KR100766466B1 - A production method of molded articles using thermosetting poly-dcpd complex powder - Google Patents

A production method of molded articles using thermosetting poly-dcpd complex powder Download PDF

Info

Publication number
KR100766466B1
KR100766466B1 KR20060062824A KR20060062824A KR100766466B1 KR 100766466 B1 KR100766466 B1 KR 100766466B1 KR 20060062824 A KR20060062824 A KR 20060062824A KR 20060062824 A KR20060062824 A KR 20060062824A KR 100766466 B1 KR100766466 B1 KR 100766466B1
Authority
KR
Grant status
Grant
Patent type
Prior art keywords
method
molded
powder
nano
pdcpd
Prior art date
Application number
KR20060062824A
Other languages
Korean (ko)
Inventor
송장훈
정상헌
Original Assignee
주식회사 남경알앤디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/20Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

A method for preparing a molded product, and a molded product prepared by the method are provided to improve lightweightness, chemical resistance, corrosion resistance and lower temperature impact strength. A method for preparing a molded product comprises the steps of injecting a catalyst and an activator to dicyclopentadiene to prepare linear polydicyclopentadiene(L-PDCPD); dispersing 0.01-40 parts by weight of a nano-material selected from a carbon nanotube and a silicate nanoparticle to 100 parts by weight of the liquid L-PDCPD; spray-drying the mixture of L-PDCPD and a nano-particle under the reduced pressure to evaporate a solvent, thereby obtaining a composite powder where a nano-material is infiltrated; and compression molding the composite powder.

Description

열경화성 폴리디시클로펜타디엔 복합체 분말을 이용한 성형품의 제조방법 {A production method of molded articles using thermosetting poly-DCPD complex powder} Thermosetting polyester dicyclopentadiene production of a molded article using the composite powder diene {A production method of molded articles using thermosetting poly-DCPD complex powder}

본 발명은 열경화성 폴리디시클로펜타디엔 복합체 분말을 이용한 성형품의 제조방법에 관한 것으로, 특히 폴리디시클로펜타디엔(PDCPD)을 압출성형이 가능하도록 분말화하고 여기에 탄소나노튜브 등의 나노소재를 분산 함침시켜 강도 및 특성을 향상시킨 복합체 분말을 이용하여 제조한 각종 파이프, 접속관(이음관) 등의 성형품에 관한 것이다. The present invention thermosetting poly dicyclopentadiene relates to the production of a molded article using a diene composite powder, in particular poly-dicyclopentadiene (PDCPD) a powdered to enable extrusion and dispersing nanomaterials such as carbon nanotubes impregnated by the various pipes, it manufactured using a composite powder having improved strength characteristics and the connection pipe relates to a molded article such as a (fittings).

디시클로펜타디엔(dicyclopentadiene : DCPD)이나 트리 시클로펜타디엔 등의 노르보르넨형 시클로올레핀류를 괴상 중합시켜 가교 중합체 성형물을 얻는 방법은 알려져 있다. Dicyclopentadiene: by bulk polymerization the (DCPD dicyclopentadiene) or tree norbornyl nenhyeong cyclo olefins such as cyclopentadiene method of obtaining a crosslinked polymer molded article is known. 미국 특허출원 제342,453호에는 열경화성 폴리디시클로펜타디엔(poly-DCPD)을 제조하는 방법이 기술되어 있다. U.S. Patent Application No. 342 453 discloses a method is described for producing a heat-curable poly dicyclopentadiene (poly-DCPD). 미국특허 US 3,816,384호에는 폴리디시클로펜타디엔을 포함하는 비-경화성 폴리알켄아민의 분자량이 탄화수소 할로겐 존재하에 중합에 의해 조절될 수 있음이 기술되어 있다. United States Patent US 3,816,384 discloses a poly dicyclopentadiene ratio, including - is the molecular weight of the amine curable polyalkenes This technique can be adjusted by the polymerization in the presence halogen hydrocarbons. 대한민국 특허공개 제10-1985-0001782호에는 하이드로카르빌 첨가제를 함유하는 할로겐 촉매시스템에 의하여 열경화성 폴리디시클로펜타디엔을 제조하는 방법이 기술되어 있다. Republic of Korea Patent Publication No. 10-1985-0001782 discloses a method for preparing a heat-curable poly dicyclopentadiene is described by the halogen catalyst system containing hydrocarbyl additive. 일본 특개소 58-127728호 공보나 일본 특개소 58-129013호 공보에는 복분해 중합 촉매계의 촉매 성분 및 DCPD의 혼합물로 이루어지는 용액 A와 복분해 중합 촉매계의 활성화제 및 DCPD의 혼합물로 이루어지는 용액 B를 반응 사출 성형(reaction injection molding : RIM)법에 의해 가교 중합시켜 중합체 성형물을 제조하는 방법이 기재되어 있다. Japanese Patent Publication No. 58-127728 or Japanese Patent portion places Publication 58-129013 discloses a reaction injection solution B comprising the activator and the mixture of DCPD A solution of the metathesis polymerization catalyst system comprising the catalyst component of the metathesis polymerization catalyst system and a mixture of DCPD molding is polymerized by cross-linking (reaction injection molding RIM) method is disclosed a method for producing a polymer molded product. RIM은 주형 내의 중합화 공정을 뜻하는 것으로, 즉 두 개 또는 그 이상의 낮은 점도의 반응류를 혼합한 후 이 혼합물을 주형에 주입하여 빠르게 불용성 고체화하는 공정이다. RIM is a step to mean a polymerization process in the mold, that is, rapidly solidified insoluble by injecting the mixture into a mold after mixing two or more low viscosity of the reaction stream.

또, 일본 특개소 59-51911호 공보에는 텅스텐 및 몰리브덴의 유기 암모늄염으로부터 선택된 촉매 성분과 알콕시알킬 알루미늄 할라이드 및 아릴옥시 알루미늄 할라이드로부터 선택된 활성화제를 조합시킨 복분해 촉매계를 이용하여, 노르보르넨형 시클로올레핀을 반응 사출 성형하여 가교 중합체 성형물을 제조하는 방법이 기술되어 있다. Further, Japanese Patent Publication No. 59-51911, the portion by using a metathesis catalyst system a combination of an activator selected from the selected catalyst components and the alkoxy alkyl aluminum halide and aryloxy aluminum halide from the organic ammonium salts of tungsten and molybdenum, a norbornyl nenhyeong cycloolefin reaction injection molding is a method for preparing a crosslinked polymer molded article by technology.

또한, 일본 특개평 3-205409호 공보에는 육염화 텅스텐 및 옥시 사염화 텅스텐으로부터 선택된 촉매 성분과 염화 디에틸알루미늄 및 이염화 에틸알루미늄으로부터 선택된 활성화제를 조합시킨 복분해 촉매계를 이용하여, 반응 사출성형법으로 가교한 디시클로펜타디엔 중합체를 제조하는 방법이 기재되어 있다. Further, Japanese Patent Application Laid-Open No. 3-205409 Publication, the cross-linking, the reaction injection molding process using a metathesis catalyst system a combination of an activator selected from a catalyst component and diethyl aluminum chloride and ethyl aluminum dichloride selected from the six tungsten chloride and tungsten oxy tetrachloride a method for producing a dicyclopentadiene polymer is described.

이와 같이 복분해 촉매계를 사용하는 중합반응에서 촉매 성분은 활성화제에 의해 활성화되어, 디시클로펜타디엔 등의 노르보르넨형 시클로올레핀류를 개환 중 합시키게 된다. As such catalyst component in the polymerization using a metathesis catalyst system is activated by an activator, thus the sum of the norbornyl nenhyeong cyclo olefins such as dicyclopentadiene ring-opening. 또, 반응 사출 성형(RIM)법으로, 용액 A와 용액 B를 충돌 혼합하고 그 혼합액을 바로 금형 내에 액상 상태로 주입하여 괴상으로 개환 중합을 하게 된다. In addition, a reaction injection molding (RIM) method, mixing the solution A and the solution B is the collision and the ring-opening bulk polymerization by injecting a liquid state This mixture directly into the mold. 이와 같이 얻어지는 경화물의 기계적·전기적 특성 및 내수성 등의 물성이 우수한 것은 잘 알려져 있다. It is excellent in these cured physical properties such as water mechanical, electrical properties and water resistance is obtained, as is well known.

그러나 기존에 폴리디시클로펜타디엔 괴상 중합체의 제조에 사용되는 RIM 방법은, 활성화제로 사용되는 유기 알루미늄 화합물의 반응성이 높아 물이나 산소가 존재하면 바로 이들과 반응하여 촉매의 활성화 작용이 상실되는 문제가 있었다. However, RIM method used in the preparation of poly-dicyclopentadiene bulk polymer on the existing, upon increasing the reactivity of the organic aluminum compound is used an activator is water or oxygen is present the problem directly to these and reaction activating effect of the catalyst is lost there was. 따라서 RIM을 행하는 경우에는, 대기 중의 물이나 산소의 혼입을 가능한 한 배제하기 위하여 성형 재료(용액 A 및 B)를 불활성 가스로 채운 용기 중에 보관하거나, 분할형 금형을 폐쇄한 상태에서 형성되는 공간 중에서 중합을 시켜야 했다. Therefore, in case of RIM, the space is kept in a container filled with a molding material (solutions A and B) in order to rule out as far as possible water and oxygen contamination of the atmosphere with an inert gas, or formed in a state of closing the split type mold It had to be polymerized. 따라서 종래의 RIM법으로는, 성형 재료를 대기와 접촉시키면서 성형 형틀에 주입할 수 없어, 범용의 압축 성형법에 의해 성형품을 제조하는 것이 곤란하였다. Therefore, in the conventional RIM method, while in contact with the atmosphere the molding material can not be injected into the molding mold, it is difficult to prepare a molded article by compression molding a general-purpose.

대한민국 공개특허 제2001-0052342호에서는, 이러한 문제점을 해결하고자 특정한 메타세시스 중합 촉매를 사용하여 대기와 접촉이 가능한 통상의 작업 환경 하에서 폴리디시클로펜타디엔 중합 성형물을 얻을 수 있는 방법을 기술하고 있다. In the Republic of Korea Patent Publication No. 2001-0052342 discloses the use of such a problem in order to solve a specific metathesis polymerization catalyst, and describe a way to obtain a poly-dicyclopentadiene polymerization molding under normal working conditions the air and contactable . 그러나 이 방법에서 얻어지는 조성물도 대기와의 접촉이 가능해 졌을 뿐 조성물의 형태가 액상이라 최종 성형물을 얻는 방법은 종래와 같았다. However the composition obtained in this method, a method referred to as a form of only been possible in contact with the atmosphere the liquid composition to obtain a final formed product was as conventional.

본 발명은 폴리디시클로펜타디엔을 분말 소재로 만들어 압출 성형방법으로 각종 파이프 및 설비 부품 등을 용이하게 만들 수 있도록 하고, 동시에 소재의 기계적 특성, 열적 특성을 더욱 향상시켜 강철에 버금가는 정도의 강도에 반영구적 수명을 가진 부품 소재를 제공하는 것을 목적으로 한다. The present invention is poly-dicyclopentadiene to produce a powder material to be able to easily create a variety of pipes and equipment components such as methods extrusion, at the same time to further improve the mechanical properties, thermal properties of the material strength is approximately equivalent to a steel in part to provide a material with a semi-permanent life and purpose.

이를 위해 본 발명에서는, In the present invention, for this purpose,

디시클로펜타디엔에 촉매와 활성화제를 투입하여 선형 폴리디시클로펜타디엔(L-PDCPD)을 합성하는 단계; Dicyclopentadiene polyester and diene In the catalyst and the activator in the linear phase of synthesizing dicyclopentadiene (L-PDCPD);

상기 합성된 액상의 L-PDCPD 100 중량부에, 탄소나노튜브 또는 나노실리케이트 중에서 선택된 나노소재 0.01∼40 중량부를 분산시키는 단계; Dispersing 100 parts by weight of L-PDCPD of the synthesized liquid, nanomaterials from 0.01 to 40 parts by weight selected from the group consisting of carbon nanotubes or nano-silicate units;

상기 L-PDCPD와 나노소재의 혼합물을 감압 분무 건조시켜 용매를 증발시키고 나노소재가 함침된 복합체 분말을 얻는 단계; The L-PDCPD under reduced pressure and spray drying a mixture of nano-materials and the solvent was evaporated to obtain a composite powder of nano-material is impregnated; And

상기 복합체 분말을 압출성형하여 성형품을 제조하는 단계;를 포함하는 성형품의 제조방법이 제공된다. Preparing a shaped article by extrusion molding the composite powder; a method of making a molded article comprising a are provided.

또한 본 발명에서는, 상기와 같은 방법으로 제조된 폴리디시클로펜타디엔 복합체 분말을 이용한 성형품이 제공된다. In the present invention, a molded article using the poly dicyclopentadiene composite powder prepared by the same method as described above is provided.

기타 본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시에 의해 더 잘 알게 될 것이다. Other objects and advantages of the invention will be described below are, will find better by the practice of the invention.

본 발명의 폴리디시클로펜타디엔 복합체 분말을 이용한 성형품의 제조방법은, 디시클로펜타디엔에 촉매와 활성화제를 투입하여 선형 폴리디시클로펜타디 엔(linear polydicyclopentadiene : L-PDCPD)을 합성하는 단계; Method of using a poly-dicyclopentadiene composite powder of the present invention, the molded article is a dicyclopentadiene polyester and diene In the catalyst and the activator in the linear dicyclopentadiene di yen (linear polydicyclopentadiene: L-PDCPD) step for synthesizing; L-PDCPD에 나노소재를 분산시키는 단계; Dispersing nanomaterials in L-PDCPD; L-PDCPD와 나노소재의 혼합물을 감압 분무 건조시켜 용매를 증발시키고 나노소재가 함침된 복합체 분말을 얻는 단계; The L-PDCPD and a mixture of nano-materials were dried under reduced pressure spray and the solvent was evaporated to obtain a composite powder of nano-material is impregnated; 및 복합체 분말을 압출성형 단계를 포함한다. And the composite powder comprises extrusion step.

이하, 각 단계별로 상세히 설명한다. It will be described below in detail for each step.

L- PDCPD 를 합성하는 단계 Synthesizing the L- PDCPD

본 단계에서는 디시클로펜타디엔에 촉매 및 활성화제를 투입하여 용액 상태의 선형 폴리디시클로펜타디엔(L-PDCPD)을 합성한다. This is a step in the dicyclopentadiene added to the catalyst and the activator in pentadiene synthesizes the linear poly dicyclopentadiene (L-PDCPD) in solution. 촉매로는 텅스텐이나 몰리브덴의 할로겐화물 또는 옥시할로겐화물 등 디시클로펜타디엔의 개환 중합에 사용되는 것으로 알려진 공지의 촉매가 사용될 수 있다. Catalyst is a known catalyst known to be used in ring-opening polymerization of dicyclopentadiene, such as a halide or oxy-halide of tungsten and molybdenum may be used. 바람직하게는 촉매로 WCl 6 또는 WOCl 4 가 사용될 수 있다. It may preferably be a WCl 6 or WOCl 4 used as a catalyst. 촉매는 디시클로펜타디엔 100 중량부에 대하여 0.01 내지 10 중량부로 사용될 수 있다. The catalyst can be from 0.01 to 10 parts by weight based on 100 parts by weight of the dicyclopentadiene. 활성화제로는 종래에 유기 알루미늄 화합물이 주로 사용되어 왔으나, 본 발명에서는 테트라알릴실란을 활성화제로 투입하여 선형 폴리디시클로펜타디엔을 합성한다. Activator is wateuna the organoaluminum compound is usually used in the prior art, the present invention, the synthesis of poly-tetra allyl silane and an activator added linear dicyclopentadiene. 활성화제는 디시클로펜타디엔 100 중량부에 대하여 0.01 내지 10 중량부로 사용될 수 있다. Activators may be used from 0.01 to 10 parts by weight based on 100 parts by weight of the dicyclopentadiene. 테트라알릴실란은 촉매를 활성화시켜 디시클로펜타디엔의 이중결합이 살아있는 상태로 선형 폴리디시클로펜타디엔을 합성한다. Tetra allyl silane is to synthesize a linear poly dicyclopentadiene as a living state is a double bond in dicyclopentadiene to activate the catalyst. 바람직하게는 합성은 상온, 무산소조건에서 1∼10시간 진행시킨다. Preferably the synthesis is allowed to proceed at room temperature for 1-10 hours, oxygen-free conditions. 합성이 끝나면 선형 폴리디시클로펜타디엔이 용액상태로 얻어진다. After the composite is obtained as a linear poly-dicyclopentadiene this solution.

L- PDCPD 에 탄소나노튜브를 분산시키는 단계 Step of dispersing the carbon nanotubes in the L- PDCPD

상기 단계에서 얻어진 용액상태의 L-PDCPD에 복합소재를 고르게 분산 함침시킨다. Evenly to the composite material to L-PDCPD in solution obtained in the above step is impregnated with dispersion. 바람직하게는 복합소재 100 중량부에 탄소나노튜브 또는 나노실리케이트 중에서 선택된 복합소재 0.01∼40 중량부를 가하고 혼합하여 분산 함침시킨다. Preferably the composite material then 100 parts by weight of the composite material from 0.01 to 40 parts by weight of the impregnation dispersion was added a mixture selected from the group consisting of carbon nanotubes or nano-silicate. 나노소재의 양을 상기 범위를 넘어 사용할 경우에는 최종 소재의 물성에 바람직하지 않은 영향을 미치게 된다. When used beyond the amount range of the nano-material is mad is an undesirable effect on the properties of the final material.

분말 복합소재를 얻는 단계 Obtaining a composite powder

탄소나노튜브와 L-PDCPD의 혼합물을 감압하에 분무 건조시켜 용매를 증발시키고 탄소나노튜브가 함침된 분말 복합소재를 얻는다. By spray-drying the carbon nanotubes and a mixture of L-PDCPD under reduced pressure to evaporate the solvent and obtain a carbon nanotube powder impregnated composite materials. 바람직하게는 0.3∼1 기압조건으로 건조시킨다. Preferably from 0.3 to 1 and dried in air pressure conditions. 얻어진 분말 복합소재는 PDCPD와 탄소나노튜브 외의 다른 물질은 거의 포함하지 않는 순도 99% 이상의 고분자 복합 소재로, 이를 이용한 성형품은 연소나 파괴 소멸시에도 유독성 물질을 방출하지 않는다. The material is a composite powder obtained PDCPD and other materials are substantially pure polymer composite material of 99% or more do not contain other than carbon nanotubes, the molded product using the same does not emit toxic substances even when burned or destroyed destroyed.

압출성형 단계 Extrusion step

상기와 같이 제조된 L-PDCPD 분말에 가교제를 혼합하여 200∼400℃에서 압출성형하면 각종 파이프와 접속관(이음관) 등 원하는 다양한 형태의 성형품을 얻을 수 있다. When a mixture of the crosslinking agent to the L-PDCPD powder prepared as described above in the extrusion 200~400 ℃ can be obtained various types of molded article desired, various pipes and a connecting pipe (pipe joint). 가교제로는 알킬퍼옥시드; Cross-linking agents include alkyl peroxides; 삼차-부틸퍼시드; Tert-butylperoxy peroxide; DT-부틸퍼옥사이드 등의 파옥사이드나 2,5-디메틸-2,5-(삼차-부틸퍼옥시)헥시-3; DT- butylperoxy wave oxide or 2,5-dimethyl-2,5-oxide, such as (tert-butylperoxy) -3 hexynyl; 2,5-디메틸-2,5-3-(삼차-부틸퍼옥시)헥산 등이 단독으로 또는 함께 사용될 수 있다. 2,5-dimethyl--2,5-3- - such as (tert-butyl peroxy) hexane can be used alone or in combination. 분말 PDCPD를 압출성형하는 본 발명의 방법은 주로 폴리디시클로펜타디엔 소재의 각종 파이프, 특히 선박(조선)용 파이프, 담수플랜트용 파이프 등에 이용될 수 있고, 이밖에 소케이트, 곡관이경, 티이, 와이저 관 등 각종 접속관(이음관) 일체를 제조하는 데 이용될 수 있다. The method of the present invention for extrusion molding a powder PDCPD is mainly may be used poly dicyclohexyl various pipes pentadiene material, in particular ship (Korean) for a pipe, such as pipes for desalination plant, the only small Kate, bent pipe reducers, Chantilly, Budweiser various pipe connections, such as pipe (fittings), it can be used to manufacture the body.

본 발명에 따라 제조된 성형품은 강철에 버금가는 강성(충격강도)에 강철 무게의 1/7에 해당하는 정도의 경량성을 갖는다. The molded articles produced in accordance with the present invention has a light weight of approximately corresponding to 1/7 of the weight of steel to the stiffness (impact strength), comparable to that of steel. 또한 브롬, 염소 등의 화학약품에 대해서도 뛰어난 내부식성을 가지며, 탁월한 저온 내충격성을 갖고, 아울러 시공이 간편하며 시공에 소요되는 시간 또한 크게 단축되고, 50년 이상의 반영구적인 내구성을 지닌다. Also has excellent resistance to corrosion even for chemicals such as bromine, chlorine, have excellent in low-temperature impact resistance, as well as also being greatly reduce the time required for construction is simple and construction, and has a semi-permanent durability of more than 50 years.

이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. It will now be described in more detail the present invention through specific embodiments. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능한 것은 물론이다. But not necessarily the scope of the present invention by the following examples only, the invention within the equivalent scope of the claims to be described below and technical idea of ​​the present invention by those skilled in the art that belong It is of course possible various changes and modifications.

실시예 Example

(1) 디시클로펜타디엔 100g에 촉매 WOCl 4 0.5g 및 테트라알릴실란 0.5g을 투 입하여 20℃에서 6시간 반응시켜 용액 상태로 선형 폴리디시클로펜타디엔(L-PDCPD)을 합성하였다. (1) was synthesized from dicyclopentadiene in 100g catalyst WOCl 4 and 0.5g tetra allyl silane to the mouth-to 0.5g to 6 hours at 20 ℃ linear polyacid in solution, dicyclopentadiene (L-PDCPD).

(2) 합성된 용액상태의 L-PDCPD 100g에 탄소나노튜브 5g을 가하고 혼합하여 고르게 분산 함침시켰다. (2) mixing the carbon nanotubes was added to 5g L-PDCPD 100g of synthesis solution was evenly distributed impregnation. 본 실시예에서는 탄소나노튜브로 CVD(thermal chemical vapor deposition) 방법으로 합성된 MWNT(multiwalled carbon nanotubes)를 사용하였다. In the present embodiment it was used for the MWNT (multiwalled carbon nanotubes) synthesized by the CVD (thermal chemical vapor deposition) method of a carbon nanotube.

(3) 탄소나노튜브와 L-PDCPD의 혼합물을 0.5기압에서 분무 건조시켜 용매를 증발시키고 탄소나노튜브가 함침된 분말 복합소재를 얻었다. (3) to the carbon nanotubes and a mixture of L-PDCPD spray dried at 0.5 atm The solvent was evaporated to give a carbon nanotube powder impregnated composite materials.

(4) 상기에서 얻어진 분말 복합소재를 250℃에서 압출 성형하여 선박용 파이프를 만들었다. (4) extruding the powder obtained in the composite material at 250 ℃ made marine pipe.

시험예 Test Example

상기 실시예에서 제조된 PDCPD 소재 파이프의 물성을 측정하였다. The physical properties of the pipe material PDCPD prepared in Example were measured. 상기 실시예와 같은 규격으로 PP(polypropylene), ABS(Acrylonitrile Butadiene Styrene), FRP(G-30%), PC(Polycarbonate), 주철, 스텐레스스틸 소재의 파이프를 만들어 각각 비교예 1 내지 6로 하였다. A standard as described above in Example PP (polypropylene), ABS (Acrylonitrile Butadiene Styrene), FRP (G-30%), PC (Polycarbonate), cast iron, making the pipe of stainless steel was determined as Comparative Example 1-6, respectively. 결과는 다음 표 1 및 2와 같다. The result is shown in the following Tables 1 and 2.

실험결과, 본 발명에 따라 제조된 PDCPD-탄소 복합소재로 성형된 파이프는 일정 하중 하에서 온도에 따른 변형 저항성을 측정하는 열변형 온도(HDT, Heat Distortion Temperature)가 113℃로 나타났고, 상온에서의 충격강도에 있어서도 종래 PP 소재나 ABS 소재의 파이프에 비해 2배에서 많게는 3배 이상의 큰 강도를 나타냈으며, 금속과 비교해도 주철을 능가하고 스텐레스스틸에 버금가는 강도를 나타내었다. Experiments, appeared to present a pipe molded from the PDCPD- carbon composite material prepared in accordance with the invention, heat distortion temperature to measure the deformation resistance according to the temperature under a constant load is 113 ℃ (HDT, Heat Distortion Temperature), at room temperature also in the impact strength it showed a large strength as many as three times or more at the two times that of the conventional PP pipe material and ABS material, compared with the metal also exceeds the cast iron, and exhibited a strength comparable to stainless steel. 이밖에도 본 발명의 복합소재로 제조된 파이프는 뛰어난 내약품성과 탁월한 저온 내충격성을 갖는 것으로 나타났다. In addition the manufacture of a composite material of the present invention the pipe is shown to have excellent chemical resistance and excellent low-temperature impact resistance.

본 발명에서는 PDCPD를 분말화하여 압출성형이 가능하게 함으로써 PDCPD를 소재로 하는 각종 파이프나 각종 접속관(이음관) 일체를 범용 가공기술인 압출성형에 의해 용이하게 제조할 수 있도록 하며, 동시에 PDCPD의 분말화 제조과정에서 탄소나노튜브 등의 나노소재를 분산 함침시켜 소재의 강도를 크게 향상시킨다. The present invention, by pulverizing the PDCPD to be easily produced by a variety of pipes and various connecting pipe (fittings) extruded integrally multipurpose processing technology to the PDCPD by allowing the extruded material, at the same time of PDCPD powder by dispersing the impregnated nano-materials, such as carbon nanotubes on the screen manufacturing process, thereby greatly improving the strength of the material. 본 발명에 따른 폴리디시클로펜타디엔 분말 복합소재를 이용한 성형품은 스텐레스스틸 무게의 1/7에 해당하는 경량성으로 그에 버금가는 강성(충격강도)을 나타내며, 아울러 뛰어난 내약품성 및 내부식성과 탁월한 저온 내충격성 등의 특성을 지니고 있고, 종래 주철관 등에 비해 시공이 간편하고 시공에 소요되는 시간도 크게 단축할 수 있으며, 50년 이상의 반영구적인 내구성을 지닐 수 있다. Polyester according to the invention dicyclopentadiene powder composite molded article using a material represents the stiffness (impact strength) thus comparable to light weight corresponding to 1/7 of the weight of stainless steel, as well as excellent chemical resistance and corrosion resistance and excellent low-temperature It has the properties such as impact resistance, and can be constructed simple and also greatly reduce the time required for installation than the conventional cast iron pipe or the like, may have a more than 50 years of semi-permanent durability.

Claims (6)

  1. 디시클로펜타디엔에 촉매와 활성화제를 투입하여 선형 폴리디시클로펜타디엔(L-PDCPD)을 합성하는 단계; Dicyclopentadiene polyester and diene In the catalyst and the activator in the linear phase of synthesizing dicyclopentadiene (L-PDCPD);
    상기 합성된 액상의 L-PDCPD 100 중량부에, 탄소나노튜브 또는 나노실리케이트 중에서 선택된 나노소재 0.01∼40 중량부를 분산시키는 단계; Dispersing 100 parts by weight of L-PDCPD of the synthesized liquid, nanomaterials from 0.01 to 40 parts by weight selected from the group consisting of carbon nanotubes or nano-silicate units;
    상기 L-PDCPD와 나노소재의 혼합물을 감압 분무 건조시켜 용매를 증발시키고 나노소재가 함침된 복합체 분말을 얻는 단계; The L-PDCPD under reduced pressure and spray drying a mixture of nano-materials and the solvent was evaporated to obtain a composite powder of nano-material is impregnated; And
    상기 복합체 분말을 압출성형하여 성형품을 제조하는 단계;를 포함하는 성형품의 제조방법. Process for producing a molded article comprising a; a step of extrusion-molding the composite powder to prepare a molded article.
  2. 제1항에 있어서, 상기 활성화제로 테트라알릴실란을 사용하는 것을 특징으로 하는 제조방법. The method of claim 1, wherein the production method characterized by using a tetra allyl silane wherein the activator.
  3. 제1항 또는 제2항에 있어서, 상기 성형품은 파이프 또는 접속관인 것을 특징으로 하는 제조방법. 3. A method according to claim 1 or 2, wherein the molded article is produced wherein the official seals the pipe or connection.
  4. 제1항 또는 제2항의 방법으로 제조된 폴리디시클로펜타디엔 복합체 분말을 이용한 성형품. Claim 1 or the molded article by using a poly-dicyclopentadiene composite powder prepared by the method of claim 2.
  5. 제4항에 있어서, 상기 성형품은 파이프 또는 접속관인 것을 특징으로 하는 성형품. The method of claim 4, wherein the molded article is a molded article, characterized in that official seals the pipe or connection.
  6. 제5항에 있어서, 상기 성형품은 선박용 파이프 또는 담수플랜트 설치용 파이프인 것을 특징으로 하는 성형품. The method of claim 5, wherein the molded article is a molded article characterized in that the pipe vessel or desalination plant for installation pipes.
KR20060062824A 2006-07-05 2006-07-05 A production method of molded articles using thermosetting poly-dcpd complex powder KR100766466B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20060062824A KR100766466B1 (en) 2006-07-05 2006-07-05 A production method of molded articles using thermosetting poly-dcpd complex powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20060062824A KR100766466B1 (en) 2006-07-05 2006-07-05 A production method of molded articles using thermosetting poly-dcpd complex powder

Publications (1)

Publication Number Publication Date
KR100766466B1 true KR100766466B1 (en) 2007-10-12

Family

ID=39420115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20060062824A KR100766466B1 (en) 2006-07-05 2006-07-05 A production method of molded articles using thermosetting poly-dcpd complex powder

Country Status (1)

Country Link
KR (1) KR100766466B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159304B1 (en) 2008-12-30 2012-06-26 주식회사 도하인더스트리 A method for preparing L-PDCPD/silicate hybrid nano-complex by using in situ metathesis polymerization
KR101309035B1 (en) * 2012-09-13 2013-09-17 부산대학교 산학협력단 Method of manufacturing polymer/carbon nanotube composite, Method of manufacturing polymer/carbon nanotube composite thin film using the same
KR101818749B1 (en) 2017-08-24 2018-01-15 한국화학연구원 Carbon nanotube complex coated with dicyclopentadiene polymer and method for preparation of polydicyclopentadiene using the same as an additive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135829A (en) * 1987-11-24 1989-05-29 Teijin Ltd Crosslinked polymer molded product, production thereof and combination of reactive solutions
JPH06145247A (en) * 1982-01-25 1994-05-24 Hercules Inc Dicyclopentadiene polymer
US6331265B1 (en) 1999-05-18 2001-12-18 Atofina Research Reinforced polymers
US6465543B1 (en) 1998-03-16 2002-10-15 The Dow Chemical Company Polyolefin nanocomposites
US6740701B2 (en) 2001-10-25 2004-05-25 Cts Corporation Resistive film
WO2004074361A1 (en) 2003-02-18 2004-09-02 Union Carbide Chemicals & Plastics Technology Corporation Flame retardant composition
US6872791B1 (en) 2000-12-22 2005-03-29 Samsung Atofina Co. Ltd. Polyolefin nano-composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145247A (en) * 1982-01-25 1994-05-24 Hercules Inc Dicyclopentadiene polymer
JPH01135829A (en) * 1987-11-24 1989-05-29 Teijin Ltd Crosslinked polymer molded product, production thereof and combination of reactive solutions
US6465543B1 (en) 1998-03-16 2002-10-15 The Dow Chemical Company Polyolefin nanocomposites
US6331265B1 (en) 1999-05-18 2001-12-18 Atofina Research Reinforced polymers
US6872791B1 (en) 2000-12-22 2005-03-29 Samsung Atofina Co. Ltd. Polyolefin nano-composite
US6740701B2 (en) 2001-10-25 2004-05-25 Cts Corporation Resistive film
WO2004074361A1 (en) 2003-02-18 2004-09-02 Union Carbide Chemicals & Plastics Technology Corporation Flame retardant composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159304B1 (en) 2008-12-30 2012-06-26 주식회사 도하인더스트리 A method for preparing L-PDCPD/silicate hybrid nano-complex by using in situ metathesis polymerization
KR101309035B1 (en) * 2012-09-13 2013-09-17 부산대학교 산학협력단 Method of manufacturing polymer/carbon nanotube composite, Method of manufacturing polymer/carbon nanotube composite thin film using the same
KR101818749B1 (en) 2017-08-24 2018-01-15 한국화학연구원 Carbon nanotube complex coated with dicyclopentadiene polymer and method for preparation of polydicyclopentadiene using the same as an additive

Similar Documents

Publication Publication Date Title
Utracki Commercial polymer blends
Kim et al. Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods
Motta et al. Mechanical properties of continuously spun fibers of carbon nanotubes
US4840993A (en) Impact-resistant polyamide molding compounds
US20030180526A1 (en) Interfacial polymer incorporation of nanotubes
US20020095007A1 (en) Lewis acid-catalyzed polymerization of biological oils and resulting polymeric materials
Wang et al. Enhancement of the mechanical properties of poly (styrene-co-acrylonitrile) with poly (methyl methacrylate)-grafted multiwalled carbon nanotubes
Gauthier et al. Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices
Yang et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@ MOF-5 hybrid composite
US20100280151A1 (en) Toughened fiber reinforced polymer composite with core-shell particles
US3597403A (en) Novel catalysts for the ring-opening polymerization of unsaturated alicyclic compounds
US20080318026A1 (en) Method of modifying carbon nanomaterials, composites incorporating modified carbon nanomaterials and method of producing the composites
Wang et al. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene–vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends
WO1997020865A1 (en) Method for extending the pot life of an olefin metathesis polymerization reaction
CN101462889A (en) Graphene and carbon fiber composite material, and preparation thereof
Wang et al. Synthesis and characterization of poly (dimethylsilylene ethynylenephenyleneethynylene) terminated with phenylacetylene
Yang et al. Synthesis of novel sunflower-like silica/polypyrrole nanocomposites via self-assembly polymerization
WO2003060002A1 (en) Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
Park et al. A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites
Zheng et al. Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers
JP2005068386A (en) Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
EP0409291A2 (en) Thermoplastic resin composition
CN103980609A (en) Nanoparticle-containing polypropylene inside-kettle alloy capable of being used for 3D printing, and preparation method and application thereof
Shit et al. A review on silicone rubber
Wu et al. Calorimetric study of the effect of carbon fillers on the curing of epoxy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121002

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 9

R401 Registration of restoration