KR100782262B1 - Manufacturing method of flux for steelmaking with ladleslag - Google Patents

Manufacturing method of flux for steelmaking with ladleslag Download PDF

Info

Publication number
KR100782262B1
KR100782262B1 KR1020060131060A KR20060131060A KR100782262B1 KR 100782262 B1 KR100782262 B1 KR 100782262B1 KR 1020060131060 A KR1020060131060 A KR 1020060131060A KR 20060131060 A KR20060131060 A KR 20060131060A KR 100782262 B1 KR100782262 B1 KR 100782262B1
Authority
KR
South Korea
Prior art keywords
ladle slag
weight
parts
steelmaking
less
Prior art date
Application number
KR1020060131060A
Other languages
Korean (ko)
Inventor
이훈하
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
주식회사 케이.알.티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원, 주식회사 케이.알.티 filed Critical 주식회사 포스코
Priority to KR1020060131060A priority Critical patent/KR100782262B1/en
Application granted granted Critical
Publication of KR100782262B1 publication Critical patent/KR100782262B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A method of manufacturing steelmaking flux using ladle slag is provided to use steelmaking byproducts having a particle size of 5mm or less, thereby reducing manufacturing cost. A method of manufacturing steelmaking flux using ladle slag includes the steps of cooling ladle slag(10), crashing the cooled ladle slag(20), selecting the ladle slag having a particle size of 5mm or less(30), adding syrup to the selected ladle slag(40), adding CaO powder into the syrup-added ladle slag(50), manufacturing a monochromatic body using the syrup and CaO powder-added ladle slag(60), and curing the monochromatic body(70).

Description

래들슬래그를 이용한 제강용 플럭스 제조방법 및 이를 이용하여 제조된 제강용 플럭스{Manufacturing method of flux for steelmaking with ladleslag} Manufacturing method of flux for steelmaking using ladle slag and manufacturing steel flux using same {Manufacturing method of flux for steelmaking with ladleslag}

도 1은 본 발명의 일실시예에 의한 래들슬래그를 이용한 제강용 플럭스 제조방법의 흐름도1 is a flow chart of a steel manufacturing flux manufacturing method using a ladle slag according to an embodiment of the present invention.

본 발명은 래들슬래그를 이용한 제강용 플럭스 제조방법 및 이를 이용하여 제조된 제강용 플럭스에 관한 것으로서, 보다 상세하게는 입도 5mm 이하의 래들슬래그분말을 효율적으로 재활용하여 제강용 플럭스를 제조함으로서, 종래 석회석분말의 단독 사용으로 인한 단광성형체의 팽창 붕괴 및 분발생을 방지하면서도 제강 부산물을 이용함으로서 제강 조업에서의 생산단가를 낮출 수 있도록 한 래들슬래그를 이용한 제강용 플럭스 제조방법 및 이를 이용하여 제조된 제강용 플럭스에 관한 것이다.The present invention relates to a steelmaking flux manufacturing method using a ladle slag, and to a steelmaking flux manufactured using the same, more specifically, by producing a steelmaking flux by efficiently recycling the ladle slag powder having a particle size of 5mm or less, conventional limestone Method of manufacturing flux for steelmaking using ladle slag to reduce production cost in steelmaking by using steelmaking by-products while preventing expansion collapse and dust generation of briquettes by using powder alone and steelmaking manufactured using the same It's about flux.

일반적으로 제강공정에서 강에 함유된 비금속 개재물(O, S, P 등)은 강의 성질을 저하시키는 문제점이 있으며, 특히, 상기 비금속 개재물 중 산화물과 황화물 은 강의 성질을 크게 저하시키므로 전기로 및 전로 등의 제강공정에서 이러한 불순물을 제거하기 위하여 플럭스(flux)를 사용하게 된다.In general, the non-metallic inclusions (O, S, P, etc.) contained in the steel in the steelmaking process has a problem of lowering the properties of the steel, in particular, oxides and sulfides in the non-metallic inclusions greatly reduce the properties of the steel, such as electric furnaces and converters Flux is used to remove these impurities in the steelmaking process.

그러나 종래의 플럭스는 석회석을 소성한 생석회(CaO)와 보오크사이트를 하소한 하소보오크사이트를 파쇄, 적정비율로 혼합한 후 재소성, 용융, 냉각하여 이를 적정입도로 분쇄, 선별하여 제조되는 것으로 고가의 플럭스를 전량 수입에 의존하고 있는 실정이다.However, the conventional flux is prepared by crushing calcined limestone calcined limestone (CaO) and bauxite calcined bauxite at a suitable ratio, then calcined, melted and cooled, and then crushed and sorted to an appropriate particle size. The high price of flux is dependent on the total amount of income.

한편, 상기와 같은 문제점을 해결하기 위하여 슬래그(Slag), 즉, 용선이 수선 및 출선되는 과정에서 래들의 상부에 응고되어 고착되는 지금(Skull)으로도 불리는 슬래그(Slag)를 이용한 저가의 플럭스를 제조하기 위한 시도가 있었으며, 대표적으로 국내 공개특허공보 제10-2005-0084699호(명칭 : 미니밀 정련슬래그로 조성된 플럭스 대체제)에는, 미니밀 제강공정 중 정련로에서 정련 후 배제되는 정련슬래그를 회수하여 종래의 전기로 제강 공정에서 사용되는 제강용 플럭스를 대체할 수 있는 미니밀 정련슬래그로 조성된 플럭스 대체제를 제안하고 있으나, 상기 플럭스 대체제에 사용되는 미니밀 정련슬래그는 미니밀 정련슬래그 중 입도가 5~50mm인 정련슬래그를 선별하여 사용하는 것으로서, 입도 5mm이하의 정련슬래그는 활용하지 못하는 문제점이 있었다.On the other hand, in order to solve the above problems, slag, that is, inexpensive flux using slag (Skull) also referred to as the solidified and fixed to the upper part of the ladle in the process of repairing and leaving the molten iron (Slag) Attempts have been made to manufacture. Representatively, Korean Patent Application Publication No. 10-2005-0084699 (name: flux replacement agent composed of mini mill refining slag) recovers refined slag that is excluded after refining in a refining furnace during the mini mill steelmaking process. The flux replacement agent composed of a mini mill refinement slag that can replace the steelmaking flux used in the electric furnace steelmaking process is proposed, but the mini mill refinement slag used in the flux substitute has a particle size of 5 to 50 mm among the mini mill refinement slag. As the use of the refined slag screening, refining slag with a particle size of 5mm or less had a problem that can not be utilized.

또한, 국내 공개특허공보 제10-1997-0043121호(명칭 : 래들슬래그를 이용한 알루미늄 탈산용강 정련용 플럭스의 제조방법)에는, 래들슬래그 100중량부에 석회석 분말 20~40중량부를 혼합하고, 이 혼합물을 펠렛(Pallet) 또는 단광(Briquette)으로 성형하는 래들슬래그를 이용한 알루미늄 탈산용강 정련용 플럭스의 제조방법 을 제안하고 있으나, 상기 래들슬래그에 석회석 분말 단독으로만 사용할 경우 펠렛 또는 단광의 강도가 약하여 이들 성형체의 생산성이 감소하고, 성형체의 취급시 분발생량이 과다하여 작업환경을 해치는 문제점이 있었을 뿐만 아니라 입도 5mm이하의 래들슬래그를 펠렛으로 성형함에있어, 물을 첨가해 가면서 성형해야 하므로 성형체의 팽창붕괴에 의한 분발생량이 과다하게 증가하는 등의 문제점이 있었다. In addition, Korean Laid-Open Patent Publication No. 10-1997-0043121 (name: manufacturing method of flux for refining aluminum deoxidation steel using ladle slag), 20-40 parts by weight of limestone powder is mixed with 100 parts by weight of ladle slag, and this mixture Proposed a method for producing aluminum deoxidation steel refining flux using ladle slag which is formed into pellet or briquette, but when the limestone powder alone is used in the ladle slag, the strength of pellet or briquette is weak. The productivity of the molded product is reduced, and the amount of dust generated during handling of the molded product is not only detrimental to the working environment.In addition, when molding the ladle slag having a particle size of 5 mm or less into pellets, it is required to be molded by adding water. There was a problem such as excessively increased generation amount.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 특히, 본 발명은 입도 5mm 이하의 래들슬래그분말에 생석회(CaO)분말과 당밀을 첨가한 후 단광성형하여 제강용 플럭스를 제조함으로서, 종래 석회석분말의 단독 사용으로 인한 단광성형체의 팽창 붕괴 및 분발생을 방지하면서도 입도 5mm이하의 제강 부산물을 이용함으로서 제강 조업에서의 생산단가를 낮출 수 있도록 하는 래들슬래그를 이용한 제강용 플럭스 제조방법 및 이를 이용하여 제조된 제강용 플럭스를 제공함에 목적이 있다.The present invention is to solve the above problems, in particular, the present invention by adding a quick lime (CaO) powder and molasses to the ladle slag powder having a particle size of 5mm or less and then briquette forming the flux for steelmaking, the conventional limestone powder Method of manufacturing flux for steelmaking using ladle slag to reduce production cost in steelmaking operations by using steelmaking by-products with a particle size of 5mm or less while preventing expansion and collapse of briquettes due to single use It is an object to provide a steelmaking flux.

상술한 목적을 달성하기 위한 본 발명의 특징은, 래들슬래그를 냉각시키는 냉각단계(10)와, 상기 냉각된 래들슬래그를 파쇄시키는 파쇄단계(20)와, 상기 파쇄된 래들슬래그 중 입도 5mm이하의 래들슬래그를 선별하는 선별단계(30)와, 상기 선별된 래들슬래그에 당밀을 첨가하는 당밀첨가단계(40)와, 상기 당밀이 첨가된 래들슬래그에 생석회(CaO)분말을 첨가하는 생석회(CaO)분말첨가단계(50)와, 상기 당밀과 생석회(CaO)분말이 첨가된 래들슬래그를 이용하여 단광을 제조하는 단광성형단계(60)와, 상기 단광을 경화시키는 양생단계(70)를 포함하는 래들슬래그를 이용한 제강용 플러스 제조방법이다.Features of the present invention for achieving the above object, the cooling step 10 for cooling the ladle slag, the crushing step 20 for crushing the cooled ladle slag, and the particle size of 5 mm or less of the crushed ladle slag A sorting step 30 of selecting a ladle slag, a molasses adding step 40 of adding molasses to the selected ladle slag, and quicklime (CaO) of adding quicklime (CaO) powder to the ladle slag to which the molasses is added Ladle comprising a powder addition step 50, briquette forming step 60 for producing briquettes using a ladle slag to which the molasses and quicklime (CaO) powder is added, and curing step 70 for curing the briquettes Steelmaking plus manufacturing method using slag.

상기의 목적을 달성하기 위한 본 발명의 다른 특징은, 상기의 방법에 의하여 제조된 제강용 플럭스이다.Another feature of the present invention for achieving the above object is a steelmaking flux produced by the above method.

상기의 본 발명의 특징에 의한 당밀첨가단계(40)는, 5mm 이하 래들슬래그 100중량부에 대하여 당밀 10중량부~15중량부를 첨가하는 실시예를 구성할 수 있다.The molasses addition step 40 according to the above characteristics of the present invention may constitute an embodiment in which 10 parts by weight to 15 parts by weight of molasses is added based on 100 parts by weight of the ladle slag of 5 mm or less.

또한, 상기 본 발명의 특징에 의한 생석회(CaO)분말첨가단계(50)는, 5mm 이하 래들슬래그 100중량부에 대하여 생석회(CaO)분말 0.5중량부~3중량부를 첨가하는 실시예를 구성할 수 있다.In addition, the quicklime (CaO) powder addition step 50 according to the characteristics of the present invention, it can constitute an embodiment to add 0.5 parts by weight to 3 parts by weight of quicklime (CaO) powder with respect to 100 parts by weight of ladle slag 5mm or less. have.

상기 각 실시예에 있어서, 5mm 이하 래들슬래그 100중량부는, 0.5mm이하의 래들슬래그를 25중량부 이상 함유하는 실시예를 구성할 수 있다.In each of the above embodiments, 100 parts by weight of the ladle slag of 5 mm or less may constitute an embodiment containing 25 parts by weight or more of the ladle slag of 0.5 mm or less.

상기 본 발명의 목적과 특징 및 장점은 첨부도면 및 다음의 상세한 설명을 참조함으로서 더욱 쉽게 이해될 수 있을 것이다.The objects, features and advantages of the present invention will be more readily understood by reference to the accompanying drawings and the following detailed description.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예의 구성 및 그 작용 효과에 대해 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and effect of the preferred embodiment of the present invention.

도 1은 본 발명의 일실시예에 의한 래들슬래그를 이용한 제강용 플럭스 제조방법의 흐름도로서, 본 발명의 래들슬래그를 이용한 제강용 플럭스는 냉각단계(10)와, 파쇄단계(20)와, 선별단계(30)와, 당밀첨가단계(40)와, 생석회(CaO)분말첨가단계(50)와, 단광성형단계(60)와, 양생단계(70)를 거쳐 제조된다.1 is a flow chart of a steelmaking flux manufacturing method using a ladle slag according to an embodiment of the present invention, the steelmaking flux using a ladle slag of the present invention cooling step (10), crushing step (20), and screening It is prepared through the step 30, molasses addition step 40, quicklime (CaO) powder addition step 50, briquette forming step 60, and curing step 70.

상기 냉각단계(10)는, 래들슬래그를 냉각시키는 단계로서, 래들슬래그는 일관제철소의 제강 공정 중 2차정련공정에서 발생되는 래들슬래그를 사용하였으며, 상기 래들슬래그의 냉각은 용융상태의 슬래그를 500℃까지는 물로서 급냉시키고 그 이후는 공랭하여 냉각하게 된다.The cooling step 10 is a step of cooling the ladle slag, the ladle slag used the ladle slag generated in the secondary refining process of the steelmaking process of integrated steelworks, the cooling of the ladle slag is a slag of molten slag 500 The solution is quenched with water and cooled by air cooling thereafter.

상기 2차정련공정에서 발생되는 래들슬래그 중에 자성을 가지는 철분은 자력선별을 통해 제거하였으며, 상기 래들슬래그의 화학성분은 하기 표 1과 같으며, 물성은 표 2와 같다.Iron having magnetic properties in the ladle slag generated in the secondary refining process was removed through magnetic screening. The chemical composition of the ladle slag is shown in Table 1 below, and the physical properties thereof are shown in Table 2 below.

표 1. 래들슬래그의 화학성분(단위:중량%)Table 1. Chemical Composition of Ladle Slag (Unit: wt%)

T-FeT-Fe CaOCaO Al2O3 Al 2 O 3 SiO2 SiO 2 MgOMgO MnOMnO SS 1~31 to 3 43~4743 ~ 47 22~3022-30 8~128-12 4~74 ~ 7 0.6~1.00.6 to 1.0 0.1~0.30.1-0.3

표 2. 래들슬래그의 물성Table 2. Properties of Ladle Slag

결정상 구성Crystal phase composition 평균입경 Average particle diameter 12CaO·7Al2O3 [40~60%] 2CaO·SiO2 [30~50%] 기타 [10% 이하]12CaO · 7Al 2 O 3 [40 ~ 60%] 2CaO · SiO 2 [30 ~ 50%] Others [10% or less] 21 ㎛21 μm

상기 파쇄단계(20)는, 상기 냉각된 래들슬래그를 파쇄시키는 단계이며,The crushing step 20 is to crush the cooled ladle slag,

상기 선별단계(30)는, 상기 파쇄된 래들슬래그 중 입도 5mm이하의 래들슬래그를 선별하는 단계로서, 선별과정에서 5mm 이하 래들슬래그 100중량부에는 0.5mm이하의 래들슬래그가 25중량부 이상 함유되도록 하는 것이 바람직하다.The sorting step 30 is a step of sorting the ladle slag having a particle size of 5mm or less of the crushed ladle slag, 100 parts by weight of the ladle slag 5mm or less in the screening process so that the ladle slag of 0.5mm or less contains 25 parts by weight or more. It is desirable to.

상기 당밀첨가단계(40)는, 상기 선별된 래들슬래그에 당밀을 첨가하는 단계로서, 당밀첨가량은 5mm 이하 래들슬래그 100중량부에 대하여 당밀 10중량부~15중량부를 첨가하는 것이 가장 바람직하며,The molasses adding step 40, as the step of adding molasses to the selected ladle slag, the molasses is most preferably added to the molasses 10 parts by weight to 15 parts by weight based on 100 parts by weight of the ladle slag 5mm or less,

상기 생석회(CaO)분말첨가단계(50)는, 상기 당밀이 첨가된 래들슬래그에 생석회(CaO)분말을 첨가하는 단계로서, 상기 생석회(CaO)분말은 입도가 3000 ㎠/g 이상의 분말도를 갖는 것을 사용하는 것이 효과적이며, 생석회(CaO)분말첨가량은 5mm 이하 래들슬래그 100중량부에 대하여 생석회(CaO)분말 0.5중량부~3중량부를 첨가하는 것이 가장 바람직하다.The quicklime (CaO) powder addition step (50) is a step of adding quicklime (CaO) powder to the ladle slag to which the molasses is added, and the quicklime (CaO) powder has a particle size of 3000 cm 2 / g or more It is effective to use, and the amount of quicklime (CaO) powder is most preferably added 0.5 parts by weight to 3 parts by weight of quicklime (CaO) powder with respect to 100 parts by weight of ladle slag of 5 mm or less.

상기 단광성형단계(60)는, 상기 당밀과 생석회(CaO)분말이 첨가된 래들슬래그를 이용하여 단광을 제조하는 단계이며, 상기 양생단계(70)는, 상기 단광을 경화시키는 단계이다.The briquette forming step 60 is a step of producing briquettes using a ladle slag to which molasses and quicklime (CaO) powder is added, and the curing step 70 is a step of curing the briquettes.

이하, 상기의 단계를 거쳐 제조된 본 발명의 래들슬래그를 이용한 제강용 플럭스에 대하여 비교예 및 실시예를 통해 상기 각 첨가물의 바람직한 첨가량을 산출하면 다음과 같다.Hereinafter, a preferred addition amount of each of the additives is calculated through Comparative Examples and Examples for the steelmaking flux using the ladle slag of the present invention manufactured through the above steps.

상기 비교예1~비교예5 및 실시예1~실시예4의 첨가량에 대한 1일차 압축강도를 하기 표 3에 나타내었다.Table 1 shows the primary compressive strengths of the added amounts of Comparative Examples 1 to 5 and Examples 1 to 4.

표 3. 비교예1~비교예5 및 실시예1~실시예4의 첨가량에 대한 1일차 압축강도Table 3. Primary compressive strength for the amounts of Comparative Examples 1 to 5 and Examples 1 to 4 added

구분division 래들슬래그Ladle slag 바인더bookbinder 압축강도 (1일차)Compressive Strength (Day 1) 5~0.5㎜5 ~ 0.5mm 0.5㎜ 이하0.5 mm or less 당밀molasses 생석회(CaO)분말Quicklime (CaO) Powder 석회분말Lime powder water 비교예1Comparative Example 1 7575 2525 -- -- 3030 1010 27.127.1 비교예2Comparative Example 2 100100 00 1515 1One 25.425.4 실시예1Example 1 7575 2525 1515 1One 79.479.4 실시예2Example 2 5050 5050 1515 1One 69.369.3 실시예3Example 3 00 100100 1010 1One 65.765.7 실시예4Example 4 5050 5050 1515 33 65.565.5 비교예3Comparative Example 3 5050 5050 1515 55 10.610.6 비교예4Comparative Example 4 5050 5050 1515 00 26.226.2 비교예5Comparative Example 5 5050 5050 77 1One 4.74.7

상기 표 3의 비교예 1의 경우는 래들슬래그 0.5~5㎜ 크기의 75중량부와 0.5㎜ 이하의 25중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 석회분말 30중량%와 물을 10중량% 혼합하여 단광을 제조하였으며, 상기의 배합비로 제조한 단광의 1일차 압축강도는 27.1 kgf/㎠로 압축강도는 약하였고, 표면 크렉 및 미분 발생량이 과다하게 발생되는 문제점이 있어 바람직하지 못하였다. In Comparative Example 1 of Table 3, 30% by weight of lime powder and 10% by weight of lime powder and water were used as the binder based on 100 parts by weight of the ladle slag in which 75 parts by weight of the ladle slag 0.5 to 5 mm and 25 parts by weight of 0.5 mm or less were combined. The briquette was prepared by mixing, and the primary compressive strength of the briquette prepared by the above mixing ratio was 27.1 kgf / cm 2, and the compressive strength was weak, and the surface cracks and the amount of fine powder generation were excessively undesirable.

비교예 2의 경우는 래들슬래그 0.5~5㎜ 크기의 래들슬래그 100중량부에 대하여 바인더로서 당밀 15중량%와 생석회(CaO)분말 1중량%를 혼합하여 단광을 제조하였으며, 상기의 배합비로 제조한 단광의 1일차 압축강도는 25.4 kgf/㎠로 높지 않았으며 단광의 표면 크렉 발생이 많아 바람직 하지 않았다. In Comparative Example 2, briquettes were prepared by mixing 15% by weight of molasses and 1% by weight of quicklime (CaO) powder as binders based on 100 parts by weight of ladle slag having a size of 0.5 to 5 mm of ladle slag. The primary compressive strength of briquettes was not as high as 25.4 kgf / ㎠ and the surface cracks of briquettes were not desirable.

비교예 3의 경우는 래들슬래그 0.5~5㎜ 크기의 50중량부와 0.5㎜ 이하의 50중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀 15중량%와 생석회(CaO)분말을 5중량% 혼합하여 단광을 제조한 것이며, 상기의 배합비로 제조한 단광의 1일차 압축강도는 10.6 kgf/㎠로 높지 않았다. 이는 바인더로서 첨가한 생석회(CaO)분말량이 과다하여 당밀과의 반응 후 미반응의 생석회(CaO)가 존재하기 때문이며, 이 미반응의 생석회(CaO)분말은 단광의 강도를 저하시키는 요인이 되기 때문이다. In Comparative Example 3, 15% by weight of molasses and 5% by weight of quicklime (CaO) powder were mixed as binders based on 100 parts by weight of the ladle slag, which is 50 parts by weight of the ladle slag 0.5 to 5 mm and 50 parts by weight of 0.5 mm or less. The briquette was prepared by the above method, and the primary compressive strength of the briquette prepared by the above compounding ratio was not high as 10.6 kgf / cm 2. This is because the amount of quicklime (CaO) powder added as a binder is excessive and the unreacted quicklime (CaO) is present after the reaction with molasses, and the unreacted quicklime (CaO) powder is a factor that reduces the strength of briquettes. to be.

비교예 4의 경우는 래들슬래그 0.5~5㎜ 크기의 50중량부와 0.5㎜ 이하의 50중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀을 15중량% 사용하여 단광을 제조한 것이다. 이 경우 당밀의 경화속도를 빠르게 하는 촉매로서의 생 석회(CaO) 성분이 부족하여 단광의 강도발현이 안되는 것으로 판단된다. In Comparative Example 4, briquettes were prepared by using molasses as a binder in an amount of 15% by weight based on 100 parts by weight of the ladle slag in which 50 parts by weight of the ladle slag 0.5 to 5 mm and 50 parts by weight of 0.5 mm or less were combined. In this case, the lack of quick-acting lime (CaO) as a catalyst for accelerating the cure rate of molasses is not considered to be the strength of the briquettes.

비교예 5의 경우는 0.5~5㎜ 크기의 50중량부와 0.5㎜ 이하의 50중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀 7중량%와 생석회(CaO)분말을 1중량% 혼합 사용한 것에 대하여 단광을 제조한 것이며, 이 경우는 당밀 사용량이 부족하여 단광의 강도 발현이 안되는 것으로 판단된다. In Comparative Example 5, a mixture of 7% by weight of molasses and 1% by weight of quicklime (CaO) powder was used as a binder based on 100 parts by weight of the ladle slag, which is 50 parts by weight of 0.5 to 5 mm and 50 parts by weight of 0.5 mm or less. It was judged that briquettes were produced in this case, and in this case, the amount of molasses used was insufficient and the intensity of briquettes could not be expressed.

실시예 1의 경우는 0.5~5㎜ 크기의 75중량부와 0.5㎜ 이하의 25중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀 15중량%와 생석회(CaO)분말 1중량% 혼합한 것을 단광으로 제조한 것이며, 이 단광의 1일차 압축강도는 79.4 kgf/㎠로 비교예 1의 기존의 바인더로 제조한 단광에 비하여 압축강도의 상승효과가 우수하였다. 이것은 0.5㎜ 이하의 래들슬래그와 당밀 및 생석회(CaO)의 반응에 의해 단광의 경화속도를 증가시킨 결과이며, 따라서 초기강도의 증가 효과를 나타내었고, 초기강도의 증가는 생산성 향상과 양의 상관관계가 있다. In the case of Example 1, a mixture of 15% by weight of molasses and 1% by weight of quicklime (CaO) powder as a binder was added to 100 parts by weight of the ladle slag including 75 parts by weight of 0.5 to 5 mm and 25 parts by weight of 0.5 mm or less. The primary compressive strength of the briquette was 79.4 kgf / cm 2, and the synergistic effect of the compressive strength was superior to that of the briquette prepared by the conventional binder of Comparative Example 1. This is the result of increasing the rate of hardening of briquettes by the reaction of ladle slag of less than 0.5 mm and molasses and quicklime (CaO), thus showing the effect of increasing the initial strength, the increase in the initial strength is positively correlated with the productivity improvement. There is.

실시예 2와 4는 0.5~5㎜ 크기의 75중량부와 0.5㎜ 이하의 25중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀 15중량%에 생석회(CaO)분말을 각각 1중량%와 3중량% 혼합한 것에 대하여 단광을 제조한 것이며, 이 경우에도 실시예 1과 동일한 반응에 의해 단광의 압축강도 증가효과를 얻을 수 있었다. Examples 2 and 4 are 15% by weight of molasses and 1% by weight of quicklime (CaO) powder as a binder based on 100 parts by weight of ladle slag, which is 75 parts by weight of 0.5 to 5 mm and 25 parts by weight of 0.5 mm or less. Briquettes were prepared by mixing by weight%, and in this case, the compressive strength of briquettes was increased by the same reaction as in Example 1.

실시예3은 0.5~5㎜ 크기의 50중량부와 0.5㎜ 이하의 50중량부를 합한 래들슬래그 100중량부에 대하여 바인더로서 당밀 10중량%와 CaO 분말 1중량%에 대하여 단광을 제조한 것이며, 이 경우에 있어서도 실시예1과 같은 압축강도의 향상 효과를 얻을 수 있었다. Example 3 produced briquettes with respect to 10% by weight molasses and 1% by weight of CaO powder as a binder with respect to 100 parts by weight of ladle slag, which combined 50 parts by weight of 0.5 to 5 mm in size and 50 parts by weight of 0.5 mm or less. Also in the case, the same compressive strength improvement effect as in Example 1 was obtained.

따라서 상기의 비교예 및 실시예를 통하여, 5mm 이하의 래들슬래그를 재활용하여 제강용 플럭스를 제조함에 있어, 당밀첨가단계(40)에서의 당밀첨가량은, 5mm 이하 래들슬래그 100중량부에 대하여 당밀 10중량부~15중량부를 첨가하는 것이 가장 효과적이며, 생석회(CaO)분말첨가단계(50)에서의 생석회(CaO)분말첨가량은 5mm 이하 래들슬래그 100중량부에 대하여 생석회(CaO)분말 0.5중량부~3중량부를 첨가하는 것이 가장 효과적이고, 상기 각 첨가량의 기준이 되는 5mm 이하 래들슬래그 100중량부에는 0.5mm이하의 래들슬래그가 25중량부 이상 함유되는 것이 가장효과적임을 알 수 있다.Therefore, in the manufacture of steelmaking flux by recycling the ladle slag of 5mm or less through the comparative examples and examples above, the molasses in the molasses addition step 40, the molasses 10 to 100 parts by weight of the ladle slag 5mm or less It is most effective to add 15 parts by weight to 15 parts by weight, and the amount of quicklime (CaO) powder added in the quicklime (CaO) powder addition step (50) is 0.5 parts by weight of quicklime (CaO) powder based on 100 parts by weight of ladle slag of 5 mm or less. It is most effective to add 3 parts by weight, and it is most effective to contain 25 parts by weight or more of ladle slag of 0.5 mm or less in 100 parts by weight of the ladle slag of 5 mm or less, which is the basis of the amount of each addition.

이외에도 본 발명인 래들슬래그를 이용한 제강용 플럭스 제조방법 및 이를 이용하여 제조된 제강용 플럭스는 다양하게 변형실시될 수 있는 것으로, 본 발명의 목적범위를 일탈하지 않는 한, 변형되는 실시예들은 모두 본 발명의 권리범위에 포함되어 해석되어야 한다.In addition, the steelmaking flux manufacturing method using the ladle slag of the present invention and the steelmaking flux manufactured using the same can be variously modified, so long as it does not deviate from the object scope of the present invention, all modified embodiments of the present invention It should be interpreted as being included in the scope of rights of the company.

이상의 본 발명에 의하면, 종래 석회석분말의 단독 사용으로 인한 단광성형체의 팽창 붕괴 및 분발생을 방지하면서도 제강 부산물을 이용함으로서 제강 조업에서의 생산단가를 낮출 수 있게 되는 등의 이점을 얻을 수 있게 된다.According to the present invention, by using the steelmaking by-products while preventing the expansion and collapse of briquette molding due to the use of conventional limestone powder alone, the production cost in steelmaking operations can be lowered.

Claims (5)

제강공정의 정련과정에서 발생되는 5mm 이하의 래들슬래그를 재활용하여 제강용 플럭스를 제조하는 방법에 있어서,In the method of manufacturing the steelmaking flux by recycling the ladle slag of less than 5mm generated during the refining process of the steelmaking process, 래들슬래그를 냉각시키는 냉각단계(10)와,A cooling step 10 of cooling the ladle slag, 상기 냉각된 래들슬래그를 파쇄시키는 파쇄단계(20)와,Crushing step 20 for crushing the cooled ladle slag, 상기 파쇄된 래들슬래그 중 입도 5mm이하의 래들슬래그를 선별하는 선별단계(30)와,A sorting step 30 of sorting the ladle slag having a particle size of 5 mm or less among the crushed ladle slags, 상기 선별된 래들슬래그에 당밀을 첨가하는 당밀첨가단계(40)와,Molasses addition step (40) of adding molasses to the selected ladle slag, 상기 당밀이 첨가된 래들슬래그에 생석회(CaO)분말을 첨가하는 생석회(CaO)분말첨가단계(50)와,A quick lime (CaO) powder addition step (50) of adding quicklime (CaO) powder to the ladle slag to which molasses is added, 상기 당밀과 생석회(CaO)분말이 첨가된 래들슬래그를 이용하여 단광을 제조하는 단광성형단계(60)와,A briquette forming step 60 of preparing briquettes using a ladle slag to which molasses and quicklime (CaO) powder are added, 상기 단광을 경화시키는 양생단계(70)를 포함하는 것을 특징으로 하는 래들슬래그를 이용한 제강용 플러스 제조방법.Steelmaking plus manufacturing method using a ladle slag characterized in that it comprises a curing step (70) for curing the briquettes. 제 1항에 있어서,The method of claim 1, 당밀첨가단계(40)는,Molasses addition step 40, 5mm 이하 래들슬래그 100중량부에 대하여 당밀 10중량부~15중량부를 첨가하는 것을 특징으로 하는 래들슬래그를 이용한 제강용 플럭스 제조방법.10 to 15 parts by weight of molasses is added to 100 parts by weight of the ladle slag of 5 mm or less ladle slag flux manufacturing method using a ladle slag. 제 1항에 있어서,The method of claim 1, 생석회(CaO)분말첨가단계(50)는,Quick lime (CaO) powder addition step (50), 5mm 이하 래들슬래그 100중량부에 대하여 생석회(CaO)분말 0.5중량부~3중량부를 첨가하는 것을 특징으로 하는 래들슬래그를 이용한 제강용 플럭스 제조방법.A method for manufacturing steel flux using a ladle slag, wherein 0.5 part by weight to 3 parts by weight of quicklime (CaO) powder is added to 100 parts by weight of a ladle slag of 5 mm or less. 제 2항 또는 제 3항에 있어서,The method of claim 2 or 3, 5mm 이하 래들슬래그 100중량부는,100 parts by weight of ladle slag less than 5mm, 0.5mm이하의 래들슬래그가 25중량부 이상 함유되는 것을 특징으로 하는 래들슬래그를 이용한 제강용 플럭스 제조방법.A steelmaking flux manufacturing method using a ladle slag, characterized in that it contains 25 parts by weight or more of the ladle slag of 0.5mm or less. 제 1항의 방법에 의하여 제조된 제강용 플럭스Steelmaking flux produced by the method of claim 1
KR1020060131060A 2006-12-20 2006-12-20 Manufacturing method of flux for steelmaking with ladleslag KR100782262B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060131060A KR100782262B1 (en) 2006-12-20 2006-12-20 Manufacturing method of flux for steelmaking with ladleslag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060131060A KR100782262B1 (en) 2006-12-20 2006-12-20 Manufacturing method of flux for steelmaking with ladleslag

Publications (1)

Publication Number Publication Date
KR100782262B1 true KR100782262B1 (en) 2007-12-04

Family

ID=39139650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060131060A KR100782262B1 (en) 2006-12-20 2006-12-20 Manufacturing method of flux for steelmaking with ladleslag

Country Status (1)

Country Link
KR (1) KR100782262B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351598B1 (en) * 2012-08-13 2014-01-23 (주)참솔산업 Desulfurizing agent for steelmaking using ladle slag and manufacturing method thereof
KR101434547B1 (en) * 2012-12-26 2014-08-27 주식회사 포스코 Briquette and method for manufacturing the same and method for refining molten steel by using the same
KR101445774B1 (en) 2013-05-02 2014-10-07 동국제강주식회사 ANALYTIC METHOD OF FeO CONTENTS IN ELECTRIC ARC FURNACE OPERATION
KR101463330B1 (en) * 2013-03-14 2014-11-19 주식회사 포스코 Briquette using by-products from steel manufacture process and method of producing the same
CN107119173A (en) * 2017-05-02 2017-09-01 攀钢集团西昌钢钒有限公司 A kind of slag adjusting agent and preparation method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171611A (en) * 1987-12-26 1989-07-06 Toshiba Corp Device for treating liquid sample
JPH06157084A (en) * 1992-11-18 1994-06-03 Osaka Koukai Kk Production of bulky or powder lime-based flux in metal refining
JPH0762420A (en) * 1993-08-20 1995-03-07 Osaka Koukai Kk Production of lime based flux for metal refining
JPH08134526A (en) * 1994-03-04 1996-05-28 Osaka Koukai Kk Magnesia-base slag formation promoter for refining limy flux and its production
KR960023103A (en) * 1994-12-28 1996-07-18 한태수 Briquetting Flux in Smelting Iron
JPH11209817A (en) * 1998-01-28 1999-08-03 Mitsuo Hanada Flux for steelmaking, production thereof and steelmaking method using it
JP2000345233A (en) * 1999-06-02 2000-12-12 Asahi Giken Hanbai Kk Slag-making agent for steelmaking refining restraining elution of fluorine
JP2001131615A (en) * 1999-11-01 2001-05-15 Kawasaki Steel Corp Utilizing method of steelmaking slag
KR20020025266A (en) * 2000-09-28 2002-04-04 이구택 Desulphurizer by using ladle slag and a method for producing thereof
KR20020040523A (en) * 2000-11-24 2002-05-30 이구택 A method for enlargement real income of MoO3 in steel making process
KR20030044472A (en) * 2001-11-30 2003-06-09 주식회사 포스코 method of manufacturing a MoO3 briquette
KR20030050698A (en) * 2001-12-19 2003-06-25 주식회사 포스코 method of prevention the evaporation of MoO3
KR20050045629A (en) * 2003-11-12 2005-05-17 주식회사 포스코 Molybdenum oxide briquette and production method thereof
JP2005154843A (en) * 2003-11-26 2005-06-16 Ricoh Co Ltd Binder for steelmaking flux using toner
JP2005220431A (en) * 2004-02-09 2005-08-18 Ricoh Co Ltd Method for granulating refining-material using steelmaking dust
KR20060013251A (en) * 2004-08-06 2006-02-09 신희동 Steel refinery flux
KR20060074507A (en) * 2004-12-27 2006-07-03 주식회사 인텍 Synthetic flux for steel smelting and method for synthesizing the flux

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171611A (en) * 1987-12-26 1989-07-06 Toshiba Corp Device for treating liquid sample
JPH06157084A (en) * 1992-11-18 1994-06-03 Osaka Koukai Kk Production of bulky or powder lime-based flux in metal refining
JPH0762420A (en) * 1993-08-20 1995-03-07 Osaka Koukai Kk Production of lime based flux for metal refining
JPH08134526A (en) * 1994-03-04 1996-05-28 Osaka Koukai Kk Magnesia-base slag formation promoter for refining limy flux and its production
KR960023103A (en) * 1994-12-28 1996-07-18 한태수 Briquetting Flux in Smelting Iron
JPH11209817A (en) * 1998-01-28 1999-08-03 Mitsuo Hanada Flux for steelmaking, production thereof and steelmaking method using it
JP2000345233A (en) * 1999-06-02 2000-12-12 Asahi Giken Hanbai Kk Slag-making agent for steelmaking refining restraining elution of fluorine
JP2001131615A (en) * 1999-11-01 2001-05-15 Kawasaki Steel Corp Utilizing method of steelmaking slag
KR20020025266A (en) * 2000-09-28 2002-04-04 이구택 Desulphurizer by using ladle slag and a method for producing thereof
KR20020040523A (en) * 2000-11-24 2002-05-30 이구택 A method for enlargement real income of MoO3 in steel making process
KR20030044472A (en) * 2001-11-30 2003-06-09 주식회사 포스코 method of manufacturing a MoO3 briquette
KR20030050698A (en) * 2001-12-19 2003-06-25 주식회사 포스코 method of prevention the evaporation of MoO3
KR20050045629A (en) * 2003-11-12 2005-05-17 주식회사 포스코 Molybdenum oxide briquette and production method thereof
JP2005154843A (en) * 2003-11-26 2005-06-16 Ricoh Co Ltd Binder for steelmaking flux using toner
JP2005220431A (en) * 2004-02-09 2005-08-18 Ricoh Co Ltd Method for granulating refining-material using steelmaking dust
KR20060013251A (en) * 2004-08-06 2006-02-09 신희동 Steel refinery flux
KR20060074507A (en) * 2004-12-27 2006-07-03 주식회사 인텍 Synthetic flux for steel smelting and method for synthesizing the flux

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
공개특허 10-1996-23103
국내 공개특허 10-1996-23103
국내 공개특허 10-2002-25266
국내 공개특허 10-2002-40523
국내 공개특허 10-2003-44472
국내 공개특허 10-2003-50698
국내 공개특허 10-2005-45629
국내 공개특허 10-2006-13251
국내 공개특허 10-2006-74507
일본 공개특허 평11-209817
일본 공개특허 평11-71611
일본 공개특허 평12-345233
일본 공개특허 평13-131615
일본 공개특허 평13-73021
일본 공개특허 평17-154843
일본 공개특허 평17-220431
일본 공개특허 평6-157084
일본 공개특허 평7-62420
일본 공개특허 평8-134526

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351598B1 (en) * 2012-08-13 2014-01-23 (주)참솔산업 Desulfurizing agent for steelmaking using ladle slag and manufacturing method thereof
KR101434547B1 (en) * 2012-12-26 2014-08-27 주식회사 포스코 Briquette and method for manufacturing the same and method for refining molten steel by using the same
KR101463330B1 (en) * 2013-03-14 2014-11-19 주식회사 포스코 Briquette using by-products from steel manufacture process and method of producing the same
KR101445774B1 (en) 2013-05-02 2014-10-07 동국제강주식회사 ANALYTIC METHOD OF FeO CONTENTS IN ELECTRIC ARC FURNACE OPERATION
CN107119173A (en) * 2017-05-02 2017-09-01 攀钢集团西昌钢钒有限公司 A kind of slag adjusting agent and preparation method thereof

Similar Documents

Publication Publication Date Title
CN1516744A (en) Method for producing granular metal
KR100782262B1 (en) Manufacturing method of flux for steelmaking with ladleslag
JP5950098B2 (en) Method for producing sintered ore
KR100604549B1 (en) Steel refinery flux
KR102042845B1 (en) METHOD FOR RECOVERING Fe FROM CONVERTER SLAG CONTAINING Fe AND REDUCING AGENT FOR THE METHOD
EP1919839B1 (en) A process for conversion of basic oxygen furnace slag into construction materials
KR100732539B1 (en) Steel refinery flux composition containing aluminum and fluorite
JP5477170B2 (en) Method for producing sintered ore
KR101008095B1 (en) Manufacturing method of binder using electro arc furncace slag of stainless steel
KR100566595B1 (en) Steel refinery flux
US6391086B1 (en) Method for the use of electric steel plant slag for self-reducing agglomerates
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
KR100875449B1 (en) Low-temperature solvent composition for steel refining using hand slag
KR101320083B1 (en) Binder for manufacturing Fe-containing briquettes using electric furnace reduction slag and manufacturing method thereof
KR101351598B1 (en) Desulfurizing agent for steelmaking using ladle slag and manufacturing method thereof
KR100732540B1 (en) Preparation of steel refinery flux containing aluminum and fluorite
KR102306415B1 (en) Fe-containing briquette, organic binder included therein and manufacturing method of Fe-containing briquette
KR101590992B1 (en) A manufacturing method of body using by-products, the body and the binder
KR101149281B1 (en) Manufacturing method of vanadium volume guarantee steel
KR102328965B1 (en) Method for recycling Mn dust
KR101153514B1 (en) Soda ash briquette and method for manufacturing the soda ash briquette and method for refining molten iron in converter by using the soda ash briquette
KR101099792B1 (en) Preparation method for calciumferrite flux for steelmaking
JPWO2017159840A1 (en) Hot metal pretreatment method
JP4415690B2 (en) Method for producing sintered ore
JPS60248827A (en) Preliminary treatment of sintered raw material

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171128

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 13