KR100836627B1 - Fabrication method of indium tin oxide nanofibers using electrospinning process - Google Patents

Fabrication method of indium tin oxide nanofibers using electrospinning process Download PDF

Info

Publication number
KR100836627B1
KR100836627B1 KR1020070001884A KR20070001884A KR100836627B1 KR 100836627 B1 KR100836627 B1 KR 100836627B1 KR 1020070001884 A KR1020070001884 A KR 1020070001884A KR 20070001884 A KR20070001884 A KR 20070001884A KR 100836627 B1 KR100836627 B1 KR 100836627B1
Authority
KR
South Korea
Prior art keywords
tin oxide
indium
indium tin
ito
electrospinning
Prior art date
Application number
KR1020070001884A
Other languages
Korean (ko)
Inventor
좌용호
김기도
김희택
이영인
이근재
김종렬
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020070001884A priority Critical patent/KR100836627B1/en
Application granted granted Critical
Publication of KR100836627B1 publication Critical patent/KR100836627B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)

Abstract

A fabrication method of indium tin oxide nano-fibers using electro-spinning process is provided to achieve high electrical conductivity of the device by increasing contacts between particles and to apply to the various fields of industry by combination and hybridization of nano-fibers with metal or ceramic nano-particle. A polymer solution and a precursor solution of ITO(Indium Tin Oxide) are formed by dissolving a pyrolytic polymer and an In or Sn salt, or an alkoxide series to a solvent. An electro spinning solution is formed by stirring the ITO precursor solution and the pyrolytic polymer solution. A polymer-ITO composite fiber is manufactured by electro spinning of the stirred ITO precursor solution and the pyrolytic polymer solution. An indium tin oxide nano-fiber is formed from the polymer pyrolysis after heat treatment of the polymer-ITO composite fiber at high temperature. The ITO precursor is the salt line of indium and tin, and consists of indium nitrate, indium chloride, indium acetate, tin nitrate, tin chloride and tin acetate. Further, the solvent is one or a mixture thereof selected from pure water, ethanol, methanol, chloroform and N,N-dimethyl formamide.

Description

전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법{Fabrication method of indium tin oxide nanofibers using electrospinning process}Fabrication method of indium tin oxide nanofibers using electrospinning process

도 1은 본 발명의 실시예에 따른 ITO 나노섬유를 제조하기 위한 전기방사 공정의 개략도.1 is a schematic diagram of an electrospinning process for producing ITO nanofibers according to an embodiment of the present invention.

도 2는 본 발명의 실시예 1에 따라 제조된 PVP/ITO 나노복합섬유를 주사전자현미경으로 관찰한 사진.Figure 2 is a photograph of the observation of the PVP / ITO nanocomposite fiber prepared according to Example 1 of the present invention with a scanning electron microscope.

도 3은 도 2의 나노복합섬유를 600℃에서 1시간 동안 열처리하여 PVP를 열분해한 후에 제조된 ITO 나노섬유의 주사전자현미경사진.FIG. 3 is a scanning electron micrograph of the ITO nanofibers prepared after pyrolyzing PVP by heat-treating the nanocomposite fibers of FIG. 2 at 600 ° C. for 1 hour. FIG.

도 4는 도 2의 나노복합섬유를 1000℃에서 1시간 동안 열처리하여 PVP를 열분해한 후에 제조된 ITO 나노섬유의 주사전자현미경사진.FIG. 4 is a scanning electron micrograph of the ITO nanofibers prepared after pyrolyzing PVP by heat-treating the nanocomposite fiber of FIG. 2 at 1000 ° C. for 1 hour. FIG.

도 5a와 도 5b는 도 3, 도 4의 나노섬유를 X선 회절분석기와 에너지 분산형 X선 측정기로 분석한 결과 그래프.5A and 5B are graphs of the results of analyzing the nanofibers of FIGS. 3 and 4 with an X-ray diffractometer and an energy dispersive X-ray analyzer.

도 6a와 도 6b는 본 발명의 실시예 2에 따라 제조된 ITO 나노섬유를 주사전자현미경으로 관찰한 사진.6A and 6B are photographs of the ITO nanofibers prepared according to Example 2 of the present invention with a scanning electron microscope.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1...주사펌프 2...전원공급부1 ... injection pump 2 ... power supply

3...방사부 4...적층부 3 ... radiation part 4 ... lamination part

본 발명은 전기방사법을 이용한 인듐 주석 산화물 (Indium Tin Oxide : ITO) 나노섬유의 제조 방법에 관한 것으로, 특히 더욱 상세하게는 기존의 구형 분말에 비해 직경에 대한 길이비가 커 장애물 없이 전기를 이동시킬 수 있으며, 각 입자간 접촉이 유리하므로 기존의 구형 분말로 제조된 전극 소자의 전기전도도를 향상시킬 수 있고, 금속 또는 세라믹 나노입자와의 복합 및 하이브리드화가 용이해 더욱 더 우수한 특성과 다양한 산업 분야로의 응용 가능성을 가지고 있는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법에 관한 것이다. The present invention relates to a method for producing indium tin oxide (ITO) nanofibers using an electrospinning method, and more particularly, it is possible to move electricity without obstacles because the length ratio to diameter is larger than that of a conventional spherical powder. In addition, the contact between each particle is advantageous, so that the electrical conductivity of the electrode element made of the existing spherical powder can be improved, and it is easy to complex and hybridize with the metal or ceramic nanoparticles, and thus to further improve the characteristics and various industrial fields. The present invention relates to a method for producing indium tin oxide nanofibers using an electrospinning method having applicability.

