KR100856543B1 - Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device - Google Patents

Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device Download PDF

Info

Publication number
KR100856543B1
KR100856543B1 KR1020070052737A KR20070052737A KR100856543B1 KR 100856543 B1 KR100856543 B1 KR 100856543B1 KR 1020070052737 A KR1020070052737 A KR 1020070052737A KR 20070052737 A KR20070052737 A KR 20070052737A KR 100856543 B1 KR100856543 B1 KR 100856543B1
Authority
KR
South Korea
Prior art keywords
silver
oxidation
range
forming
compound
Prior art date
Application number
KR1020070052737A
Other languages
Korean (ko)
Inventor
김재정
강민철
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070052737A priority Critical patent/KR100856543B1/en
Application granted granted Critical
Publication of KR100856543B1 publication Critical patent/KR100856543B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법에 관하여 개시한다. 본 발명의 방법은, 은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리를 이용한 화학적 기계적 연마 공정으로 반도체 소자용 구리 배선의 표면을 은으로 치환하는 단계와; CoWP 형성을 위한 화학적 기계적 연마 공정용 슬러리를 이용하여 화학적 기계적 연마 공정으로 은으로 치환된 표면상에 산화 및 확산 방지막을 형성하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 별도의 추가공정, 즉 팔라듐을 이용한 구리 배선의 활성화없이 연속적인 CMP 공정만으로 구리 배선에 산화 및 확산 방지막이 형성됨으로써 생산성 및 공정의 효율이 향상된다.A method of forming an oxidation and diffusion barrier film of a copper wiring for a semiconductor device is disclosed. The method of the present invention comprises the steps of: substituting silver for the surface of a copper wiring for a semiconductor device by a chemical mechanical polishing process using a slurry for chemical mechanical polishing processes containing a silver compound; And forming an oxidation and diffusion barrier layer on the surface substituted with silver by a chemical mechanical polishing process using a slurry for chemical mechanical polishing process for forming CoWP. According to the present invention, the oxidation and diffusion prevention film is formed on the copper wirings only by a continuous CMP process without activation of a separate additional process, ie, copper wirings using palladium, thereby improving productivity and process efficiency.

Description

반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법{Method for forming oxidation barrier or diffusion barrier of metal line of semiconductor device}Method for forming oxidation barrier or diffusion barrier of metal line of semiconductor device

도 1a 내지 1e는 본 발명의 실시예에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법을 설명하기 위한 개략도들; 및1A to 1E are schematic views for explaining a method of forming an oxidation and diffusion barrier film of a copper wiring for a semiconductor device according to an embodiment of the present invention; And

도 2는 본 발명의 실시예에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법의 공정 단계별 기판 표면에 대한 X-선 회절 분석 그래프이다.FIG. 2 is an X-ray diffraction analysis graph of a substrate surface for each step of a method of forming an oxidation and diffusion barrier layer of a copper wiring for a semiconductor device according to an exemplary embodiment of the present invention.

본 발명은 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법에 관한 것으로, 특히 화학적 기계적 연마 방법을 이용한 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an oxidation and diffusion barrier film of copper wiring for semiconductor devices, and more particularly, to a method of forming an oxidation and diffusion barrier film for copper wiring for semiconductor devices using a chemical mechanical polishing method.

현재의 반도체 공정에서 점차 배선의 선폭이 감소함에 따른 배선의 단면적 감소로 인해 저항 증가와 배선 간의 간격이 감소되어 신호 지연이 발생하게 된다. 이러한 신호 지연을 줄이기 위해서 배선의 소재는 낮은 비저항 특성을 가지는 구리로, 절연층은 더 낮은 유전 상수를 갖는 물질로 대체되고 있다. In the current semiconductor process, as the line width of the wire gradually decreases, the cross-sectional area of the wire decreases, resulting in an increase in resistance and a gap between the wires, resulting in signal delay. In order to reduce the signal delay, the wiring material is copper having low resistivity, and the insulating layer is replaced with a material having a lower dielectric constant.

구리 배선은 화학적 기계적 연마(Chemical Mechanical Polishing, 이하 CMP라 한다)를 이용한 다마신 공정(damascene process)을 통해 형성되게 된다. CMP를 이용한 구리 배선 형성 과정은 물질 간의 제거 선택비로 인한 산화막 침하 및 구리 침하 때문에 2단계에 걸쳐 이루어진다. 1차 CMP 공정을 통해 초과 증착된 구리를 제거하게 되며 제거 선택비에 의해 트렌치(trench) 상단에 있는 확산 방지막에서 멈추게 된다. 확산 방지막에 위에 잔류하는 구리 및 확산 방지막을 완전히 제거하기 위해 2차 CMP 공정을 진행한다.The copper wiring is formed through a damascene process using chemical mechanical polishing (hereinafter referred to as CMP). The process of forming copper interconnects using CMP is a two-step process due to oxide subsidence and copper subsidence due to removal selectivity between materials. The first CMP process removes excess deposited copper and stops the diffusion barrier at the top of the trench by the removal selectivity. A second CMP process is performed to completely remove the copper and the diffusion barrier remaining on the diffusion barrier.

기본적인 다마신 구조에서 실리콘 내에서의 구리의 빠른 확산으로 인해 소자가 파괴되기 때문에 이를 막기 위해 구리는 모든 면이 확산 방지막으로 둘러싸여야 한다. 그러나 구리가 전착(electroplating)을 형성한 후 1차 및 2차 CMP 공정이 진행됨에 따라 구리 배선의 상부는 확산 방지막 없이 대기 중으로 노출되게 된다. 노출된 구리 배선은 텅스텐과 알루미늄에 비해 쉽게 산화되는 경향이 있어서 공기 또는 물에 방치 시간이 길어짐에 따라 산화물의 생성으로 면저항이 증가된다. 또한 구리의 확산으로 인해 구리 배선 형성 후 바로 절연층을 형성할 수 없는 문제점이 있다. 따라서, 구리의 산화 방지 및 확산 방지를 위해 SiCN 또는 SiN을 CMP로 형성된 구리 배선 표면에 증착하게 된다. SiCN 또는 SiN은 주위의 저유전체 물질에 비해 훨씬 높은 유전 상수를 가지기 때문에 전체적인 배선 구조의 축전 용량을 증가시키는 결과를 야기한다.In a basic damascene structure, the device is destroyed by the fast diffusion of copper in silicon, so copper must be surrounded by a diffusion barrier on all sides to prevent this. However, as the primary and secondary CMP processes proceed after the copper forms electroplating, the upper portion of the copper wiring is exposed to the atmosphere without a diffusion barrier. The exposed copper wiring tends to be easily oxidized compared to tungsten and aluminum, so that the sheet resistance increases due to the generation of oxides as the time to stand in air or water becomes longer. In addition, due to the diffusion of copper, there is a problem that the insulating layer cannot be formed immediately after the copper wiring is formed. Therefore, SiCN or SiN is deposited on the copper wiring surface formed of CMP to prevent oxidation and diffusion of copper. SiCN or SiN has a much higher dielectric constant than the surrounding low dielectric materials, resulting in an increase in the capacitance of the overall interconnect structure.

