KR100859353B1 - Shape Memory Alloy Friction Damper - Google Patents
Shape Memory Alloy Friction Damper Download PDFInfo
- Publication number
- KR100859353B1 KR100859353B1 KR1020070002086A KR20070002086A KR100859353B1 KR 100859353 B1 KR100859353 B1 KR 100859353B1 KR 1020070002086 A KR1020070002086 A KR 1020070002086A KR 20070002086 A KR20070002086 A KR 20070002086A KR 100859353 B1 KR100859353 B1 KR 100859353B1
- Authority
- KR
- South Korea
- Prior art keywords
- shape memory
- memory alloy
- housing
- polytetrafluoroethylene
- ptfe
- Prior art date
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 title claims abstract description 45
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 44
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 44
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 23
- 230000021715 photosynthesis, light harvesting Effects 0.000 claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 8
- 230000006399 behavior Effects 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 238000013016 damping Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/022—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/02—Materials; Material properties solids
- F16F2224/0258—Shape-memory metals, e.g. Ni-Ti alloys
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Structural Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Acoustics & Sound (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
본 발명은 지진, 강풍 또는 산업장비의 진동으로 야기되는 동적 하중으로부터 건물 및 구조물을 보호하는 댐퍼에 관한 것으로, 더욱 상세하게 형상기억합금을 이용하여 대 변형이 발생한 후에도 잔류변형을 거의 발생하지 않고 원형을 회복할 수 있도록 하고, 교량 및 건축구조물에서 지진 등에 대비하는 댐퍼에 요구되는 에너지 소산 능력을 위해서 폴리테트라플루오르에틸렌(PTFE)과 MER(일종의 고무) 스프링의 압착에 의한 마찰력을 활용하고, 복원 능력을 위해서는 형상기억합금 케이블을 사용하여 인장 응력에 대한 복원을 가능케 하는 것을 특징으로 하는 형상기억합금 마찰 댐퍼에 관한 것이다.The present invention relates to a damper that protects buildings and structures from dynamic loads caused by earthquakes, strong winds, or vibrations of industrial equipment. More specifically, even after large deformations occur using shape memory alloys, almost no residual deformation is generated. And frictional force by the compression of polytetrafluoroethylene (PTFE) and MER (a kind of rubber) spring for the energy dissipation capacity required for dampers against earthquakes in bridges and building structures. The present invention relates to a shape memory alloy friction damper, which enables the restoration of tensile stress using a shape memory alloy cable.
형상기억합금(SMA: Shape Memory Alloy), 댐퍼(Damper) Shape Memory Alloy (SMA), Damper
Description
도 1은 본 발명에 의한 SMA 마찰 댐퍼의 전체적인 구조를 도시한 개념도.1 is a conceptual diagram showing the overall structure of the SMA friction damper according to the present invention.
도 2는 폴리테트라플루오르에틸렌(PTFE) 및 곡면의 마찰 거동 그래프.2 is a graph of friction behavior of polytetrafluoroethylene (PTFE) and curved surfaces.
도 3은 본 발명에 의한 SMA 케이블의 거동 그래프.Figure 3 is a graph of the behavior of the SMA cable according to the present invention.
도 4는 본 발명에 의한 SMA 마찰 댐퍼의 실시 예를 보인 사용상태도.Figure 4 is a use state showing an embodiment of the SMA friction damper according to the present invention.
도 5 및 도 6은 본 발명에 의한 댐퍼의 설치예들을 도시한 것이다.5 and 6 show examples of installation of the damper according to the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1: 엠이알(MER) 스프링 1: MER spring
2: 폴리테트라플루오르에틸렌 패드2: polytetrafluoroethylene pad
3: 형상기억합금(SMA) 케이블 3: Shape Memory Alloy (SMA) Cable
4: 무빙블록(Moving Block)4: Moving Block
5: 슬라이딩 구간부(Sliding Surface)5: Sliding Surface
6: 스트로크 로드(Stroke Rod)6: Stroke Rod
7: 본체 하우징(Case Housing)7: Case Housing
8: 커버 플레이트(Cover Plate)8: Cover Plate
9: 슬라이딩 패널9: sliding panel
30: 본 발명에 의한 댐퍼30: damper according to the present invention
본 발명은 지진 등에 의한 진동을 감쇠시켜 건물이나 교량 등의 구조물을 보호하는 제진 장치로서의 댐퍼에 관한 것으로, 상세하게는 예기치 않게 발생하는 높은 충격하중의 발생 초기에 에너지를 소산 시킬 수 있는 댐퍼에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damper as a damping device that protects structures such as buildings and bridges by attenuating vibration caused by earthquakes. More specifically, the present invention relates to a damper capable of dissipating energy at the initial stage of an unexpectedly high impact load. will be.