현재의 나노 기술의 주된 이용방향은 입자를 나노분말화하여 이용하는 방법과 나노섬유화하여 이용하는 두 가지 방법이 주류를 이루고 있다. 특히 나노섬유는 나노분말에 비해 그 길이가 매우 길며 체적에 비해 비표면적이 매우 크므로 나노분말이 갖지 못하는 특성을 지니고 있으며, 나노섬유 강화 복합재료, 스마트 의류, 인공뼈 및 인공혈관 등의 생의학 분야, 효소와 촉매의 지지체 및 운반체, 전자 및 바이오센서, 전극재료, 우주항공분야의 부품소재 등으로 응용범위가 매우 광범위하고 이에 대한 연구도 활발해지고 있으므로 산업 전반에 걸쳐 새로운 기술 및 신산업 수요가 창출될 것으로 예상된다.The main directions for use of current nanotechnology are two methods, one using nanopowders and one using nanofibers. In particular, nanofibers have a very long length compared to nanopowders and have a specific surface area that is not large because they have a large specific surface area. Thus, nanofiber reinforces composites, smart clothing, artificial bones and artificial blood vessels. , The support and carriers of enzymes and catalysts, electronic and biosensors, electrode materials, parts materials in aerospace, etc., have a wide range of applications and researches on them, which will create new technologies and new industry demands throughout the industry. It is expected.

한편, 디스플레이 산업의 발전 속에서 필수 소자인 투명전극의 성능향상에 많은 연구가 이루어지고 있다. 투명전극의 재료로 사용되는 ITO는 도전성과 투명성을 가지는 재료로서 액정표시소자, 플라즈마 디스플레이 패널, 전계방출표시소자, 전자발광소자 등의 다양한 산업분야에 응용되고 있다. On the other hand, a lot of research has been made on improving the performance of the transparent electrode which is an essential element in the development of the display industry. ITO, which is used as a material for transparent electrodes, is applied to various industrial fields such as liquid crystal display devices, plasma display panels, field emission display devices, and electroluminescent devices as materials having conductivity and transparency.

이와 같이 디스플레이 산업의 핵심 재료인 ITO는 화학적 방법(공침법, sol-gel법)으로 구형의 ITO 나노분말을 제조하여 사용되었다. ITO 분말을 투명전극 재료로 이용할 때 전기적 특성을 부여하기 위해 각 입자간 접촉을 유도해 전기적 통로를 형성해야 한다. 하지만 구형의 나노분말을 사용하게 되면 시편 전체를 관통하는 전기적 통로를 형성하기 위해 많은 양의 ITO 분말이 필요하고 또한 분말간의 접촉면이 전기전도를 방해하는 역할을 하므로 특성 향상에 한계가 있다. 그리고 전기전도도가 우수한 금속 또는 세라믹 나노 분말등과 복합재료로의 응용도 하기 어렵다. As such, ITO, a key material of the display industry, was used to prepare spherical ITO nanopowders by chemical methods (coprecipitation method, sol-gel method). When ITO powder is used as a transparent electrode material, an electrical path must be formed by inducing contact between particles to impart electrical properties. However, the use of spherical nano-powder requires a large amount of ITO powder to form an electrical passage through the entire specimen, and there is a limit in improving the characteristics because the contact surface between the powders interferes with the electrical conduction. In addition, it is difficult to apply to composite materials with metal or ceramic nano powder having excellent electrical conductivity.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 기존의 구형 분말에 비해 직경에 대한 길이비가 커 장애물 없이 전기를 이동시킬 수 있는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법을 제공하는데 그 목적이 있다. The present invention has been made to solve the problems of the prior art as described above, a method of producing indium tin oxide nanofibers using an electrospinning method that can move electricity without obstacles because the length ratio of the diameter is larger than the conventional spherical powder. The purpose is to provide.

본 발명의 다른 목적은 각 입자간 접촉이 유리하므로 기존의 구형 분말로 제조된 전극 소자의 전기전도도를 향상시킬 수 있는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법을 제공하는데 있다. Another object of the present invention is to provide a method for producing indium tin oxide nanofibers using an electrospinning method which can improve the electrical conductivity of an electrode device made of a conventional spherical powder because the contact between the particles is advantageous.

본 발명의 또 다른 목적은 금속 또는 세라믹 나노 입자와의 복합 및 하이브리드화가 용이해 더욱 더 우수한 특성과 다양한 산업 분야로의 응용 가능성을 가지고 있는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법을 제공하는 데 있다.It is still another object of the present invention to provide a method for preparing indium tin oxide nanofibers using electrospinning, which is easy to complex and hybridize with metal or ceramic nanoparticles, which has more excellent properties and applicability to various industrial fields. There is.