최근에 무전해 도금(electroless plating)을 통한 선택적인 증착으로 구리 배선 상부에 산화 방지막 및 확산 방지막 역할을 동시에 수행할 수 있는 캡핑 레이어(capping layer) 형성에 관한 연구가 활발히 진행되고 있으며, 그 물질은 Co 계열인 CoWP이다. 캡핑 레이어를 구리 배선 위에 형성함으로써 원래의 기대 효과 이외에도, 구리 배선의 수명을 크게 좌우하는 전하이동(electromigration) 특성을 크게 개선하는 효과가 있어서 배선의 선폭이 감소됨에 따라 그 필요성은 더욱 커지고 있다.Recently, research on the formation of a capping layer capable of simultaneously acting as an anti-oxidation film and an anti-diffusion film on the copper wiring by selective deposition through electroless plating has been actively conducted. CoWP is a Co series. In addition to the original expected effect by forming the capping layer on the copper wiring, there is an effect of greatly improving the electromigration characteristics, which greatly influences the life of the copper wiring, and as the line width of the wiring is reduced, the necessity is further increased.

무전해 도금을 통해 CoWP를 선택적으로 구리 배선 위에 형성할 수 있는데, 캡핑 레이어를 형성하기 위해서는 CMP 공정 후 새로운 후속 공정의 실행이 필요하다. 또한 CoWP의 경우 환원제인 차아인산염(hypophosphite)이 구리에 대한 활성을 가지고 있지 않아서 팔라듐(Pd) 등을 이용한 표면 활성화 과정이 필요하다.Electroless plating allows CoWP to be selectively formed over copper wiring, which requires a new subsequent process after the CMP process to form the capping layer. In addition, in the case of CoWP, hypophosphite, a reducing agent, does not have activity on copper, and thus surface activation process using palladium (Pd) is required.

따라서 본 발명이 이루고자 하는 기술적 과제는, 새로운 후속 공정이 아닌 연속적인 화학적 기계적 연마 공정으로 산화 및 확산 방지막을 형성할 수 있는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법을 제공하는 데 있다.Accordingly, the present invention has been made in an effort to provide a method for forming an oxidation and diffusion barrier layer of a copper wiring for a semiconductor device capable of forming an oxidation and diffusion barrier layer in a continuous chemical mechanical polishing process instead of a new subsequent process.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법은: 은계 화합물이 포함된 화학적 기계적 연마 공 정용 슬러리를 이용한 화학적 기계적 연마 공정으로 반도체 소자용 구리 배선의 표면을 은으로 치환하는 단계와; 코발트 화합물, 텅스텐 화합물 및 인이 포함된 환원제를 포함하는 화학적 기계적 연마 공정용 슬러리를 이용한 화학적 기계적 연마 공정으로 상기 은으로 치환된 표면상에 산화 및 확산 방지막을 형성하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method for forming an oxidation and diffusion barrier of a copper wiring for a semiconductor device according to the present invention: a surface of a copper wiring for a semiconductor device by a chemical mechanical polishing process using a slurry for chemical mechanical polishing processes containing a silver compound. Replacing with silver; A chemical mechanical polishing process using a slurry for chemical mechanical polishing processes including a cobalt compound, a tungsten compound, and a phosphorus-containing reducing agent includes forming an oxidation and diffusion barrier layer on the surface substituted with silver. .

이 때, 상기 은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리는 상기 은계화합물에 산화제, 연마제, 부식 억제제, 착물 형성제 및 pH 조절제가 포함되어 이루어지는 것을 특징으로 한다.At this time, the slurry for chemical mechanical polishing process containing the silver-based compound is characterized in that the silver-based compound comprises an oxidizing agent, an abrasive, a corrosion inhibitor, a complex forming agent and a pH adjusting agent.

또한, 상기 산화 및 확산 방지막을 형성하기 위한 화학적 기계적 연마 공정용 슬러리는 상기 코발트 화합물, 텅스텐 화합물 및 인이 포함된 환원제에 착물 형성제와 슬러리 안정제와 pH 조절제가 포함되어 이루어지는 것을 특징으로 한다.In addition, the slurry for the chemical mechanical polishing process for forming the oxidation and diffusion barrier layer is characterized in that the complexing agent, slurry stabilizer and pH adjuster is included in the reducing agent containing the cobalt compound, tungsten compound and phosphorus.

이하에서, 본 발명의 바람직한 실시예들을 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

본 발명에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법은 반도체 소자용 구리 배선에 산화 및 확산 방지막, 즉 캡핑 레이어를 형성하는 방법으로서, 특히 다마신 공정을 이용하여 형성된 구리배선에 연속적인 CMP 공정으로 구리 배선에 산화 및 확산 방지막을 형성하는 것이다. 여기서, 연속적인 CMP 공정이란 계속이란 의미는 시간적인 연속성이 아닌 다른 공정의 삽입없이 CMP 공정만으로 이루어진다는 의미이다.The method for forming an oxidation and diffusion barrier layer of a copper wiring for a semiconductor device according to the present invention is a method of forming an oxidation and diffusion barrier, ie, a capping layer, on a copper wiring for a semiconductor device. The CMP process forms an oxidation and diffusion barrier on the copper wiring. Here, the continuous CMP process means that the continuation means that only the CMP process is performed without inserting another process other than temporal continuity.