댐퍼(Damper)는 지진 등의 충격하중을 감쇠시켜 자유진동을 억제함으로써 건물이나 교량 등을 보호하는 장치이며, Damper is a device that protects buildings and bridges by damping shock loads such as earthquakes and suppressing free vibration.
이와 같은 방진 댐퍼는 로드의 가운데에 릴리프밸브가 형성된 피스톤이 설치되고, 상기 피스톤이 실린더의 내부 공간에 삽입되며, 상기 실린더의 내부 공간이 피스톤에 의해 양분되어 그 각각이 유실로 형성되고, 상기 로드 및 실린더의 반대 측에는 각각 체결용 클레비스가 부착되어 구성된다.Such a vibration damper is provided with a piston having a relief valve formed in the center of the rod, the piston is inserted into the inner space of the cylinder, the inner space of the cylinder is bisected by the piston to form each of the oil chamber, the rod And the clevis for fastening is attached to the opposite side of the cylinder, respectively.
이와 같은 방진 댐퍼는 지진 등에 의한 외력이 로드에 가해지면 피스톤에 의해 유실의 오일이 압축되고, 압축된 오일은 릴리프밸브를 통과하게 되고 이때 저항에 의해 감쇠력이 발생한다.When the external damping force is applied to the rod by the earthquake damper, the oil of the oil loss is compressed by the piston, and the compressed oil passes through the relief valve, whereby the damping force is generated by the resistance.
진동 에너지는 오일이 릴리프밸브를 통과할 때 발생하는 열에너지로 변환되어 흡수되고, 이는 결국 지진 등의 진동 에너지를 열에너지로 변화하여 흡수하므로 자유진동을 방지하여 구조물을 보호하게 되는 것이다. The vibration energy is converted into and absorbed by the heat energy generated when the oil passes through the relief valve, which eventually converts and absorbs vibration energy such as an earthquake to heat energy, thereby protecting the structure by preventing free vibration.
그러나 이와 같은 기존의 댐퍼 구조는 갑작스런 큰 충격의 초기에는 댐퍼로서의 역할을 할 수 없어 충격하중이 그대로 건물이나 교량 등의 구조물에 작용하게 되어 구조물에 균열과 붕괴의 위험성이 있다는 문제점이 있었다.However, such a conventional damper structure can not act as a damper at the beginning of a sudden big impact, the impact load acts on the structure of the building or bridge as it is, there is a problem that there is a risk of cracking and collapse of the structure.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 구조물에 작용하는 충격하중(운동하중)을 흡수하거나, 또는 갑작스런 큰 충격에 대응할 수 있을 뿐만 아니라 원상회복을 위한 복원 능력이 뛰어난 댐퍼를 제공하는 것에 그 목적이 있는 것이다.The present invention has been made to solve the above problems, it is possible to absorb a shock load (movement load) acting on the structure, or to respond to a sudden big shock, as well as to provide a damper with excellent recovery ability for the original recovery. The purpose is to do that.
또한, 실린더 방식의 복잡한 구조에 따른 설치 및 유지 보수에 따른 고가의 댐퍼를 개선하여 보다 효율적이고 뛰어난 에너지 소산 능력과 복원능력을 가지는 댐퍼를 제공하는 것에 그 목적이 있는 것이다.In addition, an object of the present invention is to provide a damper having a more efficient and excellent energy dissipation ability and a restoring ability by improving an expensive damper according to installation and maintenance according to a complicated structure of a cylinder type.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 형상기억합금 마찰 댐퍼를 첨부된 도면을 참조하여 바람직한 실시 예에 구조를 상세하면 다음과 같다.With reference to the accompanying drawings, the shape memory alloy friction damper according to the present invention for achieving the above object in detail in the preferred embodiment as follows.