상기 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 전기방사법을 이용한 인듐 주석 산화물 나노 섬유의 제조 방법은 열분해성 고분자와, 인듐(In), 주석(Sn)의 염 또는 알콕사이드 계통을 용매에 용해하여 고분자 용액과 인듐 주석 산화물(ITO) 전구체 용액을 마련하는 제1단계와; 상기 제조된 고분자 용액과 인듐 주석 산화물(ITO) 전구체 용액을 혼합하고 혼합된 용액을 전기방사 장치로 전기방사를 실시하여 고분자/인듐 주석 산화물 복합섬유를 제조하는 제2단계와; 상기 제조된 섬유를 열처리하여 고분자를 열분해시키고 인듐 주석 산화물(ITO) 섬유를 제조하는 제3단계; 로 구성된다.Method for producing indium tin oxide nanofibers using the electrospinning method according to a preferred embodiment of the present invention for achieving the above object is a thermally decomposable polymer and a salt or alkoxide system of indium (In), tin (Sn) in a solvent A first step of preparing a polymer solution and an indium tin oxide (ITO) precursor solution; A second step of preparing a polymer / indium tin oxide composite fiber by mixing the prepared polymer solution with an indium tin oxide (ITO) precursor solution and electrospinning the mixed solution with an electrospinning apparatus; A third step of thermally decomposing the polymer by heat-treating the prepared fiber and producing indium tin oxide (ITO) fibers; It consists of.

상기 제1단계에서, 열분해성 고분자는 폴리비닐피롤리돈, 폴리에틸렌옥사이드, 폴리비닐아세테이트, 폴리비닐알코올, 폴리젖산, 폴리아미드, 폴리에스테르, 폴리프로필렌 중에서 어느 하나를 사용할 수 있으며, ITO 나노섬유를 제조하기 위한 전구체로는 질산염(nitrate), 염화물(chloride), 아세트산염(acetate)을 함유하는 인듐(In), 주석(Sn)의 염 계통 또는 알콕사이드 계통을 사용할 수 있다. 상기 고분자와 인듐 주석 산화물의 전구체를 용해하기 위한 용매로는 에탄올, 메탄올, 순수, 클로로포름, N,N-디메틸포름아미드 중에서 어느 하나 또는 복수개가 혼합된 용매를 사용할 수 있다. 본 발명에서는 고분자로는 폴리비닐피롤리돈(PVP), 인듐 주석 산화물 전구체로는 In(NO3)3, SnCl4를 사용하였고, 에탄올과 초순수를 이용하여 용해시켰다.In the first step, the thermally decomposable polymer may use any one of polyvinylpyrrolidone, polyethylene oxide, polyvinylacetate, polyvinyl alcohol, polylactic acid, polyamide, polyester, polypropylene, and ITO nanofibers. As a precursor for preparing, a salt system of indium (In), tin (Sn) containing a nitrate, chloride, acetate, or an alkoxide system may be used. As a solvent for dissolving the precursor of the polymer and the indium tin oxide, a solvent in which any one or a plurality of ethanol, methanol, pure water, chloroform, N, N-dimethylformamide are mixed may be used. In the present invention, polyvinylpyrrolidone (PVP) was used as the polymer, In (NO 3 ) 3 , SnCl 4 was used as the indium tin oxide precursor, and dissolved using ethanol and ultrapure water.

도 1은 본 발명에 따른 ITO 나노섬유를 제조하기 위한 전기방사 장치의 개략적인 구성을 도시하고 있다. Figure 1 shows a schematic configuration of an electrospinning apparatus for producing ITO nanofibers according to the present invention.

도 1에 도시된 바와 같이, 전기방사장치는 기본적으로 용액을 정량 공급하는 주사펌프(1)와, 방사에 필요한 전압을 공급하는 전원공급부(2)와, 상기 인가된 전압을 통해 용액을 방사하는 방사부(3)와, 상기 방사되어 형성된 섬유를 집적하는 적층부(4)로 구성되어 있다. 전기방사의 공정은 주사펌프에서 정량적으로 공급된 용액에 고전압을 인가하여 전압에 의해 하전된 입자간 척력이 용액의 표면장력을 넘어서면 방사부를 통해 나노섬유 형태로 방사가 된다. 방사되어 적층부로 이동하는 동안에 용매는 기화되고 건조된 나노섬유를 적층부에서 얻을 수 있다. 전기방사를 실시할 때 필요한 전압, 방사부와 적층부의 거리, 공급되는 용액의 양은 방사 용액의 특성에 따라 선택하고, 보통 3 kv 이상의 전압, 1 cm 이상의 방사부와 적층부의 거리, 0.01 ml/h 이상의 용액 공급량으로 전기방사를 실시하는 것이 바람직하다. As shown in Figure 1, the electrospinning device is basically a scanning pump (1) for quantitatively supplying a solution, a power supply unit (2) for supplying a voltage required for spinning, and spinning the solution through the applied voltage It consists of the spinning | spinning part 3 and the lamination | stacking part 4 which accumulates the said formed fiber spun. In the electrospinning process, a high voltage is applied to a solution quantitatively supplied from a scanning pump, and the interparticle repulsive force charged by the voltage is radiated in the form of nanofibers through the spinning unit when the surface tension of the solution exceeds the solution. While spinning and moving to the stack, the solvent can obtain vaporized and dried nanofibers at the stack. The voltage required for conducting electrospinning, the distance between the spinneret and the stacker, and the amount of solution supplied are selected according to the characteristics of the spinning solution. It is preferable to perform electrospinning with the above solution supply amount.

상기 제2단계에서와 같이, 전기방사에 의해 얻어진 폴리비닐피롤리돈(PVP)/인듐 주석 산화물(ITO) 나노복합섬유는 1,000 nm 이하의 직경 및 큰 가로세로비를 갖도록 한다. 본 발명에서는 13~15 kv의 전압, 7~14 cm의 방사부와 적층부의 거리, 0.3~1 ml/h의 용액 공급량으로 전기방사를 실시하였다.As in the second step, the polyvinylpyrrolidone (PVP) / indium tin oxide (ITO) nanocomposite fibers obtained by electrospinning have a diameter of 1,000 nm or less and a large aspect ratio. In the present invention, electrospinning was performed at a voltage of 13-15 kv, a distance of 7-14 cm from the radiating part and the laminating part, and a solution supply amount of 0.3-1 ml / h.

상기 제3단계에서, 열처리는 고분자의 분해온도이상으로 실시하는 것이 바람직하며, 온도를 높이는 속도는 섬유상의 분해를 억제할 수 있는 속도로 실시하는 것이 바람직하다. 본 발명에서는 폴리비닐피롤리돈의 열분해온도를 고려해 600℃ 이상에서 열처리를 실시하였다. In the third step, the heat treatment is preferably carried out above the decomposition temperature of the polymer, the speed of increasing the temperature is preferably carried out at a rate that can suppress the decomposition of the fibrous phase. In the present invention, considering the thermal decomposition temperature of polyvinylpyrrolidone, the heat treatment was carried out at 600 ℃ or more.

상기의 공정을 통해 제조된 인듐 주석 산화물 나노섬유는 직경이 1000 nm 이하이고 가로세로비가 매우 크다. 따라서 제조된 인듐 주석 산화물 나노섬유는 기존의 구형 분말에 비해 직경에 대한 길이비가 커 장애물 없이 전기를 이동시킬 수 있으며, 각 입자간 접촉이 유리하므로 기존의 구형 분말로 제조된 전극 소자의 전기전도도를 향상시킬 수 있을 뿐만 아니라 금속 또는 세라믹 나노입자와의 복합 및 하이브리드화가 용이해 더욱 더 우수한 특성과 다양한 산업 분야로의 응용 가능성을 가지고 있다. 또한 제조된 인듐 주석 산화물 나노섬유는 분쇄등의 2차 공정을 통해 단섬유 및 분말 형태로 사용될 수 있다.Indium tin oxide nanofibers prepared through the above process has a diameter of 1000 nm or less and a very high aspect ratio. Therefore, the prepared indium tin oxide nanofibers have a larger ratio of diameter to diameter than conventional spherical powders, and thus can move electricity without obstacles. Since the contact between particles is advantageous, the indium tin oxide nanofibers have improved electrical conductivity of electrode elements made of spherical powder. Not only can it be improved, but it is also easy to complex and hybridize with metal or ceramic nanoparticles, which has more excellent characteristics and application to various industrial fields. In addition, the prepared indium tin oxide nanofibers may be used in the form of short fibers and powders through a secondary process such as grinding.

이제, 본 발명의 바람직한 실시예가 상세하게 설명되어질 것이다.Now, preferred embodiments of the present invention will be described in detail.

<실시예 1><Example 1>

6wt%의 폴리비닐피롤리돈(PVP)과 In(NO3)3, SnCl4를 에탄올과 순수에 각각 용해하였다. 두 용액은 전기방사 후 제조된 폴리비닐피롤리돈(PVP)/인듐 주석 산화물(ITO) 나노복합섬유에서 폴리비닐피롤리돈(PVP)와 인듐 주석 산화물(ITO)의 부피비가 55:45가 되도록 혼합되었다. 제조된 혼합용액은 정밀주사펌프에 주입한 후 13 kv의 전압으로 전기방사를 실시하여 폴리비닐피롤리돈(PVP)/인듐 주석 산화물(ITO) 나노복합섬유를 제조하였고 이를 알루미늄 호일에 포집하였다.6 wt% of polyvinylpyrrolidone (PVP), In (NO 3 ) 3 , and SnCl 4 were dissolved in ethanol and pure water, respectively. Both solutions have a volume ratio of 55:45 polyvinylpyrrolidone (PVP) and indium tin oxide (ITO) in the polyvinylpyrrolidone (PVP) / indium tin oxide (ITO) nanocomposite fabric prepared after electrospinning. Mixed. The prepared mixed solution was injected into a precision injection pump and subjected to electrospinning at a voltage of 13 kv to prepare polyvinylpyrrolidone (PVP) / indium tin oxide (ITO) nanocomposite fibers, which were collected in aluminum foil.

도 2는 제조된 PVP/ITO 나노복합섬유를 전자현미경으로 관찰한 사진이다. Figure 2 is a photograph observing the prepared PVP / ITO nanocomposite fiber with an electron microscope.

섬유의 직경은 약 200~300 nm의 직경을 나타내고 있었다. 제조된 나노복합섬유의 폴리비닐피롤리돈(PVP)을 열분해하여 제거하기 위해 600℃와 1000℃에서 1시간 동안 열처리를 실시하였다. 600℃에서 열처리 후의 인듐 주석 산화물(ITO) 나노섬유의 전자현미경 사진은 도 3이고, 1000℃에서 열처리 후의 인듐 주석 산화물(ITO) 나노섬유의 전자현미경 사진은 도 4이다. 열처리 후의 섬유의 직경은 폴리비닐피롤리돈(PVP)의 열분해로 인해 약 100~200 nm로 감소되었다. 제조된 나노섬유의 결정구조는 X선 회절분석기(X-ray diffractometer)와 에너지 분산형 X선 측정기(Energy dispersive X-ray spectrometry)를 통해 분석하였고 그 결과를 도 5a, 도 5b에 각각 나타내었다.The diameter of the fiber was about 200-300 nm in diameter. In order to pyrolyze and remove polyvinylpyrrolidone (PVP) of the prepared nanocomposite fibers, heat treatment was performed at 600 ° C. and 1000 ° C. for 1 hour. An electron micrograph of the indium tin oxide (ITO) nanofibers after the heat treatment at 600 ℃ is Figure 3, an electron micrograph of the indium tin oxide (ITO) nanofibers after the heat treatment at 1000 ℃ is FIG. The diameter of the fiber after heat treatment was reduced to about 100-200 nm due to the thermal decomposition of polyvinylpyrrolidone (PVP). The crystal structure of the prepared nanofibers was analyzed by an X-ray diffractometer and an energy dispersive X-ray spectrometer, and the results are shown in FIGS. 5A and 5B, respectively.

<실시예 2><Example 2>

10wt%의 폴리비닐피롤리돈(PVP)과 In(NO3)3, SnCl4를 에탄올과 순수에 각각 용해하였다. 두 용액은 전기방사 후 제조된 폴리비닐피롤리돈(PVP)/인듐 주석 산화물(ITO) 나노복합섬유에서 폴리비닐피롤리돈(PVP)와 인듐 주석 산화물(ITO)의 부피비가 80:20이 되도록 혼합되었다. 제조된 혼합용액은 정밀주사펌프에 주입한 후 15 kv의 전압으로 전기방사를 실시하여 폴리비닐피롤리돈(PVP)/인듐 주석 산화물(ITO) 나노복합섬유를 제조하였고 이를 알루미늄 호일에 포집하였다. 제조된 나노복합섬유의 폴리비닐피롤리돈(PVP)을 열분해하여 제거하기 위해 600℃와 1000℃에서 1시간 동안 열처리를 실시하였다. 600℃와 1000℃에서 열처리 후의 인듐 주석 산화물(ITO) 나노섬유의 전자현미경 사진은 각각 도 6a와 도 6b이다. 직경은 약 300~1 μm 이었다.10 wt% of polyvinylpyrrolidone (PVP), In (NO 3 ) 3 , and SnCl 4 were dissolved in ethanol and pure water, respectively. The two solutions were prepared by electrospinning so that the volume ratio of polyvinylpyrrolidone (PVP) and indium tin oxide (ITO) was 80:20 in the polyvinylpyrrolidone (PVP) / indium tin oxide (ITO) nanocomposite fiber. Mixed. The prepared mixed solution was injected into a precision injection pump and electrospun at a voltage of 15 kv to prepare polyvinylpyrrolidone (PVP) / indium tin oxide (ITO) nanocomposite fibers, which were collected in aluminum foil. In order to pyrolyze and remove polyvinylpyrrolidone (PVP) of the prepared nanocomposite fibers, heat treatment was performed at 600 ° C. and 1000 ° C. for 1 hour. Electron micrographs of indium tin oxide (ITO) nanofibers after heat treatment at 600 ° C. and 1000 ° C. are FIGS. 6A and 6B, respectively. The diameter was about 300-1 μm.

이상 설명한 바와 같이, 본 발명은 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조 방법은 다음과 같은 효과를 나타낸다. As described above, the present invention has a method of producing the indium tin oxide nanofibers using the electrospinning method.

첫째, 본 발명은 기존의 구형 분말에 비해 직경에 대한 길이비가 커 장애물 없이 전기를 이동시킬 수 있다. First, the present invention has a larger ratio of diameter to diameter than conventional spherical powders, and can move electricity without obstacles.

둘째, 본 발명은 각 입자간 접촉이 유리하므로 기존의 구형 분말로 제조된 소자의 전기전도도를 향상시킬 수 있다. Second, the present invention can improve the electrical conductivity of the device made of a conventional spherical powder because the contact between the particles is advantageous.

셋째, 본 발명은 금속 또는 세라믹 나노입자와의 복합 및 하이브리드화가 용이해 더욱 더 우수한 특성과 다양한 산업 분야로의 응용 가능성을 가지고 있다. Third, the present invention is easy to complex and hybridize with metal or ceramic nanoparticles, which has more excellent properties and applicability to various industrial fields.

Claims (7)

열분해성 고분자와, 인듐(In), 주석(Sn)의 염 또는 알콕사이드 계통을 용매에 용해하여 고분자 용액과 인듐 주석 산화물(ITO) 전구체 용액을 마련하는 단계와,Preparing a polymer solution and an indium tin oxide (ITO) precursor solution by dissolving a thermally decomposable polymer, a salt of an indium (In), tin (Sn), or an alkoxide system in a solvent; 상기 전구체 용액과 열분해성 고분자 용액을 교반하여 전기방사 용액을 마련하는 단계와, Preparing an electrospinning solution by stirring the precursor solution and the thermally decomposable polymer solution; 상기 용액을 전기방사장치로 전기 방사하여 고분자/인듐 주석 산화물 복합섬유를 제조하는 단계와,Preparing a polymer / indium tin oxide composite fiber by electrospinning the solution with an electrospinning apparatus; 상기 제조된 섬유를 고온에서 열처리하여 고분자를 열분해한 후 인듐 주석 산화물(ITO) 섬유를 제조하는 단계를 포함하는 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노 섬유의 제조방법.Method for producing indium tin oxide nanofibers using the electrospinning method characterized in that it comprises the step of thermally decomposing the polymer by heat-treating the prepared fiber at high temperature. 제 1항에 있어서, The method of claim 1, 상기 인듐 주석 산화물(ITO) 전구체는 인듐(In), 주석(Sn)의 염 계통인 인듐 질산염(Indium nitrate), 인듐 염화물(Indium chloride), 인듐 아세트산염(Indium acetate), 주석 질산염(Tin nitrate), 주석 염화물(Tin chloride), 주석 아세트산염(Tin acetate)을 포함하는 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노 섬유의 제조방법.The indium tin oxide (ITO) precursor is a salt system of indium (In) and tin (Sn), indium nitrate, indium chloride, indium acetate, tin nitrate Method for producing indium tin oxide nanofibers using an electrospinning method, characterized in that it comprises, tin chloride, tin acetate. 제 1항에 있어서, The method of claim 1, 상기 열분해성 고분자가 폴리비닐피롤리돈, 폴리에틸렌옥사이드, 폴리비닐아세테이트, 폴리비닐알코올, 폴리젖산, 폴리아미드, 폴리에스테르, 폴리프로필렌 중에서 어느 하나인 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법.Indium tin oxide nanofibers using an electrospinning method characterized in that the thermally decomposable polymer is any one of polyvinylpyrrolidone, polyethylene oxide, polyvinylacetate, polyvinyl alcohol, polylactic acid, polyamide, polyester, and polypropylene. Manufacturing method. 제 1항에 있어서, The method of claim 1, 상기 용매는 순수, 에탄올, 메탄올, 클로로포름, N,N-디메틸포름아미드 중에서 어느 하나 또는 복수개가 혼합된 용매를 포함하는 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법.The solvent is a method for producing indium tin oxide nanofibers using an electrospinning method characterized in that it comprises a solvent in which any one or a plurality of pure water, ethanol, methanol, chloroform, N, N- dimethylformamide is mixed. 제 1항 또는 제 2항에 있어서, 상기 염은 인듐(In), 주석(Sn)의 수용성 염화물을 포함하는 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법.The method for producing indium tin oxide nanofibers according to claim 1 or 2, wherein the salt comprises water-soluble chlorides of indium (In) and tin (Sn). 제 1항에 있어서, The method of claim 1, 상기 인듐 주석 산화물 섬유의 직경이 10~1000 nm 이하인 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법.Method for producing indium tin oxide nanofibers using the electrospinning method characterized in that the diameter of the indium tin oxide fiber is 10 ~ 1000 nm or less. 제 1항에 있어서, The method of claim 1, 상기 열처리를 실시하여 제조된 인듐 주석 산화물 나노 섬유를 분쇄공정을 통해 인듐 주석 산화물 단섬유 또는 분말 형태로 사용될 수 있는 것을 특징으로 하는 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법.Method for producing indium tin oxide nanofibers using the electrospinning method characterized in that the indium tin oxide nanofibers prepared by performing the heat treatment can be used in the form of indium tin oxide short fibers or powder through a grinding process.
KR1020070001884A 2007-01-08 2007-01-08 Fabrication method of indium tin oxide nanofibers using electrospinning process KR100836627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070001884A KR100836627B1 (en) 2007-01-08 2007-01-08 Fabrication method of indium tin oxide nanofibers using electrospinning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070001884A KR100836627B1 (en) 2007-01-08 2007-01-08 Fabrication method of indium tin oxide nanofibers using electrospinning process

Publications (1)

Publication Number Publication Date
KR100836627B1 true KR100836627B1 (en) 2008-06-10

Family

ID=39770687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070001884A KR100836627B1 (en) 2007-01-08 2007-01-08 Fabrication method of indium tin oxide nanofibers using electrospinning process

Country Status (1)

Country Link
KR (1) KR100836627B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907486B1 (en) 2008-06-30 2009-07-13 한국과학기술연구원 Anode for secondary battery having negative active material with multi-component?metal oxide nanofiber web structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
WO2011068389A2 (en) * 2009-12-04 2011-06-09 주식회사 아모그린텍 Multicomponent nano composite oxide powder and a preparation method therefor, a fabrication method of an electrode using the same, a thin film battery having the electrode and a fabrication method for the battery
KR101079775B1 (en) 2010-04-01 2011-11-03 경희대학교 산학협력단 Preparation Method of Electroconductive Nanofiber through Electrospinning followed by Electroless Plating
KR101091639B1 (en) 2009-06-24 2011-12-08 인하대학교 산학협력단 Method of manufacturing core-shell nanofiber network structure, chemical sensor having core-shell nanofiber network structure and method of manufacturing the chemical sensor
KR101108980B1 (en) * 2008-12-26 2012-01-31 한국과학기술연구원 Micro-rod and material containing the same, and method for preparing micro-rod and nano-powder
KR101176863B1 (en) * 2010-04-08 2012-08-27 한양대학교 에리카산학협력단 Preparation method of metal oxide nanotube and metal oxide nanotube manufactured using the method
CN102851791A (en) * 2012-06-01 2013-01-02 长春理工大学 Preparation method of high-conductivity high-wide-spectrum-permeability MgZnAlO and nano-fiber of composite structure thereof
CN103074704A (en) * 2013-01-22 2013-05-01 陕西科技大学 Electrospinning preparation method of BiVO4 (bismuth vanadium oxide) fibers
KR101265093B1 (en) * 2008-12-26 2013-05-16 한국과학기술연구원 Nano powder, nano ink and micro rod, and the fabrication method thereof
CN103184585A (en) * 2011-12-27 2013-07-03 中原工学院 Method for preparing microporous ITO (indium tin oxide) fibres by applying spinning of three-screw mixing-extruding machine
CN103243296A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 ITO-indium halide bilayer conductive film and preparation method thereof
KR101294594B1 (en) 2011-09-20 2013-08-16 한국과학기술연구원 Nanofiber with magnetic property and its preparation method
KR101610782B1 (en) 2009-11-20 2016-04-08 한국전자통신연구원 Method for Fabricating Metal Wire Using Electrospinning Process
US9309405B2 (en) 2010-01-15 2016-04-12 Samsung Electronics Co., Ltd. Nanofiber-nanowire composite and fabrication method thereof
US20160289867A1 (en) * 2015-03-30 2016-10-06 Ut-Battelle, Llc Method of Manufacturing Tin-Doped Indium Oxide Nanofibers
CN110368807A (en) * 2019-07-05 2019-10-25 南京中微纳米功能材料研究院有限公司 A kind of preparation method of graphene-tin indium oxide nanofiber complex three-dimensional body block
CN111394832A (en) * 2020-04-22 2020-07-10 山东大学 Submicron tin dioxide fiber, preparation method thereof and application of carbon smoke catalysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137225A1 (en) 2002-06-21 2004-07-15 Balkus Kenneth J. Electrospun mesoporous molecular sieve fibers
KR20050037729A (en) * 2003-10-20 2005-04-25 에스케이씨 주식회사 Preparation of indium tin oxide nano-sized particle and conduction film used as display material
KR20050109994A (en) * 2003-03-14 2005-11-22 데구사 아게 Nanoscale indium tin mixed oxide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137225A1 (en) 2002-06-21 2004-07-15 Balkus Kenneth J. Electrospun mesoporous molecular sieve fibers
KR20050109994A (en) * 2003-03-14 2005-11-22 데구사 아게 Nanoscale indium tin mixed oxide powder
KR20050037729A (en) * 2003-10-20 2005-04-25 에스케이씨 주식회사 Preparation of indium tin oxide nano-sized particle and conduction film used as display material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907486B1 (en) 2008-06-30 2009-07-13 한국과학기술연구원 Anode for secondary battery having negative active material with multi-component?metal oxide nanofiber web structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
WO2010002084A1 (en) * 2008-06-30 2010-01-07 Korea Institute Of Science And Technology Anode for secondary battery having negative active material with multi-component metal oxide nanofiber web structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
KR101265093B1 (en) * 2008-12-26 2013-05-16 한국과학기술연구원 Nano powder, nano ink and micro rod, and the fabrication method thereof
KR101108980B1 (en) * 2008-12-26 2012-01-31 한국과학기술연구원 Micro-rod and material containing the same, and method for preparing micro-rod and nano-powder
KR101091639B1 (en) 2009-06-24 2011-12-08 인하대학교 산학협력단 Method of manufacturing core-shell nanofiber network structure, chemical sensor having core-shell nanofiber network structure and method of manufacturing the chemical sensor
KR101610782B1 (en) 2009-11-20 2016-04-08 한국전자통신연구원 Method for Fabricating Metal Wire Using Electrospinning Process
WO2011068389A3 (en) * 2009-12-04 2011-11-10 주식회사 아모그린텍 Multicomponent nano composite oxide powder and a preparation method therefor, a fabrication method of an electrode using the same, a thin film battery having the electrode and a fabrication method for the battery
WO2011068389A2 (en) * 2009-12-04 2011-06-09 주식회사 아모그린텍 Multicomponent nano composite oxide powder and a preparation method therefor, a fabrication method of an electrode using the same, a thin film battery having the electrode and a fabrication method for the battery
US9309405B2 (en) 2010-01-15 2016-04-12 Samsung Electronics Co., Ltd. Nanofiber-nanowire composite and fabrication method thereof
KR101079775B1 (en) 2010-04-01 2011-11-03 경희대학교 산학협력단 Preparation Method of Electroconductive Nanofiber through Electrospinning followed by Electroless Plating
KR101176863B1 (en) * 2010-04-08 2012-08-27 한양대학교 에리카산학협력단 Preparation method of metal oxide nanotube and metal oxide nanotube manufactured using the method
KR101294594B1 (en) 2011-09-20 2013-08-16 한국과학기술연구원 Nanofiber with magnetic property and its preparation method
CN103184585A (en) * 2011-12-27 2013-07-03 中原工学院 Method for preparing microporous ITO (indium tin oxide) fibres by applying spinning of three-screw mixing-extruding machine
CN103184585B (en) * 2011-12-27 2014-11-05 中原工学院 Method for preparing microporous ITO (indium tin oxide) fibres by applying spinning of three-screw mixing-extruding machine
CN103243296A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 ITO-indium halide bilayer conductive film and preparation method thereof
CN102851791A (en) * 2012-06-01 2013-01-02 长春理工大学 Preparation method of high-conductivity high-wide-spectrum-permeability MgZnAlO and nano-fiber of composite structure thereof
CN103074704B (en) * 2013-01-22 2015-01-28 陕西科技大学 Electrospinning preparation method of BiVO4 (bismuth vanadium oxide) fibers
CN103074704A (en) * 2013-01-22 2013-05-01 陕西科技大学 Electrospinning preparation method of BiVO4 (bismuth vanadium oxide) fibers
US20160289867A1 (en) * 2015-03-30 2016-10-06 Ut-Battelle, Llc Method of Manufacturing Tin-Doped Indium Oxide Nanofibers
US9670598B2 (en) * 2015-03-30 2017-06-06 Ut-Battelle, Llc Method of manufacturing tin-doped indium oxide nanofibers
CN110368807A (en) * 2019-07-05 2019-10-25 南京中微纳米功能材料研究院有限公司 A kind of preparation method of graphene-tin indium oxide nanofiber complex three-dimensional body block
CN111394832A (en) * 2020-04-22 2020-07-10 山东大学 Submicron tin dioxide fiber, preparation method thereof and application of carbon smoke catalysis

Similar Documents

Publication Publication Date Title
KR100836627B1 (en) Fabrication method of indium tin oxide nanofibers using electrospinning process
Bognitzki et al. Preparation of sub‐micrometer copper fibers via electrospinning
Wu et al. Carbon‐nanomaterial‐based flexible batteries for wearable electronics
Liu et al. High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors
Joshi et al. Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes
Chen et al. Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning
Mahapatra et al. Synthesis of ultra-fine α-Al2O3 fibers via electrospinning method
KR101536669B1 (en) The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
Han et al. Electrospinning of neat graphene nanofibers
CN104451925A (en) Water-soluble polymer/graphene composite fiber as well as preparation method and application thereof
KR101587532B1 (en) Carbon hybrid fiber including conductive complex, method for manufacturing the same, and functional textile assembly and semiconductor device using the same
CN105734724A (en) Novel method for preparing carbon nanofibers through electrospinning
Nataraj et al. Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers
Yu et al. Morphology control of PLA microfibers and spheres via melt electrospinning
Chen et al. Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials
Shin et al. Electronic textiles based on highly conducting poly (vinyl alcohol)/carbon nanotube/silver nanobelt hybrid fibers
Panda Preparation and characterization of Samaria nanofibers by electrospinning
Wahab et al. Post-electrospinning thermal treatments on poly (4-methyl-1-pentene) nanofiber membranes for improved mechanical properties
Li et al. Preparation of heterostructured Ag/BaTiO3 nanofibers via electrospinning
CN109369185A (en) A kind of preparation method of nitrogen-doped graphene complex carbon material
Garcia-Gomez et al. Enhancement of electrochemical properties on TiO 2/carbon nanofibers by electrospinning process
Qi et al. Plastic-swelling preparation of functional graphene aerogel fiber textiles
Guo et al. Fabrication of ZnO nanofibers by electrospinning and electrical properties of a single nanofiber
Yang et al. Enhanced breakdown strength of ferroelectric polymer films for capacitive energy storage by incorporating oriented fluorographene
Han et al. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150526

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 12