도 1을 참조하면, 먼저, 은계 화합물이 포함된 CMP 공정용 슬러리(이하에서, 구리 표면 치환용 CMP 슬러리라 한다)를 이용한 CMP 공정으로 반도체 소자용 구리 배선의 표면을 은으로 치환한다. 즉, 구리 배선 위에 팔라듐 등을 이용한 활성화 없이 CoWP를 형성하기 위해 2차 CMP 공정으로 구리 배선의 표면을 은으로 치환한다. 다음에, 코발트(Co) 화합물, 텅스텐(W) 화합물 및 인(P)이 포함된 환원제를 포함하는 CMP 공정용 슬러리(이하에서, CoWP 형성용 CMP 슬러리라 한다)를 이용한 CMP 공정으로 은으로 치환된 표면상에 CoWP로 이루어진 산화 및 확산 방지막을 형성한다. Referring to FIG. 1, first, a surface of a copper wiring for a semiconductor device is replaced with silver by a CMP process using a CMP process slurry containing a silver compound (hereinafter, referred to as a CMP slurry for copper surface substitution). That is, in order to form CoWP without activation using palladium or the like on the copper wiring, the surface of the copper wiring is replaced with silver by a second CMP process. Subsequently, silver is substituted by CMP process using a CMP process slurry (hereinafter referred to as CMP slurry for CoWP formation) containing a cobalt (Co) compound, a tungsten (W) compound, and a reducing agent containing phosphorus (P). An oxidation and diffusion barrier film made of CoWP is formed on the surface.

이와 같이, 본 발명은 연속적인 CMP 공정으로 슬러리만을 교체하여 반도체 소자용 구리 배선에 산화 및 확산 방지막, 즉 캡핑 레이어를 형성하는 것을 특징으로 하지만, 그 슬러리들의 조성에도 특징이 있는 바 그 조성은 다음과 같다.As described above, the present invention is characterized in that the oxidation and diffusion prevention film, that is, the capping layer, is formed on the copper wiring for the semiconductor device by replacing only the slurry by the continuous CMP process, but the composition of the slurry is as follows. Same as

먼저, 구리 표면 치환용 CMP 슬러리에 대하여 설명한다.First, the CMP slurry for copper surface substitution is demonstrated.

구리 표면 치환용 CMP 슬러리는 은계화합물에 산화제, 연마제, 부식 억제제, 착물 형성제 및 pH 조절제가 포함되어 이루어진다. The CMP slurry for copper surface substitution includes an oxidizing agent, an abrasive, a corrosion inhibitor, a complex forming agent, and a pH adjusting agent in a silver compound.

산화제는 과산화물(peroxide) 계열 산화제인 것을 특징으로 하며, 특히 슬러리의 안정성을 위하여 과수(hydrogen peroxide)가 가장 바람직하다. 이 때, 과수(hydrogen peroxide)는 0.001 wt% ~ 30 wt%의 범위에서 포함되며, 특히 보다 나은 결과를 위하여 과수(hydrogen peroxide)는 0.001 wt% ~ 10 wt%의 범위에서 포함되는 것이 바람직하다.The oxidizing agent is characterized in that the peroxide-based oxidizing agent, in particular, hydrogen peroxide (hydrogen peroxide) is most preferred for the stability of the slurry. At this time, the hydrogen peroxide (hydrogen peroxide) is included in the range of 0.001 wt% to 30 wt%, especially for better results, the hydrogen peroxide (hydrogen peroxide) is preferably included in the range of 0.001 wt% to 10 wt%.

연마제로는 알루미나(alumina), 실리카(silica), 지르코니아(zirconia), 세 리아(ceria), 티타니아(titania) 및 게르마니아(germania) 등과 같은 금속 산화물(metal oxide)로 구성된 군으로부터 선택된 적어도 어느 하나가 사용된다. 이 때, 연마제는 크기가 5nm ~ 1000nm인 것을 특징으로 하며, 특히 효과적인 결과를 위하여 크기가 10nm ~ 500nm인 것이 바람직하다. 한편, 실리카 연마제가 사용되는 경우에는 0.01 wt% ~ 15 wt%의 범위에서 포함되는 것을 특징으로 한다.The abrasive may be at least one selected from the group consisting of metal oxides such as alumina, silica, zirconia, ceria, titania, and germania. Used. At this time, the abrasive is characterized in that the size is 5nm ~ 1000nm, it is preferable that the size is 10nm ~ 500nm for particularly effective results. On the other hand, when silica abrasive is used, it is characterized in that it is included in the range of 0.01 wt% ~ 15 wt%.

부식 억제제로는, 테트라졸(tetrazole) 화합물, 아민(amine) 계열로 치환된 유도체 및 알킬(alkyl) 계열로 치환된 유도체 중에서 선택된 적어도 어느 하나인 것을 특징으로 한다. 이 때, 부식 억제제에는 0.005M ~ 0.5M의 5-아미노테트라졸(5-aminotetrazole)이 포함되는 것을 특징으로 한다.Corrosion inhibitors, characterized in that at least any one selected from among tetrazole (tetrazole) compound, derivatives substituted with an amine series and derivatives substituted with an alkyl (alkyl) series. At this time, the corrosion inhibitor is characterized in that it comprises 5-aminotetrazole (5-aminotetrazole) of 0.005M ~ 0.5M.

착물 형성제로는, 카르복실산(carboxylic acid)계 화합물중에서 선택된 적어도 어느 하나와 아미노산(amino acid)계 화합물 중에서 선택된 적어도 어느 하나를 혼합하여 사용하는 것을 특징으로 한다. 카르복실산계 화합물은 아세트산(acetic acid), 포름산(formic acid), 말레산(maleic acid), 말산(malic acid), 타르타르산(tartaric acid), 글루타르산(glutaric acid), 시트르산(citric acid) 및 옥살산(oxalic acid)으로 구성된 군으로부터 선택된 적어도 어느 하나이며, 아미노산계 화합물은 아르기닌(arginine), 페닐알라닌(phenyl alanine), 글루타민(glutamine), 글리신(glycine), 글루탐산(glutamic acid) 및 세린(serine)으로 구성된 군으로부터 선택된 적어도 어느 하나이다. 이 때, 착물 형성제는 0.001M ~ 1M의 범위에서 포함되는 것을 특징으로 하며, 특히 효과적인 결과를 얻기 위하여 0.005M ~ 0.5M의 범위에서 포함되는 것이 바람직하다.The complex forming agent may be used by mixing at least one selected from carboxylic acid compounds and at least one selected from amino acid compounds. Carboxylic acid compounds include acetic acid, formic acid, maleic acid, maleic acid, malic acid, tartaric acid, glutaric acid, citric acid and At least one selected from the group consisting of oxalic acid, the amino acid compound is arginine (arginine), phenylalanine (phenyl alanine), glutamine (glutamine), glycine (glycine), glutamic acid (glutamic acid) and serine (serine) At least one selected from the group consisting of. At this time, the complexing agent is characterized in that it is included in the range of 0.001M ~ 1M, it is preferable to include in the range of 0.005M ~ 0.5M in order to obtain particularly effective results.

pH 조절제로는 황산, 수산화칼륨 및 암모니아수로 구성된 군으로부터 선택된 어느 하나가 사용된다. As the pH adjusting agent, any one selected from the group consisting of sulfuric acid, potassium hydroxide and ammonia water is used.

은계 화합물은 silver nitrate, silver(I) permanganate, silver chloride, silver iodide, silver phosphate, silver sulfate, silver carbonate, silver acetate, silver perchlorate, silver lactate, silver cyanide, silver(I) selenide, silver(I) telluride, silver benzoate, silver thiocyanate 및 potassium silver(I) cyanide로 구성된 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 한다. 이 때, 은계 화합물은 0.001 wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하며, 특히 노출된 구리의 산화를 효과적으로 억제하기 위하여 은계 화합물은 0.005 wt% ~ 10 wt%의 범위에서 포함되는 것이 바람직하며, 구리의 산화 저항성을 향상시키기 위하여 은계 화합물은 2종 이상을 혼합하여 사용하는 것이 바람직하다.Silver compounds include silver nitrate, silver (I) permanganate, silver chloride, silver iodide, silver phosphate, silver sulfate, silver carbonate, silver acetate, silver perchlorate, silver lactate, silver cyanide, silver (I) selenide, silver (I) telluride , silver benzoate, silver thiocyanate and potassium silver (I) is characterized in that at least one selected from the group consisting of cyanide. At this time, the silver compound is characterized in that it is included in the range of 0.001 wt% to 20 wt%, in particular, in order to effectively inhibit the oxidation of the exposed copper, the silver compound is included in the range of 0.005 wt% to 10 wt%. Preferably, in order to improve the oxidation resistance of copper, it is preferable to mix and use 2 or more types of silver type compounds.

한편, 구리 표면 치환용 CMP 슬러리의 pH는 7 ~ 14인 것을 특징으로 하며, 특히 9 ~ 13인 것이 바람직하다.On the other hand, the pH of the CMP slurry for copper surface substitution is characterized in that 7 to 14, particularly preferably 9 to 13.

이어서, CoWP 형성용 CMP 슬러리에 대하여 설명한다.Next, the CMP slurry for CoWP formation is demonstrated.

CoWP 형성용 CMP 슬러리는 코발트 화합물, 텅스텐 화합물 및 인이 포함된 환원제, 착물 형성제, 슬러리 안정제 및 pH 조절제가 포함되어 이루어진다.The CMP slurry for forming CoWP comprises a cobalt compound, a tungsten compound and a phosphorus containing reducing agent, a complex forming agent, a slurry stabilizer, and a pH adjusting agent.

코발트 화합물은 CoSO4인 것을 특징으로 한다. 이 때, CoSO4는 0.05 wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하며, 특히 CoSO4는 0.1 wt% ~ 15 wt%의 범위에서 포함되는 것이 바람직하다.The cobalt compound is characterized in that CoSO 4 . At this time, CoSO 4 is characterized in that it is included in the range of 0.05 wt% ~ 20 wt%, in particular CoSO 4 is preferably included in the range of 0.1 wt% ~ 15 wt%.

텅스텐 화합물은 텅스텐산나트륨(sodium tungstate)인 것을 특징으로 한다. 이 때, 텅스텐산나트륨은 0.01 wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하며, 특히 텅스텐산나트륨은 0.1 wt% ~ 15 wt%의 범위에서 포함되는 것이 바람직하다.The tungsten compound is characterized in that the sodium tungstate (sodium tungstate). At this time, sodium tungstate is characterized in that it is included in the range of 0.01 wt% to 20 wt%, in particular sodium tungstate is preferably included in the range of 0.1 wt% to 15 wt%.

착물 형성제는 구연산염(cirate) 계열인 것을 특징으로 하며, 특히 구연산나트륨(sodium citrate)인 것이 바람직하다. 이 때, 구연산나트륨은 0.5 wt% ~ 50 wt%의 범위에서 포함되는 것을 특징으로 하며, 특히 구연산나트륨은 1 wt% ~ 30 wt%의 범위에서 포함되는 것이 바람직하다.The complex former is characterized in that the citrate (cirate) series, in particular sodium citrate (sodium citrate) is preferred. At this time, sodium citrate is characterized in that it is included in the range of 0.5 wt% to 50 wt%, in particular sodium citrate is preferably included in the range of 1 wt% to 30 wt%.

슬러리 안정제는, 아민(amine) 계열로 치환된 테트라졸(tetrazole) 화합물의 유도체 또는 알킬(alkyl) 계열로 치환된 테트라졸(tetrazole) 화합물의 유도체인 것을 특징으로 하며, 슬러리의 안정성을 위하여 5-아미노테트라졸(5-aminotetrazole)이 포함되는 것이 바람직하다. 이 때, 5-아미노테트라졸(5-aminotetrazole)은 0.001 wt% ~ 5 wt%의 범위에서 포함되는 것을 특징으로 하며, 특히 5-아미노테트라졸(5-aminotetrazole)은 0.005 wt% ~ 3 wt%의 범위에서 포함되는 것이 바람직하다.The slurry stabilizer may be a derivative of a tetrazole compound substituted with an amine or a derivative of a tetrazole compound substituted with an alkyl series. It is preferred to include 5-aminotetrazole. At this time, 5-aminotetrazole (5-aminotetrazole) is characterized in that it is included in the range of 0.001 wt% ~ 5 wt%, in particular 5-aminotetrazole (0.005-wt% ~ 3 wt%) It is preferable to be included in the range of.

인이 포함된 환원제는 하이포아인산염(hypophosphite) 계열인 것을 특징으로 하며, 특히 인이 포함된 환원제는 하이포아인산나트륨(sodium hypophosphite)인 것을 특징으로 한다. 이 때, 하이포아인산나트륨은 0.1 wt% ~ 30 wt%의 범위에서 포함되는 것을 특징으로 하며, 하이포아인산나트륨은 0.5wt% ~ 20 wt%의 범위에서 포 함되는 것이 바람직하다.Phosphorus-containing reducing agent is characterized in that the hypophosphite-based, in particular phosphorus-containing reducing agent is characterized in that sodium hypophosphite (sodium hypophosphite). At this time, sodium hypophosphite is characterized in that it is included in the range of 0.1 wt% ~ 30 wt%, sodium hypophosphite is preferably included in the range of 0.5wt% ~ 20 wt%.

pH 조절제는 붕산(boric acid)과 수산화나트륨(NaOH)의 혼합물인 것을 특징으로 한다.pH adjuster is characterized in that the mixture of boric acid (boric acid) and sodium hydroxide (NaOH).

한편, CoWP 형성용 CMP 슬러리의 pH는 7 ~ 14인 것을 특징으로 하며, 특히 pH가 8 ~ 12인 것이 바람직하다.On the other hand, the pH of the CMP slurry for CoWP formation is characterized in that from 7 to 14, particularly preferably from 8 to 12 pH.

그리고 CoWP의 형성 속도를 높이기 위해 슬러리의 온도를 80℃로 유지하는 것을 특징으로 한다.And it is characterized in that to maintain the temperature of the slurry at 80 ℃ to increase the formation rate of CoWP.

이하에서, 상기의 실시예를 기초로 한 보다 구체적인 실시예를 설명한다. 단, 후술하는 실시예는 본 발명의 실시를 보다 용이하게 하기 위하여 제공되는 것이므로 본 발명의 권리범위가 반드시 이에 국한되지 않음은 명백하다.In the following, more specific embodiments based on the above embodiments will be described. However, the following embodiments are provided to facilitate the practice of the present invention, it is obvious that the scope of the present invention is not necessarily limited thereto.

도 1a 내지 1e는 본 발명의 실시예에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법을 설명하기 위한 개략도들이다.1A to 1E are schematic views for explaining a method of forming an oxidation and diffusion barrier of a copper wiring for a semiconductor device according to an exemplary embodiment of the present invention.

먼저 도 1a 및 도 1b를 참조하면, 웨이퍼로서 Si 기판(10)을 마련하고, 그 Si 기판 상에 습식 산화(wet oxidation)를 통해 10000Å의 실리콘 산화막(silicon oxide, 20)을 성장시킨 후, 4500Å 만큼 실리콘 산화막을 사진 및 식각 공정을 통해 제거함으로써 구리 배선이 형성될 부분(C)을 형성한다. 그리고, 확산 방지막 역할을 하는 Ta막(30)과 TaN막(40)을 PVD(Physical Vapor Deposition)를 사용하여 각각 500Å과 300Å의 두께로 증착하고, 그 위에 다시 PVD를 통해 구리막(60)을 9000Å의 두께로 증착한다.First, referring to FIGS. 1A and 1B, a Si substrate 10 is prepared as a wafer, and 10000 nm silicon oxide film 20 is grown on the Si substrate through wet oxidation. As much as the silicon oxide film is removed through the photolithography and etching process, the portion C on which the copper wiring is to be formed is formed. Then, the Ta film 30 and the TaN film 40 serving as the diffusion barrier film were deposited to have a thickness of 500 kW and 300 kW, respectively, using PVD (Physical Vapor Deposition), and the copper film 60 was again deposited thereon through PVD. Deposit at a thickness of 9000 mm3.

다음에 도 1c를 참조하면, 연마제가 알루미나(alumina)인 슬러리를 사용하여 초과 증착된 4500Å의 구리를 CMP 공정으로 제거하여 구리 배선(50)을 형성한다. 여기서 사용되는 CMP용 슬러리의 조성 및 공정 조건은 아래의 표 1과 같다. 이 때, 주용매제로는 탈이온수(de-ionized water)를 사용한다. 이하에서도 같다.Next, referring to FIG. 1C, an excess of 4500 kW of copper deposited using a slurry having an alumina abrasive is removed by a CMP process to form a copper interconnect 50. The composition and process conditions of the slurry for CMP used herein are shown in Table 1 below. At this time, de-ionized water is used as the main solvent. The same applies to the following.

슬러리 조성Slurry composition 연마제abrasive 산화제Oxidant 부식 억제제Corrosion inhibitor 착물 형성제Complex former 종 류Kinds AluminaAlumina 과수fruit tree 5-aminotetrazole5-aminotetrazole citric acidcitric acid 농 도Concentration 2.5 wt%2.5 wt% 2 wt%2 wt% 0.01M0.01M 0.02M0.02M CMP 공정 조건CMP process conditions 압력pressure Platen 스피드Platen speed Head 스피드Head speed 슬러리 공급 유량Slurry feed flow rate 조 건Condition 2.5 psi2.5 psi 80 rpm80 rpm 75 rpm75 rpm 150 mL/min150 mL / min

그 다음에 도 1d를 참조하면, 구리 배선(60) 상에 CoWP 증착에 필요한 활성층인 은박막(70)을 형성하기 위해 silver nitrate가 포함된 구리 표면 치환용 CMP 슬러리를 이용함으로써 구리 표면을 은으로 치환한다. 여기서 사용되는 구리 표면 치환용 CMP 슬러리의 조성 및 공정 조건은 아래의 표 2와 같다.Next, referring to FIG. 1D, the copper surface is replaced with silver by using a CMP slurry for replacing the copper surface containing silver nitrate to form the silver thin film 70, which is an active layer required for CoWP deposition on the copper wiring 60. Replace. The composition and process conditions of the CMP slurry for copper surface substitution used here are shown in Table 2 below.

슬러리 조성Slurry composition 연마제abrasive 산화제Oxidant 부식 억제제Corrosion inhibitor 착물 형성제Complex former 은계 화합물A silver compound 종 류Kinds SilicaSilica 과수fruit tree 5-aminotetrazole5-aminotetrazole glycineglycine Silver nitrateSilver nitrate 농 도Concentration 0.5 wt%0.5 wt% 1 wt%1 wt% 0.01M0.01M 0.02M0.02M 0.1 wt%0.1 wt% CMP 공정 조건CMP process conditions 압력pressure Platen 스피드Platen speed Head 스피드Head speed 슬러리 공급 유량Slurry feed flow rate 조 건Condition 1.5 psi1.5 psi 93 rpm93 rpm 87 rpm87 rpm 150 mL/min150 mL / min

이어서 도 1e를 참조하면, CoWP를 형성하기 위한 CMP, 즉 은 치환용 CMP 공정 후 완화 단계 공정(buffing step process)을 본 발명에 따른 CoWP 형성용 CMP 슬러리를 80℃로 유지한 채 8분간 공급하면서 진행하면 은박막(70) 위에 CoWP 박막(80)이 형성된다. 여기서 사용되는 CoWP 형성용 CMP 슬러리 100ml 기준의 조성 및 공정 조건은 아래의 표 3과 같다.Subsequently, referring to FIG. 1E, a CMP for forming CoWP, that is, a buffering step process after the CMP process for silver substitution, is supplied for 8 minutes while maintaining the CMP slurry for CoWP formation according to the present invention at 80 ° C. As it proceeds, a CoWP thin film 80 is formed on the silver thin film 70. Composition and process conditions based on 100ml CMP slurry for CoWP formation used herein are shown in Table 3 below.

용도Usage 종류Kinds 농도density Co sourceCo source CoSO4 CoSO 4 2.0g2.0 g W sourceW source Sodium tungstateSodium tungstate 2.5g2.5g 용액 안정제Solution stabilizer 5-Aminotetrazole5-Aminotetrazole 0.01g0.01 g 환원제reducing agent Sodium hypophosphiteSodium hypophosphite 2.5g2.5g pH 조절제pH regulator Boric acidBoric acid 6.18g6.18g NaOHNaOH 2.65g2.65 g 공정 조건 Process conditions 슬러리 온도Slurry temperature 80℃80 ℃ 슬러리 공급 속도Slurry feed rate 150mL/min150 mL / min 공급 시간 Supply time 8분8 minutes

도 2는 본 발명의 실시예에 따른 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법의 공정 단계별 기판 표면에 대한 X-선 회절 분석 그래프이다.FIG. 2 is an X-ray diffraction analysis graph of a substrate surface for each step of a method of forming an oxidation and diffusion barrier layer of a copper wiring for a semiconductor device according to an exemplary embodiment of the present invention.

도 2를 참조하면, 구리 배선이 은으로 치환되어 은박막이 형성되고 그 결과물 상에 CoWP 박막이 형성되었음을 알 수 있다. 따라서, 별도의 추가공정, 즉 팔라듐을 이용한 구리 배선의 활성화없이 연속적인 CMP 공정만으로 구리 배선에 산화 및 확산 방지막이 형성됨을 알 수 있다.Referring to FIG. 2, it can be seen that the copper wiring is replaced with silver to form a silver thin film, and a CoWP thin film is formed on the resultant. Therefore, it can be seen that the oxidation and diffusion barrier film is formed on the copper wiring only by a continuous CMP process without additional additional processes, ie, activation of the copper wiring using palladium.

상술한 바와 같이 본 발명에 의하면, 별도의 추가공정, 즉 팔라듐을 이용한 구리 배선의 활성화없이 연속적인 CMP 공정만으로 구리 배선에 산화 및 확산 방지막이 형성됨으로써 생산성 및 공정의 효율이 향상된다.As described above, according to the present invention, the oxidation and diffusion prevention film is formed on the copper wiring only by a continuous CMP process without additional additional processes, ie, activation of the copper wiring using palladium, thereby improving productivity and process efficiency.

본 발명은 상기 실시예들에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (44)

은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리를 이용한 화학적 기계적 연마 공정으로 반도체 소자용 구리 배선의 표면을 은으로 치환하는 단계와;Replacing the surface of the copper wiring for semiconductor device with silver by a chemical mechanical polishing process using a slurry for chemical mechanical polishing processes containing a silver compound; 코발트 화합물, 텅스텐 화합물 및 인이 포함된 환원제를 포함하는 화학적 기계적 연마 공정용 슬러리를 이용한 화학적 기계적 연마 공정으로 상기 은으로 치환된 표면상에 산화 및 확산 방지막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.A chemical mechanical polishing process using a slurry for a chemical mechanical polishing process including a cobalt compound, a tungsten compound, and a phosphorus-containing reducing agent includes forming an oxidation and diffusion barrier layer on the surface substituted with silver. A method for forming an oxidation and diffusion barrier of copper wiring for semiconductor devices. 제 1항에 있어서, 상기 은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리는 상기 은계화합물에 산화제, 연마제, 부식 억제제, 착물 형성제 및 pH 조절제가 포함되어 이루어지는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the slurry for the chemical mechanical polishing process containing the silver compound comprises an oxidizing agent, an abrasive, a corrosion inhibitor, a complex forming agent and a pH adjusting agent in the silver compound. Oxidation and diffusion barrier film formation method. 제 2항에 있어서, 상기 산화제가 과산화물(peroxide) 계열 산화제인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 2, wherein the oxidant is a peroxide-based oxidant. 제 3항에 있어서, 상기 과산화물(peroxide) 계열 산화제가 과수(hydrogen peroxide)인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.4. The method of claim 3, wherein the peroxide oxidant is hydrogen peroxide. 제 4항에 있어서, 상기 과수(hydrogen peroxide)는 0.001 wt% ~ 30 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 4, wherein the hydrogen peroxide is included in a range of 0.001 wt% to 30 wt%. 제 5항에 있어서, 상기 과수(hydrogen peroxide)는 0.001 wt% ~ 10 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 5, wherein the hydrogen peroxide is included in a range of 0.001 wt% to 10 wt%. 제 2항에 있어서, 상기 연마제가 알루미나(alumina), 실리카(silica), 지르코니아(zirconia), 세리아(ceria), 티타니아(titania) 및 게르마니아(germania)로 구성된 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 2, wherein the abrasive is at least one selected from the group consisting of alumina, silica, zirconia, ceria, titania, and germania. A method of forming an oxidation and diffusion barrier of a copper wiring for a semiconductor device. 제 7항에 있어서, 상기 연마제는 크기가 5nm ~ 1000nm인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.8. The method of claim 7, wherein the abrasive has a size of 5 nm to 1000 nm. 제 7항에 있어서, 상기 연마제의 크기가 10nm ~ 500nm인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.8. The method for forming an oxide and diffusion barrier of a copper wiring for a semiconductor device according to claim 7, wherein the abrasive has a size of 10 nm to 500 nm. 제 7항에 있어서, 상기 실리카 연마제는 0.01 wt% ~ 15 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 7, wherein the silica abrasive is included in a range of 0.01 wt% to 15 wt%. 제 2항에 있어서, 상기 부식 억제제로는, 테트라졸(tetrazole) 화합물, 아민(amine) 계열로 치환된 유도체 및 알킬(alkyl) 계열로 치환된 유도체 중에서 선택된 적어도 어느 하나인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The semiconductor device according to claim 2, wherein the corrosion inhibitor is at least one selected from a tetrazole compound, a derivative substituted with an amine series, and a derivative substituted with an alkyl series. A method of forming an oxidation and diffusion barrier for copper wiring. 제 11항에 있어서, 상기 부식 억제제에는 0.005M ~ 0.5M의 5-아미노테트라졸(5-aminotetrazole)이 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.12. The method of claim 11, wherein the corrosion inhibitor includes 5-aminotetrazole (0.005 M to 0.5 M). 제 2항에 있어서, 상기 착물 형성제로는, 카르복실산(carboxylic acid)계 화합물중에서 선택된 적어도 어느 하나와 아미노산(amino acid)계 화합물중에서 선택된 적어도 어느 하나를 혼합하여 사용하는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The semiconductor device according to claim 2, wherein the complex forming agent is used by mixing at least one selected from carboxylic acid compounds and at least one selected from amino acid compounds. A method of forming an oxidation and diffusion barrier for copper wiring. 제 13항에 있어서, 상기 카르복실산계 화합물은 아세트산(acetic acid), 포 름산(formic acid), 말레산(maleic acid), 말산(malic acid), 타르타르산(tartaric acid), 글루타르산(glutaric acid), 시트르산(citric acid) 및 옥살산(oxalic acid)으로 구성된 군으로부터 선택된 적어도 어느 하나이며, 상기 아미노산계 화합물은 아르기닌(arginine), 페닐알라닌(phenyl alanine), 글루타민(glutamine), 글리신(glycine), 글루탐산(glutamic acid) 및 세린(serine)으로 구성된 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 13, wherein the carboxylic acid compound is acetic acid, formic acid, maleic acid, malic acid, tartaric acid, glutaric acid ), Citric acid (citric acid) and at least one selected from the group consisting of oxalic acid (oxalic acid), the amino acid compound is arginine (arginine), phenylalanine (phenyl alanine), glutamine (glutamine), glycine (glycine), glutamic acid (Glutamic acid) and serine (serine) at least any one selected from the group consisting of a copper wiring for a semiconductor device, the oxidation and diffusion prevention film forming method. 제 13항에 있어서, 상기 착물 형성제는 0.001M ~ 1M의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 13, wherein the complex forming agent is included in a range of 0.001M to 1M. 제 15항에 있어서, 상기 착물 형성제는 0.005M ~ 0.5M의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.16. The method of claim 15, wherein the complex forming agent is included in a range of 0.005M to 0.5M. 제 2항에 있어서, 상기 pH 조절제는 황산, 수산화칼륨 및 암모니아수로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 2, wherein the pH adjusting agent is any one selected from the group consisting of sulfuric acid, potassium hydroxide and ammonia water. 제 2항에 있어서, 상기 은계 화합물은 silver nitrate, silver(I) permanganate, silver chloride, silver iodide, silver phosphate, silver sulfate, silver carbonate, silver acetate, silver perchlorate, silver lactate, silver cyanide, silver(I) selenide, silver(I) telluride, silver benzoate, silver thiocyanate 및 potassium silver(I) cyanide로 구성된 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 2, wherein the silver compound is silver nitrate, silver (I) permanganate, silver chloride, silver iodide, silver phosphate, silver sulfate, silver carbonate, silver acetate, silver perchlorate, silver lactate, silver cyanide, silver (I) A method of forming an oxide and diffusion barrier film of a copper wiring for a semiconductor device, characterized in that at least one selected from the group consisting of selenide, silver (I) telluride, silver benzoate, silver thiocyanate, and potassium silver (I) cyanide. 제 18에 있어서, 상기 은계 화합물은 0.001 wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.19. The method of claim 18, wherein the silver compound is included in a range of 0.001 wt% to 20 wt%. 제 19에 있어서, 상기 은계 화합물은 0.005 wt% ~ 10 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.20. The method of claim 19, wherein the silver compound is included in a range of 0.005 wt% to 10 wt%. 제 1항에 있어서, 상기 은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리의 pH는 7 ~ 14인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the pH of the slurry for the chemical mechanical polishing process containing the silver compound is 7 to 14. 9. 제 1항에 있어서, 상기 은계 화합물이 포함된 화학적 기계적 연마 공정용 슬러리의 pH는 9 ~ 13인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the pH of the slurry for the chemical mechanical polishing process containing the silver compound is 9 to 13. 제 1항에 있어서, 상기 산화 및 확산 방지막을 형성하기 위한 화학적 기계적 연마 공정용 슬러리는 상기 코발트 화합물, 텅스텐 화합물 및 인이 포함된 환원제에 착물 형성제와 슬러리 안정제와 pH 조절제가 포함되어 이루어지는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.According to claim 1, wherein the slurry for the chemical mechanical polishing process for forming the oxidation and diffusion barrier layer is characterized in that the complexing agent, slurry stabilizer and pH regulator are included in the reducing agent containing the cobalt compound, tungsten compound and phosphorus. A method of forming an oxidation and diffusion prevention film of a copper wiring for a semiconductor device. 제 1항에 있어서, 상기 코발트 화합물은 CoSO4인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the cobalt compound is CoSO 4 . 제 24항에 있어서, 상기 CoSO4는 0.05 wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.25. The method of claim 24, wherein the CoSO 4 is included in a range of 0.05 wt% to 20 wt%. 제 25항에 있어서, 상기 CoSO4는 0.1 wt% ~ 15 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 25, wherein the CoSO 4 is included in a range of 0.1 wt% to 15 wt%. 제 1항에 있어서, 상기 텅스텐 화합물은 텅스텐산나트륨(sodium tungstate)인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the tungsten compound is sodium tungstate. 제 27항에 있어서, 상기 텅스텐산나트륨은 0.01 wt% ~ 20 wt%의 범위에서 포 함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.28. The method of claim 27, wherein the sodium tungstate is included in a range of 0.01 wt% to 20 wt%. 제 28항에 있어서, 상기 텅스텐산나트륨은 0.1 wt% ~ 15 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.29. The method of claim 28, wherein the sodium tungstate is included in the range of 0.1 wt% to 15 wt%. 제 23항에 있어서, 상기 착물 형성제는 구연산염(cirate) 계열인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.24. The method of claim 23, wherein the complex forming agent is a citrate series. 제 30항에 있어서, 상기 구연산염은 구연산나트륨(sodium citrate)인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.31. The method of claim 30, wherein the citrate is sodium citrate. 제 31항에 있어서, 상기 구연산나트륨은 0.5 wt% ~ 50 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.32. The method of claim 31, wherein the sodium citrate is included in a range of 0.5 wt% to 50 wt%. 제 32항에 있어서, 상기 구연산나트륨은 1 wt% ~ 30 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.33. The method of claim 32, wherein the sodium citrate is included in the range of 1 wt% to 30 wt%. 제 23항에 있어서, 상기 슬러리 안정제는, 아민(amine) 계열로 치환된 테트라졸(tetrazole) 화합물의 유도체 또는 알킬(alkyl) 계열로 치환된 테트라졸(tetrazole) 화합물의 유도체인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The semiconductor as claimed in claim 23, wherein the slurry stabilizer is a derivative of a tetrazole compound substituted with an amine or a derivative of a tetrazole compound substituted with an alkyl. A method for forming an oxidation and diffusion barrier of copper wiring for a device. 제 34항에 있어서, 상기 슬러리 안정제에는 5-아미노테트라졸(5-aminotetrazole)이 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.35. The method of claim 34, wherein the slurry stabilizer comprises 5-aminotetrazole. 제 35항에 있어서, 상기 5-아미노테트라졸(5-aminotetrazole)은 0.001 wt% ~ 5 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.36. The method of claim 35, wherein the 5-aminotetrazole is included in the range of 0.001 wt% to 5 wt%. 제 36항에 있어서, 상기 5-아미노테트라졸(5-aminotetrazole)은 0.005 wt% ~ 3 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 36, wherein the 5-aminotetrazole is included in a range of 0.005 wt% to 3 wt%. 제 1항에 있어서, 상기 인이 포함된 환원제는 하이포아인산염(hypophosphite) 계열인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the phosphorus-containing reducing agent is a hypophosphite series. 제 38항에 있어서, 상기 인이 포함된 환원제는 하이포아인산나트륨(sodium hypophosphite)인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.39. The method of claim 38, wherein the phosphorus-containing reducing agent is sodium hypophosphite. 제 39항에 있어서, 상기 하이포아인산나트륨은 0.1 wt% ~ 30 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.40. The method of claim 39, wherein the sodium hypophosphite is included in a range of 0.1 wt% to 30 wt%. 제 40항에 있어서, 상기 하이포아인산나트륨은 0.5wt% ~ 20 wt%의 범위에서 포함되는 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.41. The method of claim 40, wherein the sodium hypophosphite is included in a range of 0.5 wt% to 20 wt%. 제 23항에 있어서, 상기 pH 조절제는 붕산(boric acid)과 수산화나트륨(NaOH)의 혼합물인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.24. The method of claim 23, wherein the pH adjusting agent is a mixture of boric acid and sodium hydroxide (NaOH). 제 1항에 있어서, 상기 산화 및 확산 방지막을 형성하기 위한 화학적 기계적 연마 공정용 슬러리의 pH는 7 ~ 14인 것을 특징으로 하는 반도체 소자용 구리 배선 의 산화 및 확산 방지막 형성방법.The method of claim 1, wherein the pH of the slurry for the chemical mechanical polishing process for forming the oxidation and diffusion barrier layer is 7-14. 제 43항에 있어서, 상기 산화 및 확산 방지막을 형성하기 위한 화학적 기계적 연마 공정용 슬러리의 pH는 8 ~ 12인 것을 특징으로 하는 반도체 소자용 구리 배선의 산화 및 확산 방지막 형성방법.44. The method of claim 43, wherein the pH of the slurry for the chemical mechanical polishing process for forming the oxidation and diffusion barrier layer is 8 to 12.
KR1020070052737A 2007-05-30 2007-05-30 Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device KR100856543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070052737A KR100856543B1 (en) 2007-05-30 2007-05-30 Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070052737A KR100856543B1 (en) 2007-05-30 2007-05-30 Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device

Publications (1)

Publication Number Publication Date
KR100856543B1 true KR100856543B1 (en) 2008-09-04

Family

ID=40022411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070052737A KR100856543B1 (en) 2007-05-30 2007-05-30 Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device

Country Status (1)

Country Link
KR (1) KR100856543B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963842B1 (en) 2008-07-07 2010-06-16 재단법인서울대학교산학협력재단 Copper wiring formation method
CN102559056A (en) * 2010-12-16 2012-07-11 安集微电子(上海)有限公司 Chemical mechanical polishing liquid for polishing alloy phase change materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082732A (en) * 2000-02-18 2001-08-30 이데이 노부유끼 Process for fabricating a semiconductor device
US6709874B2 (en) 2001-01-24 2004-03-23 Infineon Technologies Ag Method of manufacturing a metal cap layer for preventing damascene conductive lines from oxidation
US20060189131A1 (en) 2005-02-24 2006-08-24 Taiwan Semiconductor Manufacturing Co., Ltd. Composition and process for element displacement metal passivation
KR20060101484A (en) * 2003-10-17 2006-09-25 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for selectively self-initiating electroless capping of copper with cobalt-containing alloys

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082732A (en) * 2000-02-18 2001-08-30 이데이 노부유끼 Process for fabricating a semiconductor device
US6709874B2 (en) 2001-01-24 2004-03-23 Infineon Technologies Ag Method of manufacturing a metal cap layer for preventing damascene conductive lines from oxidation
KR20060101484A (en) * 2003-10-17 2006-09-25 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for selectively self-initiating electroless capping of copper with cobalt-containing alloys
US20060189131A1 (en) 2005-02-24 2006-08-24 Taiwan Semiconductor Manufacturing Co., Ltd. Composition and process for element displacement metal passivation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963842B1 (en) 2008-07-07 2010-06-16 재단법인서울대학교산학협력재단 Copper wiring formation method
CN102559056A (en) * 2010-12-16 2012-07-11 安集微电子(上海)有限公司 Chemical mechanical polishing liquid for polishing alloy phase change materials

Similar Documents

Publication Publication Date Title
US6958547B2 (en) Interconnect structures containing conductive electrolessly deposited etch stop layers, liner layers, and via plugs
US7476974B2 (en) Method to fabricate interconnect structures
EP1346408B1 (en) Method of electroless introduction of interconnect structures
US20070071888A1 (en) Method and apparatus for forming device features in an integrated electroless deposition system
US20050014359A1 (en) Semiconductor device manufacturing method
US20110124191A1 (en) Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US6398855B1 (en) Method for depositing copper or a copper alloy
JP2004031586A5 (en) Semiconductor device manufacturing method and semiconductor device
JP2006093357A (en) Semiconductor device and manufacturing method thereof, and processing solution
US7884018B2 (en) Method for improving the selectivity of a CVD process
JP2007180496A (en) Manufacturing method of metallic seed layer
KR100856543B1 (en) Oxidation and diffusion barrier film formation method of copper wiring for semiconductor device
KR100856542B1 (en) Copper chemical mechanical polishing process slurry and copper wiring formation method using the same
JP3636186B2 (en) Manufacturing method of semiconductor device
KR101076927B1 (en) Structure of copper wiring in semiconductor device and method of forming the same
JP4202016B2 (en) Method for preparing an electroplating bath and associated copper plating process
JP3938356B2 (en) Plating method and substrate processing apparatus
KR100963842B1 (en) Copper wiring formation method
JP2006120664A (en) Method for manufacturing semiconductor device
EP1022355B1 (en) Deposition of copper on an activated surface of a substrate
JP2009064965A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20070530

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20080424

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080814

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080828

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080829

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110804

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20120824

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20120824

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130816

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130816

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20140722

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20140722

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20150730

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160212

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20170724

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20200820

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20211109

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20230801

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20240724

Start annual number: 17

End annual number: 17