KR100795153B1 - Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts - Google Patents

Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts Download PDF

Info

Publication number
KR100795153B1
KR100795153B1 KR1020070065149A KR20070065149A KR100795153B1 KR 100795153 B1 KR100795153 B1 KR 100795153B1 KR 1020070065149 A KR1020070065149 A KR 1020070065149A KR 20070065149 A KR20070065149 A KR 20070065149A KR 100795153 B1 KR100795153 B1 KR 100795153B1
Authority
KR
South Korea
Prior art keywords
mixed wastewater
wastewater
condensate
potassium phosphate
nutrients
Prior art date
Application number
KR1020070065149A
Other languages
Korean (ko)
Inventor
고병석
고동균
고현백
고동환
송명모
양정남
박유서
Original Assignee
주식회사 세화엔스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세화엔스텍 filed Critical 주식회사 세화엔스텍
Priority to KR1020070065149A priority Critical patent/KR100795153B1/en
Application granted granted Critical
Publication of KR100795153B1 publication Critical patent/KR100795153B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

A method for treating unspecific mixed wastewater is provided to remove pollutants effectively, by inputting buffering type nutrient salts and inorganic nutrient salts into a condensed water obtained by evaporating and condensing the unspecific mixed wastewater. High-concentration mixed wastewater is chemically treated to separate suspended materials. The treated wastewater is treated by an evaporating and condensing unit to generate condensed water. Microorganisms are activated by mixing KH2PO4 of 3-20 mg, K2HPO4 of 5-30 mg, Na2HPO4.12H2O of 27-90 mg, MgSO4.7H2O of 20-70 mg, FeCl3.6H2O of 0.2-2 mg, based on 1L of the condensed water, into the condensed water. The condensed water is biologically treated by the activated microorganisms.

Description

무기영양염류를 이용한 불특정 혼합폐수 복합처리공정{Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts}Composite treatment process for unspecific mixed wastewater by using inorganic nutrient salts}

도 1은 본 발명에 따른 고농도 혼합폐수의 처리공정을 도시한 공정도1 is a process chart showing a treatment process of a high concentration mixed wastewater in accordance with the present invention.

본 발명은 완충성 영양염류와 무기영양염류(미네랄)를 미생물에 투여하여 고농도의 난분해성 혼합폐수를 효과적으로 처리하고자 하는 방법에 관한 것으로서, 더욱 상세하게는 고농도의 유기계 및 무기계, 중금속 등이 불특정하게 혼합된 난분해성 혼합폐수를 처리하는데 있어서, 부유물질이 제거된 혼합폐수를 증발응축기를 통해 증발농축하여 얻은 응축수에, 미생물의 활성에 도움을 주는 완충성 영양염류와 무기영양염류(미네랄)를 투입하여 오염물질을 효과적으로 제거하기 위해서 발명된 것이다. The present invention relates to a method for effectively treating a high concentration of hardly decomposable mixed wastewater by administering a buffered nutrient and an inorganic nutrient (mineral) to a microorganism, and more specifically, a high concentration of organic, inorganic, heavy metals, etc. In the treatment of mixed hardly decomposed mixed wastewater, buffered nutrients and inorganic nutrients (minerals) are added to the condensate obtained by evaporating the mixed wastewater from which suspended solids are removed through an evaporative condenser. In order to effectively remove contaminants.

현재, 국내에서는 고농도 난분해성 폐수로 분류할 수 있는 석유화학, 염색, 도금, 사진, 제약, 염료, 실험실폐수 등이 다량으로 배출되고 있다.At present, a large amount of petrochemical, dyeing, plating, photography, pharmaceutical, dye, laboratory wastewater, etc., which can be classified as high concentration hardly degradable wastewater, is being discharged.

특히 난분해성 폐수처리를 업으로 하고 있는 폐수 공동처리업체(염색, 도금, 피혁단지 등) 및 다종의 불특정폐수를 위탁받아 처리하고 있는 폐수처리업체가 약 200여 곳에 달하지만, 불특정 혼합폐수는 대부분 난분해성의 고농도 중금속뿐만 아니라 다종의 오염물질을 함유하고 있어 이의 적정한 처리에 상당한 애로가 있는 실정이다.In particular, there are about 200 wastewater joint treatment companies (dyeing, plating, leather complexes, etc.) and non-specified wastewater treatment companies that are entrusted with various kinds of unspecified wastewater treatment. In addition to the high concentration of hardly decomposable heavy metals as well as a variety of pollutants, there is a significant difficulty in its proper treatment.

상기와 같은 고농도 난분해성의 폐수를 처리하는 방법으로는 증발법을 이용하여 비등분리에 의한 오염물질을 제거하고 있는데, 증발법을 이용하여 얻은 응축수의 경우, 유입되는 혼합폐수의 종류에 따라 화학적 산소요구량(Chemical oxygen demand, COD)이 약 1,000 내지 3,000mg/l의 농도를 가지는 것으로 알려져 있다. 상기의 증발법을 이용하여 얻은 응축수를 처리함에 있어, 종래에는 생물학적 처리 전에 탄소계 흡착제를 투여하는 방법과 응축수에 담체를 충진하는 생물학적 처리방법 등이 있다.As a method of treating the high concentration hardly degradable wastewater, contaminants by boiling separation are removed by using an evaporation method. In the case of condensate obtained by using the evaporation method, chemical oxygen depends on the type of mixed wastewater introduced. Chemical oxygen demand (COD) is known to have a concentration of about 1,000 to 3,000 mg / l. In treating the condensed water obtained by the above-mentioned evaporation method, there are conventionally a method of administering a carbon-based adsorbent before biological treatment, and a biological treatment method in which a carrier is filled in the condensed water.

특히 이러한 혼합폐수의 응축수에 탄소계 흡착제 및 제오라이트를 투여한 후 생물학적 처리에 적용하는 공정 및 일반계 폐수처리 방법에 관련하여 현재까지 발표된 자료로 본사가 보유한 특허를 포함 특허 제0329597호, 특허 제0429680호, 특허 제0004083호, 특허 제0355196호 등 여러 편의 공지된 기술이 존재하고 있지만, 화학약품 처리량에 따라서 유기물계 오염부하량이 감소하며, 유기용제 및 악취제거율에 도움이 되지만 증발응축수에 무기영양염류(미네랄)가 없기에 미생물활성에 어려움이 많고 처리 비용면이나 소모성 활성탄의 응집, 침전으로 인해 제2차 폐기물이 발생한다는 측면에서 문제점이 제기되고 있다.In particular, the present invention has been published regarding the process of applying carbon-based adsorbents and zeolites to biological treatments and general wastewater treatment methods for condensate of mixed wastewater, including the patents owned by the company including Patent No. 0329597 and Patent No. 0429680. Although there are several known technologies such as Korean Patent No. 0,044083 and Patent No. 0355196, organic pollutant load decreases depending on the throughput of chemicals, and it is helpful for the removal rate of organic solvents and odors. The lack of (minerals) poses a problem in terms of difficulty in microbial activity and the generation of secondary wastes due to the treatment cost or the aggregation and sedimentation of consumable activated carbon.

한편, 상기 증발응축수에 담체를 충진하는 생물학적 처리방법만으로 처리시에는 시설 측면에서 큰 비용이 소요되며, 초기에는 잘 처리되는 듯하나 수 개월이 지나 고농도 혼합폐수의 유기물계 계면활성제와 혼용 및 용존된 용제폐수로 인해 담체기공 및 표면에 피막이 형성되며, 피막이 형성된 담체의 경우 비중차로 인한 유동성의 고착 및 침강이 유발되어 부패과정에 이르는 경우가 많고, 무기계 영양염류(미네랄) 없이는 미생물이 활성화되기가 어려워 미생물 성장이 더디거나 다른 미생물이 번식하여 문제가 되기도 한다. On the other hand, the biological treatment method of filling the evaporative condensate with the carrier only takes a large cost in terms of facilities, initially seemed to be well treated but mixed and dissolved with organic surfactants of high concentration mixed wastewater after several months. Due to the solvent waste water, a film is formed on the carrier pores and the surface, and in the case of the film-formed carrier, fluid fixation and sedimentation are caused by specific gravity difference, which often leads to a decay process, and microorganisms are difficult to activate without inorganic nutrients (minerals). This can be a problem because of the slow growth of microorganisms or the growth of other microorganisms.

따라서, 본 발명은 상기와 같은 여러 문제점을 해소하고자 하는 노력으로 고농도 혼합폐수의 응축수를 대상으로 미생물의 활성에 도움을 주는 완충성 영양염류와 무기영양염류(미네랄)를 투입함으로써 종래의 탄소계 흡착제를 이용하는 공정이 없이도 최종 처리수의 목표수질에 맞는 처리방법을 제공하는데 그 목적이 있다.Accordingly, the present invention is a conventional carbon-based adsorbent by injecting buffered nutrients and inorganic nutrients (mineral) to help the microorganisms activity in the condensate of high concentration mixed wastewater in an effort to solve the above problems. The purpose is to provide a treatment method suitable for the target water quality of the final treated water without using a process.

따라서, 본 발명은 종래의 탄소계 흡착제를 이용하는 공정의 설치에 따른 설치비 및 소모성 활성탄을 이용한 운영비 등의 비용을 절감하여 경제성 있는 폐수처리방법을 제공하는데 목적이 있다.Accordingly, an object of the present invention is to provide an economical wastewater treatment method by reducing costs such as installation costs and operating costs using consumable activated carbon according to the installation of a process using a conventional carbon-based adsorbent.

나아가, 소모성 활성탄의 응집 및 침전으로 발생하는 제2차 폐기물인 침전슬러지의 발생량을 줄여 환경친화적인 폐수처리방법을 제공하는데 그 목적이 있다. Furthermore, it is an object of the present invention to provide an environmentally friendly wastewater treatment method by reducing the amount of sediment sludge, which is a secondary waste generated by flocculation and precipitation of consumable activated carbon.

상기 목적을 달성하기 위하여 본 발명은, 고농도의 불특정 혼합폐수를 처리함에 있어서, In order to achieve the above object, the present invention, in treating a high concentration of unspecified mixed wastewater,

유입되는 고농도의 혼합폐수를 화학적 처리로 부유물질(SS)을 분리하는 1단계;및 상기 1단계를 거친 고농도의 혼합폐수를 증발농축기를 통해 증발되는 증기를 응축하는 2단계;와 상기 2단계를 통과한 응축수에 응축수 1리터(liter)당 미생물활성에 도움을 주는 완충성 영양염류 중 제일인산칼륨(KH2PO4) 3 내지 20mg, 제이인산칼륨(K2HPO4) 5 내지 30mg, 제이인산나트륨(12수염)(Na2HPO4·12H2O) 27 내지 90mg과 무기영양염류 중 염화암모늄(NH4Cl) 1 내지 6mg, 황산마그네슘 칠수화물(MgSO4·7H2O) 20 내지 70mg, 염화칼슘 이수화물(CaCl2·2H2O) 18 내지 60mg, 염화제이철 육수화물(FeCl3·6H2O) 0.2 내지 2mg를 첨가하여 미생물을 활성화하는 3단계;와 상기 3단계의 응축수를 활성화된 미생물에 의해 생물학적으로 처리하는 4단계가 순차적으로 마련된다.1 step of separating the suspended solids (SS) by chemical treatment of the high concentration of mixed wastewater introduced; and the second step of condensing the vapor evaporated through the evaporation condenser of the high concentration of mixed wastewater passed through the first step; and the second step Potassium phosphate (KH 2 PO 4 ) 3 to 20 mg, potassium diphosphate (K 2 HPO 4 ) 5 to 30 mg, diphosphate in buffered nutrients to help microbial activity per liter of condensate 27 to 90 mg of sodium (12 hydrate) (Na 2 HPO 4 · 12H 2 O) and 1 to 6 mg of ammonium chloride (NH 4 Cl) in inorganic nutrients, 20 to 70 mg of magnesium sulfate heptahydrate (MgSO 4 · 7H 2 O), calcium chloride dihydrate (CaCl 2 · 2H 2 O) 18 to 60mg, ferric chloride hexahydrate (FeCl 3 · 6H 2 O) 0.2 to 2mg is added to activate the microorganisms; and the step 3 condensed water by the activated microorganisms Four steps of processing are provided sequentially.

따라서, 종래의 담체충진 및 탄소계 흡착제 투여 공정이 없이도 최종 처리수의 목표수질을 얻을 수 있으며, 탄소계 흡착제 투여 공정이 축소되어 공정의 설치에 소요되는 설치비 및 운전비를 줄일 수 있음은 물론 흡착공정에 투여되는 소모성 활성탄이 불필요하게 됨으로써 경제적인 효과가 지대하다.Therefore, the target water quality of the final treated water can be obtained without the conventional carrier filling and carbon-based adsorbent administration process, and the carbon-based adsorbent administration process can be reduced to reduce installation and operation costs required for the installation of the process as well as the adsorption process. The economical effect is enormous, since the consumable activated carbon to be administered is unnecessary.

또한, 소모성 활성탄에 의해 발생하는 침전슬러지로 인한 폐기물의 발생량을 줄일 수 있어 환경친화적인 폐수처리방법을 제공하는 등의 매우 유용한 발명이다.In addition, it is a very useful invention, such as to provide an environmentally friendly wastewater treatment method can reduce the amount of waste due to sediment sludge generated by the consumable activated carbon.

이하, 본 발명의 첨부된 도면을 통하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings of the present invention.

도 1은 본 발명에 따른 고농도 혼합폐수의 처리 공정도이다. 1 is a process chart of the high concentration mixed wastewater in accordance with the present invention.

도 1에서 도시한 바와 같이, 본 발명을 적용하는 대상 폐수는 다양한 폐수 배출 업소의 고농도 난분해성 폐수로서 분류할 수 있는 석유화학, 염색, 도금, 사진, 제약, 염료, 실험실 폐수로서, 무기계염과 중금속 및 부유물질(SS)를 포함하고 있으며 화학적 산소요구량(COD) 기준 20,000 내지 100,000ppm의 오염물질이다.As shown in FIG. 1, the target wastewater to which the present invention is applied is petrochemical, dyeing, plating, photographing, pharmaceutical, dye, laboratory wastewater, which can be classified as a high concentration hardly degradable wastewater of various wastewater outlets. Contains heavy metals and suspended solids (SS) and is a contaminant of 20,000 to 100,000 ppm by chemical oxygen demand (COD).

고농도의 혼합폐수가 유입되면 1단계의 화학적 처리공정에서 대부분의 부유물질(SS)은 분리되고 무기계염 및 중금속은 분리되지 않는다. 이때 화학적 산소요구량(COD)은 20,000ppm 정도이다. When a high concentration of mixed wastewater is introduced, most of the suspended solids (SS) are separated in the chemical treatment process of the first stage, and inorganic salts and heavy metals are not separated. The chemical oxygen demand (COD) is about 20,000ppm.

1단계를 통과한 혼합폐수는 증발농축기를 통해 증발되어 다시 응축되는 2단 계 과정을 거치게 된다. 상기 2단계 공정에서는 부유물질(SS)과 무기계염 및 중금속이 대부분 제거되어, 2단계 공정을 지난 처리수의 화학적 산소요구량(COD)은 1,000 내지 3,000ppm 정도이다. 종래에는 상기 2단계 공정을 통과한 후에 탄소계흡착제 또는 제올라이트를 투여하여 용제 및 악취성분을 흡착 제거하는 공정을 거치게 되나 본 발명은 상기 탄소계흡착제를 투여하는 공정 대신에 미생물의 활성화를 위하여 미생물의 활성화에 도움을 주는 완충성 영양염류와 무기영양염류(미네랄)를 제공하는 3단계 공정을 거치게 된다.The mixed wastewater passed through the first stage is subjected to a two-stage process of evaporation and condensation through an evaporator. In the two-step process, suspended solids (SS), inorganic salts and heavy metals are mostly removed, and the chemical oxygen demand (COD) of the treated water after the two-step process is about 1,000 to 3,000 ppm. Conventionally, after passing the two-stage process, the carbon-based adsorbent or zeolite is administered to remove the solvent and the malodorous component. However, the present invention provides a microorganism for the activation of microorganisms instead of the step of administering the carbon-based adsorbent. A three-step process is provided to provide buffered nutrients and inorganic nutrients (minerals) to aid activation.

일반적으로, 미생물(균류, 원생동물, 고등동물)의 생체를 구성하는 주요 성분은 수분 및 유기물과 무기물로서 이러한 생체 구성성분을 유지하기 위해 폐수 속의 미생물은 오염된 폐수를 분해함으로써, 분해된 폐수 속의 수분 및 유기물과 무기물 특히 무기물 중 완충성 영양염류와 무기영양염류 (미네랄)등의 생체구성요소를 공급받게 되는 것이다. 그러나, 이러한 생체구성 성분이 부족할 경우 미생물 성장이 저해되거나, 또는 활성이 이루어지지 않아, 미생물의 폐수 분해가 원활하지 않으므로, 이러한 생체구성 성분 중에 미생물의 활성에 도움을 주는 완충성 영양염류와 무기영양염류(미네랄)를 보충함으로써 안정적인 생물학적인 폐수처리를 할 수 있다는 데에 착안하여 제일인산칼륨(Potassium Phosphate, Monobasic, KH2PO4) 제이인산칼륨(Potassium Phosphate, Dibasic, K2HPO4), 제이인산나트륨(12수염)(Sodium Phosphate, Dibasic, Dodecahydrate, Na2HPO4·12H2O) 염화암모늄(Ammonium Chloride, NH4Cl), 황산마그네슘 칠수화물(Magnesium Sulfate Heptahydrate, MgSO4 ·7H2O), 염화칼슘 이수화물(Calcium Chloride Dihydrate, CaCl2·2H2O), 염화제이철 육수화물(Iron(Ⅲ) Chloride Hexahydrate, FeCl3·6H2O)등을 혼합하여 2단계를 통과한 응축수에 적절히 투여 완충성영양염류 및 무기영양염류 미네랄 각각의 구성원소가 100ppm이하가 되도록 농도를 조절하였다. In general, the major constituents of microorganisms (fungi, protozoa, higher animals) are the water, organics and minerals. In order to maintain these biological constituents, microorganisms in wastewater decompose contaminated wastewater, It is supplied with biological components such as buffered nutrients and inorganic nutrients (minerals) among water, organics and inorganics, especially minerals. However, the lack of such biological components inhibits the growth of microorganisms or inactivates the microorganisms, so that the wastewater decomposition of the microorganisms is not smooth, and thus, the buffer nutrients and inorganic nutrients that help the microorganisms are active in these bioconstituents. Potassium Phosphate (Potassium Phosphate, Monobasic, KH 2 PO 4 ) Potassium Phosphate (Dibasic, K 2 HPO 4 ), J. Sodium Phosphate, Dibasic, Dodecahydrate, Na 2 HPO 4 · 12H 2 O) Ammonium Chloride, NH 4 Cl, Magnesium Sulfate Heptahydrate, MgSO 4 Dihydrate (Calcium Chloride Dihydrate, CaCl 2 · 2H 2 O), Ferric Chloride Hexate (Iron (III) Chloride Hexahydrate, FeCl 3 · 6H 2 O), etc. The concentration of each of the buffer nutrients and the inorganic nutrient salts was adjusted to 100 ppm or less.

상기 3단계를 통과한 응축수는 활성화된 미생물에 의해 생물학적으로 처리되는 4단계를 거쳐 배출하게 된다. 이때 배출되는 처리수의 화학적 산소요구량(COD)은 10 내지 30ppm 정도로서 목표수질을 얻을 수 있었다.The condensate that has passed through the three steps is discharged through four steps that are biologically treated by the activated microorganism. At this time, the chemical oxygen demand (COD) of the treated water discharged was about 10 to 30 ppm, thereby obtaining a target water quality.

이하, 실시예를 통하여 본 발명을 구체적으로 예시한다.Hereinafter, the present invention is specifically illustrated by way of examples.

(실시예 1)(Example 1)

고농도 혼합폐수의 응축수 1리터(Liter)에 완충성 영양염류와 무기영양염류미네랄인 제일인산칼륨(Potassium Phosphate, Monobasic, KH2PO4) 4350mg, 제이인산칼륨(Potassium Phosphate, Dibasic, Anhydrous, K2HPO4) 7400mg, 제이인산나트륨(12수염)(Sodium Phosphate, Dibasic, Dodecahydrate, Na2HPO4·12H2O) 27,500mg, 염화암모늄(Ammonium Chloride, NH4Cl) 1700mg, 황산마그네슘 칠수화물(Magnesium Sulfate Heptahydrate, MgSO4·7H2O) 20,800mg, 염화칼슘 이수화물(Calcium Chloride Dihydrate, CaCl2·2H2O) 18,700mg, 염화제이철 육수화물(Iron(Ⅲ) Chloride Hexahydrate, FeCl3·6H2O) 250mg을 투입하여 조제한다. 생물학적 처리 시, 조제한 용액을 PH가 중성(pH = 6.8∼7.2)으로 조절한 후 응축수 1리터당 1㎖를 주입하여 폭기조 운전에 생물학적 산소요구량(Biological Oxygen Demand, BOD)부하 0.15 내지 0.4(kg BOD/m3.day, 용존산소량(Dissolved Oxygen, DO) 1 내지 4ppm, 활성슬러지농도(Mixed Liquor Suspended Solid, MLSS) 5,200ppm 내지 7,000ppm의 조건하에서 미생물의 활성화 및 화학적 산소요구량(COD)를 측정하였으며 그 결과는 아래 표 1에서와 같다. Potassium Phosphate (Potassium Phosphate, Monobasic, KH 2 PO 4 ), a buffering nutrient and an inorganic nutrient mineral, in 1 liter of condensate from a high concentration of mixed wastewater, Potassium Phosphate, Dibasic, Anhydrous, K 2 HPO 4 ) 7400mg, Sodium Phosphate, Dibasic, Dodecahydrate, Na 2 HPO 4 12H 2 O) 27,500mg, Ammonium Chloride, NH 4 Cl 1700mg, Magnesium Sulfate Heptahydrate 20,800 mg of Sulfate Heptahydrate, MgSO4 · 7H2O, 18,700 mg of calcium chloride dihydrate (CaCl 2 · 2H 2 O), 250 mg of ferric chloride hexahydrate (Iron (III) Chloride Hexahydrate, FeCl 3 · 6H 2 O) To prepare. During biological treatment, the pH of the prepared solution is adjusted to neutral pH (pH = 6.8 to 7.2), and then 1 ml per liter of condensate is injected, so that the biological oxygen demand (BOD) load is 0.15 to 0.4 (kg BOD / The activation and chemical oxygen demand (COD) of microorganisms were measured under conditions of m 3 .day, Dissolved Oxygen (DO) 1 to 4 ppm, and Mixed Liquor Suspended Solid (MLSS) 5,200 ppm to 7,000 ppm. The results are shown in Table 1 below.

표1. 본 발명에 따른 폐수처리방법으로 실험한 화학적 산소요구량의 변화Table 1. Changes in Chemical Oxygen Requirements Experimented with Wastewater Treatment Methods According to the Present Invention

처 리 공 정Processing Process COD(ppm)COD (ppm) 제거율Removal rate 비 고Remarks 고농도의 유입 혼합폐수High concentration influent mixed wastewater 20,000 ∼ 100,00020,000-100,000 1단계 화학적 처리 후After 1 step chemical treatment 5,000 ∼ 20,0005,000-20,000 ∼ 80%To 80% ss제거ss removal 2단계 증발·농축 후 응축수의 농도Condensate Concentration after Two Stage Evaporation and Concentration 1,000 ∼ 3,0001,000-3,000 ∼ 98%-98% 중금속제거Heavy metal removal 3단계 완충성영양염류와 무기영양염류 투입Input of three-stage buffered nutrients and inorganic nutrients -- -- 미네랄투입Mineral input 4단계 생물학적 처리 후After 4 stage biological treatment 10 ∼3010-30 99% 이상More than 99% 방류Discharge

상기의 도표 1에서와 같이 고농도의 혼합폐수가 유입되어 탄소계 흡착제 공정을 거치지 않고, 미생물의 활성에 도움을 주는 완충성 영양염류와 무기영양염류(미네랄)의 투입 공정을 거쳐 4단계의 생물학적 처리공정을 통과한 배출수는 COD 제거율에 있어 99% 이상을 보였으며 특히, 증발·농축 후의 응축수의 농도가 COD 3,000의 고농도 폐수도 미생물 활성화에 의한 안정적인 생물학적 처리 결과를 보여주고 있다. 특히, 탄소계 흡착제 투여 공정에 비해 운전비 부담이 약 90%이상 절감됨으로써, 비용을 대폭 절감할 수 있는 획기적인 발명인 것이다. 특히, 완충성 영 양염류 3종인 제일인산칼륨(Potassium Phosphate, Monobasic, KH2PO4), 제이인산칼륨(Potassium Phosphate, Dibasic, Anhydrous, K2HPO4), 제이인산나트륨(12수염)(Sodium Phosphate, Dibasic, Dodecahydrate, Na2HPO4·12H2O)은 PH변화에 민감하지 않고 안정적이므로 미생물의 활성화에 큰 영향을 주어 활성슬러지 농도(MLSS)를 증대시키는 요인으로 작용하였다. 그리고 무기영양염류 중 미생물의 대사 및 생육촉진물질인 염화암모늄(Ammonium Chloride, NH4Cl), 황산마그네슘 칠수화물(Magnesium Sulfate Heptahydrate, MgSO4·7H2O), 염화칼슘 이수화물(Calcium Chloride Dihydrate, CaCl2·2H2O), 염화제이철 육수화물(Iron(Ⅲ) Chloride Hexahydrate, FeCl3·6H2O) 4종을 추가로 투입하여 생물학적인 처리를 하는데 있어서 이상 발생 시 침강성 불량으로 인한 벌킹현상을 야기할 수 있는데 본 미네랄을 투입함으로써 해결할 수 있음을 확인하였다.As shown in the above Table 1, high concentration of mixed wastewater is introduced and does not go through the carbon-based adsorbent process, and the biological treatment of four stages through the input process of buffered nutrients and inorganic nutrients (mineral) to help the microorganism activity. The discharged water showed more than 99% of COD removal rate. Especially, the concentration of condensate after evaporation and concentration shows stable biological treatment result by COD 3,000 high concentration wastewater. In particular, the operating cost burden is reduced by about 90% or more compared to the carbon-based adsorbent administration process, it is a revolutionary invention that can significantly reduce the cost. In particular, three buffered nutrients, potassium phosphate (Potassium Phosphate, Monobasic, KH 2 PO 4 ), potassium phosphate (Potassium Phosphate, Dibasic, Anhydrous, K 2 HPO 4 ), dibasic sodium phosphate (12) Phosphate, Dibasic, Dodecahydrate, Na 2 HPO 4 · 12H 2 O) are not sensitive to PH change and stable, so it has a great effect on the activation of microorganisms and acts as a factor to increase the activated sludge concentration (MLSS). Ammonium Chloride (NH 4 Cl), Magnesium Sulfate Heptahydrate (MgSO4 · 7H2O), Calcium Chloride Dihydrate (CaCl 2 · 2H) 2 O), ferric chloride hexahydrate (Iron (ⅲ) chloride hexahydrate, FeCl 3 · 6H 2 O) to cause the bulking phenomenon caused by the precipitated defective when an error occurs according to the biological process by introducing an additional four kinds there It was confirmed that the solution can be solved by adding this mineral.

(실시예 2)(Example 2)

상기 실시예 1의 2단계 공정을 거친 응축수 각각 36ℓ를 6개 준비하고 폭기조식의 Pilot 장치를 설치하여 연속식으로 미생물에 의해 폐수 처리를 할 수 있도록 준비하여, 완충성 영양염류와 무기영양염류(미네랄)의 투여방법에 따른 폐수의 처리 및 미생물 담체충진에 의한 폐수 처리 실험을 실시하였다. 실험조건으로 4주 간의 식종(Seeding)기간에는 활성오니(MLSS) 3,400ppm, 화학적산소요구량(COD) 1,000∼1,200ppm, T-N 30ppm을 각각 상기 두 방법 모두에 적용하였으며, 미네랄(P, Ca, K, Mg, Na, Fe, S, Cl)은 완충성영양염류와 무기영양염류의 투여방법에만 적용하였다. 그리고 식종(Seeding) 후 5주째부터는 고농도의 화학적산소요구량(COD)을 2,850∼3,000ppm, T-N 60∼90ppm, 생물학적산소요구량(BOD) 부하 0.15∼0.4(kg BOD/m3.day)를 상기 두 방법 모두에 적용하였고, 미네랄(P, Ca, K, Mg, Na, Fe, S, Cl)은 완충성영양염류와 무기영양염류의 투여방법에만 적용하였으며, 3개월간 지속적으로 실험하였다. 그 결과는 아래 표2와 같다.Sixty six liters of condensate water, which had been subjected to the two-step process of Example 1, were prepared, and aeration tank pilot device was installed to prepare wastewater treatment by microorganisms continuously. Wastewater treatment experiment by the method of administration of the mineral) and the microbial carrier filling was carried out. During 4 weeks of seeding period, 3,400ppm of activated sludge (MLSS), 1,000 ~ 1,200ppm of chemical oxygen demand (COD), and 30ppm of TN were applied to both methods, and minerals (P, Ca, K) were applied. , Mg, Na, Fe, S, Cl) was applied only to the method of administering buffered and inorganic nutrients. From 5 weeks after seeding, high concentrations of chemical oxygen demand (COD) are 2,850 to 3,000 ppm, TN is 60 to 90 ppm, and biological oxygen demand (BOD) load is 0.15 to 0.4 (kg BOD / m 3 .day). The minerals (P, Ca, K, Mg, Na, Fe, S, Cl) were applied only to the buffered and inorganic nutrients and were continuously tested for 3 months. The results are shown in Table 2 below.

표2. 본 발명에 따른 폐수처리방법과 담체충진 방법을 이용한 폐수처리 후의 화학적 산소 요구량(COD)의 변화 Table 2. Changes in Chemical Oxygen Demand (COD) after Wastewater Treatment Using Wastewater Treatment and Carrier Filling Methods

구 분 division 처 리 방 법Treatment method 미네랄 투여방법How to administer minerals 담체충진방법Carrier filling method 2단계 증발·농축 후 응축수의 농도Condensate Concentration after Two Stage Evaporation and Concentration 1,000 ∼ 3,0001,000-3,000 1,000 ∼ 3,0001,000-3,000 3단계 처리 방법Three steps -- -- 4단계 생물학적 처리 후의 농도Concentration after 4 stage biological treatment 30 이하30 or less 80 이하80 or less

상기의 도표 2에서와 같이 4단계 공정을 통해 배출되는 처리수의 COD농도를 비교해 보면, 담체를 충진한 방법으로 폐수를 처리하였을 경우에 비해 완충성 영양염류와 무기영양염류(미네랄)를 투입한 경우가 약 2 내지 3배의 처리효율이 높음을 알수있다. 더욱이, 상기한 바와 같이 담체를 충진한 방식은 고가의 초기 시설투자 비와 지속적으로 안정적인 처리 효율을 얻기 어려움을 고려해 볼 때 본 발명의 효과는 매우 크다 할 것이다.Comparing the COD concentration of the treated water discharged through the four-step process as shown in Table 2 above, buffer nutrients and inorganic nutrients (minerals) were added compared to the case where the waste water was treated by the carrier-filled method. In this case, it can be seen that the processing efficiency is about 2 to 3 times higher. In addition, as described above, the carrier-filled method will be very effective in view of the difficulty of obtaining expensive initial facility investment costs and continuous stable treatment efficiency.

상기와 같은 본 발명의 구성에 의하면, 종래의 담체충진 및 탄소계 흡착제 투여 공정이 없이도 최종 처리수의 목표수질을 얻을 수 있으며, 탄소계 흡착제 투여 공정이 축소되어 공정의 설치에 소요되는 설치비 및 운전비를 줄일 수 있음은 물론 흡착공정에 투여되는 소모성 활성탄이 불필요하게 됨으로써 경제적인 효과가 지대하다.According to the configuration of the present invention as described above, the target water quality of the final treated water can be obtained without the conventional carrier filling and carbon-based adsorbent administration process, and the installation and operation costs required for the installation of the process by reducing the carbon-based adsorbent administration process In addition, the economical effect is enormous since the depleted activated carbon administered in the adsorption process is unnecessary.

더불어, 소모성 활성탄에 의해 발생하는 침전슬러지로 인한 폐기물의 발생량을 줄일 수 있어 환경친화적인 폐수처리방법을 제공하는 등의 매우 유용한 발명이다.In addition, it is possible to reduce the amount of waste due to the settling sludge produced by the consumable activated carbon is very useful invention, such as providing an environmentally friendly wastewater treatment method.

Claims (2)

고농도의 불특정 혼합폐수를 처리함에 있어서, In treating high concentrations of unspecified mixed wastewater, 유입되는 고농도의 혼합폐수를 화학적 처리로 부유물질(SS)을 분리하는 1단계;1 step of separating the suspended solids (SS) by chemical treatment of the high concentration of mixed wastewater introduced; 상기 1단계를 통과한 고농도의 혼합폐수를 증발농축기를 통해 증발되는 증기를 응축하는 2단계;및Condensing the vapor evaporated through the evaporator to the high concentration of mixed wastewater passing through the first step; and 상기 2단계를 통과한 응축수에 응축수 1리터(liter)당 미생물활성에 도움을 주는 완충성 영양염류 중 제일인산칼륨(Potassium Phosphate, Monobasic, KH2PO4) 3 내지 20mg, 제이인산칼륨(Potassium Phosphate, Dibasic, Anhydrous, K2HPO4) 5 내지 30mg, 제이인산나트륨(12수염)(Sodium Phosphate, Dibasic, Dodecahydrate, Na2HPO4·12H2O) 27 내지 90mg과 무기영양염류 중 염화암모늄(Ammonium Chloride, NH4Cl) 1 내지 6mg, 황산마그네슘 칠수화물(Magnesium Sulfate Heptahydrate, MgSO4·7H2O) 20 내지 70mg, 염화칼슘 이수화물(Calcium Chloride Dihydrate, CaCl2·2H2O) 18 내지 60mg, 염화제이철 육수화물(Iron(Ⅲ) Chloride Hexahydrate, FeCl3·6H2O) 0.2 내지 2mg를 첨가하여 미생물을 활성화하는 3단계;와Potassium Phosphate (Potassium Phosphate, Monobasic, KH 2 PO 4 ) 3 to 20 mg of potassium phosphate (Potassium Phosphate) among buffering nutrients that help microbial activity per 1 liter (liter) of condensate in the condensate that has passed step 2 , Dibasic, Anhydrous, K 2 HPO 4 ) 5 to 30 mg, sodium phosphate (12 hydrate) (Sodium Phosphate, Dibasic, Dodecahydrate, Na 2 HPO 4 12H 2 O) 27 to 90 mg and ammonium chloride in inorganic nutrients Chloride, NH 4 Cl) 1 to 6 mg, Magnesium Sulfate Heptahydrate (MgSO 4 · 7H 2 O) 20 to 70 mg, Calcium Chloride Dihydrate (CaCl 2 2H 2 O) 18 to 60 mg, Ferric Chloride Hexate (Iron (III) Chloride Hexahydrate, FeCl 3 · 6H 2 O) 3 to add 0.2 to 2 mg to activate the microorganisms; And 상기 3단계의 응축수를 활성화된 미생물에 의해 생물학적으로 처리하는 4단계가 순차적으로 마련되는 것을 특징으로 하는 무기영양염류를 이용한 불특정 혼합폐수 복합처리공정Unspecified mixed wastewater complex treatment process using inorganic nutrients, characterized in that the four stages of biological treatment of the condensate of the three stages by the activated microorganism sequentially 삭제delete
KR1020070065149A 2007-06-29 2007-06-29 Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts KR100795153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070065149A KR100795153B1 (en) 2007-06-29 2007-06-29 Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070065149A KR100795153B1 (en) 2007-06-29 2007-06-29 Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts

Publications (1)

Publication Number Publication Date
KR100795153B1 true KR100795153B1 (en) 2008-01-16

Family

ID=39218236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070065149A KR100795153B1 (en) 2007-06-29 2007-06-29 Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts

Country Status (1)

Country Link
KR (1) KR100795153B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210048932A (en) * 2019-10-24 2021-05-04 에코매니지먼트코리아홀딩스 주식회사 Hybrid waste-water disposal system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640769A (en) 1985-08-29 1987-02-03 Wemhoff Mark F Apparatus for photographic film processor pollution control
JPS63107795A (en) 1986-04-04 1988-05-12 Konica Corp Treatment of waste liquid and its apparatus
KR19990078788A (en) * 1999-08-07 1999-11-05 고병석, 고병산 Composite disposittion method for waste water of high density
KR20000022548A (en) * 1996-06-27 2000-04-25 로버트 알. 홀콤브 Water treatment device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640769A (en) 1985-08-29 1987-02-03 Wemhoff Mark F Apparatus for photographic film processor pollution control
JPS63107795A (en) 1986-04-04 1988-05-12 Konica Corp Treatment of waste liquid and its apparatus
KR20000022548A (en) * 1996-06-27 2000-04-25 로버트 알. 홀콤브 Water treatment device and method
KR19990078788A (en) * 1999-08-07 1999-11-05 고병석, 고병산 Composite disposittion method for waste water of high density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210048932A (en) * 2019-10-24 2021-05-04 에코매니지먼트코리아홀딩스 주식회사 Hybrid waste-water disposal system
KR102266988B1 (en) 2019-10-24 2021-06-18 에코매니지먼트코리아홀딩스 주식회사 Hybrid waste-water disposal system

Similar Documents

Publication Publication Date Title
Chernicharo Post-treatment options for the anaerobic treatment of domestic wastewater
CN1257117C (en) Permangnate preoxidation and bioactive carbon combined use to remove contamination technique
CN103626276A (en) Compound phosphorus removing agent for phosphorus wastewater and application method of compound phosphorus removing agent
Kabdaşlı et al. Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate
Sharma et al. Treatment efficiency of vertical flow constructed wetland systems operated under different recirculation rates
Sun et al. Treatment of agricultural wastewater in a pilot-scale tidal flow reed bed system
CN113772882A (en) Process wastewater treatment method for producing phase transfer catalyst
Lim et al. Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater
CN113443794B (en) Landfill leachate treatment system
KR100795153B1 (en) Composite treatment process for unspecific mixed wastewater by using inorganicnutrient salts
CN103241902B (en) A kind of biological treatment of waste water and biological treatment system using the technique
Achak et al. Performance of olive mill wastewater treatment using hybrid system combining sand filtration and vertical flow constructed wetlands
Lytle et al. The removal of ammonia, arsenic, iron and manganese by biological treatment from a small Iowa drinking water system
Kochany et al. Application of Fenton's reagent and activated carbon for removal of nitrification inhibitors
Lember et al. Removal of heavy metals and total organic carbon from wastewater using powdered activated carbon
CA2796968C (en) Improvement of activated sludge process in wastewater treatment
Bodzek et al. Treatment of landfill leachate
Nupen et al. The reduction of virus by the various unit processes used in the reclamation of sewage to potable waters
JPH03151100A (en) Treatment of organic sewage
Mazumder Scope of BOD, nitrogen and phosphorous removal through plant-soil interaction in the wetland
Smith, R. & Wiechers Elimination of toxic metals from wastewater by an integrated wastewater treatment/water reclamation system
El-Gohary et al. The optimization of wastewater treatment via combined techniques: Part I: Combined biological—chemical treatment
JP3728537B2 (en) Wastewater treatment method
McCarty et al. Water factory 21: reclaimed water, volatile organics, virus, and treatment performance
KR20200015970A (en) Sewage and wastewater treatment apparatus for reducing the inhibition of biological by toxic heavy metal using excess sludge

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131230

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160115

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170110

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 13