KR100593689B1 - Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material - Google Patents

Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material Download PDF

Info

Publication number
KR100593689B1
KR100593689B1 KR1020050130516A KR20050130516A KR100593689B1 KR 100593689 B1 KR100593689 B1 KR 100593689B1 KR 1020050130516 A KR1020050130516 A KR 1020050130516A KR 20050130516 A KR20050130516 A KR 20050130516A KR 100593689 B1 KR100593689 B1 KR 100593689B1
Authority
KR
South Korea
Prior art keywords
inorganic
organic
material
surface
step
Prior art date
Application number
KR1020050130516A
Other languages
Korean (ko)
Inventor
강동필
강영택
나문경
박효열
안명상
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020050130516A priority Critical patent/KR100593689B1/en
Application granted granted Critical
Publication of KR100593689B1 publication Critical patent/KR100593689B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

본 발명은 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법 및 그 재료에 관한 것으로, 특히 유기용매에 용해된 금속알콕시 화합물을 1~50nm 크기의 무기물로 합성하여 나노입자무기물을 형성시키는 제1단계와; The present invention is a metal alkoxide compound dissolved in, more particularly, an organic solvent on the production method and the materials of the organic-inorganic hybrid material to the surface-modified nanoparticles, inorganic material and the curable resin is combined with a metal alkoxide compound in an organic silane 1 ~ 50nm a first step of forming a nano-particle inorganic material with an inorganic material composite of size and; 상기 나노입자무기물 100중량부에 대해 유기실란 1~30중량부를 첨가하여 상기 나노입자무기물에 유기반응기가 형성되도록 표면개질시키는 제2단계와; And the second step was added to 30 weight parts organosilane 1 for the inorganic nano-particles 100 parts by weight of the surface modified to form an organic reactor to the inorganic nanoparticles; 상기 제2단계에서의 결과물 1~90중량부에 경화성수지 10~99중량부를 첨가하여 분산용해시키는 제3단계와; And a third step of the first addition result from 1 to 90 parts by weight of the curable resin 10 to 99 parts by weight of the dispersion from step 2 parts by dissolution; 상기 제3단계에서의 결과물에 반응개시제 0.01~5중량부를 첨가하여 폴리머화시키는 제4단계;로 이루어지는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법 및 상기 제조방법에 의해 제조된 유무기하이브리드 재료를 기술적 요지로 한다. The first step the crystallized polymer was added portion initiator 0.01 to 5 parts by weight on the result in step 34; the synthesis of a metal alkoxy compound, characterized in that formed in the presence of a surface-modified nanoparticles, inorganic substance and a curable resin with an organosilane and an organic-inorganic hybrid material manufactured by the manufacturing method and the manufacturing method of the hybrid material as a technical base. 이에 따라 금속알콕시 화합물로부터 표면에 이온이나 이온성 화합물을 전혀 포함하지 않는 나노입자무기물을 합성하면서 마지막 단계에 유기실란을 반응시켜 유기용제에 안정한 분산성을 가진 무기물 졸을 제조하고 경화성수지에 균일하게 분산 용해하여 수지의 경화반응 시 무기물계면에서의 공중합을 유도하여 유기와 무기의 이종재료의 계면에 이온이나 수분의 존재를 배제함으로써 수 또는 서브 미크론의 초박막에서 경화성수지의 고유한 특성인 투명성, 화학안정성, 내후성을 저하시키지 않으면서 우수한 기계적 물성, 내열성, 고열전도성, 전기절연성, 발수성을 가지는 유무기하이브리드 재료를 제공하고 표면코팅, 함침, 바인더 등의 용도로 사용가능하게 하는 이점이 있다. Accordingly, it is reacted with an organosilane to the final step and synthesizing the inorganic nano-particles that does not contain any ion or an ionic compound to the surface of the metal-alkoxy compound prepared an inorganic sol with a stable dispersion in an organic solvent and uniformly in the curable resin dispersed and dissolved it is to induce copolymerization in the inorganic surface during the curing reaction of the resin, the inherent characteristics of the curable resin in the number or submicron ultra thin film by excluding the presence of ions and moisture at the interface between the dissimilar materials of organic and inorganic transparency, chemical stability, there is an advantage to provide an organic-inorganic hybrid material without degrading the weather resistance with excellent mechanical properties, heat resistance, high thermal conductivity, electrical insulation, water repellency and can be used for purposes of surface coating, impregnation, the binder and the like. 또한, 수지에 무기첨가물을 외부에서 첨가하는 기존 방식에서 벗어나 금속알콕시 화합물로 합성된 후 유기실란으로 개질된 나노입자무기물을 경화성수지와 액상용해를 시킴으로써 공정상의 비용을 절감할 수 있는 이점이 있다. Further, outside the traditional way that the inorganic additive is added from the outside to the resin has the advantage of after the synthesis of a metal-alkoxy compound reduce costs in the process, by a curable resin and the liquid phase dissolving the nanoparticles minerals modified with an organosilane.
금속알콕시 화합물 나노입자무기물 유기반응성 실란 계면공중합 경화성수지 유무기하이브리드 재료 초박막 전기절연재료 Alkoxy metal compound nanoparticles, inorganic silane-reactive organic surfactants copolymer resin curable organic-inorganic hybrid material ultra-thin electrically insulating material

Description

금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법 및 그 재료{manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material} Metal alkoxide is combined with the compound production method of a surface-modified nanoparticles, inorganic substance and a curable resin with an organosilane-inorganic hybrid material and the material {manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material}

도 1 - 본 발명에 따른 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법에 대한 순서도. Figure 1 - is the synthesis of a metal-alkoxy compounds according to the invention a flow chart for a method of manufacturing the surface-modified inorganic nanoparticles, and the curable resin with an organosilane-inorganic hybrid material.

도 2 - 본 발명에 따른 유무기하이브리드 재료에 대한 열중량분석기에 의한 실험결과를 나타낸 도. Figure 2 diagram showing an experimental result of the thermogravimetric analysis on the organic-inorganic hybrid material according to the present invention.

도 3 - 본 발명에 따른 유무기하이브리드 재료에 대해 측정된 접촉각을 나타낸 도. 3 - view showing a contact angle measured with respect to the organic-inorganic hybrid material according to the present invention.

도 4 - 본 발명에 따른 유무기하이브리드 재료에 대해 측정된 표면거칠기를 나타낸 도. Figure 4 - diagram of the surface roughness measured for the organic-inorganic hybrid material according to the present invention.

도 5 - 본 발명에 따른 유무기하이브리드 재료에 대해 측정된 절연저항을 나타낸 도. Figure 5 - diagram of the insulation resistance measured for the organic-inorganic hybrid material according to the present invention.

본 발명은 금속알콕시 화합물로부터 표면에 이온이나 이온성 화합물을 전혀 포함하지 않는 나노입자무기물을 합성하면서 마지막 단계에 유기반응성 실란을 반응시켜 유기용제에 안정한 분산성을 가진 무기물 졸을 제조하고 경화성수지에 균일하게 분산 용해하여 수지의 경화반응 시 무기물계면과의 공중합을 유도하며, 유기와 무기의 이종재료의 계면에 이온이나 수분의 존재를 배제함으로써 수 또는 서브 미크론의 초박막에서 전기절연성의 장기신뢰성이 우수한 유무기하이브리드 재료의 제조방법 및 그 재료에 관한 것이다. The present invention by reacting an organic reactive silanes in the final step and synthesizing the inorganic nano-particles that does not contain any ion or an ionic compound to the surface of the metal-alkoxy compound prepared an inorganic sol with a stable dispersion in an organic solvent and a curable resin uniformly dispersed and dissolved induce copolymerization with the curing reaction of the resin, the inorganic surface and the organic and of the different materials of the inorganic surface to the ion or water or in the sub-micron ultra-thin film is excellent in the electrical insulation long-term reliability by eliminating the presence of moisture inorganic relates to a method for manufacturing a hybrid material, and the material.

일반적으로 유기고분자가 300℃ 이상의 고온에서 사용되는 것은 거의 불가능하며, 옥외에서 변색이나 열화가 진행되고 표면경도가 약한 한계를 가지고 있어 이들 문제점을 극복하기 위한 노력이 진행되어 왔다. And generally it is impossible that the organic polymer is used in more than 300 ℃ high temperature, there is a color change or degradation proceeds in the open surface hardness has a low limit has been an effort to overcome these problems in progress.

대표적 방법 중의 하나가 유기물과 무기물을 복합화하는 것인데, 두 물질은 표면에너지 차이가 커서 이종 재료의 계면물성제어가 어려워 분산이 잘 되지 않고 계면접착력이 약하며 흡습이 잘 되는 문제점을 가지고 있어, 나노준위에서 복합화가 상업적으로 적용되는 경우가 많지 않다. Would be to one of the representative methods is complexed with organic and inorganic materials, the two materials is the interfacial adhesive force is not well distributed harder the surface energy difference in interfacial properties control the cursor different materials weak and it has a problem that the moisture absorption is good, in a nano-level it is not much when the composite is commercially applicable.

최근 콜로이달 실리카와 실란을 원료로 한 졸겔코팅재료는 몇몇 용도로 적용이 되고 있지만 취성이 강하고 2~3㎛ 이상의 두께로 제조하기 어려워 강한 인장력과 충격강도가 요구되는 용도로는 사용되지 않고 있다. Recently a sol-gel coating material in which the colloidal silica and the silane as a raw material is not in use to be a strong tensile and impact strength, difficult to manufacture, but is required by the thickness of the hard but brittle two or more 3㎛ applied in some applications, is not used.

졸겔 기술을 사용하여 경질피복물을 제조하는 방법과 보다 유연한 점탄성을 부여하기 위하여 유기/무기 피복물(ormosil-유기적으로 개질된 균산염, ormocer-유기적으로 개질된 세라믹, nanomer-나노입자를 함유하는 유기물)이 공지되어 있지만 제조가 어렵고 기계적 특성이 취약하고 물에 민감한 단점을 가지고 있다. Method using the sol-gel technique for producing a hard coating with the more imparting viscoelastic flexible organic / inorganic coating (ormosil- organically modified bacteria salts, organically modified ormocer- ceramic, organic material containing a nanomer- nanoparticles) to are known, but there are disadvantages in mechanical properties with sensitive vulnerable and water is difficult to manufacture.

이러한 유기/무기 조성물에 대한 종래기술로서 대한민국특허청 공개특허공보 공개번호 특2002-0042732호가 있다. As such an organic / inorganic composition of the prior art may call Republic of Korea Patent Laid-Open Patent Publication Patent Publication No. 2002-0042732.

그러나 상기 종래기술은 무기물표면에서의 금속이온이나 이온성 화합물에 대한 배제가 어려워 코팅박막재료의 초절연성을 만족시키기에는 한계가 있다. However, the prior art has a limit satisfying fit a metal ion or an ion of the second insulating thin-film-coated hard material for the exclusion of the compound in the inorganic material surface.

또한 나노급의 무기물 입자표면을 실란으로 처리하고 분말화한 뒤에 경화성수지에 첨가하여 전기전자용 초정밀 나노복합재료 제조를 시도해오고 있지만 완전히 표면처리된 나노분말제조가 기술적으로 어렵고 취급도 난해하여 경제성확보가 안되고 있는 실정이다. Further process the inorganic material particle surface of the nano as silane and powdered one after coming to try producing high-precision nano-composite material for electrical and electronic added to the curable resin, but completely surface-treated nano powders prepared is secured by technically difficult and intricate also handle economics the situation is that devised.

또 다른 종래기술로써 아크릴수지 또는 아크릴에멀젼에 나노입자무기물을 단순하게 물리적으로 혼합한 대한민국특허청 공개특허공보 특2003-0017219호가 보고되어 있으나, 이종재료간의 반응유도가 안되어 나노복합재료의 계면특성에서 한계를 보이고 있다. In addition to the inorganic nano-particles to an acrylic resin or an acrylic emulsion as the other prior art, a simple limit at the interface between the physical properties of the Republic of Korea Patent Publication Unexamined Patent Application Publication No. 2003-0017219 mixed with the call, but has been reported, in less than a nano-induced reaction between the bi-material composite material the shows.

또한 고분자소재의 표면물성(경도, 흡습성, 박막조도, 표면에너지)을 향상시킬 필요성이 증대되고 있고 디스플레이나 고집적 전자부품 및 전열선비용으로 박막화가 가능하고 내열성이 우수한 초절연성 재료의 수요가 발생하고 있으므로 환경친화성, 고온장기신뢰성, 화학적 안정성, 내마모성, 접착강도를 가진 최첨단 코팅재료 및 도료로의 사용이 기대된다. Also, because the demand of the surface properties (hardness, moisture, a thin film roughness, surface energy), this is increasing need to improve and is available and insulation having excellent heat resistance second thin film as a display or a highly integrated electronic components and the heating wires cost material of a polymer material occurs the use of environmental-friendly, high-temperature long-term reliability, chemical stability, wear resistance, cutting edge coatings and paints having the bonding strength is expected.

본 발명은 상기 문제점을 해결하기 위해 고안된 것으로서, 금속알콕시 화합물로부터 합성한 나노입자무기물의 표면을 유기반응성 실란으로 개질하여 경화성수지에 분자준위에서 분산용해가 가능하고 반응할 수 있도록 한 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법 및 그 재료의 제공을 그 목적으로 한다. The present invention in a metal alkoxide compound such that a dispersion dissolved in a molecular level in the hardening resin by modification of, one of the nanoparticles mineral surfaces synthesized from the metal alkoxide compound as designed to address the above problems with organic-reactive silane can be the reaction and a method for producing the surface-modified nanoparticles are synthesized by an inorganic substance and a curable resin to the organic silane and the organic-inorganic hybrid material provided that the material for that purpose.

또한 본 발명의 또 다른 목적은 수지에 무기첨가물의 외부첨가방식에서 벗어나 금속알콕시 분자로부터 합성하고 동일 반응계에서 유기실란으로 개질된 나노입자무기물의 분산약을 경화성수지에 액상용해를 시키는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법 및 그 재료를 제공하는 것이다. In addition to the metal alkoxide compound to the liquid phase dissolving the other object it is out of the external addition method of the inorganic additives synthesized from the metal alkoxide molecules and dispersion of the nanoparticles minerals modified with an organic silane in situ around the resin of the present invention in the curable resin synthesis is to provide a method for producing the surface-modified nanoparticles with an inorganic substance and a curable resin with an organosilane-inorganic hybrid materials, and materials.

상술한 바와 같은 목적 달성을 위한 본 발명은, 유기용매에 용해된 금속알콕시 화합물을 1~50nm 크기의 무기물로 합성하여 나노입자무기물을 형성시키는 제1단계와; The present invention for achieving the object as described above, a first step to synthesize the metal-alkoxy compound in an organic solvent with from 1 to 50nm size of the inorganic material to form inorganic nanoparticles; 상기 나노입자무기물 100중량부에 대해 유기실란 1~30중량부를 첨가하여 상기 나노입자무기물에 유기반응기가 형성되도록 표면개질시키는 제2단계와; And the second step was added to 30 weight parts organosilane 1 for the inorganic nano-particles 100 parts by weight of the surface modified to form an organic reactor to the inorganic nanoparticles; 상기 제2단계에서의 결과물 1~90중량부에 경화성수지 10~99중량부를 첨가하여 분산용해시키는 제3단계와; And a third step of the first addition result from 1 to 90 parts by weight of the curable resin 10 to 99 parts by weight of the dispersion from step 2 parts by dissolution; 상기 제3단계에서의 결과물에 반응개시제 0.01~5중량부를 첨가하여 폴리머화시키는 제4단계;로 이루어지는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하 이브리드 재료의 제조방법을 기술적 요지로 한다. The first step the crystallized polymer was added portion initiator 0.01 to 5 parts by weight on the result in step 34; the synthesis of a metal alkoxy compound, characterized in that formed in the presence of a surface-modified nanoparticles, inorganic substance and a curable resin with an organosilane and a method for producing hybrid materials with geometric technical base.

또한, 상기 제1단계의 유기용매는, 알코올, 방향족 유기화합물, 염화탄화수소, 셀루솔브류, 아세테이트류 또는 케톤류 중 적어도 하나가 선택되어 사용되는 것이 바람직하다. The organic solvent of the first step is preferably an alcohol, an aromatic organic compounds, chlorinated hydrocarbons, cellulose beuryu brush, at least one of the acetates or ketones are selected for use.

또한, 상기 제1단계의 나노입자무기물은, 실리카, 알루미나, 티타니아, 지르코니아, 산화주석, 산화아연 또는 상기 물질이 실리카로 표면개질된 것 중에 하나로 형성되는 것이 바람직하다. Further, the inorganic nano-particles of the first stage is preferably silica, alumina, titania, zirconia, tin oxide, zinc oxide or the material is formed as one of being the surface modification of silica.

또한, 상기 유기실란은, R 1 0~3 Si(OR 2 ) 1~4 에 있어서, R 1 은 아크릴기, 메타아크릴기, 아릴기, 비닐기 중에 적어도 하나가 선택되거나 상기 물질에 알킬기, 탄화불소알킬기, 에폭시기 중에 적어도 하나가 선택되어 혼용되고, R 2 는 메틸(methyl), 에틸(ethyl), 이소프로필(iso-propyl), 엔프로필(n-propyl) 또는 엔부틸(n-butyl) 중에 적어도 하나가 선택되며, OR 2 는 알콕시기, 초산기 또는 옥심기로 구성되는 일반식을 가지는 것이 바람직하다. Further, the organosilane, R 1 0 ~ 3 Si ( OR 2) in 1 ~ 4, R 1 is an acrylic group, a methacrylic group, an aryl group, at least one is selected, or an alkyl group on the substance in a vinyl group, a carbonized the fluorine group, and at least a mix of one is selected, the epoxy group, R 2 is methyl (methyl), ethyl (ethyl), isopropyl (iso-propyl), yen propyl (n-propyl) or ene-butyl (n-butyl) at least one is selected, oR 2 preferably has the formula a group consisting of an alkoxy group, an acetate group, or an oxime.

여기에서, 상기 경화성수지는, 아크릴수지 또는 비닐이중결합을 포함하여 경화반응이 가능한 변성프리폴리머 중에 적어도 하나가 선택되어 사용되는 것이 바람직하다. Here, the curable resin is at least one of the modified prepolymer, the curing reaction as possible, including an acrylic resin or a vinyl double bond is selected preferably to be used.

또한 본 발명은 상기의 제조방법에 의해 제조된, 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리 드 재료를 또 다른 기술적 요지로 한다. In another aspect, the present invention is combined with a metal alkoxy compound prepared by the process according to the above is the presence of a surface-modified inorganic nanoparticles, and the curable resin with an organosilane gihayi Brie de material to another technical aspect.

이에 따라 금속알콕시 화합물로부터 표면에 이온이나 이온성 화합물을 전혀 포함하지 않는 나노입자무기물을 합성하면서 마지막 단계에 유기실란을 반응시켜 유기용제에 안정한 분산성을 가진 무기물 졸을 제조하고 경화성수지에 균일하게 분산 용해하여 수지의 경화반응 시 무기물계면에서의 공중합을 유도하여 유기와 무기의 이종재료의 계면에 이온이나 수분의 존재를 배제함으로써 수 또는 서브 미크론의 초박막에서 경화성수지의 고유한 특성인 투명성, 화학안정성, 내후성을 저하시키지 않으면서 우수한 기계적 물성, 내열성, 고열전도성, 전기절연성, 발수성을 가지는 유무기하이브리드 재료를 제공하고 표면코팅, 함침, 바인더 등의 용도로 사용가능하게 하는 이점이 있다. Accordingly, it is reacted with an organosilane to the final step and synthesizing the inorganic nano-particles that does not contain any ion or an ionic compound to the surface of the metal-alkoxy compound prepared an inorganic sol with a stable dispersion in an organic solvent and uniformly in the curable resin dispersed and dissolved it is to induce copolymerization in the inorganic surface during the curing reaction of the resin, the inherent characteristics of the curable resin in the number or submicron ultra thin film by excluding the presence of ions and moisture at the interface between the dissimilar materials of organic and inorganic transparency, chemical stability, there is an advantage to provide an organic-inorganic hybrid material without degrading the weather resistance with excellent mechanical properties, heat resistance, high thermal conductivity, electrical insulation, water repellency and can be used for purposes of surface coating, impregnation, the binder and the like.

또한, 수지에 무기첨가물을 외부에서 첨가하는 기존 방식에서 벗어나 금속알콕시 화합물로 합성된 후 유기실란으로 개질된 나노입자무기물을 경화성수지와 액상용해를 시킴으로써 공정상의 비용을 절감할 수 있는 이점이 있다. Further, outside the traditional way that the inorganic additive is added from the outside to the resin has the advantage of after the synthesis of a metal-alkoxy compound reduce costs in the process, by a curable resin and the liquid phase dissolving the nanoparticles minerals modified with an organosilane.

이하에서는 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명하고자 한다. Hereinafter, with reference to the accompanying drawings to be described in detail the invention.

도 1은 본 발명에 따른 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법에 대한 순서도이다. 1 is the synthesis of a metal-alkoxy compounds according to the invention a flow chart for a method of producing a surface-modified inorganic nanoparticles and curable resin-inorganic hybrid material with an organic silane.

먼저, 본 발명은 제1단계로써 유기용매에 용해된 금속알콕시 화합물을 표면에 이온이나 이온성 화합물을 배제시킨 1~50nm 크기의 무기물로 합성한다. First, the present invention combines an inorganic material of claim 1 that exclude ion or an ionic compound to the metal alkoxide compound in an organic solvent in Step 1, the surface ~ 50nm size. 바람직 하게는 무기물의 크기가 20nm 이하가 안정하며 입자크기의 균일성을 위하여 교반방식이 중요하다. Preferably the inorganic size of 20nm or less stable and the stirring system is important to the uniformity of particle size.

그리고 제2단계로써 상기 제1단계에서의 나노입자무기물을 유기실란으로 표면개질시켜, 상기 나노입자무기물에 유기반응기를 형성시킨다. And by the surface modification of the inorganic nanoparticles in the first step as a second step to the organosilane, to form organic reactor to the inorganic nanoparticle.

그리고 제3단계로써 상기 제2단계에서 표면개질된 나노입자무기물과 경화성수지를 분자준위에서 균일하게 분산용해시킨다. And thereby the uniformity of the surface-modified inorganic nanoparticles, and the curable resin in the step 2 at the molecular level dispersion of dissolved as a third step.

그리고 제4단계로써 상기 제3단계에서의 결과물에 반응개시제를 첨가하여 상기 경화성수지가 분자준위에서 중합반응이 일어나도록 하여 폴리머를 제공하게 된다. And that the setting resin by the addition of initiator to result in the third step as the fourth step is to provide a polymer by the polymerization reaction to take place at the molecular level.

여기에서 상기 금속알콕시 화합물로부터 합성된 나노입자무기물의 입자크기는 조절이 가능하며, 경화성수지는 내열성, 투명성, 화학안정성 및 표면개질 나노입자무기물 분산용액과의 상용성을 고려하여 선택하며 경화반응성이 우수하여야 한다. Here, the particle size of the nanoparticles, inorganic synthesized from the metal alkoxide compound is capable of adjustment, the curable resin is selected in consideration of compatibility with the heat resistance, transparency, chemical stability, and surface-modified nanoparticles, inorganic dispersion solution, and the curing reactive It should be excellent.

이러한 분자준위에서의 균일한 분산 용해가 물성을 개선시킬 수 있게 되며, 상기 금속알콕시 화합물로부터 합성된 나노입자무기물을 표면개질시키는 유기실란의 함량 및 반응시간도 입자크기와 연관되게 된다. The uniform dispersion of the dissolved molecules in these levels it becomes possible to improve the physical properties, the amount and the reaction time of the organosilane to the surface modification of the inorganic nanoparticles synthesized from the metal alkoxide compound it is to be also related to the particle size.

상기 금속알콕시 화합물로부터 합성된 나노입자무기물은 실리카, 티타니아, 지르코니아, 산화주석, 산화아연 또는 실리카로 표면개질된 상기 무기물이며, 알콜올, 방향족 유기화합물, 염화탄화수소, 셀루솔브(cellusolve)류, 아세테이트(acetate)류, 케톤(ketone)류 또는 이들의 혼합용매에 분산된 액상상태로 제공되게 된다. Nanoparticles, inorganic synthesized from the metal alkoxide compound is a modified surface of the inorganic material with silica, titania, zirconia, tin oxide, zinc or silica oxide, alcohol-ol, aromatic organic compounds, chlorinated hydrocarbons, cellulose cellosolve (cellusolve) acids, acetate (acetate) stream, is to be provided in a liquid phase dispersed in a ketone (ketone) flow or a mixed solvent thereof.

그리고 상기 금속알콕시 화합물로부터 합성된 나노입자무기물은 무기물의 함량이 대략 2~50중량부가 적당하며, 2중량부 이하에서는 무기물의 함량이 적어 상기 경화성수지와의 중합에서 용매 량의 증가로 성형에 적합한 고형분을 맞추기가 어렵고 경제성이 없다. And the nanoparticles mineral content of the inorganic material is synthesized from the metal alkoxide compound about 2 to 50 parts by weight, suitably, and 2 parts by weight or less in the suitable forming write the content of the inorganic material in the polymerization with the curable resin to the increase in amount of the solvent Fit the hard solids is not economical.

그리고 유기실란은 일반적으로 일반적으로 R 1 0~3 Si(OR 2 ) 1~4 의 일반식을 가지며, 여기에서 R 1 은 아크릴기, 메타아크릴기, 알릴기, 비닐기 중에 적어도 하나가 선택되거나 상기 물질에 알킬기, 탄화수소알킬기, 에폭시기 중에 적어도 하나가 선택되어 혼용되고, R 2 는 메틸(methyl), 에틸(ethyl), 이소프로필(iso-propyl), 엔프로필(n-propyl), 엔부틸(n-butyl), OR 2 는 알콕시기 외에 초산기, 옥심기로 구성된다. And the organosilanes are typically generally have the general formula R 1 0 ~ 3 Si (OR 2) 1 ~ 4, where R 1 is an acrylic group, a methacrylic group, an allyl group, or at least one is selected among a vinyl group alkyl group in said material, and at least a mix of one is selected, the hydrocarbon group, an epoxy group, R 2 is methyl (methyl), ethyl (ethyl), isopropyl (iso-propyl), yen propyl (n-propyl), yen-butyl ( n-butyl), OR 2 is composed of an alkoxy group in addition to groups acetate group, an oxime.

상기 유기실란 중에 하나를 선택하거나 알킬기를 가진 반응성이 없는 유기실란을 혼합하여 사용할 수 있으며, 상기 유기실란은 금속알콕시 화합물로부터 합성된 나노입자무기물 100중량부에 대해 유기실란 1~30중량부를 혼합하여 사용한다. By mixing select one or may be used by mixing organosilane with no reactivity with the group, it said organosilane parts organosilane 1 to 30 by weight of the inorganic material 100 parts by weight of the composite nanoparticles of the metal-alkoxy compound in the organic silane use.

그리고 상기 용매는 상기 금속알콕시 화합물을 골고루 분산 용해시키는 것으로, 상기 금속알콕시 화합물에 대해 10~80중량부만큼 사용하며, 알코올, 방향족 유기화합물, 염화탄화수소, 셀루솔브(cellusolve)류, 아세테이트(acetate)류, 케톤(ketone)류 또는 이들의 혼합 용매 중에 하나를 선택하여 사용할 수 있다. And the solvent is intended to uniformly disperse dissolving the metal alkoxide compound, and used by 10 to 80 parts by weight relative to the metal alkoxide compound, alcohol, aromatic organic compounds, chlorinated hydrocarbons, cellulose cellosolve (cellusolve) acids, acetate (acetate) acids, can be used to choose one of the ketone (ketone) flow or a mixed solvent thereof.

상기 용매는 금속알콕시 화합물로 합성된 나노입자무기물의 고형분 농도를 조절하고, 상기 경화성수지와의 용해가 원활하게 이루어지도록 하기 위한 것이다. The solvent is to be done so that the dissolution of the above curable resin smoothly adjust the solid content of the inorganic nanoparticles synthesized by the metal alkoxide compound, and.

그리고 상기 나노입자무기물이 유기용매에 분산된 상태로 형성된 용액에 유기실란을 첨가하여 상기 금속알콕시 화합물로 합성된 나노입자무기물에 유기반응기가 형성되도록 하며, 상기 용액에 대해 1~30중량부만큼 첨가시킨다. And added by 1 to 30 parts by weight based on and so that the inorganic material the nanoparticles formed by adding an organic silane to the solution formed in a dispersed state in an organic solvent, the organic reactor in the nanoparticle inorganic composite with the metal alkoxide compound, and the solution thereby.

여기에서 상기 유기반응성 유기실란은 상기 경화성수지가 가지고 있는 반응기와 대응되는 반응기를 가지고 있는 유기반응성 유기실란을 사용하며, 상기 유기반응성 유기실란을 혼합하여 사용할 경우에는 상기 경화성수지와 중합반응이 가능한 반응기를 가지고 있는 유기반응성 유기실란이 적어도 1%이상 포함되어 있어야 한다. Here reactivity of the organic organosilane has a reactor wherein the curable resin and the polymerization reaction can, if used in a mixture with the organic reactive organosilane, and an organic reactive organosilane which has a reactor corresponding to the reactor in which the curable resin has a must include organic reactive organosilane is at least greater than or equal to 1% with.

그리고 상기 경화성수지는 주로 아크릴 수지를 사용하지만 비닐이중결합을 포함하여 경화반응이 가능한 각종 변성프리폴리머를 선택하는 것이 바람직하며, 상기 유기반응성 유기실란과 유기실란에 의해 표면개질된, 금속알콕시 화합물로 합성된 나노입자무기물에 대해 10~99중량부만큼 사용한다. And the setting resin is mainly used an acrylic resin, but the vinyl double bond by curing reaction, it is preferable to select various modified prepolymer available, synthesized as a surface-modified metal-alkoxy compounds by the organic reactive organosilane and organosilane include the use as 10 to 99 parts by weight for the inorganic nanoparticles.

여기서 경화성수지의 함량이 20중량부 미만이 되면, 필름제작은 가능하나 크랙이 발생하며, 인장강도, 신율 등 물성의 저하가 크게 발생하여 바람직하지 않다. Here, when the content is less than 20 parts by weight of the curable resin, the film making is possible, and a crack is generated, it is not preferable to the tensile strength, elongation properties such as lowering of the greatly occur.

상기 경화성수지는 비닐계 이중결합을 포함하는 것으로, 고형분의 중량이 20~100중량부가 적당하며, 만약 그 이하인 경우에는 용매의 양이 늘어나 균일한 코팅이 어렵고 상기 반응기가 형성된 나노입자무기물과의 균일한 중합이 어렵게 된다. The curable resin is to include a vinyl-based double bond, and the weight of the solid content of 20 to 100 parts by weight of suitable, if that is even with the difficult and uniform coating increases the amount of solvent nanoparticles minerals which the reactor is formed not more than the polymerization is difficult.

그리고 상기 유기실란에 의해 표면개질된 금속알콕시 화합물로 합성된 나노입자무기물과 경화성수지와의 중합반응을 유도하기 위하여 반응개시제를 첨가하여 프리폴리머 상태의 경화성수지를 폴리머화하게 된다. And by a reaction initiator was added to induce polymerization of the nanoparticles and the inorganic material and the curable synthetic resin into the metal alkoxide compound surface-modified by the organic silane is a curable polymer resin prepolymer state.

여기에서 반응개시제는 상기 유기실란에 의해 표면개질된, 금속알콕시 화합물로 합성된 나노입자무기물과 상기 경화성수지에 대해 0.01~5중량부 만큼 첨가하여 사용하며, 열 또는 광에 의해 경화성수지의 중합반응이 개시되게 되는 것이다. Here, the reaction initiator is a polymerization reaction of the curable resin by the surface modification, the metal used was added by 0.01 to 5 parts by weight, and for the inorganic nanoparticles synthesized by the alkoxy compound and the curable resin, heat or light by the organic silane the disclosure will be presented.

이하에서는 본 발명의 바람직한 실시예에 대해 설명하고자 한다. Hereinafter will be explained a preferred embodiment of the present invention.

『실시예. "Examples.

금속알콕시 화합물 - 테트라에톡시실란(TEOS, tetraethoxysilane) Silane (TEOS, tetraethoxysilane) in a tetra-alkoxy metal compound

유기용매 - 에틸셀루솔브(EC, ethylcellusolve), 톨루엔(toluene) Organic solvent-ethyl cellulose cellosolve (EC, ethylcellusolve), toluene (toluene)

유기반응성 유기실란 - 메틸트리메톡시실란(MTMS, methyltrimethoxysilane), 비닐트리메톡시실란(VTMS, vinyltrimethoxysilane) Organic reactive organosilane-methyl trimethoxy silane (MTMS, methyltrimethoxysilane), vinyltrimethoxysilane (VTMS, vinyltrimethoxysilane)

경화성수지 - 아크릴계 배합처방 수지 The curable resin-acrylic resin formulation

반응개시제 - 유기과산화물(경화조건 : 160℃, 1hr)』를 사용한다. Uses: (160 ℃, 1hr cure conditions) "The organic peroxide-initiator.

이를 상세히 설명하면, 금속알콕시 화합물인 테트라에톡시실란을 톨루엔에 25중량%로 용해시키고 테트라에톡시실란의 4몰배로 물을 포함하는 에틸솔루솔브를 첨가하면 4개의 에톡시(ethoxy)기가 물과 반응하여 OH기로 바뀌고 이 OH기가 서로 축합반응하여 1~50nm의 나노입자무기물이 합성되며 여기에 메틸트리메톡시실란과 비닐트리메톡시실란 10중량부를 첨가하여 상온, 400rpm, 4hr 동안 반응시킨다. If this be described in detail, the metal when dissolved in an alkoxy silane to a compound of tetra to 25% by weight in toluene was added to the ethyl solution cellosolve containing water 4 times by mole of the tetraethoxysilane 4-ethoxy (ethoxy) the group of water and the reaction turned a group OH and the OH groups to the condensation reaction is 1 ~ 50nm of the synthetic inorganic nanoparticles each other excites react for methyltrimethoxysilane and vinyltrimethoxysilane were added 10 weight parts of room temperature, 400rpm, 4hr on.

상기 메틸트리메톡시실란은 3개의 메톡시(methoxy)기가 상기 금속알콕시 화합물로 합성된 나노입자무기물의 표면에 반응하면, 메틸(methyl)기가 표면에 노출되어, 상기 금속알콕시 화합물로 합성된 나노입자무기물이 유기계수지에 분산 가능한 형태로 바뀌도록 하면서 무기물 표면에서의 비닐기 농도를 적절히 조절해주는 역할을 한다. The methyl trimethoxy silane 3-methoxy (methoxy) group when the reaction with the surface of the nanoparticles, inorganic synthesized with the metal alkoxide compound is methyl (methyl) group is exposed on the surface, the nanoparticles synthesized by the metal alkoxide compound as to the inorganic material turned into a dispersible form of the organic resin which serves as adjusting the concentration of vinyl groups in the inorganic material surface.

상기 비닐트리메톡시실란은 3개의 비닐(vinyl)기가 상기 나노입자무기물의 계면의 OH기와 축합반응을 하게 되어 상기 비닐(vinyl)기가 표면에 노출되므로, 상기 나노입자무기물은 유기반응기를 가지게 된다. The vinyl silane is 3-vinyl (vinyl) group is to the interface between the OH group and condensation of the inorganic material the nanoparticles because the plastic (vinyl) group is exposed on the surface, the nanoparticles minerals will have the organic reactor.

상기 비닐기(또는 여타 반응성기)가 형성된 나노입자무기물은 1~90중량부를 비닐계 경화성수지인 아크릴단량체 10~99중량부에 첨가하게 된다. Inorganic nanoparticles wherein the vinyl (or other reactive groups) are formed, is added to 1 to 90 parts by weight of a vinyl-based resin is a curable acrylic monomer 10 to 99 parts by weight. 이에 의해 상기 비닐기가 형성된 나노입자무기물과 비닐계 경화성수지로 된 혼합 졸이 생성되며 상기 혼합 졸에 0.1~1중량부의 반응개시제를 첨가한다. With this mixed sol is produced by the inorganic nanoparticles and the vinyl-based curing resin is formed, and said vinyl groups are added to 0.1 to 1 parts by weight of reaction initiator to the mixed sol.

다음은 상기 금속알콕시 화합물이 나노입자무기물로의 합성되는 반응식, 그리고 합성된 금속알콕시 화합물과 메틸트리메톡시실란의 반응식, 메틸기로 유기개질된 나노입자무기물과 비닐트리메톡시실란과의 반응식을 나타낸 것이다. The following shows the reaction scheme of the reaction scheme, and the composite metal alkoxide compound and a methyltrimethoxysilane in the scheme, organically modified nano-particle inorganic material with vinyltrimethoxysilane as a methyl group wherein the metal alkoxy compound is synthesized in a nanoparticle inorganic will be.

Figure 112005076681478-pat00001

Figure 112005076681478-pat00002

Figure 112005076681478-pat00003

Figure 112005076681478-pat00004

Figure 112005076681478-pat00005

Figure 112005076681478-pat00006

다음은 상기 비닐기가 형성된 나노입자무기물과 아크릴단량체와의 반응식과, 최종적으로 반응개시제에 의해 폴리머 상태의 유무기하이브리드 재료의 반응식을 나타낸 것이다. The following shows the reaction formula of the organic-inorganic hybrid polymer material of the state by the reaction schemes and finally reaction of the initiator and the inorganic nanoparticles and the vinyl group is formed of acrylic monomers.

Figure 112005076681478-pat00007

Figure 112005076681478-pat00008

이하에서는 상기 실시예에 대한 몇가지 실험예에 의한 결과데이터를 설명하고자 한다. Hereinafter will be described the result data by a few experimental example for this embodiment.

상기 실시예에 의한 구성성분에 의하며, 아크릴수지 100중량부에 대해 25중량부인 나노입자무기물 졸을 아크릴수지 대비 나노입자무기물 고형분비가 10, 20, 30, 40, 0이 되게 첨가한 (1), (2), (3), (4), (5) 샘플에 대해 약 0.5중량부의 반응개시제를 첨가하여 유무기하이브리드 재료를 제조한다. The embodiment uihamyeo the components by way of example, an acrylic resin, 100 parts by weight of a unit to be 25 parts by weight of nanoparticles of inorganic sol acrylic resin prepared nanoparticles inorganic solids ratio of 10, 20, 30, 40, 0 is added to the (1), 2, 3, 4 and 5 are added to about 0.5 parts by weight of initiator for the sample to produce a organic-inorganic hybrid material. 이를 다음 표1에 의해 나타내었다. This is shown by the following table 1.

<표 1> <Table 1>

아크릴수지 Acrylic resin 유기반응기가 형성된 나노입자무기물 Inorganic nanoparticles are formed of organic reactor 반응개시제 The reaction initiator
100 100 10 (1) 10 (1) 0.5% 0.5%
20 (2) 20 (2)
30 (3) 30 (3)
40 (4) 40 (4)
0 (5) 0 (5)

상기 유무기하이브리드 재료를 테프론 접시에 얇게 도포하고 오븐에서 160℃로 약 1시간 동안 열가교시켜 투명한 필름을 얻었다. The organic-inorganic hybrid material coated with a thin Teflon plate and heat cross-linking for about 1 hour to 160 ℃ in an oven to obtain a transparent film. 제조된 유무기하이브리드 재료의 열분해온도를 측정하기 위하여 열중량분석기(Thermogravimetric analysis, TGA)(TA, Q600)를 사용하였다. A thermogravimetric analyzer (Thermogravimetric analysis, TGA) (TA, Q600) for measuring a thermal decomposition temperature of the hybrid organic-inorganic material produced was used. 상기 열중량분석기는 질소분위기하에서 승온속도를 20℃/min로 상온에서 600℃까지 측정하였다. The thermogravimetric analysis was measured at room temperature, the temperature rise rate in a nitrogen atmosphere to 20 ℃ / min up to 600 ℃.

도 2는 본 발명에 따른 유무기하이브리드 재료에 대한 열중량분석기에 의한 실험결과를 나타낸 도이다. 2 is a diagram showing an experimental result of the thermogravimetric analysis on the organic-inorganic hybrid material according to the present invention.

도 2와 같이 순수 아크릴수지(5)는 열분해온도가 약200℃ 전후이지만, 유기반응기가 형성된 나노입자무기물이 포함된 유무기하이브리드 재료의 경우(1),(2),(3),(4)는 무기물인 실리카의 영향으로 약 50℃ 이상의 내열성 향상을 보이며, 상기 유기반응기가 형성된 나노입자무기물의 함량이 증가함에 따라 우수한 열적 성질을 나타냄을 알 수 있다. Pure acrylic resin 5 as shown in Figure 2 is the case of the hybrid material of the thermal decomposition temperature, but after about 200 ℃, containing the nanoparticles inorganic organic reactor formed inorganic (1), (2), (3), (4 ) it can be seen shows excellent thermal properties, as the influence of the heat-resistant inorganic substance is silica showed improvement of at least about 50 ℃, the organic reactor is the content of the inorganic nano-particles formed increases.

그리고 유무기하이브리드 재료의 접촉각(°)을 측정하여 재료의 발수성을 확인할 수 있는데, 사용된 아크릴수지는 우레탄아크릴레이트수지로서 친수성이 있는 우레탄기의 영향으로 접촉각(66.97°)이 매우 낮은 편이다. And inorganic may determine the water repellency of the material by measuring the contact angle (°) of the hybrid material, an acrylic resin used was a very low contact angle (66.97 °) to the affected part of the urethane group in the hydrophilic as a urethane acrylate resin.

그러나 유기반응기가 형성된 나노입자무기물이 포함된 유무기하이브리드 재료는 상대적으로 표면에너지가 높은 일반 실리카와는 다르게 향상된 표면접촉각을 보인다. However, with the inorganic nanoparticles are formed of an organic-inorganic hybrid material reactor is relatively looks different from the enhanced surface contact angle with the normal silica surface energy higher. 이를 도 3에 도시하였다. This was shown in Fig.

그리고 표면에너지가 낮은 유기반응기로 개질된 실리카 입자가 주로 표면에 존재할 것으로 예상되어 표면의 거칠기(α-step, Å)는 유기반응기가 형성된 나노입자무기물의 함량이 증가함에 따라 거칠어짐을 알 수 있다. And the surface energy of the silica particles modified with a low organic reactor is expected to be mainly present in the surface roughness (α-step, Å) of the surface can be seen that coarse as the organic reactor is the content of the nanoparticles inorganic increased formed. 이를 도 4에 도시하였다. This is shown in FIG.

그리고 고분자에 무기물이 첨가되면 대부분의 경우 표면저항은 떨어지는 것 으로 되어 있다. And in most cases, when the inorganic material is added to the polymer surface resistance it is to be falling. 이것은 무기물표면의 이온이나 수분흡착 때문인데, 본 발명의 유무기하이브리드 재료에서 무기물의 첨가량이 증가할수록 표면저항이 증가하는 결과를 보이고 있으며, 우수한 절연재료로 사용가능함을 보여주고 있다. This is due to ions and water adsorption of the inorganic surface, and the more the addition amount of the inorganic material increases in the organic-inorganic hybrid material of the present invention showing the results for the surface resistance is increased, showing a possible use as an excellent insulating material. 이를 도 5에 도시하였다. This was shown in Fig.

상기 구성에 의한 본 발명은, 금속알콕시 화합물로 합성된 나노입자무기물의 표면을 유기실란으로 개질하여 경화성수지와 반응할 수 있는 반응기를 도입하고 나노입자무기물과 경화성수지가 분자준위에서 균일하게 분산 용해되어 공중합을 하게 되므로서, 무기물 표면에 금속이온 또는 화합물성이온등이 전혀 포함되어 있지 않고 수분침투가 되지 않아야 경화성수지의 고유한 특성인 투명성, 화학안정성, 내후성을 저하시키지 않으면서 우수한 기계적 물성, 내열성, 고열전도성, 전기절연성, 발수성을 가지는 유무기하이브리드 재료를 제공하는 효과가 있다. The present invention according to the above structure, by modifying the surface of nanoparticles, inorganic synthesis of a metal-alkoxy compound in the organosilane introduced into a reactor capable of reacting with the curable resin and the nanoparticles are inorganic materials and curable resin uniformly at the molecular level dispersion dissolved It is standing, so that the copolymer, the metal ion or compound St. ions and the like while not should not penetrate the water does not contain any reducing the unique characteristics of transparency, chemical stability, and weather resistance of the curable resin excellent mechanical properties to inorganic surfaces, inorganic having a heat resistance, high thermal conductivity, electrical insulation, water repellency is effective to provide a hybrid material.

또한 본 발명은 수지에 무기첨가물의 와부첨가방식을 벗어나 금속알콕시 화합물로부터 합성되고 유기실란으로 개질된 나노입자무기물을 분산액의 상태로 경화성수지와 액상용해를 시킴으로서 공정상의 비용을 절감할 수 있는 장점이 있으며, 유무기하이브리드 재료는 고분자수지에 비해 물성이 크게 향상되고 있어 전기전자 및 에너지환경분야에 코팅, 함침, 바인딩용으로 적용가능한 효과가 있다. In addition, the advantage of the present invention can escape a wabu addition of an inorganic additive manner to the resin being synthesized from the metal alkoxide compounds reduce costs in the process sikimeuroseo the curable resin and the liquid phase dissolving the nanoparticles minerals modified with organosilane in a state of dispersion and, organic-inorganic hybrid material may be applied to the a's for the coating significantly improves the electrical and electronic energy and environmental fields, impregnation, binding properties compared to the effect of the polymer resin.

Claims (6)

  1. 유기용매에 용해된 금속알콕시 화합물을 1~50nm 크기의 무기물로 합성하여 나노입자무기물을 형성시키는 제1단계와; Synthesizing a metal alkoxide compound in an organic solvent with from 1 to 50nm size of the inorganic material and the first step of forming an inorganic nanoparticles;
    상기 나노입자무기물 100중량부에 대해 유기실란 1~30중량부를 첨가하여 상기 나노입자무기물에 유기반응기가 형성되도록 표면개질시키는 제2단계와; And the second step was added to 30 weight parts organosilane 1 for the inorganic nano-particles 100 parts by weight of the surface modified to form an organic reactor to the inorganic nanoparticles;
    상기 제2단계에서의 결과물 1~90중량부에 경화성수지 10~99중량부를 첨가하여 분산용해시키는 제3단계와; And a third step of the first addition result from 1 to 90 parts by weight of the curable resin 10 to 99 parts by weight of the dispersion from step 2 parts by dissolution;
    상기 제3단계에서의 결과물에 반응개시제 0.01~5중량부를 첨가하여 폴리머화시키는 제4단계;로 이루어지는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법. The first step the crystallized polymer was added portion initiator 0.01 to 5 parts by weight on the result in step 34; the synthesis of a metal alkoxy compound, characterized in that formed in the presence of a surface-modified nanoparticles, inorganic substance and a curable resin with an organosilane method for producing a hybrid material.
  2. 제1항에 있어서, 상기 제1단계의 유기용매는, The method of claim 1, wherein the organic solvent of the first step,
    알코올, 방향족 유기화합물, 염화탄화수소, 셀루솔브류, 아세테이트류 또는 케톤류 중 적어도 하나가 선택되는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법. Alcohols, aromatic organic compounds, chlorinated hydrocarbons, cellulose brush beuryu, acetates or ketones of the synthesis of a metal alkoxy compound, characterized in that at least one is selected, the organic-inorganic hybrid by the surface-modified nanoparticles, inorganic and curing resin with an organic silane the method of the material.
  3. 제1항에 있어서, 상기 제1단계의 나노입자무기물은, The method of claim 1, wherein the inorganic nano particles of the first stage is,
    실리카, 알루미나, 티타니아, 지르코니아, 산화주석, 산화아연 또는 상기 물질이 실리카로 표면개질된 것 중에 하나로 형성되는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법. Silica, alumina, titania, zirconia, tin oxide, zinc oxide or the surface-modified nano-particle inorganic material with a curable resin wherein the substance is combined with a metal alkoxy compound, characterized in that formed in one of the things the surface modification of silica with an organosilane as the method of manufacturing an organic-inorganic hybrid material.
  4. 제1항에 있어서, 상기 유기실란은, The method of claim 1 wherein the organosilane,
    R 1 0~3 Si(OR 2 ) 1~4 에 있어서, In the R 1 0 ~ 3 Si (OR 2) 1 ~ 4,
    R 1 은 아크릴기, 메타아크릴기, 아릴기, 비닐기 중에 적어도 하나가 선택되거나 상기 물질에 알킬기, 탄화불소알킬기, 에폭시기 중에 적어도 하나가 선택되어 혼용되고, R 1 is at least one selected among an acrylic group, a methacrylic group, an aryl group, or a vinyl group and at least one mix is selected in the group in said material, a fluorocarbon group, an epoxy group,
    R 2 는 메틸(methyl), 에틸(ethyl), 이소프로필(iso-propyl), 엔프로필(n-propyl) 또는 엔부틸(n-butyl) 중에 적어도 하나가 선택되며, R 2 is at least one is selected among methyl (methyl), ethyl (ethyl), isopropyl (iso-propyl), yen propyl (n-propyl) or yen butyl (n-butyl),
    OR 2 는 알콕시기, 초산기 또는 옥심기로 구성되는 일반식을 가지는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법. OR 2 is an alkoxy group, an acetate group, or are combined with a metal alkoxy compound, characterized in that having the general formula which consists of a process for producing oximes in the organic-inorganic hybrid by the surface modification of inorganic nanoparticles and curable resin with an organosilane material.
  5. 제 1항에 있어서, 상기 경화성수지는, The method of claim 1, wherein the curable resin,
    아크릴수지 또는 비닐이중결합을 포함하여 경화반응이 가능한 변성프리폴리 머 중에 적어도 하나가 선택되는 것을 특징으로 하는 금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료의 제조방법. Acrylic resin or vinyl double bond by a curing reaction is possible modified pre-polyester and at least one is combined with a metal alkoxide compound being selected in the Murray surface-modified nanoparticles the organic-inorganic hybrid of inorganic and curing resin with an organic silane containing the the method of the material.
  6. 제 1항 내지 제 5항 중 어느 한 항의 제조방법에 의해 제조된, The claims 1 to 5 prepared by the method of any one of,
    금속알콕시 화합물로 합성되어 유기실란으로 표면개질된 나노입자무기물과 경화성수지로 된 유무기하이브리드 재료. The organic-inorganic hybrid material is combined with a metal alkoxide compound as a surface-modified inorganic nanoparticles and curable resin with an organosilane.
KR1020050130516A 2005-12-27 2005-12-27 Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material KR100593689B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050130516A KR100593689B1 (en) 2005-12-27 2005-12-27 Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050130516A KR100593689B1 (en) 2005-12-27 2005-12-27 Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material

Publications (1)

Publication Number Publication Date
KR100593689B1 true KR100593689B1 (en) 2006-06-20

Family

ID=37183238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050130516A KR100593689B1 (en) 2005-12-27 2005-12-27 Manufacturing method of organic-inorganic hybrid materials composed of networkable resins with inorganic nano-particles synthesized with metal alcoxide and functional organosilane, and the material

Country Status (1)

Country Link
KR (1) KR100593689B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791831B1 (en) 2006-10-24 2008-01-04 한국전기연구원 Manufacturing method of poly(epoxy-imide)-nano silica hybrid material via cs sol-gel process and the material
KR101025003B1 (en) 2008-07-03 2011-03-25 한국전기연구원 Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
KR101035011B1 (en) * 2010-01-19 2011-05-17 한국전기연구원 Heat-radiant coatings and heat-radiant plate thereby
KR101118750B1 (en) 2010-06-09 2012-03-13 한국전기연구원 Fabrication method of coating materials hybridized with high content colloidal ceramic sol and organic polymer and coating film thereof
CN103205149A (en) * 2012-01-17 2013-07-17 帛宏兴业股份有限公司 Heat radiation material, heat radiation structure, and preparation method thereof
KR101321983B1 (en) 2012-10-25 2013-10-28 한국전기연구원 Manufacturing method of solvent content controllable and photocurable silica-acrylic hybrid packaging materials
KR101347176B1 (en) * 2009-12-03 2014-01-07 한국세라믹기술원 Ultraviolet Cured Organic-Inorganic Hybrid Resin and The Resin Composition For Optical Film
KR101444820B1 (en) 2013-05-21 2014-09-30 한국전기연구원 manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
KR101648484B1 (en) * 2015-09-11 2016-08-16 주식회사 한국화이어텍 Ceramic Hybrid Heat radiant Coating Materials Using Carbon allotrope composites
KR101735380B1 (en) 2012-12-03 2017-05-15 한국전기연구원 Manufacturing method of organic-inorganic hybrid pressure sensitive adhesives using nanoparticle-dispersed monomer
KR101864420B1 (en) 2017-05-30 2018-06-07 주식회사 앰트 High refractive organic-inorganic hybrid solution produced by multi-step grafting process and its manufacturing method
KR101878371B1 (en) * 2017-03-24 2018-07-13 한국과학기술원 Preparaion method of semiconductor nanocrystal composite resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069189A (en) * 1998-02-05 1999-09-06 손욱 Organic and inorganic composite manufacturing method of
EP1291370A1 (en) 2001-08-29 2003-03-12 Pacific Corporation UV-scattering inorganic/polymer composite particles and a method for preparing the same
KR20030063157A (en) * 2002-01-18 2003-07-28 산요 덴키 가부시키가이샤 Method of Producing Organic-Inorganic Composite Material and Organic-Inorganic Composite Material
US6835792B2 (en) 2000-05-15 2004-12-28 Pole-Chic Corporation Solventless nontoxic high refractive index and low birefringence organic/inorganic hybrid materials
EP1510557A2 (en) 2003-08-29 2005-03-02 General Electric Company Metal oxide nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069189A (en) * 1998-02-05 1999-09-06 손욱 Organic and inorganic composite manufacturing method of
US6835792B2 (en) 2000-05-15 2004-12-28 Pole-Chic Corporation Solventless nontoxic high refractive index and low birefringence organic/inorganic hybrid materials
EP1291370A1 (en) 2001-08-29 2003-03-12 Pacific Corporation UV-scattering inorganic/polymer composite particles and a method for preparing the same
KR20030063157A (en) * 2002-01-18 2003-07-28 산요 덴키 가부시키가이샤 Method of Producing Organic-Inorganic Composite Material and Organic-Inorganic Composite Material
EP1510557A2 (en) 2003-08-29 2005-03-02 General Electric Company Metal oxide nanoparticles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791831B1 (en) 2006-10-24 2008-01-04 한국전기연구원 Manufacturing method of poly(epoxy-imide)-nano silica hybrid material via cs sol-gel process and the material
KR101025003B1 (en) 2008-07-03 2011-03-25 한국전기연구원 Functional inorganic thick film and thick film manufacturing method using functional surface treatment of inorganic nano-particle sol
KR101347176B1 (en) * 2009-12-03 2014-01-07 한국세라믹기술원 Ultraviolet Cured Organic-Inorganic Hybrid Resin and The Resin Composition For Optical Film
KR101035011B1 (en) * 2010-01-19 2011-05-17 한국전기연구원 Heat-radiant coatings and heat-radiant plate thereby
KR101118750B1 (en) 2010-06-09 2012-03-13 한국전기연구원 Fabrication method of coating materials hybridized with high content colloidal ceramic sol and organic polymer and coating film thereof
CN103205149A (en) * 2012-01-17 2013-07-17 帛宏兴业股份有限公司 Heat radiation material, heat radiation structure, and preparation method thereof
KR101321983B1 (en) 2012-10-25 2013-10-28 한국전기연구원 Manufacturing method of solvent content controllable and photocurable silica-acrylic hybrid packaging materials
KR101735380B1 (en) 2012-12-03 2017-05-15 한국전기연구원 Manufacturing method of organic-inorganic hybrid pressure sensitive adhesives using nanoparticle-dispersed monomer
KR101444820B1 (en) 2013-05-21 2014-09-30 한국전기연구원 manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
KR101648484B1 (en) * 2015-09-11 2016-08-16 주식회사 한국화이어텍 Ceramic Hybrid Heat radiant Coating Materials Using Carbon allotrope composites
KR101878371B1 (en) * 2017-03-24 2018-07-13 한국과학기술원 Preparaion method of semiconductor nanocrystal composite resin composition
KR101864420B1 (en) 2017-05-30 2018-06-07 주식회사 앰트 High refractive organic-inorganic hybrid solution produced by multi-step grafting process and its manufacturing method

Similar Documents

Publication Publication Date Title
Rahman et al. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review
Chen et al. Synthesis and characterization of polyimide/silica hybrid composites
Shi et al. Interfacial effects on the reinforcement properties of polymer− organoclay nanocomposites
Yeh et al. Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach
CA1103100A (en) Silicon treated surfaces
Choi et al. Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes
JP5046526B2 (en) Nanoparticles modified surface, their preparation and use thereof
US7781063B2 (en) High thermal conductivity materials with grafted surface functional groups
EP0972809A2 (en) Organic-inorganic hybrid polymer materials with compositional gradient, and processes for preparing the same
KR101614161B1 (en) Silicone laminated substrate, method of producing same, silicone resin composition for producing silicone laminated substrate, and led device
KR100370984B1 (en) Curable composition and process for producing the same
JP4479160B2 (en) A polymer obtained by using a silsesquioxane derivative
US8043701B2 (en) Polymerizable organosilicon nanocapsules
US20020197475A1 (en) Organosilicon nano/microhybrid or microhybrid system composition for scratch and abrasion resistant coatings
Bourgeat-Lami et al. Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization
CN1168761C (en) Addition cross-linked epoxy functional organo-siloxanes polymer and coating composition
AU2002239359B2 (en) Substantially transparent, abrasion-resistant films containing surface-treated nanocrystalline particles
US6830816B2 (en) Highly filled, pasty, composition containing silicoorganic nanohybrid and/or microhybrid capsules for scratch-resistant and/or abrasion-resistant coatings
US8039530B2 (en) High thermal conductivity materials with grafted surface functional groups
US7655295B2 (en) Mix of grafted and non-grafted particles in a resin
Turri et al. Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes
US6734250B2 (en) Electrically conductive silicone rubber composition
US5015413A (en) Electrically conductive polyorganosiloxane primer composition
EP0841355A2 (en) Silicone resin-containing emulsion compositions, methods for making them, and cured films thereof
Chiang et al. Preparation, characterization, and properties of novolac‐type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol–gel method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130320

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140515

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190618

Year of fee payment: 14