도 1 은 본 발명에 의한 형상기억합금(SMA) 마찰 댐퍼의 전체적인 구조를 도시한 개념도로서, 장방형으로 상ㆍ하부에 곡면으로 이루어진 슬라이딩 패널을 가지는 댐퍼 하우징(7)과, 1 is a conceptual diagram showing the overall structure of a shape memory alloy (SMA) friction damper according to the present invention, a damper housing (7) having a sliding panel consisting of curved surfaces at the top and bottom in a rectangular shape;
상기 하우징(7)의 중앙에 일정 길이로 형성되어 하우징(7) 내부의 폴리테트라플루오르에틸렌 패드(2)가 좌우 이동할 수 있도록 마련되는 슬라이딩 구간부(5)와,
상기 슬라이딩 구간부(5)가 구비된 슬라이딩 패널(9)과, Sliding panel 9 is provided with the
발생한 높은 충격하중에 따른 에너지의 소산을 위해 마련되는 엠이알(MER) 스프링(1)과, MER spring (1) is provided for the dissipation of energy according to the high impact load generated,
상기 엠이알 스프링(1,1')을 복수로 마련하고, 구비된 엠이알 스프링(1,1')을 수직으로 정렬하여 위치한 상ㆍ하 엠이알 스프링(1)의 사이에 정착하도록 위치하는 무빙 블록(4)과, The plurality of MR springs (1,1 ') are provided, and the provided MR springs (1,1') are vertically aligned so as to be fixed between the upper and lower MR springs (1). A moving block 4 located,
상기 무빙 블록(4)에 정착된 상부 엠이알 스프링(1)의 상단부와, 하부 엠이알 스프링(1')의 하단부에 각각 정착되는 폴리테트라플루오르에틸렌(PTFE) 패드(2)와, 상기 무빙 블록(4)의 일 측과 결합하여 하우징(7) 일 측 커버 플레이트(8)를 관통하여 연장되는 스트로크 로드(6)와, An upper end of the upper MR spring 1 fixed to the moving block 4, a polytetrafluoroethylene (PTFE) pad 2 fixed to the lower end of the lower ML spring 1 ', and
상기 하우징(7)의 양측 커버 플레이트(8,8')에 고정되고 각각 무빙 블록(4)의 최단 인접면과 체결 결합하여 복원력을 제공하는 복수의 형상기억합금(SMA) 케이블(3)로 이루어지는 것을 특징으로 한다.A plurality of shape memory alloy (SMA) cables (3) fixed to both cover plates (8, 8 ') of the housing (7) and coupled to the shortest adjacent surfaces of the moving block (4) to provide restoring force, respectively. It is characterized by.
본 발명에 의한 형상기억합금 마찰 댐퍼의 바람직한 제작 과정과 작동 원리는 다음과 같이 개시될 수 있다.Preferred fabrication process and operating principle of the shape memory alloy friction damper according to the present invention can be disclosed as follows.
제 1 단계: 고무스프링의 일종인 엠이알(MER) 스프링(1)의 단부에 폴리테트라플루오르에틸렌(PTFE) 패드(2)를 정착한다.First step: A polytetrafluoroethylene (PTFE) pad 2 is fixed to an end of an MER spring 1, which is a kind of rubber spring.
제 2 단계: 무빙 블록(4)의 양쪽에 폴리테트라플루오르에틸렌(PTFE) 패드(2)가 부착된 엠이알(MER) 스프링(1,1')을 정착한다.Second Step: Fix the MER springs 1, 1 'with the polytetrafluoroethylene (PTFE) pads 2 attached to both sides of the moving block 4.
제 3 단계: 엠이알(MER) 스프링(1) 상단의 폴리테트라플루오르에틸렌(PTFE) 패드 위에 슬라이딩을 위한 패널을 압력을 가하여 정착하며, 이때 가해진 압력은 엠이알(MER) 스프링(1)(1')을 압축하고 폴리테트라플루오르에틸렌(PTFE) 패드(2) (2')에 압축 응력이 발생하도록 하여 지진 시에 마찰 거동을 통한 에너지 소산 작용을 가능케 한다.Step 3: Applying the sliding panel to the polytetrafluoroethylene (PTFE) pad on top of the MER spring (1) by applying pressure, wherein the applied pressure is the MER spring (1) Compress (1 ') and allow compressive stress to occur on the polytetrafluoroethylene (PTFE) pads (2) (2') to enable energy dissipation through frictional behavior during earthquakes.
제 4 단계: 무빙 블록(4)에 형상기억합금(SMA) 케이블(3)을 양방향으로 연결하며 형상기억합금(SMA) 케이블(3)은 충격 하중 등에 의해 무빙 블록(4)이 움직인 후, 원위치로 되돌아가도록 하는 복원력으로 작용케 한다.Fourth Step: After the shape memory alloy (SMA) cable 3 is connected to the moving block 4 in both directions, and the shape memory alloy (SMA) cable 3 is moved by the impact load, etc., It acts as a restoring force to return it to its original position.
도 2 는 폴리테트라플루오르에틸렌(PTFE) 및 곡면의 마찰 거동 그래프로서, 이는 곡면 거동을 표현한 것으로, 본 발명에서 응용하고 있는 폴리테트라플루오르에틸렌(PTFE)는 마찰계수가 움직이는 속도에 따라 다르게 발생하며, 이는 거동이 매우 느린 경우, 즉 온도팽창과 같이 매우 느린 속도로 움직이는 경우에는 마찰계수가 0.01-0.03으로 구조물에 전달하는 하중이 매우 작은 반면 지진과 같이 움직이는 속도가 빨라지면 마찰계수는 0.08-0.15로 증가하면서 구조물에 전달하는 하중이 증가한다. 그러나 하중이 증가할수록 소산 하는 에너지량 또한, 증가하게 되며, 이러한 특성을 이용하여 폴리테트라플루오르에틸렌(PTFE)을 에너지 소산 장치에 활용한 것이다.Figure 2 is a graph of the friction behavior of polytetrafluoroethylene (PTFE) and curved surface, which represents the surface behavior, polytetrafluoroethylene (PTFE) applied in the present invention occurs differently depending on the speed of friction coefficient, If the behavior is very slow, i.e. moving at a very slow speed, such as temperature expansion, the friction coefficient is 0.01-0.03 and the load to the structure is very small, while the faster the speed of movement, such as earthquake, the coefficient of friction is 0.08-0.15. As it increases, the load transmitted to the structure increases. However, as the load increases, the amount of energy dissipated also increases, and polytetrafluoroethylene (PTFE) is utilized in the energy dissipation device using this property.
즉, 본 발명에 의한 형상기억합금 마찰 댐퍼에서 폴리테트라플루오르에틸렌(PTFE) 패드(2)가 움직이는 면을 곡면으로 처리하면 변위가 증가할수록 두면 사이가 좁아지면서 엠이알(MER) 스프링(1)에 작용하는 하중이 증가하고, 이는 폴리테트라플루오르에틸렌(PTFE) 패드(2)에 발생하는 압축 응력의 증가를 유발하여 에너지 소산 능력의 향상 및 구조물의 변위 제어 능력이 향상을 가져오게 되는 것이다.That is, when the surface of the polytetrafluoroethylene (PTFE) pad (2) moving in the shape memory alloy friction damper according to the present invention to the curved surface as the displacement increases the narrow between the two (MER) spring (1) The load acting on the polytetrafluoroethylene (PTFE) pad 2 causes an increase in compressive stress occurring in the polytetrafluoroethylene (PTFE) pad 2, thereby improving the energy dissipation capacity and the structure's displacement control ability.
그래프에서 보는 바와 같이 평면에서 폴리테트라플루오르에틸렌(PTFE) 패 드(2)가 마찰할 때는 Plane 부분과 같이 거동을 하지만, 곡면에서는 엠이알(MER) 스프링(1)의 압축력이 증가하면서 Curved surface 부분과 같이 강성이 증가하여 추가적인 변위에 대한 저항성이 증가하고, 힘-변위 면적이 증가하여 에너지 소산이 증가함을 알 수 있다.As shown in the graph, when the polytetrafluoroethylene (PTFE) pad (2) rubs in a plane, it behaves like a plane part, but on a curved surface, the compressive force of the MER spring (1) increases and the curved surface It can be seen that the stiffness increases, the resistance to additional displacement increases, and the force-displacement area increases, increasing energy dissipation.
도 3은 본 발명에 의한 형상기억합금(SMA) 케이블의 거동 그래프로서, 오스테나이트(Austenite) 형상기억합금(SMA) 케이블의 거동은, 큰 변형 후에 하중을 제거하면 다시 변형을 거의 회복함을 알 수 있고, 이용되는 형상기억합금(SMA)의 제작 및 처리과정에 따라서 차이는 있으나, 최대 25%의 변형률에서 파괴가 발생하도록 제작이 가능함으로 구조물의 지진에 의한 변위를 흡수하고 복원력을 제공하기 위해서 짧은 길이의 케이블을 사용하여 구현이 가능하여 산업상 이용가능성이 뛰어나다 할 것이다. Figure 3 is a graph of the shape memory alloy (SMA) cable behavior according to the present invention, it can be seen that the behavior of the austenite shape memory alloy (SMA) cable almost recovers the deformation again after removing the load after a large deformation Although it can vary, depending on the manufacturing and processing process of the shape memory alloy (SMA) used, it can be manufactured so that the fracture occurs at the strain of up to 25% to absorb the displacement caused by the earthquake of the structure and to provide a restoring force It can be implemented using a short length of cable, so it will be highly applicable to the industry.
도 4는 본 발명에 의한 형상기억합금(SMA) 마찰 댐퍼의 실시 예를 보인 사용상태도로서, 본 발명에 의한 형상기억합금 마찰 댐퍼의 실시 예를 보면 지진에 의해서 구조물에 발생한 힘이 스트로크 로드(6)를 통해서 전달되면, 무빙 블록(4)에 연결되어 있는 양방향의 형상기억합금(SMA) 케이블(3)은 무빙 블록(4)의 움직임에 따라 일 측 케이블에 인장력이 발생하며, 이는 움직이는 무빙 블록(4)의 상대측 케이블(3)에 인장 응력을 발생하여 응력이 발생한 케이블(3)은 구조물(10)을 복원하는데 하중을 제공하게 되는 것으로 주요 구성품의 기능을 추가 상세하면 다음과 같다.4 is a state diagram showing an embodiment of the shape memory alloy friction damper according to the present invention. Referring to the embodiment of the shape memory alloy friction damper according to the present invention, the force generated in the structure by the earthquake is applied to the stroke rod (6). When transmitted through), the bidirectional shape memory alloy (SMA) cable (3) connected to the moving block (4) generates tension on one side of the cable according to the movement of the moving block (4), which is a moving moving block. Tensile stress is generated in the mating cable (3) of (4) so that the stressed cable (3) provides a load to restore the structure (10).
스트로크 로드(6)는 구조물(10)에 연결되며 구조물(10)에서 발생하는 지진력 을 무빙 블록(4)에 전달하고, 이와 같이 무빙 블록(4)에 전달된 힘은 폴리테트라플루오르에틸렌(PTFE) 패드(2)를 이동시키게 되고, 형상기억합금(SMA) 케이블(3)은 긴장하는 작용과 하중 제거에 따른 복원력을 가지게 되는 것이다.The
도 5는 특히 본 발명의 댐퍼를 건축구조물에 있어 철골구조물에 설치한 예를 도시한 것이다.FIG. 5 shows an example in which the damper of the present invention is installed in a steel structure in a building structure.
통상 빌딩 등과 같은 구조물은 뼈대구조무로서 H형강인 철골을 먼저 수직으로 시공하고, 수직 철골 상단부를 서로 강결시키게 된다.Normally, a structure such as a building, etc., is constructed as a skeleton structure first, H-steel steel vertically, and then tighten the vertical steel upper ends.
이러한 철골조 구조에는 풍하중, 지진하중 등을 포함하는 동적하중에 의하여 횡방향으로 하중이 가해지게 되는데, 이러한 하중들에 의하여 횡방향 진동 및 변형, 변위가 발생하게 되며, 이에 철골조 구조물은 횡방향으로 발생하는 변형 등을 복원시켜 줄 필요가 있게 된다. The steel frame structure is subjected to the load in the transverse direction by the dynamic load including wind load, earthquake load, etc., the transverse vibration, deformation, displacement occurs by these loads, the steel frame structure is generated in the transverse direction It is necessary to restore the deformation and the like.
이에 도 5와 같이 상부 철골(21)과 수직 철골(22) 내측 사이에 경사지게 지지부재(23)를 설치하되, 상기 지지부재에 본 발명의 댐퍼(30)를 장착시키게 되면 상기 횡방향 변형을 원래 상태로 복원시킬 수 있게 된다.Thus, as shown in Figure 5, but the
도 6은 특히 교량구조물에 있어 본 발명의 댐퍼(30)를 설치한 예를 도시한 것이다.FIG. 6 shows an example in which the
통상 교량은 양 측에 교대(41)를 설치하고, 교대(41) 사이에 거더(42)를 설치하게 되며, 거더 상부에는 교량상판이 설치된다. 또한 상기 거더의 하면과 교대 사이에는 교량용 슈가 설치되어 거더가 교대에 지지되도록 하게된다.In general, bridges are provided with
이러한 거더에는 교통하중 등을 포함하는 동적하중에 의하여 교축방향으로 역시 변형 등이 발생하게 된다.Such girders are also deformed in the axial direction by dynamic loads including traffic loads.
특히 지진에 의한 횡방향 가속도에 의하여 거더는 교대로부터 이탈되어 낙교사고가 발생할 수 있는데, 이에 본 발명의 댐퍼(30)를 설치하여 이를 방지할 수 있도록 한다.In particular, the girder is separated from the shift by the lateral acceleration due to the earthquake may cause a fall off accident, thereby installing the
예컨대, 교대 측면에 본 발명의 댐퍼(30)가 지지되도록 한 상태에서 거더 하면에 받침대(43)를 설치하고, 이 밤침대(43)와 교대 사이에 댐퍼(30)를 설치하게 되면 거더에 발생하는 변형 등을 원래의 상태로 복원할 수 있게 된다.For example, the
본 발명은 구조물에 작용하는 충격하중(운동하중)을 흡수하거나, 또는 갑작스런 큰 충격에 대응할 수 있을 뿐만 아니라 원상회복을 위한 복원 능력이 뛰어난 댐퍼를 제공할 수 있는 효과가 있으며, 종래 방식의 복잡한 구조에 따른 설치 및 유지 보수에 따른 고가의 댐퍼를 개선하여 보다 효율적이고 뛰어난 에너지 소산 능력과 복원능력을 가지는 댐퍼에 따른 산업상 이용가능성이 뛰어나다 할 것이다.The present invention has the effect of absorbing the impact load (kinetic load) acting on the structure or responding to a sudden large impact, and providing a damper with excellent restoring ability for the original recovery, and the complicated structure of the conventional method By improving the expensive damper according to the installation and maintenance according to the present invention, the industrial availability of the damper with more efficient and excellent energy dissipation capacity and recovery capacity will be excellent.
이상에서와 같이 본 발명은 기재된 구체적인 예에 대해서만 상세히 기술하였지만 그 기술사상범위 내에서의 그 하우징과 스트로크 로드의 형태와 케이블의 수와 위치를 달리하는 댐퍼로의 수정 가능함은 자명한 것이며, 이러한 수정 및 변형이 첨부된 특허청구범위에 속한다고 봄이 상당한 것은 실질적 구성과 기능의 동일이라는 균등의 영역에서 당업자에게 명백한 것이라 할 것이다.As described above, the present invention has been described in detail only with respect to the specific examples described, but it is obvious that modifications can be made to dampers that vary the form and number of cables and the shape of the housing and stroke rod within the technical scope. And it will be apparent to those skilled in the art that equivalent modifications belong to the appended claims as equivalents in substantial construction and function.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070002086A KR100859353B1 (en) | 2007-01-08 | 2007-01-08 | Shape Memory Alloy Friction Damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070002086A KR100859353B1 (en) | 2007-01-08 | 2007-01-08 | Shape Memory Alloy Friction Damper |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080065110A KR20080065110A (en) | 2008-07-11 |
KR100859353B1 true KR100859353B1 (en) | 2008-09-19 |
Family
ID=39816096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070002086A KR100859353B1 (en) | 2007-01-08 | 2007-01-08 | Shape Memory Alloy Friction Damper |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100859353B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103510634A (en) * | 2012-06-28 | 2014-01-15 | 蔡崇兴 | Building damper capable of automatically returning |
CN103867628A (en) * | 2014-03-29 | 2014-06-18 | 中国科学技术大学 | Hydraulic buffering device using shape memory alloy |
CN105370787A (en) * | 2015-11-06 | 2016-03-02 | 中国电力科学研究院 | Self-reset composite type damper trigger force checking method for electrical equipment |
CN105987120A (en) * | 2015-01-30 | 2016-10-05 | 昆山麦格纳汽车系统有限公司 | Bidirectional mechanical friction damper |
KR101792237B1 (en) * | 2016-03-15 | 2017-10-31 | 홍익대학교 산학협력단 | Bending-tension/compression damper using a member made of a shape memory alloy and structure using the same |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101851963B (en) * | 2010-06-23 | 2011-07-20 | 湖南大学 | Piezoelectric-SMA composite variable friction intelligent damper |
KR101228500B1 (en) * | 2011-06-02 | 2013-01-31 | 인하대학교 산학협력단 | Friction damper using shape memory alloy |
CN103671696B (en) * | 2013-11-26 | 2016-06-29 | 徐州工程学院 | A kind of Automatic reset tension-and-torsion-shapetant shapetant memory alloy damper |
KR101525930B1 (en) * | 2014-04-28 | 2015-06-09 | 인천대학교 산학협력단 | Self restoring type passive damper |
CN105804266A (en) * | 2016-05-27 | 2016-07-27 | 西安建筑科技大学 | Rod-shaft type piezoelectric-SMA incorporated friction damper |
CN106013497B (en) * | 2016-07-22 | 2018-04-24 | 大连理工大学 | Multidirectional Self-resetting marmem lead damper |
CN106989131B (en) * | 2017-04-10 | 2021-02-05 | 北京航空航天大学 | SMA wire split sleeve large-stroke active adjustment damper |
CN108035452B (en) * | 2017-12-18 | 2024-01-30 | 黄淮学院 | Piezoelectric variable friction leading type composite damping device |
CN107939137A (en) * | 2017-12-27 | 2018-04-20 | 华侨大学 | A kind of marmem piezoelectric friction damper device |
CN108397030A (en) * | 2018-05-09 | 2018-08-14 | 西安建筑科技大学 | A kind of band SMA Self-resetting cambered surface friction-changing dampers |
CN108729568B (en) * | 2018-05-21 | 2024-01-12 | 黄淮学院 | Box type serial SMA friction composite damper |
CN108457515B (en) * | 2018-05-21 | 2023-12-26 | 黄淮学院 | Three-slider full-reset type SMA friction damper |
CN109024960B (en) * | 2018-07-25 | 2020-07-07 | 长安大学 | SMA is from restoring to throne friction damper |
CN109025450B (en) * | 2018-09-07 | 2019-04-26 | 山东大学 | A temperature-controlled intelligent tuning inertial mass vibration damping device |
CN110259242A (en) * | 2019-06-20 | 2019-09-20 | 同济大学 | A composite spring-SMA self-resetting damper |
CN110374223B (en) * | 2019-08-06 | 2024-04-05 | 广州大学 | Self-resetting viscoelastic damper |
CN111706142B (en) * | 2020-07-17 | 2024-05-28 | 大连理工大学 | Composite axial energy dissipation device based on piezoelectricity and shape memory alloy |
CN112144683B (en) * | 2020-09-21 | 2024-07-23 | 重庆大学 | Damper based on variable friction force and multi-stage energy consumption and assembling method thereof |
CN112411784B (en) * | 2020-11-20 | 2024-09-10 | 广州大学 | Cable type energy dissipation support and energy dissipation method thereof |
CN112431323A (en) * | 2020-12-10 | 2021-03-02 | 中国能源建设集团湖南省电力设计院有限公司 | Cable type friction damper with variable friction coefficient |
CN115506500A (en) * | 2021-06-23 | 2022-12-23 | 昆明理工大学 | A New Variable Friction Damper |
CN113846767B (en) * | 2021-10-14 | 2022-09-09 | 石家庄铁道大学 | Classified energy dissipation self-reset anti-buckling restraint device based on annular SMA cable and its manufacturing method |
CN115492270A (en) * | 2022-09-23 | 2022-12-20 | 北京固力同创工程科技有限公司 | A self-resetting damper based on SMA |
CN117266396A (en) * | 2023-11-23 | 2023-12-22 | 中国建筑第六工程局有限公司 | Self-resetting damping device based on SMA and polyurethane materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5257680A (en) * | 1991-12-20 | 1993-11-02 | Lord Corporation | Surface effect dampers having both hysteresis and a frictional component |
JPH1088738A (en) * | 1996-09-19 | 1998-04-07 | Takenaka Komuten Co Ltd | Self-repaire mechanism of structural member |
KR20000015823U (en) * | 1999-01-18 | 2000-08-16 | 정몽규 | Shock absorber for a car |
KR100540372B1 (en) | 2004-02-20 | 2006-01-10 | 안숙희 | Isolation Device Using Shape Memory Alloy Wire |
-
2007
- 2007-01-08 KR KR1020070002086A patent/KR100859353B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5257680A (en) * | 1991-12-20 | 1993-11-02 | Lord Corporation | Surface effect dampers having both hysteresis and a frictional component |
JPH1088738A (en) * | 1996-09-19 | 1998-04-07 | Takenaka Komuten Co Ltd | Self-repaire mechanism of structural member |
KR20000015823U (en) * | 1999-01-18 | 2000-08-16 | 정몽규 | Shock absorber for a car |
KR100540372B1 (en) | 2004-02-20 | 2006-01-10 | 안숙희 | Isolation Device Using Shape Memory Alloy Wire |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103510634A (en) * | 2012-06-28 | 2014-01-15 | 蔡崇兴 | Building damper capable of automatically returning |
CN103867628A (en) * | 2014-03-29 | 2014-06-18 | 中国科学技术大学 | Hydraulic buffering device using shape memory alloy |
CN105987120A (en) * | 2015-01-30 | 2016-10-05 | 昆山麦格纳汽车系统有限公司 | Bidirectional mechanical friction damper |
CN105370787A (en) * | 2015-11-06 | 2016-03-02 | 中国电力科学研究院 | Self-reset composite type damper trigger force checking method for electrical equipment |
KR101792237B1 (en) * | 2016-03-15 | 2017-10-31 | 홍익대학교 산학협력단 | Bending-tension/compression damper using a member made of a shape memory alloy and structure using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20080065110A (en) | 2008-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100859353B1 (en) | Shape Memory Alloy Friction Damper | |
Dong et al. | Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double-column piers | |
Constantinou et al. | Seismic response of structures with supplemental damping | |
US4527365A (en) | Earthquake insulating bearing assembly | |
KR100810518B1 (en) | Damper Using Super Elastic Shape Memory Alloy | |
US9447597B2 (en) | Variable stiffness bracing device | |
KR101028217B1 (en) | Double steel pipe type vibration suppression system using viscoelasticity and friction | |
KR101868877B1 (en) | Seismic retrofit of existing structure using spring damper and prestressed cable | |
Guo et al. | Seismic performance assessment of a super high-rise twin-tower structure connected with rotational friction negative stiffness damper and lead rubber bearing | |
US11041323B2 (en) | Viscoelastic bracing damper | |
WO2020111459A1 (en) | Smart hybrid damper | |
CN105735106A (en) | Self-resetting friction damper for beam bridge seismic isolation system | |
KR101402479B1 (en) | Aseismic Damper | |
CN108317201B (en) | A multi-stable impact isolation device | |
KR101028239B1 (en) | Combined vibration damper using viscoelasticity and hysteresis | |
KR20140034268A (en) | Aseismic damper | |
KR101398365B1 (en) | Frictional energy dissipative devices using disc springs | |
Belbachir et al. | Unlocking resilience: examining the influence of fluid viscous dampers on seismic performance of reinforced-concrete structures in earthquake-prone regions | |
KR102303102B1 (en) | Vibration control damper for seismic retrofitting of structures | |
JP2001106455A (en) | Elevator guide rail supporting device | |
WO2005050054A1 (en) | Stay cable damper | |
JP4468212B2 (en) | Fall bridge prevention device | |
CA3045250A1 (en) | A volumetric compression restrainer | |
CN114277952A (en) | A compound damper | |
JP7409950B2 (en) | Vibration control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070108 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071214 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080911 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080912 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080916 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110711 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20120830 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20120830 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130724 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130724 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee |