장안정성 0.02 ∼ 0.09 범위(15일 후 XRD의 θ변화값)를 유지한다.Polyurethane insulation foam prepared by the above process has a compressive strength of 1.2 ~ 1.8 MPa range, thermal conductivity of 0.02 ~ 0.025 Kcal / mhr ℃ range, storage stability 0.02 ~ 0.09 range (the θ change value of XRD after 15 days) Keep it.

이하, 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited to the examples.

실시예 1Example 1

교반기가 부착된 분리형 500 ml 둥근 4 구 플라스크에, 솔비톨폴리올 60 g에 디메틸올 부타논산 0.45 g를 100 rpm으로 30분 정도 교반하여 완전히 녹인 다음, 트리에틸아민(3급 아민)을 0.31 g 가하여 500 rpm에서 3시간 중화시킨 후 나노클레이 Cloisite® 30B(Southern Clay Products사) 3 g를 넣고 2000 rpm에서 3시간 교반시켜 상기 디메틸올 부타논산이 층간에 삽입되어 박리된 나노클레이-솔리톨폴리올 복합체를 제조하였다. 이때, 상기 나노클레이의 확인은 XRD 사진으로 확인하였는 바, 2θ=1.80을 나타내였다. 상기 2θ값이 작을수록 박리되었음을 나타내는 것으로 0 ∼ 2 범위를 유지하는 것이 바람직하다.In a detachable 500 ml round four-necked flask equipped with a stirrer, 0.45 g of dimethylol butanoic acid was dissolved in 60 g of sorbitol polyol at 100 rpm for 30 minutes to completely dissolve, followed by adding 0.31 g of triethylamine (tertiary amine) to 500 After neutralizing at rpm for 3 hours, 3 g of Nanoclay Cloisite® 30B (Southern Clay Products Co., Ltd.) was added thereto, and stirred at 2000 rpm for 3 hours to prepare the nanoclay-solitol polyol complex in which the dimethylol butanoic acid was inserted between the layers. It was. At this time, the identification of the nanoclay was confirmed by XRD photographs, it showed 2θ = 1.80. The smaller the value of 2θ, the more it indicates peeling, and it is preferable to maintain the range of 0 to 2.

상기 박리된 나노클레이-솔리톨폴리올 복합체 63 g, 톨루엔디아민폴리올 40 g, 4,4'-디페닐메탄디이소시아네이트 119 g, 발포체 HFC 365mfc®(Solvay Chemicals 제조사) 12 g, 정포제 B 8462® (Goldschmidt AG 제조사) 2 중량부, 트리에틸렌디아민 0.6 g를 상온(20 ℃)에서 3000 rpm, 원샷법으로 발포시킨 후 상온(20 ℃)에서 일주일 간 경화시켜 폴리우레탄 단열폼을 제조하였다.63 g of the exfoliated nanoclay-solitol polyol complex, 40 g of toluenediamine polyol, 119 g of 4,4'-diphenylmethane diisocyanate, 12 g of foam HFC 365 mfc® (manufactured by Solvay Chemicals), foam stabilizer B 8462® ( 2 parts by weight of Goldschmidt AG), 0.6 g of triethylenediamine was foamed by 3000 rpm at room temperature (20 ° C.) by one-shot method, and then cured at room temperature (20 ° C.) for 1 week to prepare a polyurethane insulation foam.

실시예 2 ∼ 4 및 비교예 1 ∼ 3Examples 2-4 and Comparative Examples 1-3

상기 실시예 1과 동일하게 실시하되, 다음 표 1에 나타낸 바와 같은 성분을 사용하여 폴리우레탄 단열폼을 제조하였다.The same procedure as in Example 1, except that the polyurethane insulation foam was prepared using the components shown in Table 1.

Figure 112007086143508-pat00001
Figure 112007086143508-pat00001

Figure 112007086143508-pat00002
Figure 112007086143508-pat00002

실험예Experimental Example

상기 실시예 1 ∼ 4 및 비교예 1 ∼ 3의 방법으로 제조한 폴리우레탄 단열폼의 분산 특성, 기계적 및 열적 특성을 측정하여 그 결과를 다음 표 3에 나타내었다. 이때, 시료는 액상의 상태로 측정하였다.The dispersion properties, mechanical and thermal properties of the polyurethane insulation foams prepared by the methods of Examples 1 to 4 and Comparative Examples 1 to 3 were measured, and the results are shown in Table 3 below. At this time, the sample was measured in a liquid state.

[물성측정방법][Measurement of physical properties]

1. XRD : X' pert pro (Philips)을 사용하였으며, 실온에서 1 ∼ 10 °범위에서 측정하였다. 1. XRD: X 'pert pro (Philips) was used, measured at 1 ~ 10 ° C at room temperature.

2. 압축강도 : LRX Plus (LLOYD Instruments)를 사용하였으며, 실온에서 ASTM D 1621에 맞춰 측정하였다. 2. Compressive strength: LRX Plus (LLOYD Instruments) was used and measured in accordance with ASTM D 1621 at room temperature.

3. 열전도도 : HC-074 (LaserComp)를 사용하였으며, ASTM C 518에 맞춰 측정하였다.3. Thermal conductivity: HC-074 (LaserComp) was used, measured in accordance with ASTM C 518.

4. 저장안정성 : 15일후 XRD θ 변화로 저장안정성을 측정하였다.4. Storage stability: The storage stability was measured by XRD θ change after 15 days.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 XRD (2θ)XRD (2θ) 1.801.80 1.671.67 0.950.95 1.851.85 1.801.80 2.02.0 4.64.6 -- 압축강도 (MPa)Compressive strength (MPa) 0.910.91 1.121.12 1.011.01 0.820.82 1.151.15 0.890.89 0.710.71 0.610.61 열전도도 (Kcal/mhr℃)Thermal Conductivity (Kcal / mhr ℃) 0.02340.0234 0.02410.0241 0.02270.0227 0.02490.0249 0.02740.0274 0.02370.0237 0.02550.0255 0.02510.0251 저장안정성Storage stability 0.020.02 0.030.03 0.080.08 0.090.09 0.020.02 0.130.13 0.410.41 --

상기 표 3에 나타낸 바와 같이, 본 발명에 따라 실시예 1 ∼ 5에서 제조된 폴리우레탄 단열폼은 XRD 측정에 살펴본 바와 같이 나노클레이 층간에 삽입된 디메틸올 부타논산이 층간 간격을 넓혀 박리된 나노클레이-폴리올 복합체 형성이 가능하다는 것을 확인할 수 있었다. 이와 같은 나노클레이-폴리올 복합체를 사용하여 비교예 1 ∼ 3에 비하여 압축강도, 열전도도 및 저장안정성이 우수하다는 것을 확인할 수 있었다.As shown in Table 3, the polyurethane insulation foam prepared in Examples 1 to 5 according to the present invention is a nanoclay in which the dimethylol butanoic acid intercalated between the nanoclay layers is exfoliated by expanding the interlayer spacing as described in the XRD measurement. It was confirmed that polyol complex formation was possible. Using such a nanoclay-polyol composite, it was confirmed that the compressive strength, thermal conductivity and storage stability are superior to Comparative Examples 1 to 3.

도 1은 본 발명의 실시예에 따른 친환경 폴리우레탄 단열폼 나노복합체의 합성과정을 나타낸 것이다.Figure 1 shows the synthesis of eco-friendly polyurethane insulation foam nanocomposite according to an embodiment of the present invention.

Claims (8)

폴리올 성분과 디이소시아네이트 성분을 통상의 발포용 첨가제로서 정포제, 발포제 및 촉매와 혼합 및 발포시켜 폴리우레탄 폼을 제조하는 방법에 있어서,In the method for producing a polyurethane foam by mixing and foaming a polyol component and a diisocyanate component with a foam stabilizer, a foaming agent and a catalyst as a conventional foaming additive, 솔비톨폴리올, 톨루엔디아민폴리올, 에틸렌디아민폴리올 및 수크로즈/글리세린 폴리올 중에서 선택된 1종 또는 2종 이상의 폴리올 100 중량부에, 디메틸올 프로피온산, 디메틸올 부타논산 및 이들의 혼합물 중에서 선택된 카르복시기를 갖는 디올 0.05 ∼ 2.0 중량부, 및 3급아민 0.04 ∼ 2.0 중량부를 혼합하여 혼합용액을 제조하는 과정 ;Diol having 0.05 to carboxyl group selected from dimethylol propionic acid, dimethylol butanoic acid and mixtures thereof in 100 parts by weight of one or two or more polyols selected from sorbitol polyol, toluenediamine polyol, ethylenediamine polyol and sucrose / glycerin polyol Mixing 2.0 parts by weight and 0.04 to 2.0 parts by weight of tertiary amine to prepare a mixed solution; 상기 혼합용액 100 중량부에, 몬모릴로라이트, 헥토라이트, 벤토나이트, 버미큘라이트 및 볼콘스코이트 중에서 선택된 나노클레이 0.5 ∼ 15 중량부를 혼합하여 카르복시기를 갖는 디올이 층간에 삽입되어 박리된 나노클레이-폴리올 복합체를 제조하는 과정; 및To 100 parts by weight of the mixed solution, 0.5 to 15 parts by weight of nanoclays selected from montmorillonite, hectorite, bentonite, vermiculite, and bolconscote were mixed, and a diol having a carboxyl group was inserted between layers to remove the nanoclay-polyol complex. Manufacturing process; And 상기 나노클레이-폴리올 복합체 100 중량부에, 크루드-4,4'-디페닐메탄디이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, 크루드-2,6-톨루엔디이소시아네이트, 2,6-톨루엔디이소시아네이트, 및 2,4-톨루엔디이소시아네이트 중에서 선택된 디이소시아네이트 100 ∼ 180 중량부와, 통상의 발포용 첨가제로서 정포제 0.5 ∼ 5 중량부, 발포제 8 ∼ 50 중량부 및 발포용 촉매 0.2 ∼ 2 중량부를 혼합 및 발포시켜 폴리우레탄 폼을 제조하는 과정;100 parts by weight of the nanoclay-polyol composite, crude-4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, crude-2,6-toluene diisocyanate, 2,6 -100 to 180 parts by weight of diisocyanate selected from toluene diisocyanate and 2,4-toluene diisocyanate, 0.5 to 5 parts by weight of foam stabilizer, 8 to 50 parts by weight of blowing agent, and 0.2 to foaming catalyst as usual foaming additives. Mixing and foaming 2 parts by weight to prepare a polyurethane foam; 을 포함하여 이루어지는 것을 특징으로 하는 폴리우레탄 단열폼의 제조방법.Polyurethane insulation foam manufacturing method comprising a. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1 항에 있어서, 상기 폴리우레탄 폼 제조를 위한 혼합 및 발포는 20 ∼ 40 ℃, 2000 ∼ 8000 rpm의 조건하에서 수행되는 것을 특징으로 하는 제조방법. The method of claim 1, wherein the mixing and foaming for producing the polyurethane foam is carried out under the conditions of 20 to 40 ℃, 2000 to 8000 rpm. 청구항 1 또는 청구항 7의 방법으로 제조된 폴리우레탄 단열폼으로, Polyurethane insulation foam prepared by the method of claim 1, 압축강도가 1.2 ∼ 1.8 MPa범위이고, 열전도도가 0.02 ∼ 0.025 Kcal/mhr℃범위이며, 저장안정성 0.02 ∼ 0.09 범위(15일 후 XRD의 θ변화값)인 것을 특징으로 하는 폴리우레탄 단열폼.Polyurethane insulation foam, characterized in that the compressive strength is in the range of 1.2 to 1.8 MPa, the thermal conductivity is in the range of 0.02 to 0.025 Kcal / mhr ° C, and the storage stability is in the range of 0.02 to 0.09 (the θ change value of XRD after 15 days).
KR1020070122780A 2007-11-29 2007-11-29 Preparation method of nanoclay reinforced polyurethane insulation foams KR100882307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070122780A KR100882307B1 (en) 2007-11-29 2007-11-29 Preparation method of nanoclay reinforced polyurethane insulation foams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070122780A KR100882307B1 (en) 2007-11-29 2007-11-29 Preparation method of nanoclay reinforced polyurethane insulation foams

Publications (1)

Publication Number Publication Date
KR100882307B1 true KR100882307B1 (en) 2009-02-10

Family

ID=40681209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070122780A KR100882307B1 (en) 2007-11-29 2007-11-29 Preparation method of nanoclay reinforced polyurethane insulation foams

Country Status (1)

Country Link
KR (1) KR100882307B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171322B1 (en) 2010-03-25 2012-08-10 주식회사 제이오 Polyurethan foam composition using nano compound material and manufacturing method thereof
CN102942893A (en) * 2012-12-04 2013-02-27 苏州井上高分子新材料有限公司 Nano modified polyurethane adhesive and preparation method thereof
KR20160015064A (en) * 2014-07-30 2016-02-12 한국과학기술원 Method for manufacturing insulation board
CN109485902A (en) * 2018-11-14 2019-03-19 安徽兆拓新能源科技有限公司 A kind of preparation method of solar water heater foamed plastics
WO2020076132A1 (en) * 2018-10-12 2020-04-16 주식회사 경동원 Method for manufacturing thermosetting expanded foam having excellent flame retardancy, and thermosetting expanded foam using same
KR20200082226A (en) 2018-12-28 2020-07-08 엠텍 주식회사 Method for producing polymer nano-clay composite excellent in heat resistance and flame retardancy
WO2021071322A1 (en) 2019-10-10 2021-04-15 주식회사 경동원 Organic/inorganic composite synthetic resin using highly flame-retardant organically modified silicate and method for preparing same
CN113736057A (en) * 2021-07-29 2021-12-03 泉州辉丽鞋服有限公司 Sponge for shoes and production method thereof
KR102629940B1 (en) 2023-04-18 2024-01-26 이현석 Composition for manufacturing synthetic resin slippers and slippers manufactured using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599197B1 (en) 2005-02-15 2006-07-11 한국지역난방공사 Clay-polyurethane foam nanocomposite of heat pipe lagging material and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599197B1 (en) 2005-02-15 2006-07-11 한국지역난방공사 Clay-polyurethane foam nanocomposite of heat pipe lagging material and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171322B1 (en) 2010-03-25 2012-08-10 주식회사 제이오 Polyurethan foam composition using nano compound material and manufacturing method thereof
CN102942893A (en) * 2012-12-04 2013-02-27 苏州井上高分子新材料有限公司 Nano modified polyurethane adhesive and preparation method thereof
KR20160015064A (en) * 2014-07-30 2016-02-12 한국과학기술원 Method for manufacturing insulation board
KR101687601B1 (en) 2014-07-30 2016-12-19 한국과학기술원 Method for manufacturing insulation board
US11976155B2 (en) 2018-10-12 2024-05-07 Kyung Dong One Corporation Expanded foam solution and thermosetting expanded foam having excellent flame retardancy using the same
WO2020076132A1 (en) * 2018-10-12 2020-04-16 주식회사 경동원 Method for manufacturing thermosetting expanded foam having excellent flame retardancy, and thermosetting expanded foam using same
CN109485902A (en) * 2018-11-14 2019-03-19 安徽兆拓新能源科技有限公司 A kind of preparation method of solar water heater foamed plastics
KR20200082226A (en) 2018-12-28 2020-07-08 엠텍 주식회사 Method for producing polymer nano-clay composite excellent in heat resistance and flame retardancy
KR20210042763A (en) 2019-10-10 2021-04-20 주식회사 경동원 Organic-inorganic composite resin using high flame retardant organic modified silicate and manufacturing method for the same
US11530314B2 (en) 2019-10-10 2022-12-20 Kyung Dong One Corporation Method for manufacturing both organic-inorganic composite synthetic resin containing highly flame-retardant organically modified nanoparticle and processed product thereof
WO2021071322A1 (en) 2019-10-10 2021-04-15 주식회사 경동원 Organic/inorganic composite synthetic resin using highly flame-retardant organically modified silicate and method for preparing same
CN113736057A (en) * 2021-07-29 2021-12-03 泉州辉丽鞋服有限公司 Sponge for shoes and production method thereof
KR102629940B1 (en) 2023-04-18 2024-01-26 이현석 Composition for manufacturing synthetic resin slippers and slippers manufactured using the same

Similar Documents

Publication Publication Date Title
KR100882307B1 (en) Preparation method of nanoclay reinforced polyurethane insulation foams
EP0935625B1 (en) Rigid polyurethane foams
US20060135636A1 (en) Isocyanate-based polymer foams with nano-scale materials
BR0008107B1 (en) processes for the production of finely cellular rigid polyurethane and / or polyisocyanurate foams, use of the foam produced by said processes and molded polyurethane or polyisocyanurate foam.
KR20070085327A (en) Process for producing rigid polyurethane foams
HU208334B (en) Process for producing foam materials
KR20110079470A (en) Polyurethane foam-carbon nanotube composite and fabrication method of the same
KR20210028751A (en) Organic amine salt compound having anions serving as co2 donors and application of same as foaming agent
EP1735365A1 (en) Process for making rigid polyurethane foams
JPH09104781A (en) Production of rigid foam based on isocyanate
JP3072560B2 (en) Polyurethane foam for ultra-low temperature cooling and method for producing the same
JP3023521B2 (en) Method for producing rigid polyurethane foam
BR0115467B1 (en) process for producing a low density rigid polyurethane foam, rigid polyurethane foam and thermal insulation board.
JP2007153989A (en) Polyol composition for rigid polyurethane foam
EP0906353B1 (en) Rigid isocyanurate-modified polyurethane foams
KR20190124593A (en) Polyurethane foam, insulating material using the same and manufacturing method for thereof
KR101319684B1 (en) Modified isocyanate composition with heat-resistant and polyurethane foam composition for pipes insulation with heat-resistant comprising the same and forming method thereof
KR20190124601A (en) Polyurethane foam, insulating material using the same and manufacturing method for thereof
KR20070020277A (en) Method for producing polyether alcohols and polyurethanes
KR100889837B1 (en) Manufacturing method of polyurethane foam/clay nano composites for the thermal insulation and the Polyurethane foam/clay nano composites using the same
KR100599197B1 (en) Clay-polyurethane foam nanocomposite of heat pipe lagging material and manufacturing method thereof
WO2002053615A1 (en) Rigid urethane-modified polyisocyanurate foams and processes for their preparation
KR20030051848A (en) Method of Preparing Polyurethane-Modified Polyisocyanurate Foam
KR101297582B1 (en) The composition of hard polyurethane foam
CN109306072A (en) Frozen soil polyurethane reinforcement material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee