KR100622995B1 - Preparation of multilayered proton conducting membrane for direct methanol fuel cell - Google Patents

Preparation of multilayered proton conducting membrane for direct methanol fuel cell Download PDF

Info

Publication number
KR100622995B1
KR100622995B1 KR1020050011470A KR20050011470A KR100622995B1 KR 100622995 B1 KR100622995 B1 KR 100622995B1 KR 1020050011470 A KR1020050011470 A KR 1020050011470A KR 20050011470 A KR20050011470 A KR 20050011470A KR 100622995 B1 KR100622995 B1 KR 100622995B1
Authority
KR
South Korea
Prior art keywords
polymer
fuel cell
direct methanol
methanol fuel
thin film
Prior art date
Application number
KR1020050011470A
Other languages
Korean (ko)
Other versions
KR20060090526A (en
Inventor
박정기
조기윤
정호영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020050011470A priority Critical patent/KR100622995B1/en
Publication of KR20060090526A publication Critical patent/KR20060090526A/en
Application granted granted Critical
Publication of KR100622995B1 publication Critical patent/KR100622995B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • H05K2201/10136Liquid Crystal display [LCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 주쇄가 퍼플루오로네이트계 수지로 이루어진 이오노머에 불화수소계열 고분자와 퍼플루오로네이트계 고분자로 이루어진 블렌드를 양면에 얇게 코팅하여 직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법에 관한 것이다. The present invention relates to a method for producing a hydrogen ion exchange membrane of a multilayer thin film for a direct methanol fuel cell by coating a thin film on both sides of a blend of a hydrogen fluoride-based polymer and a perfluoronate-based polymer in an ionomer whose main chain is a perfluoronate-based resin. will be.

상기 구성에 의하면 종래 사용되는 직접 메탄올 연료전지용 고분자막에 비해 메탄올 크로스오버를 억제하고, 전극간의 계면 접착성이 우수하여 셀의 장기 안정성이 확보되는 우수한 고분자 전해질을 제조할 수 있다.According to the above configuration, it is possible to manufacture an excellent polymer electrolyte which suppresses methanol crossover and has excellent interfacial adhesion between electrodes as compared with a conventional polymer film for direct methanol fuel cells, which ensures long-term stability of the cell.

Description

직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법{Preparation of multilayered proton conducting membrane for direct methanol fuel cell} Preparation of multilayered proton conducting membrane for direct methanol fuel cell             

도 1은 본 발명에 따른 직접 메탄올 연료전지용 고분자 전해질의 구성도[1: 주쇄가 퍼플루오로네이트계인 이오노머, 2: 주쇄가 불화수소계 고분자와 주쇄가 퍼플루오로네이트계인 고분자를 블렌드한 고분자]이다. 1 is a block diagram of a polymer electrolyte for a direct methanol fuel cell according to the present invention [1: ionomer of the main chain is a perfluoroate-based polymer, 2: a polymer in which the main chain is a hydrogen fluoride-based polymer and a main chain is a perfluoronate-based polymer] to be.

도 2은 본 발명에 따른 직접 메탄올 연료전지용 고분자 전해질 조성물을 대상으로 얻어낸 메탄올 투과도의 측정결과 그래프이다.Figure 2 is a graph of the measurement results of methanol permeability obtained for the polymer electrolyte composition for direct methanol fuel cell according to the present invention.

도 3는 본 발명에 따른 직접 메탄올 연료전지용 고분자 전해질 막 및 상용 Nafion 117의 초기 셀성능(cell performance)을 보여주는 그래프이다.3 is a graph showing initial cell performance of the polymer electrolyte membrane for a direct methanol fuel cell and commercial Nafion 117 according to the present invention.

도 4는 본 발명에 따른 직접 메탄올 연료전지용 고분자 전해질 막 및 상용 Nafion 117의 초기 성능시험 후 7일이 지난 후의 셀 성능(cell performance)을 보여주는 그래프이다.Figure 4 is a graph showing the cell performance (cell performance) after 7 days after the initial performance test of the polymer electrolyte membrane for direct methanol fuel cell and the commercial Nafion 117 according to the present invention.

도 5은 본 발명에 따른 직접 메탄올 연료전지용 고분자 전해질 막 및 상용 Nafion 117의 전극과의 접촉성을 나타내는 전자주사 현미경 사진이다.5 is an electron scanning micrograph showing the contact between the polymer electrolyte membrane for direct methanol fuel cell according to the present invention and the electrode of commercial Nafion 117.

본 발명은 주쇄가 퍼플루오로네이트계 수지로 이루어진 이오노머에 불화수소계열 고분자와 퍼플루오로네이트계 고분자로 이루어진 블렌드를 양면에 얇게 코팅하여 직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법에 관한 것이다. 보다 상세하게는 메탄올 투과도가 억제되면서 우수한 수소이온 전도특성 및 기계적 물성과 접착성이 우수한 직접 메탄올 연료전지용 고분자 전해질의 조성물 및 제조방법에 관한 것이다.The present invention relates to a method for producing a hydrogen ion exchange membrane of a multilayer thin film for a direct methanol fuel cell by coating a thin film on both sides of a blend of a hydrogen fluoride-based polymer and a perfluoronate-based polymer in an ionomer whose main chain is a perfluoronate-based resin. will be. More specifically, the present invention relates to a composition and a method for preparing a polymer electrolyte for direct methanol fuel cell having excellent hydrogen ion conductivity and mechanical properties and adhesiveness while suppressing methanol permeability.

연료전지는 전극반응으로 연료의 화학에너지를 직접 전기에너지로 변환시켜 주는 일종의 직류 발전장치로서 다른 발전기관과는 달리 카르노(carnot) 싸이클의 제한을 받지 않으므로 에너지 효율이 높고, 배기가스 등의 문제점이 적다. 또한 1, 2차 전지가 제한된 에너지를 저장하여 공급하는 장치인데 반해, 연료전지는 연료가 계속적으로 공급되는 한 지속적인 발전이 가능하다는 장점을 가진다. Fuel cell is a kind of direct current generator that directly converts chemical energy of fuel into electrical energy through electrode reaction. Unlike other generator tubes, fuel cell is not restricted by carnot cycle, so it has high energy efficiency and exhaust gas. little. In addition, while primary and secondary cells store and supply limited energy, fuel cells have the advantage of being able to generate power as long as fuel is continuously supplied.

연료전지는 작동온도 및 전해질의 종류에 따라 고분자 전해질 연료전지(Proton Exchange Membrane Fuel Cell : PEMFC), 알칼리 연료전지 (Alkali Fuel Cell : AFC), 인산형 연료전지 (Phosphoric Acid Fuel Cell : PAFC), 용융탄산염 연료전지 (Molten Carbonate Fuel Cell : MCFC), 고체 산화물 연료전지 (Solid Oxide Fuel Cell : SOFC) 등으로 나뉠 수 있다. Fuel cells can be melted according to the operating temperature and the type of electrolyte.Proton Exchange Membrane Fuel Cell (PEMFC), Alkali Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC) Molten Carbonate Fuel Cell (MCFC), Solid Oxide Fuel Cell (SOFC), etc.

이 중 고분자 전해질 연료전지는 수소이온 전도특성을 갖는 고분자막을 전해 질로 사용하는 연료전지로, 연료를 수소가 아닌 메탄올을 사용할 경우 직접 메탄올 연료전지 (Direct Methanol Fuel Cell : DMFC)라 하여 고분자 전해질 연료전지와 다르게 분류하기도 한다. 이러한 고분자막을 전해질로 사용하는 고분자 전해질 연료전지 또는 직접 메탄올 연료전지는 다른 형태의 연료전지에 비해 작동온도가 낮고, 시동시간이 짧은 동시에 부하변화에 대한 응답특성이 빠르다. 특히 전해질로 고분자막을 사용하기 때문에 부식 및 전해질의 pH 조절 등이 필요 없고 반응기체의 압력변화에도 덜 민감하다. 또한 디자인이 간단하고 제작이 쉬우며, 작동원리가 같은 인산형 연료전지에 비해 부피와 무게가 작고 가볍다. Among them, a polymer electrolyte fuel cell is a fuel cell using a polymer membrane having hydrogen ion conductivity as an electrolytic material. When a fuel is used instead of hydrogen, a polymer electrolyte fuel cell is called a direct methanol fuel cell (DMFC). It is also classified differently. The polymer electrolyte fuel cell or direct methanol fuel cell using the polymer membrane as an electrolyte has a lower operating temperature, a shorter startup time, and a faster response to load changes than other fuel cells. In particular, since the polymer membrane is used as the electrolyte, corrosion and pH control of the electrolyte are not necessary and are less sensitive to changes in the pressure of the reactor. In addition, the design is simple and easy to manufacture, and the volume and weight are smaller and lighter than the phosphate fuel cells with the same operation principle.

이러한 특성 이외에도 다양한 범위의 출력을 낼 수 있기 때문에, 이러한 고분자막을 전해질로 사용하는 연료전지는 무공해 차량의 동력원, 주거용 발전, 우주선용 전원, 이동용 전원, 군사용 전원 등 매우 다양한 분야에 응용될 수 있다. 특히, 직접 메탄올 연료전지의 경우에는 상온 및 상압에서 구동되는 특성으로 인해 휴대폰, 노트북 컴퓨터, 캠코더 등과 같은 소형 이동용 전원으로 기존의 이차전지를 대체할 수 있을 것으로 기대된다. In addition to these characteristics, it is possible to produce a wide range of output, the fuel cell using the polymer membrane as an electrolyte can be applied to a wide variety of fields such as power source of pollution-free vehicles, residential power generation, spacecraft power, mobile power, military power. In particular, the direct methanol fuel cell is expected to be able to replace the existing secondary battery with a small mobile power source such as a mobile phone, a notebook computer, a camcorder due to the characteristics of operating at room temperature and pressure.

그러나 직접 메탄올 연료전지 개발의 가장 큰 제약은 연료가 공급되는 음극에서 메탄올이 고분자 전해질 막을 통과, 양극으로 이동하여 셀 성능을 저하시키는 메탄올 크로스오버(Crossover) 현상이다. 이로 인해 양극과 음극사이의 전위차가 감소되고 연료가 손실되며 양극에서의 환원반응을 방해함으로써 전류밀도를 감소시킨다. 따라서 직접 메탄올 연료전지의 실질적인 응용을 위해서는 메탄올 크로스오버를 최소화할 수 있는 막 개발이 필수적이다. However, the biggest limitation of direct methanol fuel cell development is the methanol crossover phenomenon, where methanol moves through the polymer electrolyte membrane to the anode at the fueled cathode and degrades cell performance. This reduces the potential difference between the anode and the cathode, loses fuel and reduces the current density by interrupting the reduction reaction at the anode. Therefore, for practical application of direct methanol fuel cell, it is essential to develop a membrane that can minimize methanol crossover.

직접 메탄올 연료전지의 메탄올 크로스오버를 최소화하기 위하여 종래의 기술들은 퍼플루오로네이트계인 이오노머에 이온기가 존재하지 않은 제 2의 고분자를 블렌드 하거나, 무기염들을 혼합함으로써 해결하고자 하였다. 그러나 이러한 방법들은 메탄올 크로스오버는 감소되었지만, 이온 전도도가 감소하거나, 장기 안정성의 저하를 초래하였다.In order to minimize the methanol crossover of a direct methanol fuel cell, the prior arts have been solved by blending a second polymer having no ion groups in an ionomer, which is a perfluoronate, or mixing inorganic salts. However, these methods resulted in reduced methanol crossover, but reduced ionic conductivity or reduced long-term stability.

본 발명과 관련된 종래기술로는 미국특허 5,981,097(Multiple layer membranes for fuel cells employing direct methanol fuel cell)는 다층막(multilayer membrane)의 메탄올 투과를 억제하는데 중점을 두었고, 또한 홉슨 등(L.J. Hobson et al., Targeting improved DMFC performance, Journal of power source, 2002, 104, pp79)은 나피온(Nafion)의 메탄올 크로스오버(crossover)를 억제하기 위하여 폴리-벤지이미다졸(poly-benzimidazole)로 나피온 양면을 코팅(coating)하였다. 그러나 본 발명은 DMFC용 membrane으로서 메탄올 투과 억제, 막/전극의 계면접착성(안정성)을 증대시켜 계면저항 감소(셀성능 향상)를 도모하는 바와 같이 기술적 구성이 다르다. Prior art related to the present invention, US Patent No. 5,981,097 (Multiple layer membranes for fuel cells employing direct methanol fuel cell) focused on inhibiting the methanol permeation of the multilayer membrane, and also Hobson et al., (LJ Hobson et al., Targeting improved DMFC performance, Journal of power source, 2002, 104, pp79) coated both sides of Nafion with poly-benzimidazole in order to suppress Nafion's methanol crossover. coating). However, the present invention differs in the technical configuration as a membrane for DMFC, in order to suppress methanol permeation and increase interfacial adhesion (stability) of the membrane / electrode, thereby reducing interfacial resistance (improvement of cell performance).

본 발명의 목적은 종래에 비해 경박화가 가능하고, 수소이온 전도 특성은 유지되면서 메탄올 투과성과 접착성이 증가하여 셀의 장기안정성이 개선될 수 있는 직접 메탄올 연료전지용 고분자 전해질의 제조방법 및 조성물을 제공함에 있다. An object of the present invention is to provide a method and composition for manufacturing a polymer electrolyte for direct methanol fuel cell which can be made thinner than the conventional, and can improve the long-term stability of the cell by increasing the methanol permeability and adhesion while maintaining the hydrogen ion conductivity. Is in.

본 발명자는 직접메탄올 연료전지에서 심각한 문제인 메탄올 크로스오버를 극복하기 위하여 주쇄가 퍼플루오로네이트계 수지로 이루어진 이오노머에 불화수소계열 고분자와 퍼플루오로네이트계 고분자로 이루어진 블렌드를 양면에 얇게 코팅하여 다층막를 제조하여 수소이온 전도성은 유지하면서, 메탄올 크로스오버는 감소하고, 접착성이 우수한 전해질막을 제조하였다.
In order to overcome methanol crossover, which is a serious problem in direct methanol fuel cells, the inventors have applied a thin film on both sides of a blend of a hydrogen fluoride-based polymer and a perfluoronate-based polymer in an ionomer whose main chain is a perfluoronate-based resin. The electrolyte membrane was prepared while maintaining the hydrogen ion conductivity while reducing the methanol crossover, thereby preparing an electrolyte membrane having excellent adhesion.

본 발명은 주쇄가 퍼플루오로네이트계 수지로 이루어진 이오노머에 주쇄가 불화수소계열 고분자와 주쇄가 퍼플루오로네이트계 고분자로 이루어진 블렌드를 양면에 얇게 코팅하여 다층막을 제조한다. In the present invention, a multilayer film is prepared by thinly coating a blend of a main chain of a hydrogen fluoride series polymer and a main chain of a perfluoronate polymer on both sides of an ionomer made of a perfluoronate resin.

주쇄가 퍼플루오로네이트계인 이오노머의 예로는, 상품명으로 나피온(Nafion, 듀퐁사), 플레미온(Flemion, 아사히 글래스), 아시플렉스(Aciplex, 아사히 케미칼) 등이 있으며, 이들은 단독으로 또는 2종 이상의 혼합 이오노머로 사용된다. 상기 이오노머들은 브랜드 내에서 0.1~99.9중량%, 보다 바람직하기로는 60~95중량% 첨가된다. 그러나 경우에 따라서는 나피온을 코팅할 때 블렌드 사용량은 나피온 이오노머를 기준으로 5∼30중량% 사용할 수도 있다. 나피온을 PVdF 중합체와 나피온 이오노머를 블렌드할 때 PVdF 중합체와 나피온 이오노머의 비율은 다양하게 조절할 수 있다. Examples of ionomers whose main chains are perfluoronates include, for example, Nafion (Dupont), Flemion (Asahi Glass), Aciplex (Aciplex, Asahi Chemical), etc. The above is used as a mixed ionomer. The ionomers are added from 0.1 to 99.9 weight percent, more preferably from 60 to 95 weight percent, in the brand. However, in some cases, the blend amount may be used in the range of 5 to 30% by weight based on the Nafion ionomer when coating Nafion. When Nafion blends PVdF polymer and Nafion ionomer, the ratio of PVdF polymer and Nafion ionomer can be controlled in various ways.

일예로 불화수소계열 고분자 중합체와 나피온 이오노머를 블렌드할 때 비율은 80:20∼95:5으로 조절할 수 있다.For example, when blending the hydrogen fluoride polymer and the Nafion ionomer, the ratio may be adjusted to 80:20 to 95: 5.

주쇄가 퍼플루오로네이트계인 이오노머의 예로 나피온을 사용하는 경우 이미 상용화된 나피온막은 나피온 117 이외에도 나피온 112(두께 50um), 나피온 1135(두께 75um), 나피온 115(두께 125um) 중에서 선택된 어느 하나를 사용할 수 있다.In case of using Nafion as an example of ionomer whose main chain is perfluoronate, Nafion membrane which is already commercialized is selected from Nafion 112 (thickness 50um), Nafion 1135 (thickness 75um) and Nafion 115 (thickness 125um) in addition to Nafion 117. Any one selected can be used.

주쇄가 불화수소계열 고분자와 주쇄가 퍼플루오로네이트계 고분자로 이루어진 블렌드시 주쇄가 퍼플루오로네이트계인 이오노머가 만일 0.1중량% 미만으로 첨가하는 경우 이온전도도가 현저히 낮아질 우려가 있으며, 99.9중량%를 초과하는 경우 이온전도도는 개선되지만 메탄올 크로스오버가 현저히 높아질 우려가 있다.When the main chain is a perfluoronate-based ionomer when the main chain is composed of a hydrogen fluoride-based polymer and a main chain is a perfluoronate-based polymer, the ion conductivity may be considerably lowered if it is added less than 0.1% by weight. If exceeded, the ion conductivity is improved, but there is a fear that the methanol crossover is significantly increased.

불화수소계열 고분자는 기계적물성, 열적안정성, 내화학성, 가공성 및 메탄올 장벽성 등이 우수하면 특별한 한정을 요하지는 아니한다. 이러한 요건을 만족하는 대표적인 고분자로는 폴리비닐리덴플루오라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌의 공중합체(PVDF-Co-HFP)가 있다. 특히 폴리비닐리덴플루오라이드는 가격이 저렴하여 전기화학적 소재로 많이 적용되며, 바람직하기로는 분자량이 50,000g/mol~1,000,000g/mol인 범위의 것에서 선택될 수 있다. Hydrogen fluoride polymers do not require special limitations as long as they have excellent mechanical properties, thermal stability, chemical resistance, processability, and methanol barrier properties. Representative polymers that meet these requirements include polyvinylidene fluoride (PVDF) and copolymers of vinylidene fluoride-hexafluoropropylene (PVDF-Co-HFP). In particular, polyvinylidene fluoride is inexpensive and is widely applied as an electrochemical material, and preferably may be selected from the range of molecular weight of 50,000g / mol ~ 1,000,000g / mol.

비닐리덴플루오라이드-헥사플루오로프로필렌은 바람직하기로는 공중합체 내에서 헥사플루오로프로필렌의 함량이 0.1∼50중량%인 것으로서, 바람직하기로는 분자량이 100,000g/mol∼500,000g/mol인 범위의 것에서 선택될 수 있다. The vinylidene fluoride-hexafluoropropylene preferably has a content of hexafluoropropylene in the copolymer of 0.1 to 50% by weight, preferably in a range of 100,000 g / mol to 500,000 g / mol in molecular weight. Can be selected.

불화수소계열의 고분자를 용해하는 용매는 디메틸포름아미드(DMF), 디메틸설폭사이드(dimethylsulfoxide), 1-메틸-2피롤리돈(1-methyl-2-pyrrolidone, NMP) 중에서 선택된 어느 하나 이상의 유기 용매를 사용할 수 있다.At least one organic solvent selected from dimethylformamide (DMF), dimethylsulfoxide, and 1-methyl-2-pyrrolidone (NMP) may be used as a solvent for dissolving the hydrogen fluoride-based polymer. Can be used.

본 발명의 직접 메탄올 연료전지용 고분자 전해질은, 먼저 불화수소계열 고분자를 적당한 유기용매에 용해한 후 주쇄가 퍼플루오로네이트계인 고분자를 혼합 하여 일정시간 교반하여, 주쇄가 퍼플루오로네이트계인 이오노머를 상기 용액에 딥(dip) 코팅하여 건조하거나, 상기 고분자 용액을 유리판 위에서 닥터블레이드(Docter Blade)등을 이용해 일정한 두께로 캐스팅(Casting)하고 그 위에 주쇄가 퍼플루오로네이트계인 고분자를 적층하는 방법을 포함한다. In the polymer electrolyte for direct methanol fuel cell of the present invention, first, after dissolving a hydrogen fluoride polymer in a suitable organic solvent, a polymer having a main chain of perfluoroate is mixed and stirred for a predetermined time, and the ionomer having a main chain of perfluoronate is the solution. Or coating the polymer solution to a certain thickness using a doctor blade or the like on a glass plate and stacking a polymer having a perfluoronate-based backbone thereon. .

본 발명의 보다 확실한 이해를 돕기 위해 상기 제조단계가 보다 구체화된 바람직한 실시예를 통해 본 발명의 내용을 상세히 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.In order to facilitate a clearer understanding of the present invention, the contents of the present invention will be described in detail through preferred embodiments of the above-described manufacturing steps. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.

<실시예 1><Example 1>

불화수소계열 고분자로 용융온도가 135℃이며, 헥사플루오로프로필렌의 함량이 15중량%인 비닐리덴플루오라이드-헥사플루오로프로필렌의 공중합체(PVDF-co-HFP, 상품명: Kynar Flex 2751, 아토피나) 80중량%를 디메틸포름아미드(DMF)에 용해시켰다. 여기에 순수하게 나피온의 무게비가 20중량%가 되도록 나피온 용액(20중량%, EW1,000, 듀퐁사)을 정량하여 상기 Kynar Flex 2751 용액과 혼합하였다(C8020). A copolymer of vinylidene fluoride-hexafluoropropylene having a melting temperature of 135 ° C. and a hexafluoropropylene content of 15% by weight (PVDF-co-HFP, trade name: Kynar Flex 2751, Atopina) ) 80% by weight was dissolved in dimethylformamide (DMF). The Nafion solution (20 wt%, EW1,000, DuPont) was quantified so that the weight ratio of Nafion was 20 wt% purely and mixed with the Kynar Flex 2751 solution (C8020).

80℃의 H2O2에서 2시간, 1M H2SO4에서 2시간, H2 0에서 2시간씩 전처리를 수행된 상용 나피온 117막을 위 용액에 함친시킨 후 건조하였다(도 1 참조).At 80 ℃ of H 2 O 2 2 hours, 1M H 2 SO 2 hours at 4, then the commercially available Nafion 117 membrane to perform a pre-treatment for 2 hours in a H 2 0 hamchin the above solution was then dried (see Fig. 1).

이들 형성된 막에 대하여 FRA(Frequency Response Analyzer)를 사용하여 막 의 저항을 측정한 값을 토대로 계산된 수소이온전도도를 [표 1]에 나타내었다. The hydrogen ion conductivity calculated based on the measured resistance of the membrane using the frequency response analyzer (FRA) for these formed membranes is shown in [Table 1].

또한 제조된 고분자 전해질막의 메탄올 투과도를 측정한 결과를 [도 2]에 나타내었다. 실험 결과 수소 이온 전도도는 상용 나피온 막과 비슷하게 유지되면서 메탄올 크로스오버가 억제되었음을 알 수 있었다. In addition, the result of measuring the methanol permeability of the prepared polymer electrolyte membrane is shown in FIG. The experimental results showed that the methanol crossover was suppressed while maintaining the hydrogen ion conductivity similar to that of commercial Nafion membranes.

또한 막/전극의 접착성이 Nafion에 코팅층을 도입한 결과 접착성이 향상되었으며 이를 [도 5]에 나타내었다.In addition, the adhesion of the membrane / electrode resulted in the adhesion of Nafion as a result of the coating layer and is shown in FIG. 5.

표 1. 고분자 전해질막의 저항 및 수소이온전도도Table 1. Resistance and hydrogen ion conductivity of polymer electrolyte membrane

NotationNotation conductivity(S/cm)conductivity (S / cm) conductance(S/cm2)conductance (S / cm 2 ) C8020C8020 1.36 X 10-2 1.36 X 10 -2 1.031.03 C8515C8515 1.12 X 10-2 1.12 X 10 -2 0.850.85 C9010C9010 8.49 X 10-3 8.49 X 10 -3 0.640.64 C9505C9505 3.18 X 10-3 3.18 X 10 -3 0.240.24 Nafion 117Nafion 117 1.85 X 10-2 1.85 X 10 -2 1One

<실시예 2><Example 2>

상용 나피온 117막 대신에 두께가 다른 상용 나피온 고분자막(나피온 112)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고분자 전해질 막을 제조하였다. 이러한 막의 직접 메탄올 연료전지의 초기 셀 성능 및 일정 시간이 지난 후의 셀 성능을 [도3]과 [도4]에 나타내었다. A polymer electrolyte membrane was manufactured in the same manner as in Example 1, except that a commercial Nafion polymer membrane (Nafion 112) having a different thickness was used instead of the commercial Nafion 117 membrane. The initial cell performance of the membrane-direct methanol fuel cell and the cell performance after a predetermined time are shown in [Fig. 3] and [Fig. 4].

<실시예 3><Example 3>

상용 나피온 막 대신에 주쇄가 퍼플루오로네이트계인 다른 이오노머를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다. It was prepared in the same manner as in Example 1 except for using a different ionomer whose main chain was a perfluoronate instead of a commercial Nafion membrane.

<실시예 4><Example 4>

헥사플루오로프로필렌의 함량이 15%인 불화수소계 고분자를 사용하지 않고 헥사플루오로프로필렌의 함량이 12%, 8%, 0%인 것을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다. It was prepared in the same manner as in Example 1, except that a hydrogen fluoride polymer having a hexafluoropropylene content of 15% was not used and the hexafluoropropylene content was 12%, 8%, and 0%. .

<실시예 5>Example 5

EW가 1000인 나피온 용액을 사용하지 않는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다. It was prepared in the same manner as in Example 1 except that a Nafion solution having an EW of 1000 was not used.

본 발명에 의하면 종래 사용되는 직접 메탄올 연료전지용 고분자막에 비하여 메탄올 크로스오버가 감소되면서 접착성이 우수하여 장기 성능이 향상된 우수한 고분자 전해질을 제조할 수 있다. According to the present invention, it is possible to prepare an excellent polymer electrolyte having improved adhesion and excellent long-term performance while reducing methanol crossover as compared to a conventional polymer membrane for direct methanol fuel cells.

Claims (9)

주쇄가 불화수소계열인 고분자(B)를 유기용매에 용해한 후, 주쇄가 퍼플루오로네이트계인 고분자(C)를 혼합하고 교반하여 블렌드를 제조하는 단계와, 상기의 혼합용액에 주쇄가 퍼플루오로네이트계 수지(A)로 이루어진 이오노머를 블렌드로 양면을 코팅하여 다층막을 형성시키는 단계를 포함하는 것을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법 Dissolving a polymer (B) having a main chain of hydrogen fluoride in an organic solvent, and then mixing and stirring the polymer (C) having a main chain of perfluoronate, and preparing a blend; and a main chain of perfluoro in the mixed solution. A method of manufacturing a hydrogen ion exchange membrane of a multilayer thin film for a direct methanol fuel cell, comprising the step of forming a multilayer membrane by coating both sides with a blend of an ionomer made of a nate resin (A). 제 1항에 있어서, 고분자(B)와 고분자(C)의 혼합용액에 이오노머를 함침시키거나, 유리판 위에서 닥터블레이드에 의해 일정한 두께로 캐스팅하여 고분자를 적층시키는 것을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법 2. The multilayer thin film of a direct methanol fuel cell according to claim 1, wherein the mixed solution of the polymer (B) and the polymer (C) is impregnated with an ionomer or cast to a predetermined thickness by a doctor blade on a glass plate to stack the polymer. Of hydrogen ion exchange membrane 제 1항에 있어서, 고분자(B)의 용매는 디메틸포름아미드(DMF), 아세톤(Acetone), 디메틸설폭사이드(dimethylsulfoxide), 1-메틸-2피롤리돈(1-methyl-2-pyrrolidone, NMP) 중에서 선택된 어느 하나 이상의 유기 용매 임을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소 이온 교환막의 제조방법 The method of claim 1, wherein the solvent of the polymer (B) is dimethylformamide (DMF), acetone (Acetone), dimethyl sulfoxide (dimethylsulfoxide), 1-methyl-2pyrrolidone (1-methyl-2-pyrrolidone, NMP Method for producing a hydrogen ion exchange membrane of a multilayer thin film for direct methanol fuel cell, characterized in that at least one organic solvent selected from 제 1항에 있어서, 이오노머 수지(A)는 80℃의 H2O2에서 2시간, 1M H2SO 4에서 2시간, H20에서 2시간씩 전처리시킨 후, 고분자(A)와 (B)의 혼합용액에 적층시키는 것을 특징으로 하는 직접메탄올 연료전지용 다층 박막의 수소이온 교환막의 제조방법The method of claim 1, wherein the ionomer resin (A) is pretreated for 2 hours at 80 ° C in H 2 O 2 , 2 hours at 1M H 2 SO 4 , and 2 hours at H 2 0, followed by polymers (A) and (B Method for producing a hydrogen ion exchange membrane of a multi-layered thin film for direct methanol fuel cell, characterized in that laminated on a mixed solution of 제 1항에 있어서, 주쇄가 퍼플루오로네이트계인 이오노머 수지(A) 및 고분자(C)는 나피온, 플레미온 또는 아시플렉스 중에서 선택되는 1종 또는 2 종 이상의 혼합 이오노머를 포함함을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소이온 교환막의 제조방법The ionomer resin (A) and the polymer (C), wherein the main chain is perfluoronate-based, include one or two or more mixed ionomers selected from Nafion, Flemion or Asiplex. Method for producing hydrogen ion exchange membrane of multilayer thin film for direct methanol fuel cell 제 1항에 있어서, 주쇄가 퍼플루오로네이트계 블렌드 내의 고분자(C)의 함량은 0.1~99.9중량%임을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소이온 교환막의 제조방법 The method for producing a hydrogen ion exchange membrane of a multilayer thin film of a direct methanol fuel cell according to claim 1, wherein the content of the polymer (C) in the main chain perfluoronate blend is 0.1 to 99.9 wt%. 제 1항에 있어서, 블렌드 내에 주쇄가 불화수소계열 고분자(B)는 폴리비닐리덴플루오라이드 또는 비닐리덴플루오라이드-헥사플루오로프로필렌의 공중합체임을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소이온 교환막의 제조방법The hydrogen ion exchange membrane of a multilayer thin film for a direct methanol fuel cell according to claim 1, wherein the main chain hydrogen fluoride polymer (B) in the blend is a copolymer of polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene. Manufacturing Method 제 1항에 있어서, 브랜드 내에 불화수소계열 고분자의 함량은 0.1∼99.9중량% 임을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소이온 교환막의 제 조방법The method of manufacturing a hydrogen ion exchange membrane of a multilayer thin film for direct methanol fuel cell according to claim 1, wherein the content of the hydrogen fluoride polymer in the brand is 0.1 to 99.9 wt%. 제 8항에 있어서, 불화수소계열 고분자의 하나인 비닐리덴플루오라이드-헥사플루오로프로필렌의 공중합체에서 헥사플루오로프로필렌의 함량이 0.1∼50중량% 임을 특징으로 하는 직접 메탄올 연료전지용 다층 박막의 수소이온 교환막의 제조방법9. The hydrogen of the multilayer thin film for direct methanol fuel cell according to claim 8, wherein the content of hexafluoropropylene in the copolymer of vinylidene fluoride-hexafluoropropylene, which is one of the hydrogen fluoride polymers, is 0.1 to 50% by weight. Manufacturing method of ion exchange membrane
KR1020050011470A 2005-02-07 2005-02-07 Preparation of multilayered proton conducting membrane for direct methanol fuel cell KR100622995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050011470A KR100622995B1 (en) 2005-02-07 2005-02-07 Preparation of multilayered proton conducting membrane for direct methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050011470A KR100622995B1 (en) 2005-02-07 2005-02-07 Preparation of multilayered proton conducting membrane for direct methanol fuel cell

Publications (2)

Publication Number Publication Date
KR20060090526A KR20060090526A (en) 2006-08-11
KR100622995B1 true KR100622995B1 (en) 2006-09-14

Family

ID=37571687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050011470A KR100622995B1 (en) 2005-02-07 2005-02-07 Preparation of multilayered proton conducting membrane for direct methanol fuel cell

Country Status (1)

Country Link
KR (1) KR100622995B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716551B1 (en) 2005-11-15 2007-05-09 다이모스(주) Proton exchange membrane having three layer structure and process for preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450831A (en) * 2019-09-30 2022-05-06 可隆工业株式会社 Ionomer dispersion having high dispersion stability, method for manufacturing the same, and polymer electrolyte membrane manufactured using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397954B1 (en) 2001-03-20 2003-09-13 한국과학기술원 Manufacturing Method of Polymer Electrolyte Membrane for Fuel Cells
KR20040017477A (en) * 2002-08-21 2004-02-27 한국과학기술원 Composition of Polymer Electrolytes for Direct Methanol Fuel Cell
KR20040036461A (en) * 2002-10-26 2004-04-30 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same
KR20040036396A (en) * 2002-10-25 2004-04-30 설용건 Method and application of polymer electrolyte membrane for fuel cell
JP2004269875A (en) 2003-03-06 2004-09-30 Atofina Chemicals Inc Ionic or ionizable functional group-containing non-perfluorinated polymer resin and product containing the resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397954B1 (en) 2001-03-20 2003-09-13 한국과학기술원 Manufacturing Method of Polymer Electrolyte Membrane for Fuel Cells
KR20040017477A (en) * 2002-08-21 2004-02-27 한국과학기술원 Composition of Polymer Electrolytes for Direct Methanol Fuel Cell
KR20040036396A (en) * 2002-10-25 2004-04-30 설용건 Method and application of polymer electrolyte membrane for fuel cell
KR20040036461A (en) * 2002-10-26 2004-04-30 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same
JP2004269875A (en) 2003-03-06 2004-09-30 Atofina Chemicals Inc Ionic or ionizable functional group-containing non-perfluorinated polymer resin and product containing the resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716551B1 (en) 2005-11-15 2007-05-09 다이모스(주) Proton exchange membrane having three layer structure and process for preparing the same

Also Published As

Publication number Publication date
KR20060090526A (en) 2006-08-11

Similar Documents

Publication Publication Date Title
Liu et al. The PVDF-HFP gel polymer electrolyte for Li-O2 battery
KR100634551B1 (en) Crosslinked proton conductive copolymer and fuel cell comprising the same
US20130115504A1 (en) Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
EP1788655B1 (en) Polymer membrane for fuel cell, method of preparing same, and membrane-electrode assemby for fuel cell comprising same
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
WO2011046233A1 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
US20040005490A1 (en) High stability membrane for proton exchange membrane fuel cells
US20090209668A1 (en) Reinforced composite membrane for polymer electrolyte fuel cell
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
CA2241552A1 (en) Blend membranes based on sulfonated poly(phenylene oxide) for enhanced polymer electrochemical cells
Ma et al. The research status of Nafion ternary composite membrane
JP5556081B2 (en) Ion conductive composite electrolyte membrane and fuel cell using the same
US20050112434A1 (en) Polymer electrolyte composition for direct methanol fuel cell with suppressed methanol crossover
KR100622995B1 (en) Preparation of multilayered proton conducting membrane for direct methanol fuel cell
US20090110997A1 (en) Ion-conductive material, solid polymer electrolyte membrane and fuel cell
CN102922863B (en) Method for preparing methanol-resisting high-conductivity proton exchange membrane
KR100484499B1 (en) Composition of Polymer Electrolytes for Direct Methanol Fuel Cell
JP4790225B2 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
US20140093792A1 (en) Solid polymer electrolyte membrane and fuel cell using the same
KR20110085392A (en) A method for modifying a surface of proton exchange membranes using ion implantation and proton exchange membranes modified thereby
US7115334B2 (en) Gel electrolyte and fuel cell employing the same
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
CN1978535B (en) Proton conductor, polymer electrolyte comprising the same and fuel cell employing the polymer electrolyte
JP2015228292A (en) Solid polymer electrolyte membrane, membrane-electrode assembly, fuel battery, water electrolysis cell and water electrolysis device
KR102531113B1 (en) Membrane-electrode assembly and fuel cell comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100830

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20120831

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee