KR100706135B1 - 복수의 광빔으로 대상물을 이미징하는 방법 및 시스템 - Google Patents

복수의 광빔으로 대상물을 이미징하는 방법 및 시스템 Download PDF

Info

Publication number
KR100706135B1
KR100706135B1 KR1020007014009A KR20007014009A KR100706135B1 KR 100706135 B1 KR100706135 B1 KR 100706135B1 KR 1020007014009 A KR1020007014009 A KR 1020007014009A KR 20007014009 A KR20007014009 A KR 20007014009A KR 100706135 B1 KR100706135 B1 KR 100706135B1
Authority
KR
South Korea
Prior art keywords
light
deflector
beam splitter
beam deflector
coordinates
Prior art date
Application number
KR1020007014009A
Other languages
English (en)
Other versions
KR20010052731A (ko
Inventor
쿠오-칭 리우
Original Assignee
로보틱비젼시스템스인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로보틱비젼시스템스인코포레이티드 filed Critical 로보틱비젼시스템스인코포레이티드
Publication of KR20010052731A publication Critical patent/KR20010052731A/ko
Application granted granted Critical
Publication of KR100706135B1 publication Critical patent/KR100706135B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/106Scanning systems having diffraction gratings as scanning elements, e.g. holographic scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

회절 빔 스플리터는 광빔을 스플릿한다. 결과적인 빔은 빔 편향기에 의한 개체를 거쳐 지나가게 된다. 빔은 기계적으로 빔 편향 방향으로 가로질러 스캐닝된다. 위치 감지 장치는 입사빔으로부터 반사된 광을 수신하고 물체의 3차원 프로파일이 생성된다.
빔 편향기, 빔 스플리터, 다이오드 레이저, 감광 디바이스, 음향 광학 편향기

Description

복수의 광빔으로 대상물을 이미징하는 방법 및 시스템{METHOD AND SYSTEM FOR IMAGING AN OBJECT WITH A PLURALITY OF OPTICAL BEAMS}
본 발명은 대상물의 선택된 특징을 이미징하는 방법 및 시스템에 관한 것이다. 특히, 본 발명은 대상물의 특징에 관한 3차원 데이터를 수집하고, 이러한 데이터를 이용하여, 예를 들면, 특징의 크기 및 상대적 위치를 결정하는 것에 관한 것이다.
과거 수년간에 걸쳐, 반도체 칩이 심각하게 복잡해지고 있다. 이러한 복잡성의 증가로 인해 각 칩 패키지에 필요한 입출력 리드 또는 콘택트의 개수가 증가되었다. 또한, 이러한 복잡성의 증가와 칩 제조 시간을 단축시키고자 하는 부단한 요구에 의해, 칩 패키지를 보다 신속하고 정확하게 검사하는 방법 및 시스템이 요구된다.
칩 패키지를 검사하기 위해, 레이저 광학 삼각측량(laser optical triangulation)법을 이용한 3차원 레이저 빔 센서 시스템을 이용하고 있다. 이 시스템은 반도체 다이오드 레이저, 빔 편향기 (예를 들면, 음향 광학 (AO) 편향기, AO 변조기로도 불리움) 및 위치 감지 디바이스(PSD)로 구성된다. 레이저 다이오드는 측정을 위한 광원을 제공한다. 빔 편향기는 레이저 빔을, "스위프(sweep)" 방향을 따라 목표 대상물을 "스위프"하도록 배향시킨다. "스위프" 및 "스캔(scan)"이라는 용어는 상호 교환하여 사용하는 경우도 있다는 것을 알게 될 것이다. 그러나, "스위프"는 여기서는 통상 빔 편향기, 또는 AO 편향기에 의해 생성된 특정한 "스캐닝"을 일컫는데 사용될 것이다. 따라서, 전체 목표 영역을 커버하기 위해서는, 이러한 시스템은 AO 스위프 방향에 수직하는 방향에 있는 센서 시스템의 또는 동등하게 목표 대상물의 기계적 스캔, 병진이동(translate)에 따라 좌우된다. PSD는, 대상물 전체 또는 선택된 부분에 대한 이미지 기록이 수집될 때가지 각 스캔 포인트에 있는 목표 대상물의 높이를 측정하고, 데이터를 저장한다. 그 다음, 저장된 이미지 기록을 대상물 또는 선택된 부분에 대한 제조 업자의 설계 명세서와 비교하여 대상물이 설계 명세서를 충족하는지의 여부를 결정한다.
여기에 참조로서 포함된 Costa 외 다수에게 허여된 미국 특허 제5,554,858 ("'858 특허")호는 이러한 시스템의 일종을 개시하고 있다. 대상물을 조사하고 AO 편향 방향을 따라 스위프하기 위해, AO 편향기와 결합된 레이저 광원이 배치된다. 상업용의 선형 동작표가 횡방향 스캐닝 병진이동을 제공한다. 입사빔의 양측에는 샘플로부터 반사되어 렌즈에 의해 PSD로 이미징되는 광을 수광하기 위한 PSD 센서가 배치되어 있다. 또한, '858 특허는 다채널 PSD를 이용하여 이미징 데이터를 수집한다. PSD는 그 길이를 따라 떨어지는 광 스폿의 위치에 비례하는 아날로그 출력 전류비를 제공한다. 다채널 PSD는 세그먼트화된 감광성 영역을 갖는데, 다수의 세그먼트는 다수의 데이터 채널을 포함한다. 선택적인 샘플링 기법을 이용하는 경우, 다채널 PSD가 스트레이 또는 다수의 반사된 광의 영향을 저감할 수 있다.
여기서 참조로서 포함된 Liu 외 다수에 의한 미국 특허 출원 제08/680,342호 ("'342 출원")는 이러한 종류의 또 다른 시스템을 개시하고 있다. '342호 출원은 광학 삼각 측량 기법을 이용한 또 다른 스캐닝 시스템을 개시한다. 이 시스템은 레이저 빔 및 AO 편향기 및 1개 이상의 감광성 소자를 이용하여 목표 대상물로부터 (입사광원의 축으로부터) 축 방향에서 벗어나서 반사된 광을 수집한다. 또한, 이 시스템은 입사 빔의 광 경로에 있는 편광 빔 스플리터를 이용하여 목표 대상물로부터 공축 방향으로 반사된 광을 세기 측정을 위해 광 다이오드로 배향시킨다.
상술한 바와 같은 종래의 3차원 스캐닝 시스템에서는, AO 편향 스와스(swath)가 AO 장치의 유한 대역폭에 의해 제한된다. AO 장치는 압전 신호 변환기에 의해 초음파 음성파를 적당한 결정 재료에 인가함으로써 광 빔을 편향시킨다. 이 결과 결정 내의 음성파는 단일 파장의 광의 입사빔의 단편(fraction)을 회절시키는 데 사용되는 결정의 굴절률에 주기적 변동을 생성한다. 단일 파장의 광의 입사빔의 단편을 1차 회절 출력이라고 부른다. RF 신호가 인가되지 않으면, AO 장치로부터 0차 비회절 입사빔만이 출사할 것이다.
입사 빔 방향으로부터의 1차 출력의 회절각 θ는 대략 다음과 같이 주어진다.
Figure 112000026246420-pct00001
여기서, λ는 대기중에 측정된 입사 빔의 파장이고, f는 음성파의 초음파 주파수이며, V는 음성파의 초음파 속도이다. 당업자는 수학식 1로부터, 회절각 θ가 초음파 주파수 f에 의해 직접 변화한다는 것을 이해할 것이다. 따라서, 프로세스가 선형적이기 때문에, AO 회절각 범위 또는 "스위프 각" 범위, Δθ는 초음파 주파수, Δf의 변화에 비례하고, 따라서 Δθ는 다음과 같다.
Figure 112000026246420-pct00002
1차 출력은 초음파 구동 주파수를 연속적으로 변화시킴으로써 AO 스위프 각 범위를 통해 AO 편향기로 신속하게 "스위프"될 수 있다. 수학식 2는 최대 AO 스위프각 범위가 AO 편향기에서 사용될 수 있는 주파수의 대역폭, 또는 범위에 의해 제한된다는 것을 도시한다. 따라서, AO 대역폭이 작아질수록, 동반하는 AO 스위프 각이 작아지고, 소정 영역의 측정을 완료하는데 요구되는 기계적 스캔이 많아진다. 예를 들면, 하나의 빔으로 스캐닝하는 AO 편향기에 의해 12"×8" 볼 그리드 어레이 트레이 또는 8" 플립 칩 웨이퍼를 커버하기 위해서는, 수백번의 평행 기계적 스캔이 필요한 경우가 있다.
회전 다변형 스캐너 또는 검류계 미러 등의 다른 빔 편향기는 유한한 시간 내에 유한 각도를 통해 빔을 스위프할 수도 있다. 이러한 장치들의 속도 제한은 이들이 동작하는 임의의 스캐닝 시스템의 동작에 속도 제한을 부과한다.
또한, 종래의 PSD를 이용한 시스템의 속도는, PSD 및 관련 전자 기기의 디자 인 및 물리적 파라미터에 의해 제한될 것이다. 당 기술의 PSD의 현 상태는 각각 수백 나노 세컨드의 상승 및 하강 시간을 가질 수 있다. 따라서, 실시간 3D 센서로부터의 최대 쓰루풋은 AO 편향기 및 PSD 양자의 대역폭에 의해 제한된다.
본 발명은 대상물의 특징을 신속하고 정확하게 측정하는 시스템에 관한 것이다. 예시적인 실시예에서는, 목표 대상물에 입사하는 다수의 레이저 빔에 의해 대상물을 동시에 스캐닝하고, 입사한 상기 다수의 레이저 빔으로부터의 데이터를 수집하는 시스템이 제공된다. 구체적으로는, 다수의 레이저 빔은 빔 편향기에 의해 샘플을 가로질러 스위프되고, 다수의 반사된 빔은 목표 대상물의 3D 프로파일의 결정을 위해 1개 이상의 PSD 상으로 이미징된다.
본 발명의 예시적인 실시예에 따르면, 먼저, 빔 편향기를 통해 광원이 전사된다. 그 다음, 이렇게 편향된 빔은 당 분야에서 회절 격자라고도 알려진 회절 빔 스플리터(DBS)로 향해진다. DBS는 빔을 다수의 차수로 회절시키도록 설계되어 있다. 이 결과의 다수의 빔은 목표 대상물에 집속되고, 대상물 상의 알려진 X-Y 위치의 충돌 지점에 다수의 스폿을 형성한다. 다수의 레이저 빔은 대상물에 의해 반사되고, 이렇게 반사된 광은 1개 이상의 다채널 PSD로 이미징된다.
만약 AO 편향기가 예를 들어 DBS로 사용되고, DBS의 인접 회절 차수의 분리가 AO 스위프 각 범위 Δθ 이거나 약간 작도록 장치가 선택된다면, 레이저 스캐닝에 의한 연속적인 각 범위가 될 것이다. 조합 장치의 전체적인 각 범위는 "n"배의 Δθ가 될 것이며, 여기서 "n"은 0번째 차수를 포함하는 DBS에 의해 생성된 회절 차수의 총수이다. 전형적인 DBS는 리소그래피 기술에 의해 컴퓨터 생성 마스크로 제조된다. 통상의 DBS는 공간 및 에너지 분포 모두에서 도트 패턴이 균일하게 수에서 수십의 회절 차수까지 가질 수 있다. 그러므로, 본 발명의 예시적인 실시예는 목표를 교차하여 동시에 스캔하는 다수의 고르게 분리된 레이저 스폿을 제공한다.
하나 이상의 PSD에 의해 발생된 아날로그 신호는 반사 광이 PSD 상에 초점이 맺히는 지점과 관련된다. 이들 신호는 대상물 상으로 소스 레이저 빔의 충돌 지점에서 대상물의 Z 좌표(즉, 높이)를 계산하는데 사용된다. 이들 좌표는 표준 광 삼각 측량 원리를 이용하여 계산된다. 다음 예를 들어 볼 그리드 어레이(ball grid array)와 같은 장치 상의 각 솔더 볼 또는 범프가 정확한 높이인지를 결정하기 위해 패키지 장치에 대한 제조자의 설계 명세서와 3차원(3D) 정보가 비교될 수 있다. 추가적으로, 정보는 볼 꼭대기의 공면 및/또는 기판의 휨(warpage)을 결정하는데 이용된다.
본 발명의 상기 특징 및 다른 특징은 첨부 도면과 관련하여 설명된 예시적인 실시예에 관한 다음의 상세한 설명으로부터 보다 명백해질 것이다.
도 1은 단일 채널 PSD 시스템을 이용하는 종래 스캐닝 시스템의 도면.
도 2는 다중 채널 PSD를 이용하는 종래 스캐닝 시스템의 도면.
도 3은 위치 감지 검출기외에, 몇몇 광 검출기와 조합하여 편광 빔 스플리터를 이용하는 종래 시스템의 도면.
도 4는 본 발명의 예시적인 실시예를 도시하는 도면.
도 5는 입사 레이저 빔에 대한 회절 빔 스플리터(DBS)의 효과를 도시하는 도면.
도 6은 입사 레이저 빔에 대한 음향 광학(AO) 편향기 및 DBS의 효과를 도시하는 도면.
도 7은 본 발명의 제2 예시적인 실시예를 도시하는 도면.
도 8은 광 삼각 측량용 광 검출기 상으로의 대상물 높이의 이미지를 도시하는 도면.
도 9는 다중 채널 PSD 상으로의 다중 반사 레이저 빔의 이미지를 도시하는 도면.
도 10은 다중 채널 PSD 상으로의 다중 반사 레이저 빔의 이미지에 대한 상세 도면.
도 11은 본 발명에 따른 방법 실시예의 순서도.
도 12는 본 발명에 따른 또 다른 방법 실시예의 단계를 도시하는 도면.
도면, 우선 도 1을 참조하면, 전형적인 종래의 스캐닝 시스템이 도시되어 있다. 광원인 레이저(101)가 대상물 평면(103)에 위치한 대상물(102)를 스캐닝하도록 위치한다. 레이저(101)로부터의 레이저 빔(106)은 AO 변조기(105)를 통과하여 나아간다. 고정 0차 빔(106)은 AO 편향기(105)로부터 배출되어 버려진다. RF 신호원(107)에 의해 구동될 때, 1차 편향 빔(108)이 AO 변조기(105)로부터 Y-Z 평면에서 출현하고 광학 시스템(109)을 통해 초점이 맞추어져서 대상물(102) 상의 스폿(110)에 부딪친다. 연속적으로 주파수 시프트된 RF 신호원(107)에 의해 구동될 때, 빔(108)은 (편의상 도시되지 않은) 대상물(102)에 대한 유한 선 세그먼트를 X-Y 평면의 Y를 따라 스위프한다. 레이저 빔(108)은 대상물(102)로부터 산란된다. 산란 광(111 및 112)은 광 시스템(113 및 114)에 의해 각각 집광되어 각 단일 채널 PDS(115 및 116) 상에 초점이 맞추어진다. 이미지 높이(Z-좌표)는 다음 표준 광학 레이저 삼각 측량 기술을 이용하여 초점 반사 광이 PSD에 부딪치는 곳에 기초하여 계산된다. 빔(108)에 의해 스위프된 유한 선 세그먼트는 AO 변조기(105) 스캐닝 방향인 Y 방향에 수직인 X-방향으로 기계적으로 스캐닝되어, 대상물(102)의 모든 소정 영역에 대한 3D 데이터를 수집한다. 이러한 시스템은 AO 변조기(105)의 스캐닝 속도 및 스캐닝 각과 두개의 PSD(115 및 116)의 응답 시간에 의해 수집 속도가 제한된다.
유사한 종래 스캐닝 시스템이 도 2에 도시된다. 이러한 시스템은 '858 특허에 설명된 바와 같이 PSD(215 및 216)가 다중 채널 유닛인 점에서 도 1의 시스템과 다르다. 이러한 시스템은 또한 AO 편향기(205)의 스캐닝 속도 및 각에 의해 제한된다.
제3 종래 스캐닝 시스템이 도 3에 도시되어 있다. 광원(301)은 도시되지 않은 동작 시스템에 의해 위치지정되어 대상물(302)를 조사한다. 광, 예를 들어 레이저 빔(303)은 1차(또는 대안적으로 마이너스 1차)로 레이저 빔(303)을 선택적으로 편향시키는 AO 편향기(304)로 향하게 된다. 편향되지 않은 0차는 도면에서 무 시된다. AO 편향기와 조합된 운동 시스템은 스캐닝 시스템이 대상물(302)의 선택 영역을 스캐닝할 수 있게 한다.
AO 편향기(304)로부터 레이저 빔(303)은 (예를 들어, 두개의 평철(planoconvex) 실린더형 렌즈, 및 반파장판으로 이루어진) 광학 시스템(306)을 통해 편광 빔 스플리터(305)를 향하게 된다. 편광 빔 스플리터(305)는 X 방향으로 편광되는 광을 반사한다. 레이저 빔(303)은 초기에 Y 방향으로 되는 편광을 가지기 때문에, 레이저 빔(303)의 대부분은 빔 스플리터(305)를 통과한다. (레이저 빔(303)의 작은 부분은 선택적인 정상화를 위한 광 다이오드 어레이(319)를 향하게 된다) 빔 스플리터(305)로부터, 레이저 빔(303)은 (선형 편광 광을 회전 편광으로 변경시키는) 1/4 파장판(307)을 통과하고, 광 시스템(308)을 통과하여 나아가서 집속되어 공지된 X-Y 위치에서 대상물(302)에 대한 충돌 지점에 초점 스폿(309)을 형성한다.
대상물(302)을 초점 스폿(309)에 충돌시키는 레이저 빔(303)이 반사된다. 레이저 빔(303)(310, 311)에 대해 오프축으로 반사된 광은 (예를 들어, 두개의 렌즈로 이루어진) 두개의 광학 시스템(312 및 313)을 통해 PDS(314 및 315)와 같은 두개의 감광 장치 상에 집속된다. 반사광이 PDS(314 및 315)에 충돌하는 검출 위치에 관련된 PDS(314 및 315)에 의해 발생된 아날로그 신호가 도시되지 않은 프로세스 전자 장치에 전송된다.
역반사광이 또한 검출되고 (3D 데이터를 수집하는 것과 동시에) 측정된다. 특히, 초점 스폿(309)으로부터 광원(301)을 향해 역으로 반사된 광, 즉 역반사광이 광학 시스템(308) 및 1/4 파장판(307)을 통해 빔 스플리터(305)로 나아가서 집속된다. 1/4 파장판(307)은 역반사광의 편광을 선형 편광으로 변경시키고 편광 방향은 X 방향이다. 따라서, 빔 스프리터(305)는 (예를 들어, 무색 렌즈로 이루어진) 광학 시스템(316)을 통해 역반사광을 광 다이오드 어레이(317) 상으로 반사한다. 광 다이오드 어레이(317)에 충돌하는 광의 세기 및 선택적 정상화 광 다이오드(319) 세기에 관련된 광 다이오드 어레이(317)에 의해 발생된 아날로그 신호가 프로세스 전자 장치에 전송된다.
감광 디바이스, 즉 PSD(314, 315) 및 광 다이오드 어레이(317, 319)로부터의 아날로그 신호는 프로세스 전자 장치에 의해 처리되고 분석된다. 특히, 이 아날로그 신호는 (A/D/ 변환기를 거쳐) 디지털 신호로 변환된다. 전술한 바와 같이 PSD(314, 315)로부터 수신된 데이터로부터 Z 좌표가 결정된다. 포토 다이오드 어레이(319)로부터 수집된 데이터(즉, 소스 레이저 빔의 세기를 나타내는 데이터)는 포토 다이오드 어레이(317)에 의해 수집된 데이터를 정규화하는데 사용된다(레이저 출력이 변동하는 경우에 데이터의 정확도를 유지하기 위함). 그 다음, 프로세스 전자장치(도시되지 않음)가 포토 다이오드 어레이(317, 319)로부터의 데이터, Z 좌표 및 X 및 Y 위치를 데이터 패킷으로 조합하여 이 패킷을 컴퓨터로 전송한다. 컴퓨터는 패킷을 수신하여 대상물(302)의 X-Y-Z 프로파일을 계산한다.
이러한 종래의 스캐닝 시스템은 또한 한정된 스캔 속도 및 AO 편향기의 각도에 의해서도 제한된다. 또한, 종래 시스템의 편광 빔 스플리터는 목표 대상물에 조사할 다중 빔을 발생시키지 못한다는 것을 알 수 있다. 편광 빔 스플리터는 주 로 입사 레이저 빔과 공통 축 방향으로 목표 대상물로부터 역반사된 광의 검출을 행하는 기능을 한다.
실시예
도 4는 종래 기술의 몇가지 결함을 극복한 본 발명의 실시예의 도면이다. 광원(401), 예컨대 SDL-5400 반도체 다이오드 레이저(파장 830nm, TEM00 모드 공간 분포를 가짐)가 목표 대상물(402)의 조명광을 제공하도록 모션 시스템(도시되지 않음)에 의해 배치된다. 광원(401)으로부터의 레이저 빔(403)이 광학 시스템(404), 예컨대 f=5mm 렌즈에 입사되어, 광학 시스템(404)에 의해 시준되어 AO 편향기(405)에 입사된다. AO 편향기(405)로부터의 1차 편향 빔(403A)이 RF 구동 주파수(예컨대 f=120 내지 240MHz) 및 편향기 재료, 예컨대 PbMoO4에 의해 정해지는 한정된 스위프 각, 예컨대 1.5도로 스캐닝된다. 편향되지 않은 0차 빔은 도면에서 제외되어 있다. 시간에 따른 빔(403A)의 편향은 도 3에 도시되어 있지 않다. 즉, 빔은 도면에서 한 순간의 상태이다. 광학 시스템(406), 예컨대 f=20mm 렌즈는 편향빔(403)을 회절 빔 스플리터(407)(DBS) 위에 이미징한다. 광학 시스템(406)은 AO 편향기(405) 및 DBS(407)가 상호 켤레 평면을 형성하여 편향 및 회절될 광이 효과적으로 공통 위치에 있을 수 있도록 배치된다.
편향(도시되지 않음) 및 회절된 빔(408)은 광학 시스템(409), 예컨대 f=40mm 렌즈에 의해 목표 대상물(402) 위에 집속된다. 광학 시스템(411), 예컨대 f=25mm 렌즈는 각 회절 차수로부터 반사된 광(410)을 다중 채널 PSD(412) 내의 개별 PSD 채널에 이미징한다. 이 실시예에서는 각 회절 차수에 대응하는 PSD 채널이 존재한다. 예컨대 DBS로부터 출력되어 목표 샘플에 입사되는 n개의 레이저 빔(408)이 존재하는 경우, n개의 PSD 채널이 존재한다. 물론, 다른 실시예에서는 회절 차수의 일부가 무시될 수 있다. 다중 채널 디지탈 프로세서(413)가 다중 채널 PSD(412)로부터 신호를 수신하며, 각 PSD 채널의 데이터는 그 자신의 전자 장치에 의해 동시에 처리된다. 모션 기구(도시되지 않음)가 AO 편향기와 함께 레이저 빔(408)이 입사되는 대상물(402) 상의 X-Y 위치를 정확히 결정한다(X-Y 위치를 빠르게 바꿀수도 있다). 각 채널로부터의 데이터 결과가 조합되어 3D 측정을 완성하기 위한 전체 데이터 파일을 형성한다.
전술한 바와 같이, 수십개의 출력 차수를 가진 DBS가 시장에서 입수될 수 있다. 따라서, n은 DBS 출력에 맞도록 수 내지 수십일 수 있다. 도면은 간략화를 위해 낮은 차수의 DBS 유닛의 사용을 나타내고 있으나 본 발명의 가능한 실시예를 제한하려는 의미는 아니다.
도 5는 입사 레이저 빔(502)에 대한 DBS(501)의 영향을 나타낸다. 도면은 5개의 출력 빔(+/- 2차 및 0차)으로 분할된 단일 입사빔을 나타낸다. 도 6은 AO 편향 빔을 3개의 출력 빔을 위해 DBS로 입사시킨 결과를 나타낸다. 편향된 빔(601)은 DBS(602)에 입사되는데, AO 편향기(도시되지 않음) 및 DBS(602)는 이웃 편향 차수들간의 회절빔 각 분리가 AO 편향빔(601)의 스캔 각도(DBS(602)의 0차(603)로 도시됨)와 실질적으로 동일하도록 선택되었다. 도 6은 플러스 1차(604), 0차(603) 및 마이너스 1차(605)의 커버리지의 연속성을 나타낸다. 따라서, 편향 및 회절된 빔은 목표 AO 스캔 방향으로 연속적인 각도 커버리지를 스위핑한다.
도 7은 본 발명의 다른 실시예를 나타내는 도면이다. 광원(701)이 대상물(702)의 조명광을 제공하도록 배치된다. 광원(701)으로부터의 광빔(703)이 광학 시스템(704), 예컨대 f=50mm 렌즈로 입사되고 이 광학 시스템에 의해 시준되어 AO 편향기(705)로 입사된다. 1차 편향빔(706)이 광학 시스템(707)에 의해 DBS(708)에 집속된다. 편향되지 않은 0차 빔(도시되지 않음)은 사용되지 않는다. DBS(708)는 빔을 예컨대 도시된 바와 같이 3차로 분할한다. 결과적인 다중 빔(709)이 광학 시스템(710)에 의해 목표 대상물(702)에 입사된다. 반사광은 광학 시스템(711, 712), 예컨대 f=25mm 렌즈에 의해 각각 다중 채널 PSD(713, 714)에 이미징된다. 다수의 다중 채널 PSD 데이터가 도 4와 함께 설명된 방식으로 처리되어 3D 측정을 위한 데이터 파일이 형성된다.
또 다른 실시예에서 빔 스플리터는 부분 반사 미러, 예컨대 유전체 코팅된 미러 또는 부분 금속화된 미러 또는 이들 중 하나가 조합된 시스템일 수 있다. 단일 입력 빔으로부터 목표 대상물에 입사하기 위한 다수의 광빔을 생성할 수 있는 임의의 구조의 광학 소자는 본 발명에서 사용되는 용어 "빔 스플리터"의 범위 및 사상 안에 포함된다. 하나의 유전체 코팅된 미러를 사용하는 실시예(도시되지 않음)에서 미러는 입사빔에 대해 일정 각도로 배치되어 적당한 각도로 분리된 2개의 출력 빔이 생성되고 실질적으로 다른 실시예에 관하여 설명된 바와 같이 입사된다. 적당히 코팅된 미러 소자의 선택 및 배치는 본 명세서를 참조할 때 당업자에게는 일상적인 문제이다.
또 다른 실시예에서 빔 편향기는 AO 편향기 대신에 회전 다각형 스캐너 또는 검류계 미러이다. 이들 빔 편향기 각각은 각각의 유한 스위프 각을 갖고 있다. 당업자는 본 명세서를 참조할 때 본 발명에 따른 목표 빔 편향 방향에서의 연속적인 각도 스캐닝 커버리지를 제공하도록 빔 편향기 및 DBS를 선택할 수 있을 것이다.
또 다른 실시예에서 PSD는 전하 결합 소자(CCD) 어레이로 대체될 수 있다. 공지된 방식으로 CCD 상의 광전하를 판독하기 위하여 외부 클럭 펄스가 사용된다.
또 다른 실시예에서 CCD는 데이터 픽셀의 임의적인 어드레스 성능을 제공하는 용량성 CMOS 소자 어레이로 대체될 수 있다. CMOS 어레이 상의 광 세기 분포는 픽셀 어레이의 계조 레벨로부터 측정될 수 있다. 목표 높이는 국소 최대값 또는 최대 기울기 값으로부터의 광 분포로부터 구할 수 있다. CMOS 어레이는 임의의 행 또는 개별 픽셀의 판독을 허용하기 때문에 빔 스캔 위치를 각각의 입사 레이저 스폿에 대한 CMOS 이미징 위치와 상관시킴으로써 픽셀 행의 단일 행으로부터 높이가 결정될 수 있다.
대상물의 높이 결정
다중 채널 PSD를 이용한 대상물 높이(Z 높이) 데이터의 결정에 적용되는 광학 삼각측량의 원리가 도 8 및 9에 개략적으로 도시되어 있다. 광빔(801)이 광학 시스템(802)에 의해 집속되어 목표 평면(803)에 기저부가 위치하는 대상물에 입사된다. 대상물로부터 산란된 광이 광학 시스템(804)에 의해 광검출기, 예컨대 단일 채널 PSD(805) 위로 집속된다. 원하는 데이터는 목표 높이(△Z)이다. 각도(θ)는 입사 레이저 빔(801)과 광학 시스템(804)의 시야각 사이의 분리각이다. 도 8에서 대상물의 높이가 Z축을 따라 △Z일 때 PSD(805) 상의 세기 중심의 영상 변위는 기하 광학의 기본 원리에 따라 △C(중심에 대해)이다. 도 8a 및 8b에서, 광학 시스템(804)과 목표 평면(803, 805)의 물체 기준 위치 각각 사이가 분리되어 있다. 얇은 렌즈에 대한 이미징 공식에 기초하여, ΔZ와 ΔC는 식 (3)에 따른 관계에 있다.
Figure 112000026246420-pct00003
(3)
PSD(805)는 두 광전류를 생성하는데, 광전류의 상대값 I1 및 I2가 당업자에 의해 이해되는 방식으로 PSD(805)의 이미지 평면에서 변위 ΔC와 관련된다. 특히, ΔC는 등식(4)로부터 PSD(805)의 정규 차등 광전류로부터 결정될 수 있다.
Figure 112000026246420-pct00004
(4)
따라서, 물체의 높이(ΔZ)는 도시된 바와 같이 삼각 측량 광학의 배치와 검출로 측정될 수 있다.
도 9 및 도 10은 본 발명의 대표적인 실시예에서 도시된 바와 같이 도 8의 기술의 확장을 다수의 입사 레이저 빔으로 설명한다. 다수의 레이저 빔은 DBS(901)를 나와서 물체(903)위로 광학 시스템(902)에 의해 집속된다. 레이저 빔은 Y방향에서 일정한 간격(ΔY)으로 떨어져 있다. 각 입사 지점으로부터 확산된 광은 광검출기(905) 예컨데, 다채널 PSD위로 광학 시스템(904)에 의해 집속된다. 다채널 PSD(905)의 각 채널은 대응하는 빔 지점에서 광을 검출하여 채널 간격 ΔY' 가 식(5)과 같이 선택되는 경우 그 지점에서 높이를 결정한다.
Figure 112000026246420-pct00005
여기에서, Mo는 물체 표면으로부터 광검출기 평면으로의 광배율이다. ΔY는 전술된 바와 같이 DBS와 빔 편향기의 조합을 선택함으로써 선택된다. 한 물체 지점에서 Z 높이(ΔZ)(906)는 광검출기(905)의 한 채널상에서 광학 시스템(904)에 의해 대응하는 ΔC(907)로 변형된 것으로 설명된다. 따라서, 각 채널의 ΔC 데이터로써, ΔZ는 본 발명에 따라 다채널의 각각에 대해 동시에 획득될 수 있다.
3D 데이터의 획득
3D 물체 데이터를 얻기 위한 방법이 도 11을 참조하여 설명될 것이다. 도 11은 단일 채널 PSD에 대한 데이터를 얻기 위한 단계들을 설명한다. 다채널 PSD가 이용되는 경우, 도 11의 단계들은 각 채널에 대해 병렬로 수행된다. 스캐닝이 시작된 후에(단계 1101), 갠트리 스테이지(gantry stage) 인코더는 판독되어(단계 1102), X위치와 초기 Y위치(Y0)를 결정한다. 빔 편향기 예컨데 AO 편향기에 의한 Y변위인 y가 판독된다(단계 1103). 조합된 Y위치(Y1)가 초기 Y위치(Y1)와 빔 회절기 Y 변위(y)로부터 계산된다(단계 1104). 광 세기 데이터는 예컨데 PSD 채널로부터 판독된다(단계 1105). 검출기 평면 세기 중심(C)은 세기 데이터로부터 계산된다(단계 1106). 물체 높이(Z) 데이터는 등식(3, 4)으로 전술된 분석에 따른 세기 중심과 룩업 테이블로부터 결정된다. 물체(X, Y, Z)의 데이터 즉, Z(X, Y), 소정의 X, Y지점에서의 물체 높이가 형성된다(단계 1108). X, Y, Z 데이터는 3D(X, Y, Z) 데이터 파일에서 다른 데이터로 수집된다(단계 1109). 3D 데이터 파일 포맷의 특정한 선택은 이 개시물의 이점이 있으면 당업자에게 프로그램밍하는 일상적인 문제가 될 것이다. 결정시에(단계 1110), 모든 원하는 데이터가 획득되는지가 결정된다. 더 많은 데이터가 요구되면, 데이터 획득이 반복된다(단계 1111). 모든 요구된 데이터가 획득되면, 데이터는 원하는 특정 데이터를 추출하도록 분할될 수 있고(단계 1112), 합당한 특정 차원을 계산한다(단계 1113).
3D 데이터의 분석
본 발명의 대표적인 실시예에서, 3D 데이터는 분석되어, 예컨데 i)장치상의 각 솔더(solder) 볼의 높이 및 ii) 디바이스 공면을 결정한다. 물론, 물체에 관한 다른 정보가 또한 획득된 데이터로부터 결정될 수 있다. 도 12의 흐름도에 따라, 예컨데 PSD(412)로부터 수집된 데이터는 전술된 광학 삼각 측량 기술에 따라 각 솔더 볼의 높이를 결정하는데 이용된다(단계 1201). 각각의 이미지 높이는 예컨데 디바이스 공면을 결정하기 위해 서로 비교될 수 있다(단계 1202). 참조로 그 내용이 포함되는 '342출원은 좀 더 상세하게 특징의 분리 및 추출을 설명하고 있다.
본 발명은 특정한 실시예를 참조하여 도시되고 설명되었지만, 당업자에게 형태의 다양한 변형과 상세는 본 발명의 본질 및 범위를 벗어나지 않는 한 이루어질 수 있는 것으로 이해될 것이다.

Claims (41)

  1. 이미징 시스템에 있어서,
    대상물을 조사하기 위해 제1 경로를 따라 광을 전송하도록 위치된 광원;
    상기 제1 경로를 따라 위치된 빔 편향기;
    상기 광을 복수의 X-Y 좌표에서 대상물을 조사하기 위한 복수의 출력 경로로 분할하는 상기 제1 경로를 따라 있는 빔 스플리터;
    복수의 X-Y 좌표에서 대상물로부터 반사된 광을 검출하고 제1의 적어도 하나의 경로를 따라 검출된 광의 함수로서 제1의 적어도 하나의 신호를 생성하는 제1 감광 디바이스; 및
    상기 제1의 적어도 하나의 신호를 수신하고 상기 수신된 제1의 적어도 하나의 신호의 함수로서 대상물의 적어도 일부의 이미지를 생성하는 프로세서
    를 포함하는 것을 특징으로 하는 이미징 시스템.
  2. 제1항에 있어서,
    상기 빔 평향기와 상기 빔 스플리터는 상기 빔 스플리터의 인접 출력 경로의 각 분리가 많아야 빔 편향기 스위프 각 범위와 실질적으로 동일하게 되도록 선택되는 것을 특징으로 하는 이미징 시스템.
  3. 제2항에 있어서,
    상기 빔 편향기는 음향 광학 편향기인 것을 특징으로 하는 이미징 시스템.
  4. 제2항에 있어서,
    상기 빔 스플리터는 회절 빔 스플리터인 것을 특징으로 하는 이미징 시스템.
  5. 제2항에 있어서,
    상기 빔 스플리터는 부분 반사 미러인 것을 특징으로 하는 이미징 시스템.
  6. 제2항에 있어서,
    상기 광원은 다이오드 레이저인 것을 특징으로 하는 이미징 시스템.
  7. 제2항에 있어서,
    상기 빔 편향기는 회전 다각형 스캐너인 것을 특징으로 하는 이미징 시스템.
  8. 제2항에 있어서,
    상기 빔 편향기는 검류계 미러인 것을 특징으로 하는 이미징 시스템.
  9. 제2항에 있어서,
    상기 제1 감광 디바이스는 다채널 위치 감지 디바이스인 것을 특징으로 하는 이미징 시스템.
  10. 제2항에 있어서,
    상기 제1 감광 디바이스는 전하 결합 디바이스 어레이(charged-coupled device array)인 것을 특징으로 하는 이미징 시스템.
  11. 제2항에 있어서,
    상기 제1 감광 디바이스는 용량성 금속 산화물 반도체 디바이스 어레이인 것을 특징으로 하는 이미징 시스템.
  12. 제2항에 있어서,
    복수의 X-Y 좌표에서 대상물로부터 반사된 광을 검출하고 제2의 적어도 하나의 경로를 따라 검출된 광의 함수로서 제2의 적어도 하나의 신호를 생성하는 제2 감광 디바이스를 더 포함하고,
    상기 프로세서는 상기 제2의 적어도 하나의 신호를 수신하고, 상기 수신된 제1의 적어도 하나의 신호와 제2의 적어도 하나의 신호의 함수로서 상기 대상물의 적어도 일부의 이미지를 생성하는 것을 특징으로 하는 이미징 시스템.
  13. 제12항에 있어서,
    제1 감광 및 제2 감광 디바이스 중 적어도 하나는 다채널 위치 감지 디바이스인 것을 특징으로 하는 이미징 시스템.
  14. 제12항에 있어서,
    상기 제1 감광 및 제2 감광 디바이스 중 적어도 하나는 전하 결합 디바이스 어레이인 것을 특징으로 하는 이미징 시스템.
  15. 제12항에 있어서,
    상기 제1 감광 및 제2 감광 디바이스 중 적어도 하나는 용량성 금속 산화물 반도체 디바이스 어레이인 것을 특징으로 하는 이미징 시스템.
  16. 대상물을 이미징하는 방법에 있어서,
    광원으로부터 제1 광빔을 투사하는 단계;
    상기 제1 광빔을 편향시키는 빔 편향기를 통해 상기 제1 광빔이 제1 소정의 편향각으로 나아가도록 하는 단계;
    상기 편향된 제1 광빔을 빔 스플리터를 통과하여 나아가도록 하여 복수의 배출 빔을 생성하는 단계;
    상기 복수의 배출 빔들 중 적어도 2개로 복수의 X-Y 좌표에서 대상물을 조사하는 단계;
    상기 대상물에 의해 반사된 광을 상기 복수의 X-Y좌표에서 적어도 2개로부터 동시에 검출하는 단계; 및
    상기 검출된 광의 함수로서 상기 대상물의 적어도 일부의 3차원 이미지를 생성하는 단계
    를 포함하는 것을 특징으로 하는 이미징 방법.
  17. 제16항에 있어서,
    상기 빔 스플리터는 회절 빔 스플리터인 것을 특징으로 하는 이미징 방법.
  18. 제16항에 있어서,
    상기 빔 스플리터는 부분 반사 미러인 것을 특징으로 하는 이미징 방법.
  19. 제16항에 있어서,
    상기 빔 스플리터는 인접 배출 빔의 분리가 많아야 상기 빔 편향기의 소정의 스위프 각 범위와 실질적으로 동일하게 되도록 선택되는 것을 특징으로 하는 이미징 방법.
  20. 제16항에 있어서,
    상기 빔 편향기는 음향 광학 편향기인 것을 특징으로 하는 이미징 방법.
  21. 제16항에 있어서,
    상기 빔 편향기는 회전 다각형 스캐너인 것을 특징으로 하는 이미징 방법.
  22. 제16항에 있어서,
    상기 빔 편향기는 검류계 미러인 것을 특징으로 하는 이미징 방법.
  23. 제16항에 있어서,
    상기 빔 편향기의 편향각을 횡단하는 방향으로 상기 대상물을 가로지르는 복수의 배출빔을 소정의 시간 간격마다 스캐닝하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  24. 제23항에 있어서,
    상기 스캐닝은 상기 대상물의 초기 위치와 관련하여 상기 대상물을 병진이동(translate)함으로써 행해지는 것을 특징으로 하는 이미징 방법.
  25. 제16항에 있어서,
    상기 3차원 이미지로부터 선택된 특징들의 치수를 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  26. 제16항에 있어서,
    상기 3차원 이미지로부터 선택된 특징들의 상대적 위치를 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  27. 제16항에 있어서,
    상기 3차원 이미지로부터 선택된 특징들의 상대적 공면(co-planarity)을 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  28. 대상물을 가로지르는 광빔을 스캐닝하는 방법에 있어서,
    광원으로부터 제1 광빔을 투사하는 단계;
    상기 제1 광빔을 편향시키는 빔 편향기를 통해 상기 제1 광빔이 제1 소정의 편향각으로 나아가도록 하는 단계;
    상기 편향된 제1 광빔을 빔 스플리터를 통해 나아가도록 하여 복수의 배출 빔을 생성하는 단계; 및
    상기 복수의 배출 빔들 중 적어도 2개로 복수의 X-Y 좌표에서 대상물을 조사하는 단계
    를 포함하는 것을 특징으로 하는 방법.
  29. 제28항에 있어서,
    상기 빔 스플리터는 인접 배출 빔의 분리가 많아야 빔 편향기의 소정의 스위프 각 범위와 실질적으로 동일하게 되도록 선택되는 것을 특징으로 하는 방법.
  30. 대상물을 이미징하는 방법에 있어서,
    광원으로부터 제1 광빔을 투사하는 단계;
    상기 제1 광빔을 편향시키는 빔 편향기를 통해 상기 제1 광빔이 제1 소정의 편향각으로 나아가도록 하는 단계;
    상기 편향된 제1 광빔을 빔 스플리터를 통과하여 나아가도록 하여 복수의 배출 빔을 생성하는 단계;
    상기 복수의 배출 빔들 중 적어도 2개로 복수의 X-Y 좌표에서 대상물을 조사하는 단계;
    상기 대상물에 의해 반사된 광을 상기 복수의 X-Y좌표에서 적어도 2개로부터 동시에 검출하는 단계; 및
    상기 검출된 광의 함수로서 상기 대상물의 적어도 일부의 3차원 이미지를 생성하는 단계를 포함하며,
    인접한 배출 빔들의 분리가 많아야 스위프 각 범위와 실질적으로 동일하게 되도록 상기 스위프 각 범위가 선택되는 것을 특징으로 하는 이미징 방법.
  31. 제23항에 있어서, 상기 스캐닝은 센서 시스템을 변환함으로써 행해지는 것을 특징으로 하는 이미징 방법.
  32. 제30항에 있어서, 상기 빔 스플리터는 회절 빔 스플리터인 것을 특징으로 하는 이미징 방법.
  33. 제30항에 있어서, 상기 빔 스플리터는 부분 반사 미러를 포함하는 것을 특징으로 하는 이미징 방법.
  34. 제30항에 있어서, 상기 빔 편향기는 음향 광학 편향기인 것을 특징으로 하는 이미징 방법.
  35. 제30항에 있어서, 상기 빔 편향기는 회전 다각형 스캐너인 것을 특징으로 하는 이미징 방법.
  36. 제30항에 있어서, 상기 빔 편향기는 검류계 미러인 것을 특징으로 하는 이미징 방법.
  37. 제30항에 있어서, 상기 빔 편향기의 스위프 각에 수직한 방향의 대상물을 가로지르는 복수의 배출 빔을 소정 시간 간격마다 스캐닝하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  38. 제23항에 있어서, 상기 스캐닝은 상기 대상물의 병진이동(translate)에 의해 행해지는 것을 특징으로 하는 이미징 방법.
  39. 제30항에 있어서, 상기 3차원 이미지로부터 선택된 특징들의 치수를 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  40. 제30항에 있어서, 상기 3차원 이미지로부터 선택된 특징들의 상대적 위치를 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
  41. 제30항에 있어서, 상기 3차원 이미지로부터 선택된 특징들의 상대적 공면(co-planarity)을 결정하는 단계를 더 포함하는 것을 특징으로 하는 이미징 방법.
KR1020007014009A 1998-06-10 1999-06-09 복수의 광빔으로 대상물을 이미징하는 방법 및 시스템 KR100706135B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/095,367 US6181472B1 (en) 1998-06-10 1998-06-10 Method and system for imaging an object with a plurality of optical beams
US09/095,367 1998-06-10

Publications (2)

Publication Number Publication Date
KR20010052731A KR20010052731A (ko) 2001-06-25
KR100706135B1 true KR100706135B1 (ko) 2007-04-11

Family

ID=22251617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007014009A KR100706135B1 (ko) 1998-06-10 1999-06-09 복수의 광빔으로 대상물을 이미징하는 방법 및 시스템

Country Status (5)

Country Link
US (2) US6181472B1 (ko)
EP (1) EP1095305A4 (ko)
KR (1) KR100706135B1 (ko)
AU (1) AU748251B2 (ko)
WO (1) WO1999064913A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102128355B1 (ko) * 2019-01-08 2020-06-30 한국광기술원 멀티플렉싱 스캐닝 장치 및 방법

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956963B2 (en) 1998-07-08 2005-10-18 Ismeca Europe Semiconductor Sa Imaging for a machine-vision system
AU4975499A (en) 1998-07-08 2000-02-01 Bryan Maret Identifying and handling device tilt in a three-dimensional machine-vision image
US7353954B1 (en) 1998-07-08 2008-04-08 Charles A. Lemaire Tray flipper and method for parts inspection
US6788411B1 (en) * 1999-07-08 2004-09-07 Ppt Vision, Inc. Method and apparatus for adjusting illumination angle
US6486963B1 (en) 2000-06-20 2002-11-26 Ppt Vision, Inc. Precision 3D scanner base and method for measuring manufactured parts
US6509559B1 (en) 2000-06-20 2003-01-21 Ppt Vision, Inc. Binary optical grating and method for generating a moire pattern for 3D imaging
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6625181B1 (en) * 2000-10-23 2003-09-23 U.C. Laser Ltd. Method and apparatus for multi-beam laser machining
JP4250420B2 (ja) 2001-01-22 2009-04-08 ハンド ヘルド プロダクツ インコーポレーティッド 部分フレーム操作モードを有する光学読取装置
US7270273B2 (en) * 2001-01-22 2007-09-18 Hand Held Products, Inc. Optical reader having partial frame operating mode
US7268924B2 (en) * 2001-01-22 2007-09-11 Hand Held Products, Inc. Optical reader having reduced parameter determination delay
KR20020084974A (ko) * 2001-05-03 2002-11-16 삼성전자 주식회사 3차원 납땜검사장치 및 그 제어방법
US7331523B2 (en) 2001-07-13 2008-02-19 Hand Held Products, Inc. Adaptive optical image reader
US6917421B1 (en) 2001-10-12 2005-07-12 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional inspection and/or metrology of a specimen
US7126699B1 (en) 2002-10-18 2006-10-24 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional metrology and/or inspection of a specimen
US7292333B2 (en) * 2003-06-24 2007-11-06 Corning Incorporated Optical interrogation system and method for 2-D sensor arrays
US7057720B2 (en) * 2003-06-24 2006-06-06 Corning Incorporated Optical interrogation system and method for using same
EP1652154B1 (en) * 2003-08-01 2008-08-06 Cummins-Allison Corporation Currency processing device, method and system
US7315383B1 (en) * 2004-07-09 2008-01-01 Mohsen Abdollahi Scanning 3D measurement technique using structured lighting and high-speed CMOS imager
US7593565B2 (en) * 2004-12-08 2009-09-22 Rudolph Technologies, Inc. All surface data for use in substrate inspection
US7375826B1 (en) 2004-09-23 2008-05-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) High speed three-dimensional laser scanner with real time processing
JP2007225481A (ja) * 2006-02-24 2007-09-06 Hitachi High-Technologies Corp ボールバンプウエハ検査装置
US7852519B2 (en) 2007-02-05 2010-12-14 Hand Held Products, Inc. Dual-tasking decoder for improved symbol reading
WO2008124397A1 (en) 2007-04-03 2008-10-16 David Fishbaine Inspection system and method
CA2597891A1 (en) * 2007-08-20 2009-02-20 Marc Miousset Multi-beam optical probe and system for dimensional measurement
US8628015B2 (en) 2008-10-31 2014-01-14 Hand Held Products, Inc. Indicia reading terminal including frame quality evaluation processing
US20100226114A1 (en) * 2009-03-03 2010-09-09 David Fishbaine Illumination and imaging system
US8587595B2 (en) 2009-10-01 2013-11-19 Hand Held Products, Inc. Low power multi-core decoder system and method
US8620113B2 (en) * 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US10094785B2 (en) 2011-05-17 2018-10-09 Gii Acquisition, Llc Method and system for optically inspecting headed manufactured parts
US9228957B2 (en) 2013-05-24 2016-01-05 Gii Acquisition, Llc High speed method and system for inspecting a stream of parts
US10088431B2 (en) 2011-05-17 2018-10-02 Gii Acquisition, Llc Method and system for optically inspecting headed manufactured parts
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
US8896827B2 (en) * 2012-06-26 2014-11-25 Kla-Tencor Corporation Diode laser based broad band light sources for wafer inspection tools
US20140347438A1 (en) * 2013-05-24 2014-11-27 Gii Acquisition, Llc Dba General Inspection, Llc Triangulation-based, 3-d method and system for imaging the outer peripheral surface of a part
US9486840B2 (en) 2013-05-24 2016-11-08 Gii Acquisition, Llc High-speed, triangulation-based, 3-D method and system for inspecting manufactured parts and sorting the inspected parts
US10207297B2 (en) 2013-05-24 2019-02-19 GII Inspection, LLC Method and system for inspecting a manufactured part at an inspection station
US9539619B2 (en) 2013-05-24 2017-01-10 Gii Acquisition, Llc High speed method and system for inspecting a stream of parts at a pair of inspection stations
US10300510B2 (en) 2014-08-01 2019-05-28 General Inspection Llc High speed method and system for inspecting a stream of parts
US10923371B2 (en) 2016-03-30 2021-02-16 Applied Materials, Inc. Metrology system for substrate deformation measurement
CN111913187A (zh) * 2020-08-11 2020-11-10 生物岛实验室 测距方法及显微测距装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024529A (en) * 1988-01-29 1991-06-18 Synthetic Vision Systems, Inc. Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000493A (en) 1971-04-12 1976-12-28 Eastman Kodak Company Acoustooptic scanner apparatus and method
US3741648A (en) 1971-07-16 1973-06-26 Us Air Force Acoustic beam splitter for infrared lasers
US3900851A (en) 1974-01-07 1975-08-19 Abex Corp Multi-channel wideband oscillograph
US4460250A (en) 1981-06-17 1984-07-17 Hazeltine Corporation Acousto-optical channelized processor
US4449212A (en) 1981-07-30 1984-05-15 Rca Corporation Multi-beam optical record and playback apparatus
US4541694A (en) 1982-03-27 1985-09-17 Rediffusion Simulation Limited Acousto-optic scanners
JPS6010229A (ja) 1983-06-30 1985-01-19 Hoya Corp 音響光学偏向装置
US4575191A (en) 1983-08-22 1986-03-11 The United States Of America As Represented By The Secretary Of The Army Compact beam splitter for acousto-optic correlator
JPS60205430A (ja) 1984-03-30 1985-10-17 Fuji Photo Film Co Ltd 光ビ−ム走査装置
US4650333A (en) * 1984-04-12 1987-03-17 International Business Machines Corporation System for measuring and detecting printed circuit wiring defects
US4660167A (en) 1985-03-15 1987-04-21 Teledyne Industries, Inc. Space-multiplexed time-integrating acousto-optic correlators
JPH0694215B2 (ja) 1985-04-24 1994-11-24 株式会社日立製作所 レーザプリンタ装置及びその走査方法
US4886975A (en) * 1986-02-14 1989-12-12 Canon Kabushiki Kaisha Surface examining apparatus for detecting the presence of foreign particles on two or more surfaces
DE3786939T2 (de) 1986-04-02 1994-03-17 Dainippon Screen Mfg Laseraufzeichnungsvorrichtung.
US4722596A (en) 1986-05-13 1988-02-02 Sperry Corporation Acousto-optic analyzer with dynamic signal compression
US5475539A (en) * 1987-04-30 1995-12-12 Casio Computer Co., Ltd. Image data recording system including memory card
US5225924A (en) 1989-04-07 1993-07-06 Dainippon Screen Mfg. Co., Ltd. Optical beam scanning system
JPH03140840A (ja) * 1989-10-26 1991-06-14 Hitachi Ltd 流動細胞分析装置
US5146358A (en) 1990-01-25 1992-09-08 Pyr Systems, Inc. Optical communications system and method for transmitting information through a single optical waveguide
US5144602A (en) 1990-02-01 1992-09-01 Matsushita Electric Industrial Co., Ltd. Magneto-optical information recording method and apparatus in which a laser beam oscillates in a track-width direction
GB9005647D0 (en) 1990-03-13 1990-05-09 Secr Defence Optical multiplexer
US5281907A (en) 1991-04-11 1994-01-25 Georgia Tech Research Corporation Channelized time-and space-integrating acousto-optical processor
JP3186799B2 (ja) 1991-09-17 2001-07-11 興和株式会社 立体形状測定装置
JPH05142490A (ja) 1991-11-25 1993-06-11 Fuji Xerox Co Ltd 非線形周波数特性を有するレーザ走査光学系
JP3414416B2 (ja) * 1992-06-17 2003-06-09 富士写真光機株式会社 ミラー振動型光偏向器の制御回路
JP2916050B2 (ja) 1992-10-05 1999-07-05 富士写真フイルム株式会社 光ビーム走査装置
US5554858A (en) * 1994-09-22 1996-09-10 Robotic Vision Systems, Inc Segmented position sensing detector for reducing non-uniformly distributed stray light from a spot image
JPH08167559A (ja) * 1994-12-15 1996-06-25 Nikon Corp アライメント方法及び装置
US5633747A (en) 1994-12-21 1997-05-27 Tencor Instruments Variable spot-size scanning apparatus
US5617209A (en) 1995-04-27 1997-04-01 View Engineering, Inc. Method and system for triangulation-based, 3-D imaging utilizing an angled scaning beam of radiant energy
US5859924A (en) 1996-07-12 1999-01-12 Robotic Vision Systems, Inc. Method and system for measuring object features

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024529A (en) * 1988-01-29 1991-06-18 Synthetic Vision Systems, Inc. Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102128355B1 (ko) * 2019-01-08 2020-06-30 한국광기술원 멀티플렉싱 스캐닝 장치 및 방법

Also Published As

Publication number Publication date
US6181472B1 (en) 2001-01-30
EP1095305A1 (en) 2001-05-02
AU4339399A (en) 1999-12-30
US6525827B2 (en) 2003-02-25
US20010021026A1 (en) 2001-09-13
AU748251B2 (en) 2002-05-30
WO1999064913A1 (en) 1999-12-16
EP1095305A4 (en) 2006-03-29
WO1999064913A9 (en) 2000-03-09
KR20010052731A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
KR100706135B1 (ko) 복수의 광빔으로 대상물을 이미징하는 방법 및 시스템
EP0997748B1 (en) Chromatic optical ranging sensor
US7359068B2 (en) Laser triangulation method for measurement of highly reflective solder balls
US5859924A (en) Method and system for measuring object features
US5774224A (en) Linear-scanning, oblique-viewing optical apparatus
US9891175B2 (en) System and method for oblique incidence scanning with 2D array of spots
US6917421B1 (en) Systems and methods for multi-dimensional inspection and/or metrology of a specimen
US5644141A (en) Apparatus and method for high-speed characterization of surfaces
KR100431764B1 (ko) 광학근접센서
KR100898963B1 (ko) 라인 광 스팟으로 2차원 이미지화를 수행하는 검사 시스템
JP3925986B2 (ja) 高さ測定装置及び高さ測定方法
KR970007040B1 (ko) 다중 채널 비점 삼각 레인저 시스템
JPH04319615A (ja) 光学式高さ測定装置
JP2700454B2 (ja) 光学レンズの性能を特徴づける方法および装置
JPH11201725A (ja) 三次元アレイ・センサ
KR20050032481A (ko) 광학 빔 진단장치 및 방법
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
JP4266286B2 (ja) 距離情報取得装置、および距離情報取得方法
JPH0682071B2 (ja) レーザ・ビーム強度分布検査装置
IL94405A (en) System for high throughput non-contact measurements of electrical circuits

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130419

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140421

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 10