KR100585476B1 - Lithographic Apparatus and Device Manufacturing Method - Google Patents

Lithographic Apparatus and Device Manufacturing Method Download PDF

Info

Publication number
KR100585476B1
KR100585476B1 KR1020030079336A KR20030079336A KR100585476B1 KR 100585476 B1 KR100585476 B1 KR 100585476B1 KR 1020030079336 A KR1020030079336 A KR 1020030079336A KR 20030079336 A KR20030079336 A KR 20030079336A KR 100585476 B1 KR100585476 B1 KR 100585476B1
Authority
KR
South Korea
Prior art keywords
gas
substrate
liquid
projection apparatus
means
Prior art date
Application number
KR1020030079336A
Other languages
Korean (ko)
Other versions
KR20040044119A (en
Inventor
데르크센안토니우스데오도루스안나마리아
데슈미트요아네스데오도르
로프요에리
루프스트라에릭로엘로프
리트세마로엘로프아에일코지에브란트
모드데어만데오도루스마리누스
물켄스요하네스카타리누스휴베르투스
스타이예르알렉산더
스트리프케르크밥
지몬클라우스
콜레스니첸코알렉세이
판산텐헬마르
후겐담크리스티안알렉산더
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP02257822.3 priority Critical
Priority to EP02257822 priority
Priority to EP03252955.4 priority
Priority to EP03252955 priority
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20040044119A publication Critical patent/KR20040044119A/en
Application granted granted Critical
Publication of KR100585476B1 publication Critical patent/KR100585476B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70341Immersion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70691Handling of masks or wafers
    • G03F7/707Chucks, e.g. chucking or un-chucking operations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/708Construction of apparatus, e.g. environment, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Abstract

In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. Gas is used between the structure and the surface of the substrate to contain liquid in the space.

Description

리소그래피 장치 및 디바이스 제조방법{Lithographic Apparatus and Device Manufacturing Method} A lithographic apparatus and device manufacturing method {Lithographic Apparatus and Device Manufacturing Method}

도 1은 본 발명의 실시예에 따른 리소그래피 투영장치를 도시한 도면; Figure 1 shows a lithographic projection apparatus according to an embodiment of the present invention;

도 2는 본 발명의 제1실시예의 액체저장기(liquid reservoir)를 도시한 도면; 2 is a view showing a first embodiment of a liquid reservoir (liquid reservoir) of the present invention;

도 3은 본 발명의 제1실시예의 액체저장기의 부분 확대도; Figure 3 is a partially enlarged view of the liquid reservoir of the first embodiment of the present invention;

도 4는 본 발명의 제2실시예의 액체저장기를 도시한 도면; Figure 4 is a view showing an embodiment of the second liquid reservoir of the present invention;

도 5는 본 발명의 제2실시예의 액체저장기의 부분 확대도; Figure 5 is a partially enlarged view of a second embodiment of the liquid reservoir of the present invention;

도 6은 본 발명의 제3실시예의 액체저장기의 확대도; Figure 6 is a second enlarged view of the liquid reservoir third embodiment of the present invention;

도 7은 본 발명의 제4실시예의 액체저장기를 도시한 도면; Figure 7 is a view showing an fourth embodiment of the liquid reservoir of the present invention;

도 8은 본 발명의 제4실시예의 저장기의 부분 확대도; Figure 8 is a partially enlarged view of a fourth embodiment of the reservoir according to the present invention;

도 9는 본 발명의 제5실시예의 액체저장기를 도시한 도면; 9 is a diagram illustrating an fifth embodiment of the liquid reservoir of the present invention;

도 10은 본 발명의 제6실시예의 액체저장기를 도시한 도면; 10 is a diagram showing an sixth embodiment of the liquid reservoir of the present invention;

도 11은 제6실시예의 시일부재의 밑바닥 평면도; 11 is a bottom plan view of a seal member in the sixth embodiment;

도 12는 제7실시예의 시일부재의 밑바닥 평면도; 12 is a bottom plan view of a seal member of the seventh embodiment;

도 13은 제7실시예의 액체저장기의 단면도; 13 is a cross-sectional view of a seventh embodiment of a liquid reservoir;

도 14는 제8실시예의 액체저장기의 단면도; 14 is a sectional view of the liquid reservoir of the eighth embodiment;

도 15는 제9실시예의 액체저장기의 단면도; 15 is a cross-sectional view of a ninth embodiment of a liquid reservoir;

도 16은 대안적인 제9실시예의 액체저장기의 단면도; Figure 16 is an alternate cross-sectional view of a ninth embodiment the liquid reservoir;

도 17은 제10실시예의 액체저장기의 단면도이다. 17 is a sectional view of the liquid reservoir tenth embodiment.

도면에서, 대응하는 참조부호들은 대응하는 부분을 가리킨다. In the drawings, corresponding reference numerals indicate corresponding parts.

본 발명은, The invention,

- 방사선 투영빔을 공급하는 방사선시스템; A radiation system for supplying a projection beam of radiation;

- 소정 패턴에 따라 투영빔을 패터닝하는 역할을 하는 패터닝수단을 지지하는 지지구조체; A support structure for supporting patterning means, the patterning means serving to pattern the projection beam according to a desired pattern;

- 기판을 잡아주는 기판테이블; A substrate table for holding a substrate;

- 패터닝된 빔을 기판의 타겟부상으로 투영시키는 투영시스템; A projection system for projecting the patterned beam onto a target portion of a substrate; And

- 상기 기판 및 상기 투영시스템의 최종 요소 사이의 공간을 적어도 부분적으로 액체로 채우기 위한 액체공급시스템을 포함하여 이루어지는 리소그래피 투영장치에 관한 것이다. - it relates to a lithographic projection apparatus comprising a liquid supply system for filling with a liquid to a space between the substrate and a final element of the projection system, at least in part.

"패터닝수단(patterning means)"이라는 용어는 기판의 타겟부에 형성되어야 할 패턴에 대응하는 패터닝된 단면을 입사하는 방사빔에 부여하도록 사용될 수 있는 수단을 의미하는 것으로서 폭넓게 해석되어야 하며, 본 명세서에서는 "광 밸브(light valve)"라는 용어로도 사용된다. The term "patterning means (patterning means)" should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate, in the present specification also it used the term "light valve (light valve)". 일반적으로, 상기 패턴은 집적회로 또 는 기타 디바이스와 같이 타겟부에 형성될 디바이스 내의 특정기능층에 해당할 것이다(이하 참조). Generally, the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). 그러한 패터닝수단의 예로는 다음과 같은 것들이 포함된다. Examples of such patterning means include: A.

- 마스크. - Mask. 이 마스크의 개념은 리소그래피분야에서 이미 잘 알려져 있고, 바이너리(binary)형, 교번위상-시프트(alternating phase-shift)형 및 감쇠위상-시프트형과 같은 마스크형식과 다양한 하이브리드 마스크형식을 포함한다. The concept of a mask is well known in lithography, (binary), alternating phase-it includes mask types as various hybrid mask types such as the shift-type-shift (alternating phase-shift), and attenuated phase. 방사빔내에 이러한 마스크가 놓이면, 마스크의 패턴에 따라 마스크로 입사되는 방사선의 선택적인 투과(투과형 마스크의 경우) 또는 반사(반사형 마스크의 경우)가 이루어진다. Of such a mask placed within the radiation beam, according to the pattern on the mask, selective transmission of the radiation impinging on the mask (in the case of a transmissive mask) or reflection (in the case of a reflective mask). 마스크의 경우에는, 일반적으로 마스크테이블이 지지구조체가 되고, 상기 마스크테이블은 입사되는 투영빔내의 소정위치에 마스크가 고정될 수 있게 하며, 필요한 경우에는 마스크를 상기 빔에 대하여 상대적으로 이동시킬 수 있도록 한다. In the case of a mask, generally be a mask table, a support structure, the mask table is able to be a mask in the desired position in the incoming radiation beam fixed, so that the mask, if necessary, can be moved relative to the beam do.

- 프로그램가능한 거울배열. A programmable mirror array. 이러한 장치의 예로는, 점탄성 제어층 (viscoelastic control layer)과 반사면을 구비한 매트릭스-어드레서블 표면이 있다. One example of such a device is a matrix having a viscoelastic control layer (viscoelastic control layer) and the reflecting surface - is the addressable surface. 이러한 장치의 기본원리는, (예를 들어)반사면의 어드레스된 영역(addressed area)에서는 입사광이 회절광으로 반사되는 반면, 어드레스되지 않은 영역에서는 입사광이 비회절광으로 반사되는 것이다. The basic principle behind such an apparatus is that (for example) addressed areas (addressed area), while the incident light as diffracted light, non-addressed area of ​​the reflective surface reflect incident light as undiffracted light. 적절한 필터를 사용하면, 상기 비회절광을 필터링하여 회절광만 남게 할 수 있다. Using an appropriate filter, it may be, leaving only the diffracted light to filter out the undiffracted light. 이러한 방식으로, 상기 빔은 상기 매트릭스-어드레서블 표면의 어드레싱 패턴에 따라 패터닝된다. In this manner, the beam matrix is ​​patterned according to the addressing pattern of the addressable surface. 프로그램가능한 거울배열의 대안적인 실시예는 작은 거울의 매트릭스 배치를 채택하는 것인데, 상기 각각의 작은 거울은 적당하게 국부적으로 치우친 전기장을 가하거나 또는 압전작동수단을 채택하여 축에 대하여 개별적으로 기울어질 수 있다. Program an alternative embodiment of a programmable mirror array, for example, employs a matrix arrangement of small mirrors, and small mirrors of each can be properly by locally adopted the or piezoelectric operating means of an electric field biased to tilt with respect to the shaft individual have. 또한, 상기 거울은 매트릭 스-어드레서블이고, 이러한 어드레싱된 거울은 입사하는 방사빔을 어드레싱되지 않은 거울에 대하여 다른 방향으로 반사할 것이다. Once again, the mirrors are Matrix-addressable, such that addressed mirrors will reflect a different direction to unaddressed mirrors incoming radiation beam. 이러한 방식으로, 반사된 빔은 매트릭스-어드레서블 거울의 어드레싱 패턴에 따라 패터닝된다. In this manner, the reflected beam matrix is ​​patterned according to the addressing pattern of the addressable mirrors. 이 때 요구되는 매트릭스 어드레싱은 적당한 전자수단을 사용하여 수행될 수 있다. The required matrix addressing this time can be performed using suitable electronic means. 상술된 두가지 상황 모두에 있어서, 패터닝수단은 1이상의 프로그램가능한 거울배열로 이루어질 수 있다. In both of the situations described hereabove, the patterning means can comprise one or more programmable mirror arrays. 이러한 거울배열에 관한 보다 상세한 정보는, 예를 들어 본 명세서에서 참고자료로 채택되고 있는 미국특허 US 5,296,891호 및 US 5,523,193호와 PCT 특허출원 WO 98/38597호 및 WO 98/33096호로부터 얻을 수 있다. More information on such mirror arrays can be gleaned, for example, from United States Patents US 5,296,891 and US 5,523,193, and PCT patent applications WO 98/38597 and WO 98/33096 the disclosure of which is incorporated herein by reference . 프로그램가능한 거울배열의 경우에, 상기 지지구조체는 필요에 따라 고정되거나 또는 이동할 수 있는, 예를 들어, 프레임 또는 테이블로 구현될 수 있다. In the case of a programmable mirror array, the said support structure, for example, which may be fixed or movable as required, for example, it may be embodied as a frame or table.

- 프로그램가능한 LCD 배열. A programmable LCD array. 이러한 구조의 일례는 본 명세서에서 참고자료로 채택되고 있는 미국특허 US 5,229,872호에 개시되어 있다. An example of such a construction is given in United States Patent US 5,229,872, which is incorporated herein by reference. 상술된 바와 같이, 이러한 경우에서의 지지구조체는 필요에 따라 고정되거나 또는 이동할 수 있는, 예를 들어, 프레임 또는 테이블로 구현될 수 있다. As above, the support structure in this case may be embodied, for example, which may be fixed or movable as required, for example, as a frame or table.

설명을 간단히 하기 위하여, 본 명세서의 나머지 부분 중 어느 곳에서는 그 자체가 마스크와 마스크테이블을 포함하는 예시적인 용어로서 특정적으로 지칭될 수도 있다. In order to simplify the explanation, in which the rest of this text area may itself be referred to as specific examples involving a mask and mask table; 하지만, 그러한 예시에서 논의된 일반적인 원리는 상술한 바와 같은 패터닝수단의 광의의 개념으로 이해되어야 한다. However, the general principles discussed in such instances should be seen in the broader concept of the patterning means as described above.

예를 들어, 리소그래피 투영장치는 집적회로(IC)의 제조에 사용될 수 있다.이 경우에, 패터닝수단은 IC의 각각의 층에 대응되는 회로패턴을 형성할 수 있으 며, 이 패턴은 이후에 방사선 감응재(레지스트)층으로 도포된 기판(실리콘 웨이퍼)상의 타겟부(예를 들어, 1이상의 다이로 구성되는)상으로 묘화될 수 있다. For example, a lithographic projection apparatus can be used in the manufacture of integrated circuits (IC). In such a case, the patterning means is said be able to generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be radiation after a target portion on a substrate (silicon wafer) that has been coated with sensitive material (resist) layer can be imaged onto a (e. g., comprising one or more dies). 일반적으로, 단일 웨이퍼는 인접해 있는 타겟부들의 전체적인 네트워크를 포함하고, 이들 타겟부는 투영시스템에 의하여 한번에 하나씩 연속적으로 조사된다. In general, a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time. 현재 통용되는 장치에서, 마스크테이블상의 마스크에 의한 패터닝을 채택하는 데에는, 두 가지 상이한 형식의 기계로 구분될 수 있다. In current apparatus, employing patterning by a mask on a mask table, a distinction can be made between two different types of machine. 어느 한 형식의 리소그래피 투영장치에서는 타겟부상으로 전체 마스크 패턴을 한번에 노광함으로써 각 타겟부가 조사되는데, 이러한 장치를 통상적으로 웨이퍼 스테퍼(wafer stepper)라고 한다. In one type of lithographic projection apparatus, by exposing the entire mask pattern onto the target portion, each target portion is irradiated, is commonly referred to as a wafer stepper (wafer stepper) of these devices. 통상, 스텝-앤드-스캔 장치(step-and-scan apparatus)라고 불리워지는 대체 장치에서는 소정의 기준 방향("스캐닝 방향")으로 투영빔 하의 마스크 패턴을 점진적으로 스캐닝하는 한편, 상기 스캐닝 방향과 같은 방향 또는 반대 방향으로 기판테이블을 동기적으로 스캐닝함으로써 각 타겟부가 조사된다. In general, a step-and-scan apparatus (step-and-scan apparatus) the replacement device to be called that progressively scanning the mask pattern under the projection beam in a given reference direction (the "scanning direction") On the other hand, such as the scanning direction, by scanning the substrate table parallel or anti-parallel to synchronously each target portion is irradiated. 일반적으로, 투영시스템은 배율인자 M(일반적으로 < 1)을 가지므로 기판테이블이 스캐닝되는 속도 V는 마스크테이블이 스캐닝되는 속도의 인자 M배가 된다. In general, the projection system will have a magnification factor M, so (generally <1) of the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. 본 명세서에 참고자료로 채택되고, 여기서 서술된 리소그래피 장치에 관한 보다 상세한 정보는, 예를 들어 미국특허 US 6,046,792호에서 찾을 수 있다. More information with regard to lithographic devices is employed as a reference, here described it is, for example, can be found in U.S. Patent No. US 6,046,792.

리소그래피 투영장치를 사용하는 제조공정에서, (예를 들어, 마스크의) 패턴은 방사선 감응재(레지스트)층에 의하여 적어도 부분적으로 도포되는 기판상으로 묘화된다. In a manufacturing process using a lithographic projection apparatus, (e.g. in a mask) pattern is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist). 이 묘화 단계(imaging step)에 앞서, 기판은 전처리(priming), 레지스트 코팅 및 소프트 베이크와 같은 여러가지 과정을 거칠 수 있다. Prior to this imaging step (imaging step), the substrate may undergo various procedures, such as a pre-treatment (priming), resist coating and a soft bake. 노광 후에는, 노광 후 베이크(PEB), 현상, 하드 베이크 및 묘화된 피처(imaged feature)의 측정/검사와 같은 또 다른 과정을 거치게 된다. After exposure, the substrate may be subjected to other procedures, such as the measurement / inspection of the post-exposure bake (PEB), development, a hard bake and the imaged feature (imaged feature). 이러한 일련의 과정은, 예를 들어 IC의 각각의 층을 패터닝하는 기초로서 사용된다. This array of procedures, for example, is used as a basis to pattern an individual layer of the IC. 이렇게 패터닝된 층은 에칭, 이온주입(도핑), 금속화, 산화, 화학-기계적 폴리싱 등과 같은, 각각의 층을 가공하기 위한 여러 공정을 거친다. Such a patterned layer may then undergo etching, ion-implantation (doping), metallization, oxidation, chemo-etc., all intended to finish off an individual layer, such as the mechanical polishing. 여러 개의 층이 요구된다면, 새로운 층마다 전체공정 또는 그것의 변형된 공정이 반복되어져야만 할 것이다. If several layers are required, it will have to be the whole procedure, or a variant thereof is repeated for each new layer. 그 결과로, 기판(웨이퍼)상에는 집적회로 디바이스의 배열이 존재하게 될 것이다. As a result, the substrate (wafer) will be formed on the arrangement of the integrated circuit device is present. 이들 집적회로 디바이스는 다이싱 또는 소잉 등의 기술에 의하여 서로 분리되고, 이들 각각의 집적회로 디바이스는 캐리어에 장착되고 핀 등에 접속될 수 있다. These integrated circuit devices are then separated from one another by dicing or a technique such as sawing, each of which integrated circuit devices can be connected or the like are mounted on a carrier pin. 본 명세서에서 참고자료로 채택되고 있는 이와 같은 공정에 관한 추가정보는 예를 들어, "Microchip Fabrication: A Practical Guide to Semiconductor Processing "(3판, Peter van Zant 저, McGraw Hill출판사, 1997, ISBN 0-07-067250-4)으로부터 얻을 수 있다. Additional information on this process, which is incorporated herein by reference, for example, "Microchip Fabrication: A Practical Guide to Semiconductor Processing" (3 editions, Peter van Zant me, McGraw Hill Publishing Co., 1997, ISBN 0- 07-067250-4) it can be obtained from.

설명을 간단히 하기 위하여, 상기 투영시스템은 이후에 "렌즈"라고 언급 될 것이다. For the sake of simplicity, the projection system may hereinafter be referred to as the "lens". 하지만 이 용어는 예를 들어, 굴절광학기, 반사광학기, 카타디옵트릭 시스템을 포함하는 다양한 형태의 투영시스템을 내포하는 것으로서 폭 넓게 해석되어야 한다. However, this term are, for example, as encompassing various types of projection systems, including refractive optics, reflective optics, catadioptric systems should be broadly interpreted. 또한 상기 방사선시스템은 방사선투영빔의 지향, 성형 또는 제어하는 이들 설계형식 중의 어느 하나에 따라 동작하는 구성요소를 포함할 수 있고, 이후에 설명에서는 이러한 구성요소들을 집합적으로 또는 개별적으로 "렌즈"라고 언급할 것이다. In addition, the radiation system described in the following configuration may include elements, operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components or singularly, as a "lens." it would be mentioned. 나아가, 상기 리소그래피 장치는 2이상의 기판테이블 (및/또는 2이상의 마스크테이블)을 구비하는 형태가 될 수도 있다. Further, the lithographic apparatus may be of a type having two or more substrate tables (and / or two or more mask tables). 이러한 "다수 스테이지" 장치에서, 추 가 테이블이 병행으로 사용될 수 있으며, 1이상의 테이블이 노광에 사용되고 있는 동안, 1이상의 다른 테이블에서는 준비작업단계가 수행될 수 있다. In such "multiple stage" machines, the additional tables may be a while and be used in parallel, one or more tables are being used for exposure, the preparatory steps performed in other one or more tables. 본 명세서에서 참고자료로 채택되는 듀얼스테이지 리소그래피 장치는, 예를 들어, 미국특허 US 5,969,441호 및 국제특허출원 WO 98/40791호에 개시되어 있다. Dual stage lithographic apparatus are incorporated herein by reference, for example, it is disclosed in US 5,969,441 and in International Patent Application No. WO 98/40791.

기판 및 투영시스템의 최종 요소 사이의 공간을 채우기 위하여, 리소그래피 투영장치의 기판을 비교적 높은 굴절률을 갖는 액체, 예를 들어 물 속에 담그는 것이 제안되어 왔다. To fill a space between the substrate and the final element of the projection system, having a substrate of a lithographic projection apparatus, a relatively high refractive index, for the liquid, for example, it has been proposed to dipping in the water. 이것의 핵심은 보다 작은 피처의 묘화가 가능하다는 점에 있는데, 그 이유는 노광 방사선이 액체 내에서 보다 짧은 파장을 가지기 때문이다(액체의 효과가 시스템의 유효 NA를 증가시키는 것으로 볼 수도 있다). The point of this there to the point that the imaging of smaller features is possible, since the exposure radiation will have a shorter wavelength in the liquid (may be viewed as to the effect of the fluid increasing the effective NA of the system).

하지만, 기판테이블을 액체에 가라앉히는 것은 스캐닝 노광시에 가속될 수 밖에 없는 큰 덩어리의 액체가 존재한다는 것을 의미한다. However, it is seated and go to the substrate table in liquid means that there is a large lump-free liquid can only be accelerated during a scanning exposure exists. 이는 부가적인 또는 보다 출력이 센 모터를 필요로 하고, 액체내의 난류(turbulence)가 바람직하지 않으면서 예측불가능한 영향을 초래할 수도 있다. This may result in additional or more unpredictable effects output and requires a sensor motor, without a turbulent flow (turbulence) in the liquid undesirable.

리소그래피 투영장치내에 액체를 수용하는 것과 관련하여 몇 가지 어려움들이 있다. In the lithographic projection apparatus, there are some difficulties with respect to accommodating the liquid. 예를 들면, 액체가 새어나오면 간섭계와 간섭함으로써, 또한 리소그래피 투영장치가 빔을 진공에서 유지시켜야만 한다면, 이러한 진공을 파괴함으로써 문제를 발생시킬 수 있다. For example, if the liquid comes out, by interference with leaked interferometer, and sikyeoyaman a lithographic projection apparatus to keep the beam in a vacuum, it can cause problems by destroying the vacuum. 나아가, 적절한 사전대책을 세우지 않는다면, 상기 액체를 금새 다 써버릴 수도 있다. Further, if proper precautions sewooji may discard the written quickly to the liquid.

침지(immersion) 리소그래피와 관련된 또 다른 문제로는 액체의 깊이를 일정하게 유지하는 것과 묘화위치로/로부터 즉 최종 투영시스템 요소 아래에서 기판들 을 이송하는 것이 어렵다는 것을 들 수 있다. Another problem associated with dipping (immersion) lithography may be the difficulty in transferring the substrate from below / from the imaging position as to keep constant the depth of the liquid that is the final projection system element. 또한, (액체에 용해된 화학제에 의한) 액체의 오염 및 액체의 온도증가는 달성할 수 있는 묘화 품질에 악영향을 미친다. In addition, increasing the temperature of the liquid and contamination of the liquid (caused by the chemicals dissolved in a liquid) has an adverse effect on imaging quality achievable.

어떠한 이유에서건 컴퓨터 고장이나 전원 고장 또는 장치의 제어 상실의 경우에는, 특히 투영시스템의 광학요소들을 보호하기 위한 단계들이 필요하다. For some reason, from computer failure or loss of control of a power failure or device, it is particularly necessary to step in to protect the optical elements of the projection system. 상기 장치의 기타 구성요소들 위로 액체가 쏟아지는 것을 피하도록 하는 단계들이 필요할 것이다. It will be necessary to step to the top to avoid the other components of the device that the liquid pouring.

만일 액체가 자유수면(free surface)을 가지는 액체공급시스템이 사용된다면, 상기 액체공급시스템에 가해진 힘으로 인한 자유수면에서의 물결파(wave)의 조성(development)을 피하도록 하는 단계들이 필요하다. If the liquid is a liquid supply system having a free surface (free surface) used, it is necessary to step to avoid the composition (development) of the wave wave (wave) of the free surface of the water due to the force exerted on the liquid supply system. 상기 물결파는 가동 기판으로부터 투영시스템으로 진동을 전달할 수 있다. The wave wave can be transmitted to the vibration in the projection system from the movable substrate.

WO 99/49504호에는 투영렌즈와 웨이퍼 사이의 공간에 액체가 공급되는 리소그래피 장치가 개시되어 있다. WO 99/49504 discloses a lithographic apparatus is disclosed in which liquid is supplied to the space between the projection lens and the wafer. 웨이퍼가 렌즈 밑에서 -X방향으로 스캐닝됨에 따라, 액체는 렌즈의 +X 측에서 공급되어 -X 측에서 수용된다. As the wafer is scanned underneath the lens in a -X direction, liquid is supplied at the + X side of the lens it is received at the -X side.

본 발명의 목적은, 스테이지 이동시에 가속될 수 밖에 없는 액체의 체적을 최소화하면서, 기판과 투영시스템 사이의 공간을 상기 액체로 채우는 것을 특징으로 하는 리소그래피 투영장치를 제공하는 것이다. An object of the present invention, while minimizing the volume of the liquid not only to be accelerated to move the stage, to provide a lithographic projection apparatus, characterized in that filling the space between the substrate and the projection system to the liquid.

상기 목적 및 기타 목적들은 서두에 언급된 본 발명에 따른 리소그래피 장치 로 달성되는데, 상기 리소그래피 장치는, The above object and other objects are is achieved with a lithographic apparatus according to the invention as mentioned in the opening paragraph, wherein the lithographic apparatus,

- 기판테이블 및 투영시스템의 최종 요소 사이 공간의 경계부의 적어도 일부분을 따라 연장되는 시일부재; A seal member which extends along at least a part of the boundary between the substrate table and the final element of the projection system area; And

- 상기 시일부재 및 상기 기판의 표면 사이에 가스시일부를 형성하는 가스시일수단을 포함하는 액체공급시스템을 특징으로 한다. - characterized by the liquid supply system comprises a gas seal means for forming a part during gas between the seal member and the surface of the substrate.

따라서, 상기 가스시일수단은, 기판이 투영시스템 아래에서 이동할 때 예를 들면 스캐닝 노광시에, 액체가 기판과 투영시스템의 최종 요소 사이의 공간내에 수용되도록 시일부재와 기판 사이에 비접촉 시일부(non-contact seal)를 형성한다. Thus, the gas sealing means, for example, at the time of scanning exposure, the liquid substrate and the seal member and the non-contact seal portion (non between the substrate to be received in a space between the final element of the projection system when the substrate is moved under the projection system It forms a seal -contact).

상기 시일부재는 폐쇄된 루프의 형태(원형, 직사각형 또는 기타 모양)로 상기 공간 주위에 제공될 수 있고, 또는 불완전한 형태 예를 들면 U자형이나 심지어는 단지 상기 공간의 일측을 따라 연장되는 형태일 수도 있다. The seal member is in the form of a closed loop (circular, rectangular, or other shape) to may be provided around the space, or incomplete form, for example U-shaped, or even be in the form only, which extends along the one side of the space have. 만일 시일부재가 불완전하다면, 기판이 투영시스템 아래에서 스캐닝됨에 따라 액체를 수용하도록 포지셔닝되어야 한다. If ten thousand and one seal member is incomplete and should be positioned to receive a liquid as the substrate is scanned under the projection system.

가스시일수단은 상기 시일부재를 지지하는 가스베어링이 바람직하다. Gas seal means is a gas bearing for supporting said seal member is preferred. 이것은 액체공급시스템의 동일한 부분이 기판 및 투영시스템의 최종 요소 사이의 공간에서의 액체의 베어링 및 시일링 양자 모두에 사용될 수 있어, 상기 시일부재의 복잡성과 중량을 줄일 수 있다는 장점이 있다. This has the advantage that it can reduce the complexity and weight of the seal member, can be used for both the bearing and the seal ring of liquid both in the space between the same portion of the substrate and the final element of the projection system of the liquid supply system. 또한, 진공환경에서 가스베어링을 사용함으로써 얻어진 선행 경험의 도움을 받을 수도 있다. It is also possible to assist the prior experience gained by using a gas bearing in a vacuum environment.

상기 가스시일수단은 상기 기판에 대향하는 상기 시일부재의 표면에 형성된 가스유입구 및 제1가스유출구와, 가스를 압력하에 상기 가스유입구에 공급하는 수 단 및 상기 제1가스유출구로부터 가스를 추출하는 진공수단을 포함하는 것이 바람직하다. The gas sealing means comprises a vacuum to extract the gas from the stage and the first gas outlet can be supplied to the gas inlet and a said gas inlet 1, a gas outlet and a gas under pressure, formed on a surface of the sealing member that faces the substrate it is preferred to include means. 상기 가스유입구는 상기 제1가스유출구보다 상기 투영시스템의 광학축선으로부터 더욱 바깥쪽에 위치하는 것이 더욱 바람직하다. The gas inlet is further preferably located more outward from the optical axis of the projection system than the first gas outlet. 이 경우, 가스시일부 내의 가스 흐름은 안쪽에 있으며, 상기 액체를 가장 효율적으로 수용한다. In this case, when gas in the gas flow portion is located in the inside, and receiving the liquid most effectively. 이 경우, 가스시일수단은 기판에 대향하는 시일부재의 표면에 형성된 제2가스유출구를 더 포함하고, 상기 제1 및 제2가스유출구는 상기 가스유입구의 양쪽에 형성되는 것이 좋다. In this case, the gas sealing means further comprises a second gas outlet provided on the surface of the sealing member opposite to the substrate, the first and second gas outlet is preferably formed on both sides of the gas inlet. 상기 제2가스유출구는 가스가 가스유입구로부터 시일부재를 둘러싸는 환경으로 새어나가는 것을 최소화한다. The second gas outlet to minimize the gas is leaking into the surrounding environment, the seal member from the gas inlet. 따라서, 가스가 새어나가 간섭계들과 간섭하거나 또는 리소그래피 장치내의 진공을 저하시키는 위험이 최소화된다. Therefore, the risk is minimized to reduce the vacuum in the gas leaks out to interfere with the interferometer or the lithographic apparatus.

상기 액체공급시스템은 또한 기판 및 시일부재의 표면 사이의 간격 및/또는 기판의 최상면의 토포그래피(topography)를 측정하는 센서들을 포함할 수 있다. The liquid supply system may further comprise a sensor for measuring the topography (topography) of the top surface of the gap and / or the substrate between the surface of the substrate and the seal member. 이 경우, 예를 들어 가스시일수단을 피드포워드 또는 피드백 방식으로 제어하여 기판 및 시일부재의 표면 사이의 간격을 변경하는데 제어수단이 사용될 수 있다. In this case, for example, by controlling the gas sealing means to feed-forward or feedback system may be used a control means for changing the distance between the surface of the substrate and the seal member.

상기 장치는 광학축선에 가장 가까운 표면의 에지 및 제1가스유출구 사이의 상기 시일부재의 상기 표면의 일부분의 레벨을 상기 표면의 나머지에 대하여 변화시키는 수단을 더 포함할 수 있다. The device may further comprise a surface closest to the edge and the level of a portion of the surface of said seal member between the first gas outlet to the optical axis of the means of change along with the rest of the surface. 이는 공간내에 액체를 수용하는 압력이 유입구 아래의 압력에 관계없이 제어되도록 함으로써, 상기 공간내에 액체를 유지하는 힘의 균형을 깨지 않고도 기판 위쪽의 시일부재의 높이를 조정할 수 있다. This can be adjusted, the height of the seal member at the top of the substrate without breaking the balance of the force for holding the liquid in the space by allowing the control regardless of the pressure below the pressure inlet for receiving the liquid in the space. 이것을 확실하게 하는 대안적인 방법은, 제1 또는 제2가스유출구 및 가스유입구 사이의 표면의 일부분의 레벨을 상기 표면의 나머지에 대하여 변화시키는 수단을 사용하는 것 이다. An alternative way to ensure this, is the level of the first or second portion of the surface between the second gas outlet and a gas inlet is to use a means for changing with respect to the rest of the surface. 이러한 3가지 시스템은 어떠한 조합으로도 사용될 수 있다. These three systems can be used for any combination.

상기 가스시일수단의 시일링 기능 및 베어링 기능을 분리시키는 대안적인 방법은, 상기 제1가스유출구보다 상기 투영시스템의 광학축선에 더 가까이 위치한 시일부재의 표면에 형성된 채널을 제공하는 것이다. An alternative method for separating the sealing function and the bearing function of the gas seal means is to provide a channel formed on the surface of the sealing member is located closer to the optical axis of the projection system than the first gas outlet. 상기 채널내의 압력은 상기 공간내에 액체를 수용하도록 변경될 수 있는 반면, 상기 가스유입구 및 가스유출구들은 기판 위쪽의 시일부재의 높이를 변경하는데 사용될 수 있어, 그들은 단지 상기 시일부재를 지지하는데만 사용되며, 시일링 기능은, 만약 있다고 치더라도, 극히 작다. Pressure in the channel is only used, while that may be modified to accommodate the liquid in the space, the gas inlet and gas outlet are can be used to change the height of the seal member at the top of the substrate, they only support the seal member the sealing function, even if that value, is extremely small.

또 다른 특징으로는, 가스 흐름을 가스유입구의 영역에 걸쳐 고르게 분포시키기 위하여 다공성부재를 상기 가스유입구 위쪽에 배치하는 것을 들 수 있다. Other features include those that place the porous member at the top of the gas inlet in order to evenly distributed over the gas flow in the region of the gas inlet.

가스유입구 및 가스유출구들은 각각 상기 기판에 대향하는 상기 시일부재의 상기 표면내의 홈(groove)과, 이격된 위치에서 상기 홈으로 유도되는 복수의 도관을 포함하도록 형성되는 것이 좋다. Gas inlet and gas outlet are preferably each in a groove (groove) and a spaced-apart position in the surface of the sealing member that faces the substrate being formed to include a plurality of conduits leading to the groove.

또한, 상기 시일부재 및 상기 가스시일수단의 안쪽으로 상기 기판의 표면 사이의 갭을 작게 하여, 모세관 작용으로 인하여 액체가 상기 갭으로 끌어당겨지고, 및/또는 상기 가스시일수단으로부터의 가스가 상기 공간으로 들어오는 것을 막는 것이 바람직하다. Further, the seal member and by reducing the gap between the surface of the substrate to the inside of the gas-sealing means, because of the capillary action pulled the liquid is pulled into the gap, and / or said space gas from the gas seal means it is desirable to prevent coming. 시일부재 아래에서 액체를 끌어당기는 모세관 힘과 그것을 밀어내는 가스 흐름간의 균형은 특별히 안정한 시일부를 형성한다. Balance between the gas flow and capillary forces to pull the liquid to push it below the seal members are to form a particularly stable seal.

본 발명의 또 다른 목적은, 기판과 투영시스템간의 왜란력(disturbance force)의 전달을 최소화하면서, 상기 기판과 투영시스템간의 공간을 액체로 채우는 것을 특징으로 하는 리소그래피 투영장치를 제공하는 것이다. It is another object of the present invention, while minimizing the transmission of the disturbance force (disturbance force) between the substrate and the projection system, to provide a lithographic projection apparatus the space between the substrate and the projection system characterized in that for filling with liquid.

상기 목적 및 기타 목적들은 서두에 언급된 본 발명에 따른 리소그래피 장치로 달성되는데, 상기 리소그래피 장치는, The above object and other objects are is achieved with a lithographic apparatus according to the invention as mentioned in the opening paragraph, wherein the lithographic apparatus,

상기 공간이 덕트를 통해 액체저장기(liquid reservoir)와 연결된 액체내에 있고, 유체흐름방향에 직각인 평면에서의 상기 덕트의 최소 단면적이 적어도 The space and the liquid associated with the liquid reservoir (liquid reservoir) through a duct, to a minimum cross-sectional area of ​​the duct in a plane perpendicular to the fluid flow direction at least

Figure 112003042440315-pat00001
인 것을 특징으로 하며, 여기서 △ V 는 시간 t min 이내에 상기 공간으로부터 제거되어야만 하는 액체의 체적이고, L 은 덕트의 길이이며, η는 상기 공간내 액체의 점도이고, △ P max 는 상기 최종 요소상의 허용가능한 최대압력이다. And characterized in that, where △ V is time within t min and body of liquid that must be removed from the space, L is the length of the duct, η is the viscosity of the liquid within the space, △ P max is on the last element allow the maximum possible pressure.

상기 장치는, 액체를 완전히 가둘 수 있어 물결파의 조성을 위한 큰 자유수면을 가지지 않는다는 장점이 있다. The apparatus may have the advantage that a large free surface for the composition of the wave's wave can completely confine the liquid. 즉, 공간 또는 저장기가 최상부에서 에워싸여 있고 상기 저장기는 액체로 가득 채워져 있다. That is, a space or a storage group is enclosed in the top reservoir is filled with liquid. 이것은 주어진 시간(실험적으로 측정된 충격(crash) 시간)내에 덕트를 통해 흐를 수 있는 유체의 양이 충분히 커서, 상기 장치가 충격을 받을 때에 투영시스템의 최종 요소에 대한 손상을 피할 수 있기 때문인데, 그 이유는 상기 공간내의 압력이 손상을 입힐 수 있는 수준까지 증가되기 전에 덕트를 통하여 액체가 빠져나갈 수 있기 때문이다. This is because it avoids damage to the final element of the projection system, and there is sufficient amount of fluid which can flow through the duct at a given time (experimentally impact (crash) of time determined by) the cursor, when the device is shocked, the reason is that the liquid can escape through the duct before it increases to a level that the pressure in the space may cause damage. 상기 액체는 시일부재가 최종 요소에 대하여 이동할 때 빠져나가야 하는데, 그렇지 않으면 최종 요소의 상기 시일부재로의 상대운동시에 상기 최종 요소에 가해진 유체정압이 최종 요소에 손상을 입힐 수 있다. The liquid to get out when the seal member moves relative to the final element, otherwise it may be a positive pressure fluid is applied to the final element damage to the final element upon relative movement of said sealing member in the final element.

본 발명의 또 다른 형태에서는, 서두에 언급한 리소그래피 장치가 제공되는 데, 상기 장치는 액체공급시스템을 특징으로 하며, 상기 액체공급시스템은, 상기 액체공급시스템내의 액체의 최상면상에, 물결파의 조성을 억제하고 압력해제수단을 포함하는 억제수단을 더 포함한다. In a further aspect of the present invention, to the one lithographic apparatus mentioned in the opening paragraph is provided, the apparatus being characterized by a liquid supply system, the liquid supply system, on the top surface of the liquid in the liquid supply system, a wave file and inhibiting composition further includes a restraining means including a pressure release means.

이 경우, 물결파의 조성은 상기 억제수단이 액체의 최상면과 접촉함으로써 억제될 수 있다. In this case, the composition of the wave wave can be suppressed by said suppressing means in contact with the top surface of the liquid. 하지만, 액체는 충격을 받을 때에 여전히 공간으로부터 빠져나올 수 있어, 최종 요소에 손상을 입히지 않는다. However, the liquid can still escape from the room when subjected to impact, do not damage the final element.

상기 억제수단을 제공하는 일 방법은, 유연한 멤브레인을 통하여 또는 대안적으로 공간내의 액체와 섞이지 않는 고점성 액체를 상기 공간내 액체의 최상면상에 배치시키는 것이다. One method of providing the suppression means, and that is immiscible with the liquid in which it via the flexible membrane, or alternatively, a viscous liquid space disposed on the top surface of the liquid in the space. 이들 각각의 경우에, 압력해제 기능은 억제수단의 유연성(flexibility)에 의해 제공된다. In the case of each of these, the pressure release function is provided by the flexibility (flexibility) of the restraining means.

본 발명의 또 다른 형태는, Another aspect of the present invention,

- 적어도 부분적으로 방사선감응재의 층으로 덮힌 기판을 제공하는 단계; - providing a substrate covered with a radiation sensitive material layer, at least in part;

- 방사선시스템을 사용하여 방사선의 투영빔을 제공하는 단계; - providing a projection beam of radiation using a radiation system;

- 패터닝수단을 사용하여 상기 투영빔의 단면에 소정 패턴을 부여하는 단계; Using patterning means to impart a pattern in its cross-section of the projection beam;

- 방사선감응재 층의 타겟부상으로 방사선의 패터닝된 빔을 투영하는 단계; - projecting the patterned beam of radiation onto a target portion of the layer of radiation-sensitive material; And

- 상기 투영하는 단계에서 사용된 투영시스템의 최종 요소 및 기판 사이의 공간을 채우기 위하여 액체를 제공하는 단계를 포함하여 이루어지고, - is made, including the step of providing a liquid to fill a space between the final element and the substrate of the projection system used in the step of the projection,

- 상기 공간의 경계부의 적어도 일부분을 따라 연장되는 시일부재 및 상기 기판의 표면 사이에 가스시일부를 형성하는 단계; - forming the part when the gas between the seal member and the surface of the substrate which extends along at least a part of the boundary of the space; 또는 or

- 덕트를 통하여 상기 공간과 액체 연결(liquid connection)된 액체저장기를 제공하는 단계; - through the duct connecting said space with the liquid comprising the steps of: providing a group of the liquid reservoir (liquid connection); And

- 상기 덕트가 액체의 흐름방향에 수직한 평면에서 - the duct is in a plane perpendicular to the flow direction of the liquid

Figure 112003042440315-pat00002
의 최소 단면적을 가지도록 보장하는 단계(여기서, △ V 는 시간 t min 이내에 상기 공간으로부터 제거되어야만 하는 액체의 체적이고, L 은 덕트의 길이이며, η는 상기 공간내 액체의 점도이고, △ P max 는 상기 최종 요소상의 허용가능한 최대압력임); A step for ensuring to have a minimum cross-section (where, △ V is and body of liquid that must be removed from the space within the time t min, L is the length of the duct, η is the viscosity of the liquid in the space, △ P max is being allowed maximum possible pressure on the end element);

또는 or

- 억제수단을 이용하여 상기 액체상의 물결파의 조성을 억제하고 상기 액체의 압력 해제를 허용하는 단계; - using a suppression means suppressing the composition of the wave file of the liquid phase and to allow pressure release of the liquid; 중 어느 하나를 특징으로 하는 디바이스 제조방법을 제공한다. One provides a device manufacturing method according to claim any one.

본 명세서에서는 IC의 제조에 있어서의 본 발명에 따른 장치의 사용례에 대하여 언급하였으나, 이러한 장치가 다른 여러 가능한 응용례를 가지고 있음이 명백히 이해되어야 할 것이다. Although specific reference may be made to the use case of the device according to the invention in the manufacture of the IC, and this device it should be explicitly understood that have many other possible applications. 예를 들어, 상기 장치는 집적 광학시스템, 자기영역메모리용 유도 및 검출패턴, 액정표시패널, 박막자기헤드 등의 제조에도 이용될 수 있다. For example, the apparatus can be used in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic head. 당업자라면, 이러한 대안적인 적용례와 관련하여, 본 명세서에서 사용된 "레티클", "웨이퍼" 또는 "다이"와 같은 용어가 각각 "마스크", "기판" 및 "타겟부" 등과 같은 좀 더 일반적인 용어로 대체되고 있음을 이해할 수 있다. The skilled artisan will appreciate that, in the context of such alternative applications, more general terms such as a "reticle", "wafer" or "die" and the terms are, respectively, "mask", "substrate" and "target portion", as used herein, as it can be appreciated that alternative.

본 명세서에서, "방사선" 및 "빔"이란 용어는 (예를 들어, 파장이 365, 248, 193, 157 또는 126㎚ 인) 자외선을 포함하는 모든 형태의 전자기방사선을 포괄하여 사용된다. As used herein, "radiation" and "beam" term is used to encompass all types of electromagnetic radiation, including ultraviolet radiation (e.g. with a wavelength of 365, 248, 193, 157 or 126㎚).

본 발명의 실시예들은 첨부된 개략적인 도면을 참조하여 단지 예시의 방법을 통하여 기술된다. Embodiment of the present invention are described by way of example only with reference to the accompanying schematic drawings.

제1실시예 First Embodiment

도 1은 본 발명의 특정 실시예에 따른 리소그래피 투영장치를 개략적으로 도시한다. Figure 1 schematically depicts a lithographic projection apparatus according to an embodiment of the invention. 상기 장치는, The apparatus comprising:

· 방사선(예를 들어, DUV방사선)의 투영빔(PB)을 공급하는 방사선시스템 (Ex, IL), (이 경우에는 특별히 방사원(LA)도 포함한다); · A radiation system (Ex, IL) for supplying a projection beam (PB) (for example, DUV radiation), (in this particular case, comprises a radiation source (LA));

· 마스크(MA)(예를 들어, 레티클)를 잡아주는 마스크홀더가 마련되어 있고, 아이템 PL에 대하여 마스크를 정확히 위치시키는 제1위치설정수단에 연결된 제1대물테이블(마스크테이블)(MT); · Mask (MA) provided with a mask holder for holding a mask (e.g., a reticle), the first (e.g. a reticle), and connected to first positioning means for accurately positioning the mask with respect to item PL (MT);

· 기판(W)(예를 들어, 레지스트 코팅된 실리콘 웨이퍼)을 잡아주는 기판홀더가 마련되어 있고, 아이템 PL에 대하여 기판을 정확히 위치시키는 제2위치설정수단에 연결된 제2대물테이블(기판테이블)(WT); And the substrate (W) provided with a substrate holder for holding a substrate (e.g. a resist-coated silicon wafer), and a second object table (substrate table), and connected to second positioning means for accurately positioning the substrate with respect to item PL ( WT);

· 기판(W)의 (예를 들어, 1이상의 다이를 포함하는)타겟부(C)에 마스크(MA)의 조사된 부분을 묘화하는 투영시스템("렌즈")(PL)(예를 들어, 굴절렌즈시스템)을 포함하여 이루어진다. Of, the substrate (W) a projection system ( "lens") for imaging an irradiated portion of the mask (MA) (e. G., Comprising one or more dies) of the target portion (C) (PL) (for example, comprises a refractive lens system).

도시된 바와 같이, 상기 장치는 (투과마스크를 구비한) 투과형이다. As here depicted, the apparatus is of a transmissive type (with a transmissive mask). 하지만, 일반적으로는, 예를 들어 (반사마스크를 구비한) 반사형일 수도 있다. However, in general, for example, it may be of (with a reflective mask). 대안적으로, 상기 장치는 상술된 바와 같은 형식의 프로그램가능한 거울배열과 같은 그 밖의 다 른 종류의 패터닝수단을 채택할 수도 있다. Alternatively, the apparatus may employ another kind of patterning and other means, such as a programmable mirror array of a type as described above.

상기 방사원(LA)은 방사선 빔을 생성한다. The radiation source (LA) produces a beam of radiation. 상기 빔은 곧바로 조명시스템(일루미네이터)(IL)에 들어 가거나, 예를 들어 빔 익스팬더(Ex)와 같은 컨디셔닝 수단을 거친 다음에 조명시스템으로 들어간다. This beam is go directly into the illumination system (illuminator) (IL), for example, conditioning means, such as a beam expander (Ex), and then enters the illumination system to the rough. 상기 일루미네이터(IL)는 빔내의 세기 분포의 외반경 및/또는 내반경 크기(통상 각각 외측-σ 및 내측-σ라 함)를 설정하는 조정수단(AM)을 포함하여 이루어진다. The illuminator (IL) may comprise adjusting means (AM) for setting the intensity distribution in the outer and / or in the beam radius size (usually referred to, respectively outer and inner -σ -σ). 또한 이것은 일반적으로 인티그레이터(IN) 및 콘덴서(CO)와 같은 여타의 다양한 구성요소들을 포함하고 있다. In addition, it will generally comprise various other components, such as an integrator (IN) and a condenser (CO). 이러한 방식으로, 마스크(MA)에 도달하는 빔(PB)은 그 단면에 소정의 균일성과 세기 분포를 갖게 된다. In this way, the beam (PB) to reach the mask (MA) has a desired uniformity and intensity distribution in its cross-section.

도 1과 관련하여, 상기 방사원(LA)은 (흔히 예를 들어, 방사원(LA)이 수은램프인 경우에서 처럼) 리소그패피 투영장치의 하우징내에 놓이지만, 그것이 리소그래피 투영장치로부터 멀리 떨어져 있어서 그것이 만들어 낸 방사선빔이 (가령, 적절한 지향 거울에 의해) 장치 내부로 들어오게 할 수도 있다. With regard to Figure 1 that the radiation source (LA) is only placed in the housing of the paepi projection apparatus (as is often, for example, a radiation source (LA) is, as in the case of a mercury lamp) resources, that it is remote from the lithographic projection apparatus, may be, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); 후자의 시나리오는 방사원(LA)이 대개 엑시머레이저인 경우이다. The latter scenario is often the case when the source (LA) is typically an excimer laser. 본 발명과 청구 범위는 이들 시나리오를 모두 포함하고 있다. The current invention and claims encompass both of these scenarios.

이후, 상기 빔(PB)은 마스크테이블(MT)상에 잡혀 있는 마스크(MA)를 거친다. The beam (PB) is subjected to a mask (MA) which is held on a mask table (MT). 마스크(MA)를 지난 빔(PB)은 렌즈(PL)를 통과하여 기판(W)의 타겟부(C)위에 빔(PB)을 포커싱한다. Over the mask (MA) beam (PB) is focuses the beam (PB) onto a target portion (C) of the substrate (W) through the lens (PL). 제2위치설정수단(및 간섭계측정수단(IF))에 의하여, 기판테이블(WT)은, 예를 들어 빔(PB)의 경로내에 상이한 타겟부(C)를 위치시키도록 정확하게 이동될 수 있다. Second positioning means (and interferometric measuring means (IF)), the substrate table (WT) by, for example, so as to position different target portions (C) in the path of the beam (PB). 이와 유사하게, 제1위치설정수단은 예를 들어, 마스크 라이브러리로부터 마스크(MA)를 기계적으로 회수한 후에, 또는 스캔하는 동안에, 빔(PB)의 경로에 대하여 마스크(MA)를 정확히 위치시키도록 사용될 수 있다. Similarly, the first positioning means, for example, a mask (MA) from a mask library, while after mechanical retrieval of, or scanning, to accurately position the mask (MA) with respect to the path of the beam (PB) It can be used. 일반적으로 대물테이블(MT, WT)의 이동은, 도 1에 명확히 도시되지는 않았지만, 장행정모듈(long-stroke module)(개략 위치설정) 및 단행정모듈(미세 위치설정)의 도움을 받아 실현될 것이다. Typically realized with the aid of the object tables (MT, WT) movement, long stroke module (long-stroke module), although not explicitly depicted in Figure 1 (coarse positioning) and a short-stroke module (fine positioning) It will be. 하지만, (스텝-앤드-스캔 장치와는 대조적으로) 웨이퍼 스테퍼의 경우에 마스크테이블(MT)이 단행정 액추에이터에만 연결되거나 또는 고정될 수도 있다. But it may also be (step-and-scan device, as opposed to) the mask table (MT) in the case of a wafer stepper is connected only to a short stroke actuator, or fixed.

도시된 장치는 두가지 상이한 모드로 사용될 수 있다. The depicted apparatus can be used in two different modes.

- 스텝 모드에서는, 마스크테이블(MT)은 기본적으로 정지상태로 유지되며, 전체 마스크 이미지는 한번에(즉, 단일 "섬광"으로) 타겟부(C)에 투영된다. - In step mode, the mask table (MT) is kept essentially stationary, and an entire mask image is projected in one go (i.e., a single "flash") onto a target portion (C). 그 후 기판테이블(WT)이 x 및/또는 y 방향으로 시프트되어 다른 타겟부(C)가 빔(PB)에 의하여 조사될 수 있다. That is after the substrate table (WT) is shifted in the x and / or y directions so that a different target portion (C) can be irradiated by the beam (PB).

- 스캔 모드에서는, 소정 타겟부(C)가 단일 "섬광"으로 노광되지 않는 것을 제외하고는 기본적으로 동일한 시나리오가 적용된다. In scan mode, essentially the same scenario applies, except that a given target portion (C) is not exposed in a single "flash". 그 대신에, 마스크테이블(MT)이 v 의 속도로 소정 방향(소위 "스캔방향", 예를 들어 y 방향)으로 이동 가능해서, 투영빔(PB)이 마스크 이미지의 모든 부분을 스캐닝하도록 되고, 이와 함께 기판테이블(WT)은 속도 V=Mv 로, 동일한 방향 또는 그 반대 방향으로 동시에 이동하는데, 이 때 M 은 렌즈(PL)의 배율(통상 M =1/4 또는 M =1/5)이다. Instead, the mask table (MT) with a speed v movable in a given direction (the so-called "scan direction", e.g. the y direction), is such that the projection beam (PB) scan over a mask image; in addition, the substrate table (WT) is to move at a speed V = Mv, at the same time in the same or opposite direction, in which M is the magnification (typically, M = 1/4 or M = 1/5) of the lens (PL) . 이러한 방식으로, 분해능을 떨어뜨리지 않고도 비교적 넓은 타겟부(C)가 노광될 수 있다. In this manner, a relatively large target portion can be exposed, (C), without having to compromise on resolution.

도 2는 투영시스템과 기판스테이지 사이의 액체저장기(10)를 보여준다. Figure 2 shows the liquid reservoir 10 between the projection system and the substrate stage. 상기 액체저장기(10)는 유입/유출구 덕트(13)를 통하여 제공된 비교적 큰 굴절률을 가진 액체(11), 예를 들면 물로 채워진다. The liquid reservoir 10 is, for a liquid 11 having a relatively high refractive index provided by the inlet / outlet ducts 13, for example filled with water. 상기 액체는 투영빔의 방사선이 대기 또는 진공에서보다 상기 액체내에서 보다 짧은 파장을 가지므로, 보다 작은 피처들이 분해가능하도록 하는 효과를 가진다. The liquid has the effect that, because the radiation of the projection beam of a shorter wavelength in the liquid than in air or a vacuum, to smaller features are possible decomposition. 투영시스템의 분해능 한계는 특히 상기 시스템의 개구수 및 투영빔의 파장에 의하여 결정된다는 것이 공지된 사실이다. The resolution limit of the projection system is known that a particular determined by the wavelength of the projection beam and the numerical aperture of the system case. 액체의 존재가 유효 개구수를 증가시키는 것으로 볼 수도 있다. It may be viewed as increasing the numerical aperture is present in a liquid effective. 나아가, 고정된 개구수에서는 상기 액체가 필드의 깊이를 증가시키는데 효과적이다. In addition, a fixed aperture is effective in the liquid to increase the depth of field.

상기 저장기(10)는 투영시스템의 이미지 필드 주위에 기판에 대한 비접촉 시일부를 형성함으로써, 기판표면 및 투영시스템의 최종 요소 사이의 공간을 채우도록 액체가 수용된다. The reservoir 10 is, by forming a non-contact seal to the substrate around the image field of the projection system, the liquid is contained so as to fill a space between the substrate surface and the final element of the projection system. 상기 저장기는 투영시스템(PL)의 최종 요소 아래에 위치하여 그것을 둘러싸는 시일부재(12)에 의하여 형성된다. It said reservoir located beneath the final element of the projection system (PL) is formed by the seal member 12 that surrounds it. 액체는 투영시스템 아래의 공간으로 그리고 시일부재(12)내로 유입된다. The liquid is introduced into the space below the projection system and the seal member 12. 상기 시일부재(12)는 투영시스템의 최종 요소 약간 위쪽으로 연장되어, 액체 수위가 최종 요소 위로 올라가 액체의 완충(buffer)이 제공된다. The seal member 12 extends a little above the final element of the projection system and the liquid level rises above the final element is provided with a buffer (buffer) of the liquid. 상기 시일부재(12)는, 상단부에서 바람직하게는 투영시스템의 단차(step)나 그 최종 요소와 근사하게 일치하고, 예를 들면 둥근 모양일 수 있는 내주부를 가진다. The seal member 12, to match the approximate and preferably step (step) or the final element of the projection system at the upper end and, for example, has an inner periphery, which may be a round shape. 바닥에서는, 상기 내주부가 꼭 그럴 필요는 없지만 이미지 필드의 모양, 예를 들면 직사각형에 근사하게 일치한다. In the bottom, the inner periphery is required by all means, but it corresponds to such a shape, for example of the image field close to the rectangle.

상기 액체는 시일부재(12)의 바닥과 기판(W)의 표면 사이의 가스시일부(16)에 의하여 저장기내에 수용된다. The liquid is received in the reservoir by a part (16) when the gas between the surface of the ground and the substrate (W) of the seal member 12. 가스시일부는, 압력하에 유입구(15)를 통하여 시일부재(12)와 기판 사이의 갭으로 제공되고 제1유출구(14)를 통하여 추출된 가스, 예를 들면 공기 또는 합성 공기, 바람직하게는 N 2 또는 또 다른 불활성 기체에 의하여 형성된다. Gas upon some of the, as via inlet 15 under pressure provided in the gap between seal member 12 and substrate and a first outlet 14 for a gas, e.g. air or synthetic air extracted through preferably N 2 or is also formed by the other inert gas. 안쪽에 액체를 억제하는 고속의 기류가 있도록, 가스유입구(15)상의 과도한 압력, 제1유출구(14)상의 진공레벨 및 상기 갭의 기하학 구조가 배치된다. So that the inside of the high-speed air current to suppress the liquid, the vacuum level and geometry of the gap on the excess pressure, the first outlet 14 on the gas inlet 15 is disposed. 이것은 도 3에 보다 상세하게 도시되어 있다. This is shown in more detail in Fig.

가스시일부는 2개의 환형 홈(18, 19)으로 형성되며, 상기 홈들은 홈 둘레에 이격된 일련의 소형 컨덕트(conduct)에 의하여 제1유입구(15) 및 제1유출구(14)에 각각 연결된다. Gas during part 2 is formed by two annular grooves (18, 19), the grooves are, respectively, the first inlet 15 and first outlet 14 by a series of small containers duct (conduct) spaced apart in the groove circumferential It is connected. 유입구 및 유출구(14, 15)는 시일부재(12)의 원주 둘레에 있는 여러 개의 별개의 오리피스이거나 또는 연속적인 홈들 혹은 슬릿 가운데 어느 하나일 수 있다. The inlet and outlet 14 and 15 may be any one of a number of discrete or continuous grooves or orifices or slits on the circumference of the seal member 12. 시일부재내의 큰 환형의 중공이 각각의 유입구 및 유출구에 제공되어 매니폴드(manifold)를 형성할 수 있다. It is a large annular hollow in the seal member is provided in each inlet and outlet to form a manifold (manifold). 가스시일부는 또한 가스베어링처럼 작동하여 시일부재(12)를 지지하는데 효과적일 수도 있다. Gas during part may also be effective to support the work, as a gas bearing seal member 12.

가스유입구(15)의 바깥쪽에 있는 갭 G1은, 그럴 필요는 없지만 바깥쪽에 기류에 대한 저항력을 제공하도록 작고 긴 것이 바람직하다. Gap G1 on the outside of the gas inlet 15, it is necessary, but is preferably small and long so as to provide resistance to air flow on the outside. 유입구(15)의 반경에서의 갭 G2는, 시일부재 둘레의 가스의 충분한 분포를 보장하도록 약간 더 크며, 상기 유입구(15)는 시일부재 둘레의 다수의 작은 구멍들로 형성된다. Gap G2 of the radius of inlet 15 is slightly larger to ensure a sufficient distribution of gas around the seal member, the inlet 15 is formed into a plurality of small holes of the seal member perimeter. 갭 G3는 상기 시일을 통하여 가스흐름을 제어하도록 선택된다. Gap G3 is chosen to control the gas flow through the seal. 갭 G4는 양호한 진공 분포를 제공하도록 보다 크며, 유출구(14)는 상기 유입구(15)와 동일한 방식으로 다수의 작은 구멍들로 형성된다. Gap G4 is larger than for a good distribution of vacuum, the outlet 14 is formed into a plurality of small holes in the same manner as the inlet 15. 갭 G5는 작아서 공간내의 액체로의 가스/산소 확산을 방지하고, 큰 체적의 액체가 들어와서 진공을 왜란시키는 것을 방지하며, 모세관 작용으 로 항상 액체로 채워지는 것을 보장한다. Gap G5 is small to prevent gas / oxygen diffusion into the liquid in the space and prevent the seeping of the large volume of liquid disturbance vacuum, and ensures that always is filled with a liquid coming from a capillary action.

따라서, 가스시일은 갭 안으로 액체를 끌어당기는 모세관 힘과 액체를 밖으로 밀어내는 기류간의 균형이다. Thus, the gas seal is a balance between air flow to push the capillary force and the liquid to pull the liquid in gap out. 상기 갭이 G5에서 G4로 넓어짐에 따라, 모세관 힘은 줄어들고 기류는 증가되어, 액체의 경계가 상기 영역내에 놓이고, 기판이 투영시스템(PL) 아래에서 이동할 때 조차도 안정될 것이다. Depending on the gap is widened from G5 to G4, the capillary forces decrease air flow is increased, and the boundary of the liquid lies within said area, will be stable even as the substrate moves under the projection system (PL).

G2에서의 유입구와 G4에서의 유출구 사이의 압력차 뿐만 아니라, G3의 크기 및 기하학 구조는 시일부(16)를 통한 가스흐름을 결정하고, 특정 실시예에 따라 결정될 것이다. As well as the pressure difference between the inlet and the outlet of at G4 in G2, the size and geometry of the G3 is configured to determine the gas flow through the seal section 16, it will be determined in accordance with a particular embodiment. 하지만, 만일 갭 G3의 길이가 짧고, G2에서의 절대압력이 G4에서의 절대압력의 2배이면, 이 경우 가스 속도는 가스내의 음파의 속도가 되고 더 이상 높아질 수 없다는 장점을 얻을 수 있다. However, if the length of gap G3 is short, is twice the absolute pressure in the absolute pressure at G2 is G4, if the gas velocity can be obtained an advantage that can increase the speed of the sound waves in a gas and more. 그러므로, 안정된 가스흐름이 얻어진다. Therefore, to obtain a stable gas flow.

가스유출시스템은 또한 가스유입구 압력을 줄이고 액체를 갭 G4에 들어가게 함으로써 상기 액체를 시스템으로부터 완전히 제거하는데 사용될 수도 있으며, 시일부를 형성하는데 사용된 가스 뿐만 아니라 액체를 핸들링하는데 용이하게 배치될 수 있는 진공시스템에 의하여 빨려나갈 수도 있다. Gas outlet system also in reducing the gas inlet pressure can be by to enter the liquid in the gap G4 may be used to completely remove the liquid from the system, as well as the gas used to form the seal arrangement, making it easier to handle the liquid vacuum system It can be sucked out by. 가스시일부내의 압력의 제어는 또한 갭 G5를 통한 액체의 흐름을 보장하는데 사용되어, 기판의 움직임에 따른 마찰에 의하여 가열되는 상기 갭내의 액체가 투영시스템 아래 공간내의 액체의 온도를 교란시키지 않도록 할 수도 있다. Gas when not allow control of the pressure in the part may also be used to ensure a flow of liquid through gap G5, not disturb the temperature of the liquid in following the projection system, the liquid in the gap is heated by the friction due to the substrate movement space may.

가스유입구 및 가스유출구 주위의 시일부재의 모양은 난류와 진동을 줄이기 위하여 가능한 한 멀리 층류(laminar flow)를 제공하도록 선택되어야만 한다. Shaped gas inlet and a gas outlet around the sealing member should be selected so far as possible to reduce turbulence and vibration provides laminar flow (laminar flow). 또한, 상기 가스흐름은 액체를 수용하는 최대힘을 제공하기 위하여 액체의 경계면에 서의 흐름방향의 변화가 가능한 한 크도록 배치되어야만 한다. Further, the gas flow should be arranged so that the greater the change in the boundary surface of the liquid in the flow direction as possible to provide maximum power for receiving a liquid.

상기 액체공급시스템은 새로운(fresh) 액체가 저장기(10)로 제공되도록 저장기(10)내의 액체를 순환시킨다. Thereby the liquid supply system circulates liquid in a new (fresh), the reservoir (10) so that liquid is provided to the reservoir 10.

가스시일부(16)는 시일부재(12)를 지지하는데 충분한 큰 힘을 발생시킬 수 있다. Some when gas 16 may generate a large enough force to support the seal member 12. 실제로, 시일부재(12)로 지지되는 유효 중량을 보다 크게 하기 위하여 기판쪽으로 상기 시일부재(12)를 바이어스하는 것이 필요할 수 있다. In fact, to bias the seal member 12 towards the substrate to greater than the effective weight supported by the seal member 12 it may be necessary. 시일부재(12)는 어떠한 경우에도 투영시스템에 대한 그리고 그 아래의 실질적으로 고정된 위치에서의 XY 평면(광학축선에 수직임)내에 유지되지만, 투영시스템으로부터는 분리(decouple)된다. The seal member 12 is retained in any event, in the XY plane and about a fixed position, substantially below that of the projection system (perpendicular to the optical axis Im) case, the separation (decouple) from the projection system. 상기 시일부재(12)는 Z방향으로 그리고 Rx 및 Ry로 이동하는 것이 자유롭다. The seal member 12 is free to move in the Z direction, and Rx and Ry.

제2실시예 Second Embodiment

제2실시예는 도 4 및 도 5에 예시되어 있고, 후술하는 바를 제외하고는 제1실시예와 같다. The second embodiment and is illustrated in Figures 4 and 5, the same as that of the first embodiment except as described below for example.

본 실시예에서, 제2가스유출구(216)는 가스유입구(15)를 중심으로 제1가스유출구(14)에 대향하여 제공된다. In this embodiment, the second gas outlet 216 is provided opposite to the first gas outlet (14) around the gas inlet 15. 이 경우, 가스유입구(15)로부터 장치의 광학축선에서 멀어지는 바깥쪽으로 빠져나오는 가스는 진공원에 연결되는 제2가스유출구(216)에 의하여 흡입된다. In this case, the gas escaping to the outside away from the optical axis of the apparatus from gas inlet 15 is sucked by the second gas outlet 216 is connected to a vacuum source. 이 경우, 가스가 가스시일부로부터 빠져나가는 것이 방지되어, 예를 들어 간섭계 눈금(readings) 또는 투영시스템 및/또는 기판이 하우징되는 진공과 간섭할 수 없게 된다. In this case, the gas is prevented from escaping from the part when the gas, for example, it is impossible to interfere with the vacuum which the interferometer scale (readings) or the projection system and / or the substrate housing.

2개의 가스유출구를 사용하는 실시예의 또 다른 장점으로는, 설계에 있어서 앞서 리소그래피 투영장치에 사용된 에어베어링과 매우 유사하다는 점을 들 수 있다. 2 as embodiment A further advantage of using a single gas outlet, there may be mentioned that it is previously very similar to the air bearing used in the lithographic projection apparatus in the design. 따라서, 상기 에어베어링에서 얻은 경험이 본 실시예의 가스시일부에 직접 적용될 수 있다. Thus, the experience gained from the air bearing can be applied directly to the part when the gas example of this embodiment. 제2실시예의 가스시일부는 특히 가스베어링 뿐만 아니라 시일수단처럼 사용하는데 적합하므로, 시일부재(12)의 중량을 지지하는데 사용될 수 있다. When the second exemplary embodiment, some gas can be used, supports the weight of the seal member 12, so suitable for use as a sealing means in particular a gas bearing as well.

시일부재(12)의 바닥면과 기판(W) 사이의 간격이나 기판(W)의 최상면의 토포그래피를 측정하기 위하여 센서들이 제공될 수 있는 것이 좋다. In order to measure the topography of the top surface of the seal member 12, the bottom surface and the substrate (W) and the substrate gap (W) between the good to which the sensor may be provided. 그 다음, 저장기내에 액체(11)를 구속하는 압력(P2) 및 시일부재(12)를 지지하는 압력(P1, P3)을 변경하기 위하여, 제어수단이 가스유입구 및 가스유출구(14, 15, 216)에 가해지는 압력들을 변경하는데 사용될 수 있다. Then, in order to change the pressure (P1, P3) for supporting the pressure (P2) and a seal member 12 for restraining the liquid 11 in the reservoir, the control means is a gas inlet and a gas outlet (14, 15, can be used to change the pressure applied to 216). 따라서, 시일부재(12)와 기판(W)간의 간격(D)은 일정한 거리로 변경 또는 유지될 수 있다. Therefore, the distance (D) between the seal member 12 and the substrate (W) can be changed or maintained at a constant distance. 동일한 제어수단이 시일부재(12) 레벨을 유지하는데 사용될 수 있다. The same control means may be used to keep the seal member 12 levels. 상기 제어수단은 피드포워드 또는 피드백 제어루프에 의하여 제어될 수 있다. The control means may be controlled by a feed-forward or feedback control loop.

도 5는 저장기내에 액체(11)를 유지시키는 압력(P2) 및 시일부재(12)를 지지하는 압력(P3)에 관계없이 제어하도록 가스시일부를 조절할 수 있는 방법을 자세히 보여준다. Figure 5 shows in detail how to control the gas during part to control regardless of the pressure (P3) for supporting the pressure (P2) and the seal member 12 to keep the liquid 11 in the reservoir. 이러한 여분의 제어는 작동시에 액체 손실을 최소화하는 방법을 제공하기 때문에 장점이 있다. This redundant control is advantageous because it provides a way to minimize the loss of liquid during operation. 제2실시예에 의하면, 노광시에 바뀌는 조건들을 고려하도록 압력(P2, P3)들이 독립적으로 제어될 수 있다. According to the second embodiment, it may be controlled in that the pressure (P2, P3) independently to take into account changing conditions during exposure. 바뀌는 조건들로는 단위시간당 액체손실의 상이한 레벨들을 들 수 있는데, 그 이유는 상이한 스캐닝 속도 때문이거나 어쩌면 기판(W)의 에지가 시일부재(12)에 의하여 겹쳐지기 때문이다. There can be mentioned different levels of change per unit time conditions include liquid loss, the reason or due to the different scanning rate is perhaps due to the edge of the substrate (W) being overlaid by a seal member 12. 이것은 기판(W)을 향하는 시일부재(12)의 표면의 개별적인 부분들의 기판(W)에 대한 간격 을 변화시키는 수단을 제공함으로써 달성된다. This is accomplished by providing means for changing the spacing with respect to the substrate (W) of the individual parts of the surface of the seal member 12 facing the substrate (W). 이들 부분들은 제1가스유출구(14)와 광학축선에 가장 가까운 시일부재(12)의 에지 사이의 부분(220)과, 가스유입구(15)와 제1가스유출구(14) 사이의 부분(230) 및 제2가스유출구(216)와 가스유입구(15) 사이의 부분(240)을 포함한다. These portions include a first portion 230 between the gas outlet 14 and the portion between the nearest sealing edge of the element 12 to the optical axis 220, the gas inlet 15 and the first gas outlet (14) and a second portion (240) between the gas outlet 216 and the gas inlet 15. 이들 부분들은 예를 들어 압전 액추에이터들을 사용하여 기판(W)쪽으로 또한 기판(W)에서 멀어지도록 이동할 수 있다. These portions may be moved away from and a substrate (W), for example towards the substrate (W) using a piezoelectric actuator. 즉, 시일부재(12)의 바닥면은 상기 액추에이터들에 걸쳐 전위차를 인가함으로써 팽창/수축될 수 있는 압전 액추에이터들(바람직하게는 스택들)을 포함할 수 있다. That is, the bottom surface of the seal member 12 may include a by applying a potential difference may be inflated / deflated piezoelectric actuators (preferably the stack) across said actuator. 여타의 기계적인 수단도 사용될 수 있다. Mechanical means of the other may be used.

가스유입구(15) 아래에 형성되는 압력(P3)은 가스유입구(15)에 가해진 가스의 압력(P5)과, 제1 및 제2가스유출구(14, 216)에 각각 가해진 가스의 압력(P6, P4)에 의하여 그리고 기판(W)과 기판(W)을 향하는 시일부재(12)의 바닥면 사이의 간격(D)에 의하여 결정된다. Gas inlet 15 of the pressure (P3) to be formed below each of the applied gas to the pressure (P5) of gas applied to the gas inlet 15, the first and second gas outlet (14, 216) (P6, by P4) and is determined by the distance (D) between the bottom surface of the substrate (W) and the substrate (the seal member 12 toward the W). 또한 가스유입구 및 가스유출구 사이의 수평 간격도 효과를 가진다. It also has the effect of the horizontal distance between the gas inlet and gas outlet.

시일부재(12)의 중량이 P3의 압력에 의하여 보상되어, 상기 시일부재(12)가 웨이퍼(W)로부터의 간격(D)을 정하도록 한다. The weight of the seal member 12 is compensated by the pressure of P3, and the seal member 12 is to define the distance (D) from the wafer (W). D가 줄어들면 P3는 증가하고, D가 커지면 P3는 감소하게 된다. If D is less P3 is increased, the larger the D P3 is reduced. 따라서, 이것은 자가조절시스템(self regulating system)이다. Therefore, this is a control system (self regulating system) characters.

압력 P3로 인한 미는 힘(pushing force)이 일정하면, 간격 D는 단지 압력 P4, P5, P6로 조절될 수 있다. When the pressing force (pushing force) due to the pressure P3 constant, the distance D can only be adjusted to a pressure P4, P5, P6. 하지만, P5, P6 및 D의 조합은 저장기내에 액체(11)를 유지시키는 압력인 P2를 발생시킨다. However, the combination of P5, P6 and D are generating a pressure of P2 to keep the liquid 11 in the reservoir. 주어진 압력레벨에서 액체용기로부터 빠져 나온 액체의 양은 계산될 수 있고, 액체내의 압력 P LIQ 도 중요하다. And at a given pressure level can be calculated the amount of liquid coming out from the liquid container, it is important the pressure P in the liquid LIQ. 만일 P LIQ 가 P2보다 높으면, 액체는 저장기로부터 빠져나가고, P LIQ 가 P2보다 낮으면 액체내에 기포가 발생하는데 이는 바람직하지 않다. LIQ ten thousand and one P is higher than P2, the liquid exits from the reservoir, which is undesirable for P LIQ if P2 is less than the bubble generation in the liquid. 기포가 액체내에 생기지 않도록 하고 또한 상기 액체의 교체가 필요할 정도로 액체가 너무 많이 빠져나가지 않도록 하기 위하여, P2를 P LIQ 보다 약간 낮은 값으로 유지하도록 하는 것이 바람직하다. That the bubbles so as to maintain the P2 in a slightly lower value than P LIQ to not go out and also prevent the liquid out too much so that replacement of the liquid need not occur in the liquid are preferred. 이것은 모두 일정한 D로 행해질 수 있는 것이 바람직하다. It is preferred that all be done with a constant D. 만일 부분(220)과 웨이퍼(W) 사이의 간격 D1이 변경되면, 저장기에서 빠져나가는 액체의 양은 간격 D1의 제곱만큼 실질적으로 변경될 수 있다. If the distance D1 between the part 220 and the wafer (W) change, can be substantially changed by the amount of liquid escaping from the reservoir by the square of the distance D1. 필요한 간격의 변화는 단지 1mm 정도이고, 바람직하게는 10㎛이며, 이는 100V 정도 또는 그 이상의 작동전압을 가진 압전 스택에 의하여 제공될 수 있다. Change in the distance required is only about 1mm, and preferably 10㎛, which may be provided by the piezoelectric stack, with about 100V or more operating voltages.

대안적으로, 빠져나갈 수 있는 액체의 양은 부분(230)의 바닥에 압전 요소를 배치함으로써 조절될 수 있다. Alternatively, by arranging the piezoelectric element on the bottom of the amount of portion 230 of the liquid that can pass through it may be controlled. 간격 D2를 변경하는 것은 압력 P2를 변경하는 것에 효과적이다. Changing the distance D2 is effective in changing the pressure P2. 하지만, 이러한 해결책은 D를 일정하게 유지하기 위하여 가스유입구(15)내의 압력 P5의 조정을 필요로 할 것이다. However, this solution would require an adjustment of the pressure P5 in the gas inlet 15 in order to maintain a constant D.

물론, 부분(240)의 하부와 기판(W) 사이의 간격 D3도 유사한 방식으로 변경될 수 있으며, P2 및 P3를 독립적으로 조절하는데 사용될 수 있다. Of course, and distance D3 between the lower and the substrate (W) of the portion 240 can be changed in a similar way, it can be used to adjust the P3 and P2 independently. P2 및 P3의 소정의 변화를 얻기 위하여, 압력 P4, P5, P6 및 간격 D1, D2, D3 모두를 독립적으로 또는 조합하여 조절할 수 있음을 이해할 수 있다. In order to obtain a desired change in the P2 and P3, the pressure P4, it will be understood that P5, P6 and spacing D1, D2, D3 can be adjusted by both independently and in combination.

실제로, 제2실시예는 저장기(10)내의 액체의 양의 적극적인(active) 관리에 사용하기에 효과적이다. In fact, the second embodiment is effective for use in the amount of active (active) administration of the liquid in the reservoir (10). 투영장치의 대기(standby) 상황은, 묘화되고 있는 기판(W)이 없는 경우, 저장기(10)는 비어 있지만, 가스시일부는 작용(active)하므로, 시일부재(12)를 지지할 수 있다. Wait (standby) state of the projection apparatus, since the absence of a substrate (W) that is being imaged, the reservoir 10 is empty, but the gas during part of the operation (active), it is possible to support the seal member 12 . 기판(W)이 포지셔닝된 후, 액체가 저장기(10)내로 도입된다. After the substrate (W) is the positioning, it is introduced into the liquid reservoir (10). 그런 다음, 기판(W)이 묘화된다. Then, the substrate (W) is drawn. 기판(W)이 제거되기 전, 저장기로부터의 액체가 제거될 수 있다. Before the substrate (W) is removed, the liquid from the reservoir can be eliminated. 마지막 기판의 노광 후, 저장기(10)내의 액체가 제거된다. After the exposure of the last substrate and the liquid in the reservoir 10 it is removed. 액체가 제거될 때마다, 액체가 이미 있었던 영역을 건조시키기 위하여 가스 퍼지가 적용되어야만 한다. Each time the liquid has been removed, must be applied to a purge gas to dry the liquid region has been already. 상기 액체는, 상술된 바와 같이 P3를 일정하게 유지하는 한편, P2의 변화에 의하여 제2실시예에 따른 장치에서 용이하게 제거될 수 있음은 자명하다. The liquid, which can be easily removed from the device according to the P3, which remains constant, while the second embodiment by changing the P2 as described above will be apparent. 다른 실시예에서, P5와 P6(및 필요에 따라 혹은 적용가능하다면 P4)를 변경하여 유사한 효과를 얻을 수 있다. In another embodiment, it is possible to obtain a similar effect by changing the P5 and P6 (and, if possible, or applied, as needed P4).

제3실시예 Third Embodiment

제2실시예의 대안예 또는 또 다른 개선예가 도 6에 도시되어 있는데, 제1가스유출구(14)의 안쪽으로(즉, 투영시스템의 광학축선에 보다 가깝게) 기판(W)을 향하는 시일부재(12)의 표면에 채널(320)이 제공될 수 있다. The second embodiment an alternative or further improved There example is shown in Figure 6, the inside of the first gas outlet 14 (i.e., closer to the optical axis of the projection system), the seal member towards the substrate (W) (12 ) there is a channel 320 on the surface can be provided for. 상기 채널(320)은 가스유입구 및 가스유출구(14, 15, 216)과 동일한 구조를 가질 수 있다. The channel 320 may have the same structure as the gas inlet and a gas outlet (14, 15, 216).

채널(320)을 사용하면, 압력 P2는 압력 P3에 관계없이 변경될 수 있다. The channel 320, the pressure P2 may be changed, regardless of the pressure P3. 대안적으로, 상기 채널을 저장기(10)내의 액체레벨 이상의 주위 압력으로 개방하면, 작동시에 저장기로부터의 액체의 소비가 크게 감소된다. Alternatively, when opening the channel to ambient pressure above the liquid level in the reservoir 10, it is greatly reduced consumption of liquid from the reservoir during operation. 본 실시예는 제2실시예와 조합하여 예시되었지만, 상기 채널(320)은 여타의 다른 실시예, 특히 제1실시예와 조합하여 사용될 수도 있다. This embodiment may be used in combination with the second embodiment it has been illustrated in combination with the channels 320 of another embodiment of the other examples, in particular the first embodiment. 다른 장점으로는, 가스유입구(15)와 제1가스유출구(14) (및 소정의 실시예에서는 제2가스유출구(216))가 왜란되지 않는다는 점을 들 수 있다. Other advantages, the gas inlet 15 and the first gas outlet 14 (and in certain embodiments the second gas outlets 216), and the point that is not disturbance.

나아가, 여기서는 단지 3개의 요소가 예시되어 있지만, 임의의 개수의 채널들이 기판(W)을 향하는 시일부재(12)의 표면에 통합될 수 있으며, 각각의 채널은 액체공급시스템의 강성(stiffness), 액체 소비, 안정성 또는 기타 특성을 개선시키기 위한 압력하에 있다. Further, in this case, but is illustrative only three elements, any number of channels that can be incorporated into the surface of the seal member 12 facing the substrate (W), each of the channels is the rigidity of the liquid supply system (stiffness), It is under pressure to improve the liquid consumption, stability, or other properties.

제4실시예 Fourth Embodiment

도 7 및 도 8에 예시된 제4실시예는 후술하는 바를 제외하고는 제1실시예와 같다. 7 and 8, the fourth embodiment also illustrated in the example is the same as that of the first embodiment except as described below for example. 하지만, 제4실시예는 또한 상술된 여타의 실시예들과 함께 사용될 수 있다는 장점을 가진다. However, the fourth embodiment is also advantageous in that it can be used with the embodiments of the above-mentioned other.

제4실시예에서, 다공성부재(410), 바람직하게는 다공성 카본부재나 다공성 세라믹부재는, 가스가 시일부재(12)의 바닥면을 통하여 나가는 가스유입구(15)에 부착된다. In the fourth embodiment, the porous member 410, preferably a porous carbon member and the porous ceramic member is attached to the gas inlet 15, the gas exiting through the bottom surface of the seal member 12. 다공성부재의 바닥은 시일부재의 바닥과 동일평면(co-planar)인 것이 바람직하다. The bottom of the porous element is preferably equal to the bottom plane of the seal member (co-planar). 이러한 다공성 카본부재(410)는 완전히 평탄하지 않은 표면(이 경우에는 기판(W))에 민감하지 않으며, 유입구(15)를 통하여 나가는 가스가 상기 유입구의 전체 출구에 걸쳐 잘 분포되어 있다. The porous carbon member 410 surface is not completely flat (in this case, the substrate (W)) insensitive to the gas exiting through the inlet port 15 is well distributed throughout the outlet of the inlet. 다공성부재(410)를 사용하여 얻는 장점은 또한 시일부재(12)가 기판(W)의 에지에 부분적으로 걸쳐 위치되어, 가스시일부가 마주치는 표면이 고르지 않게 될 때 명백해진다. The advantage obtained by using the porous member 410 is also the seal member 12 is positioned in part over to the edge of the substrate (W), it becomes apparent when the gas when the surface facing the striking portion be uneven.

제4실시예의 변형예에서, 다공성부재(410)는 진공채널(들)(14)에 배치될 수 있다. In a fourth embodiment variant, the porous member 410 may be disposed in the vacuum channel (s) (14). 상기 다공성부재(410)는, 허용할 수 없는 압력손실을 방지하는 한편 압력하 에 유지하도록 선택된 다공성을 가져야만 한다. The porous member 410, to prevent unacceptable pressure drop the other hand should have a porosity selected to maintain the pressure and. 이는 기판(W)의 에지를 묘화하고, 가스베어링이 기판(W)의 에지 위로 이동하는 경우에 장점을 가지는데, 그 이유는 비록 상기 에지의 위치에서의 예비부하력(preload force)을 잃을 수 있을지라도, 상기 진공채널이 크고도 가변적인 양의 가스로 오염되지 않아, 상기 예비부하의 변동을 크게 줄이고, 그 결과 스테이지에서의 플라잉(flying) 높이 및 힘의 변동을 크게 줄일 수 있기 때문이다. This draws the edges of the substrate (W), and the gas bearing is I have the advantage when moving over the edge of the substrate (W), the reason is, although loss of pre-load force (preload force) in the edge position the does vacuum channel is great and is not contaminated with varying amounts of gas, to reduce greatly the variation of the preliminary load is because as a result can significantly reduce the flying (flying) variations in height and power in the stage although.

제5실시예 The fifth embodiment

상술된 모든 실시예들은 통상적으로 공기와 같은 가스에 노출된 저장기(10)내에 자유수면을 갖는 액체를 포함한다. All embodiments described above are within the ordinary in a reservoir (10) exposed to the gas, such as air, a liquid having a free surface. 이것은 투영시스템상의 유체정력 (hydrostatic force)의 증가로 인한 충격의 경우에 투영시스템(PL)의 최종 요소의 파손을 막는다. This prevents damage to the final element of the projection system (PL) in the case of a shock due to the increase of the projection on the hydrostatic system (hydrostatic force). 충격을 받을 때에, 저장기(10)내의 액체는 구속받지 않으므로 (unconstrained), 투영시스템(PL)이 그것에 대하여 움직이는 경우, 상기 액체는 용이하게 위쪽으로 강제될 것이다. If the time to receive the impact, the liquid in the reservoir 10 does not suffer (unconstrained), a projection system (PL) is moved against it, the liquid will be easily forced upwards. 이러한 해결책의 단점은, 작동시에 자유수면상에 표면파(surface wave)가 발생할 수 있으므로, 기판(W)으로부터 투영시스템(PL)으로 왜란력이 전달될 수 있다는 점이며, 이는 바람직하지 않다. The disadvantage of this solution, is that during operation may be caused because the surface wave (surface wave) to the free water surface, disturbance forces to the projection system (PL) from the substrate (W) is passed on, which is not preferable.

이러한 문제를 해결하는 한 가지 방법으로는, 저장기(10)가 시일부재내에, 특히 상부면내에 완전히 수용되도록 하는 것을 들 수 있다. One way to solve this problem, a reservoir (10) can be mentioned that it is fully received in the, in particular, the upper surface within the sealing member. 그런 다음, 2차 저장기로부터 덕트를 통하여 저장기(10)로 액체가 공급된다. Then the liquid is supplied to the next, the reservoir 10 through the duct from the secondary reservoir. 상기 2차 저장기는 구속받지 않는 최상면을 가질 수 있으며, 충격을 받을 때에 액체가 덕트를 통하여 제2저장기로 강제되어, 투영시스템상의 제1저장기(10)내의 큰 유체정력의 증가를 피할 수 있 다. The secondary reservoir may have a top surface that is not bound, when subjected to impact the force group second reservoir fluid through the duct, it can avoid an increase in the large hydrostatic the projection the first reservoir 10 in the system All.

이러한 폐쇄시스템에서, 투영시스템상의 액체내의 국부적인 압력 증가는, 저장기들을 연결하는 덕트가 수학식 In such a closed system, increasing local pressure in the liquid on the projection system, a duct connecting the reservoir formula

Figure 112003042440315-pat00003
에 따른 반경을 갖는 덕트와 등가인 단면적을 갖도록 함으로써 피할 수 있다. So as to have a duct cross-sectional area equivalent to having a radius of the can be avoided by. 여기서, R은 덕트반경이고, △ V 는 시간 t 이내에 저장기(10)로부터 제거되어야만 하는 액체의 체적이고, L 은 덕트의 길이이며, η는 액체의 점도이고, △ P 는 2차 저장기와 1차 저장기(10)간의 압력차이다. Here, R is the duct radius, △ V is and body of liquid that must be removed from the reservoir (10) within time t, L is the length of the duct, η is the viscosity of the liquid, △ P is the secondary storage group 1 the pressure difference between the primary reservoir (10). 만일 기판테이블이 0.2 m/sec(실험치)의 속도로 충돌할 수 있고, △ P max 는 10 4 Pa(손상이 발생하기 전, 투영시스템의 최종 요소가 견딜 수 있는 근사 최대압력)라고 가정하면, 소요 파이프 반경은 덕트 길이가 0.2m 일 때 2.5mm 정도이다. Ten thousand and one, and the substrate table may collide at the speed of 0.2 m / sec (experimental values), △ P max is assuming that the 10 4 Pa (before damage occurs, the approximate maximum pressure that can withstand the final element of the projection system), required pipe radius is approximately 2.5mm when the duct length is 0.2m. 덕트의 유효 반경은 공식으로 주어진 최소값의 적어도 2배가 바람직하다. Effective radius of the duct is preferably at least 2 times the minimum value given by the formula.

충격을 받을 때에 여전히 투영시스템(PL)이 보호되도록 하면서, 저장기내의 액체의 물결파의 증가를 피하는 대안적인 방법으로는, 저장기(10)내의 액체의 최상면 위에 있는 억제 멤브레인(510)을 액체의 자유수면에 제공하는 것을 들 수 있다. As while allowing still a projection system (PL) is protected when subjected to impact, an alternative way to avoid an increase in the wave files of the reservoir liquid, the liquid to inhibit the membrane 510 above the top surface of the liquid in the reservoir (10) of those that can be provided on the free surface of the water. 이러한 해결책은 충격이 발생한 경우에 너무 높은 압력의 증가 없이 액체가 빠져나갈 수 있도록 하기 위한 안전수단(safety means; 515)을 필요로 한다. This solution is safe means for allowing the liquid without increasing the pressure too high in case the impact is caused to escape; requires (safety means 515). 한 가지 해결책이 도 9에 예시되어 있다. One solution is illustrated in Fig. 상기 억제 멤브레인은, 액체내의 압력이 사전설정된 최대 허용치에 도달하기 전에, 액체가 유연한 억제 멤브레인(510)을 변형시키도록 하여, 상기 액체가 투영시스템(PL)과 억제 멤브레인(510) 사이 또는 억제 멤브레인과 시일부재 사이를 각각 빠져나갈 수 있게 하는 방식으로, 투영시스템 또는 시일 부재(12)의 벽에 부착되는 유연한 재료로 만들어질 수 있다. The inhibition membrane, prior to reaching the maximum allowable pressure in the liquid pre-set, and so that the liquid is deformed flexible inhibit membrane 510, the liquid is a projection system (PL) and inhibit the membrane 510 or between the suppression membrane and through the seal member in such a manner as to be able to exit, respectively, it may be made of a flexible material attached to the wall of the projection system or the seal member 12. 따라서, 충격을 받을 때에, 투영시스템(PL)의 손상없이도 액체가 안전 멤브레인 위로 빠져나가는 것이 가능하다. Thus, when subjected to shocks, it is possible to leaving the liquid out of the membrane over the safety without damaging the projection system (PL). 이러한 실시예에서, 저장기(10)의 최소 체적의 억제 멤브레인 이상의 공간을 가지는 것이 좋다는 것은 자명하다. In this embodiment, it is suppressed to have a space above the membrane in the minimum volume of the reservoir 10 is better appreciated. 따라서, 유연한 멤브레인은 저장기(10)내의 액체의 최상면에서의 물결파의 형성을 막기에는 충분히 강성(stiff)이지만, 일단 액체가 사전설정된 유체정압에 도달하면 액체가 빠져나가는 것을 막을 정도로 강성이지는 않다. Thus, the flexible membrane when the but sufficiently rigid (stiff), the prevent the formation of a wave file, once the liquid in the top surface of the liquid in the reservoir 10 reaches a predetermined fluid static pressure enough to prevent the outgoing liquid is out of a rigid ize not. 보다 강성인 억제 멤브레인과 조합하여 사전설정된 압력 이상으로 액체의 자유-흐름(free-flow)을 허용하는 압력밸브(515)를 사용함으로써 동일한 효과를 얻을 수 있다. Than the free liquid outside the pre-set pressure in combination with a rigid inhibiting membrane- by using the pressure valve 515 to allow flow (free-flow), the same effect can be obtained.

억제수단의 대안적인 형태는, 저장기(10)내의 액체의 최상의 자유수면 위에 고점성 액체를 배치하는 것이다. Alternative forms of inhibiting means is, that on the best free surface of the liquid in the reservoir 10 is to place a viscous liquid. 이는 충격이 발생한 경우, 액체가 투영시스템(PL)의 범위(way)에서 벗어나 빠져나가도록 하면서, 표면파 형성을 억제한다. This means that if a shock is generated, and to escape out of the range (way) of the system (PL) liquid is projected, to inhibit wave formation. 고점성 액체가 공간(10)내의 액체와 섞이지 않는다는 것은 자명하다. The high-viscosity liquid is not mixed with the liquid in the space 10 is clear.

액체억제수단(510)의 또 다른 대안은, 그것에 메시(mesh)를 포함하는 것이다. Another alternative to liquid suppressor 510 is to include a mesh (mesh) on it. 이 경우, 액체의 최상면은 보다 작은 면적의 몇몇 부분들로 각각 분할될 수 있다. In this case, the top surface of the liquid can be each divided into some parts of the smaller area. 이 경우, 공명으로 인하여 증가하고 투영시스템을 왜란시키는 큰 표면파의 조성을 피할 수 있는데, 그 이유는 상기 몇몇 부분들의 표면적이 메시 개구(mesh opening)와 같아, 큰 표면파의 생성이 효과적으로 감쇠(damp)되기 때문이다. Be the case, the increase due to the 0 people, and may avoid the composition of the large wave projecting disturbance to the system, because the surface area of ​​a few parts equal to the mesh openings (mesh opening), attenuation (damp) the generation of a large wave effectively Because. 또한, 상기 메시가 그 개구를 통해 액체의 흐름을 허용하므로, 충격을 받을 때에 투영시스템의 보호를 위하여 효과적인 압력해제기구가 제공된다. In addition, the above message because it allows the flow of liquid through the opening, the effective pressure release mechanism is provided for the protection of the projection system when subjected to impact.

제6실시예 Sixth Embodiment

도 10 및 도 11에 예시된 제6실시예는 후술하는 바를 제외하고는 제1실시예와 동일하다. Embodiment 10 and the sixth example, illustrated in Figure 11 is the same as that of the first embodiment except as described below for example. 제6실시예는 앞선 실시예들의 몇몇 기술적 사상들을 이용한다. The sixth embodiment is used in some technical concept of the foregoing embodiments.

여타의 실시예들과 마찬가지로, 침지액(immersion liquid; 11)은 투영시스템의 최종 요소 아래에 위치하여 그것을 둘러싸는 시일부재(12)에 의하여 투영시스템(PL) 아래의 영역에 수용된다. As with other embodiments, the immersion fluid (immersion liquid; 11) is accommodated in the area below the projection system (PL) by surrounding it and located below the final element of the projection system is a seal member 12.

시일부재(12) 및 기판(W) 사이의 가스시일부는 3가지 타입의 유입·유출구로 형성된다. Gas during part of the seal between the member 12 and the substrate (W) is formed of three types of the inlet port, the outlet. 상기 시일부재는 일반적으로 유출구(614), 유입구(615) 및 추가 유입구(617)로 이루어진다. The seal member is generally made of the outlet 614, the inlet 615 and the additional inlet (617). 이들은 투영시스템(PL)에 가장 가까운 유출구(614), 상기 유출구(614) 바로 바깥쪽에 추가 유입구(617) 및 투영시스템(PL)에서 가장 먼 유입구(615)로써 위치한다. These position by the projection system (PL) closest to the outlet 614, the outlet 614 more immediately outside the inlet port 617, and a projection system most distant from the inlet port (PL) (615) on. 상기 유입구(615)는 환형챔버(622)를 거쳐 기판(W)을 향하는 시일부재(12)의 표면에 있는 다수의 유출구멍(620)에 가스가 제공되는 에어베어링을 포함한다. And the inlet port 615 includes a plurality of air bearings which gas is provided to the outlet holes 620 in the surface of the annular chamber, the seal member 12 via a 622 facing the substrate (W). 유출구멍(620)을 나가는 에어의 힘은, 시일부재(12)의 중량의 적어도 일부분을 지지할 뿐만 아니라, 투영시스템(PL) 아래의 로컬영역에 수용되도록 침지액의 시일을 돕는 유출구(614)쪽으로 에어의 흐름을 제공한다. The force of the air exiting the outlet holes 620, as well as to support at least a portion of the weight of the seal member 12, the projection system (PL) the outlet 614 to help seal the immersion liquid to be received in the local area under the It provides a flow of air to the side. 챔버(622)의 목적은, 개별적인 가스공급 오리피스(들)(625)이 유출구멍(620)에 균일한 압력의 가스를 제공하기 위함이다. The purpose of the chamber 622, is to provide a gas of a uniform pressure to the individual gas supply orifice (s) 625, the outlet hole (620). 상기 유출구멍(620)은 직경이 0.25mm 정도이고, 근사적으로 54개의 유출구멍(620)이 있다. The outlet aperture 620 is about 0.25mm in diameter, there is approximately a 54 outlet hole (620). 챔버(622) 및 유출구멍(620) 사이의 흐름 제약에 있어서는 단지 적은 수의 또는 심지어는 단지 하나의 주요 공급 오리피스(625)를 제공함에도 불구하고, 모든 유출구멍(620)에서 빠져나오는 균일한(even) 흐름을 보장하는 정도의 크기 차이가 존재한다. Uniform (shown even though providing a chamber 622 and an outlet hole 620, the main feed orifice 625, only a small number of, or even only one in the flow restrictions between and out of all the outlet holes 620, even), there are differences in the size of the extent to which guarantee the flow.

유출구멍(620)에서 빠져나오는 가스는 방사상 안쪽으로 또한 바깥쪽으로 모두 흐른다. Gas exiting from the outflow hole 620 flows both radially inward also outward. 유출구(614) 방사상 안쪽으로 흐르는 에어는 시일부재(12)와 기판(W) 사이에 시일부를 형성하는데 효과적이다. Air flow to the outlet port 614 radially inwardly is effective to form the seal portion between the seal member 12 and the substrate (W). 하지만, 에어의 추가 흐름이 추가 유입구(617)에 의하여 제공되는 경우에 상기 시일부가 개선된다는 것이 밝혀졌다. However, it has been found that if additional flow of air is provided by the additional inlet 617 that the seal portion improves. 통로(630)는 가스원, 예를 들면 대기에 연결된다. Passageway 630 is connected to a gas source, for example the atmosphere. 유입구(615)로부터 방사상 안쪽으로 에어가 흐르는 것은 추가 유입구(617)로부터 유출구(614)쪽으로 추가 가스를 끌어당기는데 효과적이다. The air flows radially inwardly from the inlet port 615 is effective to pull the additional gas into the outlet 614 from the additional inlet (617).

(일련의 개별적인 유입구보다는 오히려) 통로(630)의 단부에 제공되는 환형 홈(633)이 상기 홈(633)의 최내에지부와 유출구(614) 사이의 가스의 시일링 흐름이 전체 외주 주위에 고르게 되도록 보장한다. Provided to the end of the (rather than a series of individual inlet) passage 630, annular groove 633, this sealing flow of the gas between the unit and the outlet 614 in the innermost of the grooves 633 evenly around the entire outer periphery It shall ensure that. 상기 홈은 통상적으로 2.5mm의 폭과 그와 유사한 높이를 가진다. The grooves typically have a similar height and width as that of 2.5mm.

상기 홈(633)의 최내에지부(635)는, 예시된 바와 같이, 통로(630)를 통하여 유출구(614)쪽으로의 가스의 원활한(smooth) 흐름을 확실하게 하는 반경을 가진다. Portion 635 in the outermost of the groove 633, and has a radius to ensure a smooth (smooth) flow of gas toward the outlet 614, through the passage 630 as illustrated.

상기 유출구(614)는 또한 근사적으로 높이가 단지 0.7mm이지만, 그 폭은 6 ~ 7mm인 연속 홈(640)을 가진다. The outlet 614 is also high, but is only 0.7mm to approximately, its width has a continuous groove (640) 6 ~ 7mm. 상기 홈(640)의 최외에지부(642)는 실질적으로 90°인 샤프한 에지부로서 제공되므로, 가스의 흐름, 특히 추가 유입구(630)에서 나가는 가스의 흐름이 가속되어 상기 가스시일부의 효과를 증대시킨다. Since the outermost addition portion 642 of the groove 640 is substantially provided as a sharp edge 90 °, the flow of gas, in particular the flow of gas leaving the additional inlet 630 is accelerated the effect of the part when the gas It increases. 상기 홈(640)은 환형챔버(647)내로, 또한 그에 따라 개별적인 유출구 통로(649)로 유도되는 복수의 유출구멍(645)을 가진다. The grooves 640 into the annular chamber 647, and has a plurality of outlet holes (645) are converted to the respective outlet passage (649) accordingly. 복수의 유출구멍(645)은 직경이 근사적으로 1mm이므로, 유출구멍(645)을 통과하는 물방울들이 보다 작은 방울들로 나뉜다. A plurality of outlet holes (645) is divided into two approximately in that the smaller water droplets drop through the so 1mm, outlet hole 645 diameter.

시일부재(12)의 액체 제거 효과는 추가 유입구(617)에 연결된 조정가능한 밸브(638)에 의하여 조정될 수 있다. The liquid removal effect of the seal member 12 may be adjusted by adjustment connected to the additional inlet 617, the valves 638. 상기 밸브(638)는 추가 유입구(617)를 통과하는 흐름을 조정하는데 효과적이고, 이에 따라 유출구(614)를 통한 가스시일부(12)의 액체 제거의 효과를 변화시킬 수 있다. The valve 638 is effective in adjusting the flow through the additional inlet 617, so that when gas through the outlet 614, it is possible to change the effect of the liquid removal of the part (12).

시일부재의 전체 직경은 100mm 정도이다. The overall diameter of the seal member is on the order of 100mm.

도 11은 도 10의 시일부재(12)의 하부측 평면도를 보여준다. 11 shows a bottom side plan view of the seal member 12 of FIG. 도시된 바와 같이, 유입구(615)는 복수의 개별적인 유입구멍(620)으로서 제공된다. As shown, the inlet 615 is provided as a plurality of separate inflow hole 620. The 이는 주요 유입구(615)용으로 하나의 홈을 사용하는 것보다 이점을 가지는데, 그 이유는 에어베어링으로서의 하나의 홈은 상기 시스템에서 진동이 시작(set up)될 수 있는 정도의 용적(capacity)을 가지기 때문이다(가스의 압축가능한 성질 때문). Which I have the advantage over using a single home for the main inlet (615), that's why one of the home as an air bearing vibration start from the system (set up) volume (capacity) of a degree that can be due have a (due to compression of the gas possible properties). 직경이 작은 유입구멍(620)은 그 안에 보다 적은 체적의 가스를 가지므로, 용적에 기인하는 문제들을 적게 겪는다. The small diameter of the inlet hole 620, because of the small volume of gas than in it, undergoes less problems due to the volume.

홈(633) 형태의 추가 유입구(617)를 사용하는 것은, 단지 개별적인 유입구멍(620)만을 사용할 때에는 반드시 가능하지는 않는 시일부재(12)의 전체 외주 주위의 연속적인 가스 흐름을 보장하는데 사용될 수 있다. The use of groove 633 form additional inlet 617, the only can be used to ensure continuous gas around the entire outer peripheral flow in the individual inflow hole 620 only must not seal member 12 that is available when using . 개별적인 존재물(entity)로서 유출구(645)를 제공하는 것은 챔버(647, 622)처럼 흐름을 고르게 하는데 효과적인 홈(640)을 제공하기 때문에 문제가 되지 않는다. Providing an outlet (645) as individual presence of water (entity) is not a problem, because it provides an effective groove (640) to equalize the flow, as the chamber (647, 622).

액체용 유입구는 도 10 및 도 11의 시일부재(12)내에 예시되어 있지 않다. An inlet for the liquid is not illustrated in the Figures 10 and 11, the seal member 12. 액체는 앞선 실시예들에 예시된 것과 동일한 방식으로 제공될 수 있으며, 또는 대 안적으로 유럽특허출원 제03256820.6호 및 제03256809.9호에 개시된 액체 유입구 및 유출구 중 어느 것에 제공될 수도 있다. The liquid may be provided in any of which may be provided in the same manner as illustrated in the previous embodiment, or for anjeok to European Patent Application No. 03256820.6 and No. 03256809.9 disclosed a liquid inlet and outlet call.

제7실시예 Seventh Embodiment

제7실시예는 후술하는 바를 제외하고는 제6실시예와 유사하다. The seventh embodiment is similar to the embodiment and a sixth example except as described below. 도 12는 도 11에 도시된 것과 유사한 시일부재(12)의 하부측 평면도이다. 12 is a bottom side plan view of a similar seal member 12 as shown in Fig. 도 12에서, 시일부재에는 제6실시예에서와 같이 추가 유입구가 제공되지 않는다(비록 그것이 선택적으로 추가될 수 있을지라도). In Figure 12, the seal member is not provided with an additional inlet, as in the sixth embodiment (though it can be optionally added).

제7실시예의 시일부재(12)는, 상기 제6실시예와 전반적으로 동일한 디자인을 하고 있는 유입구멍(720)으로 형성된 가스베어링(715)을 포함한다. Seventh exemplary embodiment seal member 12, a gas bearing 715 formed in the sixth embodiment and the overall inflow hole 720 that is of the same design. 유입구(714)는 가스원과 진공원으로 각각 유도되는 단지 2개의 통로(745, 747)를 구비한 환형 홈(740)을 포함한다. The inlet port 714 comprises an annular groove 740 having a gas source and a circle with just two passages (745, 747) derived each vacuum. 이 경우, 통로(745)에 연결된 가스원으로부터 통로(747)에 연결된 진공원쪽으로 고속의 가스 흐름이 이루어질 수 있다. In this case, it may be formed of a high-speed gas flow from a gas source connected to the passage 745 toward the vacuum source connected to the passage (747). 이러한 고속의 가스 흐름에 의하여, 침지액은 보다 효과적으로 배출(drain)될 수 있다. By the gas flow of the high-speed, the immersion liquid can be more effectively discharging (drain). 나아가, 진공챔버내에 보다 큰 제한된 진공 흐름을 형성시킴으로써, 기판(W) 위쪽 시일부재(12)의 높이의 변화 또는 표면에서의 여타의 누설 원인들로 인한 흐름 불안정(flow fluctuation)이, 가스베어링을 위한 예비부하를 제공하는 진공챔버압력에 영향을 주지 않을 것이다. Further, by forming the larger limited vacuum flow in the vacuum chamber, a substrate (W) the upper seal member flow instability due to the other leak cause in change or surface of the height of the (12) (flow fluctuation) is, the gas bearing for it will not affect the vacuum chamber pressure to provide a pre-load.

제8실시예 Embodiment 8

제8실시예는 도 14와 연계하여 설명되고, 후술하는 바를 제외하고는 제1실시예와 동일하다. The eighth embodiment is described in conjunction with Figure 14, is the same as that of the first embodiment except as described below.

도 14에 도시된 바와 같이, 제8실시예는 제1실시예와 꼭 같은 유입구(815) 및 유출구(814)를 구비한 시일부재(12)를 가진다. As shown in Figure 14, the eighth embodiment has a seal member 12 having an inlet 815 and an outlet 814, just like the first embodiment. 하지만, 침지액이 기판(W)의 표면으로부터 보다 효과적으로 제거되도록 유출구(814)의 약간 방사상 바깥쪽으로 또는 그 아래 기판(W)의 표면상의 가스의 속도를 증가시키는 가스의 제트가 형성될 수 있도록 배치되는 추가 유입구(817)가 제공된다. However, it arranged such that a jet can be formed of gas and immersion liquid is to increase the gas velocity on the surface of slightly radially outward toward the substrate or below it (W) of the outlet 814, to be removed more effectively from the surface of the substrate (W) the additional inlet 817 that is provided. 상기 추가 유입구(817)는 투영시스템(PL)을 향하여 방사상 안쪽으로 각을 이루어 기판(W)쪽으로 지향되는 노즐에 의해 제공된 출구를 가진다. It said additional inlet (817) has an outlet provided by the nozzle which is directed towards the place with the respective radially inner substrate (W) facing the projection system (PL). 따라서, 그렇지 않다면 기판의 표면에서 속도가 제로인 간단한 포물선모양의 속도 분포를 가지며, 최종적인 몇 마이크로미터의 액체막 조차도 웨이퍼로부터 제거할 수 없을 유입구(815)와 유출구(814) 사이의 에어층류(the laminar air flow)(300 정도의 레이놀즈(Reynolds) 수를 가짐)는, 보다 빠른 에어 속도를 갖는 가스가 기판 표면과 접촉하는 것을 추가 유입구(817)가 보장하기 때문에 개선된다. Thus, if not having a simple parabolic velocity distribution of the velocity is zero at the surface of the substrate, air laminar flow between the final few liquid film micrometer even can not be removed from the wafer inlet 815 and an outlet (814) (the laminar air flow) having a number (300 Reynolds (Reynolds degree)) is improved because it ensures that the additional inlet (817) that the gas has a faster speed of the air in contact with the substrate surface.

도 14로부터, 추가 유입구(817)의 출구 노즐은 유출구(814)의 방사상 바깥쪽으로 제공되지만, 유입구(815)보다는 유출구(814)에 더 근접한 것을 볼 수 있다. Figure 14 from the outlet nozzle of the additional inlet 817 is provided, but radially outwardly of the outlet 814, it can be seen that is closer to the outlet 814 than the inlet port 815.

제9실시예 A ninth embodiment

제9실시예는 도 15 및 도 16에 예시되어 있고, 후술하는 바를 제외하고는 제1실시예와 동일하다. The ninth embodiment and is illustrated in FIGS. 15 and 16, is the same as that of the first embodiment except as described below for example.

제9실시예에서, 기판(W)을 향하는 시일부재(12)의 바닥면내의 유출구(914)의 마우스(mouth)는 유출구(914)내로의 에어 속도를 증가시키도록 수정된다. In the ninth embodiment, the mouse (mouth) of the outlet 914 in the bottom surface of the seal member 12 facing the substrate (W) is corrected so as to increase the air speed into the outlet 914. 이것은 유출구(914)의 통로를 같은 크기로 유지하면서 유입구(914)의 마우스의 크기를 줄 임으로써 달성된다. This is achieved by being, while maintaining the passage of the outlet 914 of the same size to reduce the size of the mouse of the inlet 914. 이는 외측 추가 부재(940) 및 내측 추가 부재(950)를 형성하기 위하여, 통로의 중앙쪽으로 시일부재(12)의 재료를 연장시켜 보다 작은 마우스를 제공함으로써 달성된다. This is achieved by providing a smaller mouse to extend the material of the seal member 12 toward the center of the passage to form an additional outer member 940 and inner member add 950. 상기 외측 추가 부재(940)는 내측 추가 부재(950)보다 작고, 두 부재(940, 950)간의 갭은 유출구(914)의 나머지보다 근사적으로 20배 정도 작다. The additional outer member (940) is smaller than the inner additional member 950, a gap between the two members (940, 950) is approximately 20 times as small than the rest of the outlet port 914. 상기 마우스는 그 폭이 근사적으로 100 내지 300㎛ 정도이다. The mouse is to 300㎛ extent that the width of approximately 100.

도 16에는, 제9실시예의 또 다른 대안적인 버전이 도시되어 있는데, 제8실시예의 추가 유입구(817)와 유사한 추가 유입구(917)가 제공된다. 16, the ninth embodiment also there is shown another alternative version, the additional inlet 917 is similar to the eighth embodiment additional inlet 817 is provided. 하지만, 이 경우, 상기 추가 유입구(917)는 유출구(914)의 마우스로 들어오는 가스가 가속되도록, 기판(W)의 표면에 실질적으로 평행한 흐름의 제트를 제공한다. However, in this case, the additional inlet 917 provides a jet of a flow substantially parallel to the surface of the outlet 914 mouse gas, so that the acceleration substrate (W) coming to the.

제10실시예 The tenth embodiment

제10실시예는 도 17에 예시되어 있고, 후술하는 바를 제외하고는 제1실시예와 동일하다. The tenth embodiment has been illustrated in Figure 17, is the same as that of the first embodiment except as described below for example.

제10실시예에서, 액체 제거의 효율성은 제8실시예와 동일한 원리에 따라 기판(W)의 표면상의 가스 속도를 증가시킴으로써 개선된다. In the tenth embodiment, the liquid removal efficiency is improved by increasing the gas velocity on the surface of the substrate (W) according to the same principle as in the eighth embodiment. 유입구(1015)를 떠나 유출구(1014)를 향해 방사상 안쪽으로 이동하는 가스는 환형 홈(1018) 밑을 지나간다. Leaving the inlet 1015 gas to move radially inward toward the outlet 1014 is passed under the annular groove (18). 예시된 바와 같이, 상기 홈의 효과는 가스가 그 방사상 최외측상의 홈으로 들어가고, 기판(W)을 향해 각도를 이루어, 방사상 내측상의 홈을 빠져나가게 하는 것이다. The effect of the grooves as illustrated the gas enters into the grooves on the radially outermost side, achieved an angle toward the substrate (W), to escape the groove on the radially inner side. 따라서, 유출구(1014)로의 입구에서의 기판(W)의 표면상의 가스 속도는 증가되고, 액체 제거 효율성이 개선된다. Thus, the gas velocity on the surface of the substrate (W) at the inlet to the outlet 1014 is increased, thereby improving the liquid removal efficiency.

소정의 실시예의 특징들은 여타의 실시예의 몇가지 혹은 전체 특징들과 연계 하여 이용될 수 있음은 명백하다. Given embodiment features are apparent is that can be used in conjunction with some or all features of other example embodiments.

지금까지 본 발명의 특정 실시예가 기재되었지만, 본 발명은 기재된 것 이외의 방법으로도 실시될 수 있음을 이해할 수 있다. While specific embodiments of the invention described so far, it will be understood that the present invention may be practiced by a method other than that described. 상기 기재는 본 발명을 제한하지 않는다. The substrate does not limit the invention.

본 발명에 따르면, 스테이지 이동시에 가속될 수 밖에 없는 액체의 체적을 최소화하면서, 기판과 투영시스템 사이의 공간을 상기 액체로 채우는 것을 특징으로 하는 리소그래피 투영장치를 제공할 수 있다. According to the invention, while minimizing the volume of the liquid not only to be accelerated to the stage movement can be provided a lithographic projection apparatus, characterized in that filling the space between the substrate and the projection system to the liquid.

또한, 기판과 투영시스템간의 왜란력(disturbance force)의 전달을 최소화하면서, 상기 기판과 투영시스템간의 공간을 액체로 채우는 것을 특징으로 하는 리소그래피 투영장치를 제공할 수 있다. Further, while minimizing the transmission of the disturbance force (disturbance force) between the substrate and the projection system, it is possible to provide a lithographic projection apparatus the space between the substrate and the projection system characterized in that for filling with liquid.

Claims (29)

  1. 리소그래피 투영장치에 있어서, A lithographic projection apparatus comprising:
    - 방사선 투영빔을 공급하는 방사선시스템; A radiation system for supplying a projection beam of radiation;
    - 소정 패턴에 따라 투영빔을 패터닝하는 역할을 하는 패터닝수단을 지지하는 지지구조체; A support structure for supporting patterning means, the patterning means serving to pattern the projection beam according to a desired pattern;
    - 기판을 잡아주는 기판테이블; A substrate table for holding a substrate;
    - 상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영시키는 투영시스템; A projection system for projecting the patterned beam onto a target portion of the substrate; And
    - 상기 기판 및 상기 투영시스템의 최종 요소 사이의 공간을 적어도 부분적으로 액체로 채우기 위한 액체공급시스템을 포함하여 이루어지고, - a liquid supply system for filling with a liquid to a space between the substrate and a final element of the projection system, at least in part,
    상기 액체공급시스템은, The liquid supply system,
    - 상기 기판테이블 및 상기 투영시스템의 최종 요소 사이의 상기 공간의 경계부의 적어도 일부분을 따라 연장되는 시일부재; - a seal member which extends along at least a part of the boundary of the space between the substrate table and the final element of the projection system; And
    - 상기 시일부재 및 상기 기판의 표면 사이에 가스시일부를 형성하는 가스시일수단을 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. - a lithographic projection apparatus, characterized in that comprises a gas seal means for forming a part during gas between the seal member and the surface of the substrate.
  2. 제1항에 있어서, According to claim 1,
    상기 가스시일수단은 상기 기판 위에 상기 시일부재를 지지하기 위한 가스베어링인 것을 특징으로 하는 리소그래피 투영장치. The gas seal means is a lithographic projection apparatus, characterized in that a gas bearing for supporting said seal member on the substrate.
  3. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 가스시일수단은, 상기 기판에 대향하는 상기 시일부재의 표면에 형성된 가스유입구 및 제1가스유출구와, 가스를 압력하에 상기 가스유입구에 공급하는 수단 및 상기 제1가스유출구로부터 가스를 추출하는 진공수단을 포함하는 것을 특징으로 하는 리소그래피 투영장치. The gas sealing means comprises a vacuum to extract the gas from the gas inlet and first gas outlet, and a means and the first gas outlet for supplying a gas under pressure to the gas inlet is formed on a surface of the sealing member that faces the substrate a lithographic projection apparatus comprising the means.
  4. 제3항에 있어서, 4. The method of claim 3,
    가스원에 연결되며 상기 제1가스유출구와 상기 가스유입구 사이에 위치한 추가 유입구를 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. Connected to the gas source and the lithographic projection apparatus, characterized in that further comprises an additional inlet located between the gas inlet and the first gas outlet.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 추가 유입구는 상기 기판을 향하는 상기 시일부재의 표면에 연속적인 환형 홈을 포함하는 것을 특징으로 하는 리소그래피 투영장치. It said additional inlet is a lithographic projection apparatus comprises a continuous annular groove in the surface of the sealing member facing the substrate.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 홈의 방사상 최내측 코너는 반경(radius)을 가지는 것을 특징으로 하는 리소그래피 투영장치. Radially innermost corners of the grooves, characterized in that the lithographic projection apparatus having a radius (radius).
  7. 제3항에 있어서, 4. The method of claim 3,
    상기 제1가스유출구는 상기 기판을 향하는 상기 시일부재의 표면에 연속적인 환형 홈을 포함하는 것을 특징으로 하는 리소그래피 투영장치. It said first gas outlet is a lithographic projection apparatus comprises a continuous annular groove in the surface of the sealing member facing the substrate.
  8. 제3항에 있어서, 4. The method of claim 3,
    상기 제1가스유출구 및 상기 가스 유입구 중 하나 이상은 각각 상기 공급하는 수단 및 상기 진공수단과 상기 표면내의 상기 유입구 또는 유출구의 개구 사이의 챔버를 포함하고, 상기 챔버가 상기 개구보다 낮은 흐름 제약(flow restriction)을 제공하는 것을 특징으로 하는 리소그래피 투영장치. Said first gas outlet and said inlet or comprises a chamber between the opening of the outlet, and a low flow restrictions than the opening the chamber within the said surface means and said vacuum means for supplying at least one of the gas inlet, respectively (flow a lithographic projection apparatus, characterized in that to provide a restriction).
  9. 제3항에 있어서, 4. The method of claim 3,
    상기 가스유입구는 상기 기판을 향하는 상기 시일부재의 표면에 일련의 개별적인 개구들을 포함하는 것을 특징으로 하는 리소그래피 투영장치. The gas inlet is a lithographic projection apparatus comprising: a series of individual open at a front surface of said seal member facing the substrate.
  10. 제3항에 있어서, 4. The method of claim 3,
    상기 가스유입구의 영역 위의 가스 흐름을 고르게 분포시키기 위하여 상기 가스유입구 위에 다공성부재가 배치되는 것을 특징으로 하는 리소그래피 투영장치. In order to evenly distribute the gas flow in the upper region of the gas inlet lithographic projection apparatus wherein a porous member disposed above the gas inlet.
  11. 제3항에 있어서, 4. The method of claim 3,
    상기 시일부재는 상기 기판에 대향하는 상기 시일부재의 상기 표면에 형성된 제2가스유출구를 더 포함하여 이루어지고, 상기 제1 및 제2가스유출구는 상기 가스유입구의 양쪽에 형성되는 것을 특징으로 하는 리소그래피 투영장치. It said seal member further comprising a second gas outlet port formed in the surface of the sealing member that faces the substrate, wherein the first and second gas outlet is lithography, characterized in that formed on both sides of the gas inlet projection apparatus.
  12. 제3항에 있어서, 4. The method of claim 3,
    상기 제1가스유출구와 상기 가스유입구 사이의 상기 표면의 일부분의 레벨을 상기 표면의 나머지에 대하여 변화시키는 수단을 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. A lithographic projection apparatus according to the level of a portion of the surface between the gas inlet and the first gas outlet characterized in that further comprising a means for changing with respect to the rest of the surface.
  13. 제3항에 있어서, 4. The method of claim 3,
    상기 제1가스유출구와 상기 광학축선에 가장 가까운 상기 표면의 에지 사이의 상기 표면의 일부분의 레벨을 상기 표면의 나머지에 대하여 변화시키는 수단을 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. A lithographic projection apparatus according to the level of a portion of the surface between said first gas outlet and the closest edge of the surface to the optical axis characterized in that further comprising a means for changing with respect to the rest of the surface.
  14. 제3항에 있어서, 4. The method of claim 3,
    상기 가스시일수단은, 상기 표면에 형성되고 상기 제1가스유출구보다 투영시스템의 광학축선에 더 가까이 위치한 채널을 포함하는 것을 특징으로 하는 리소그래피 투영장치. The gas seal means is formed on the surface of the lithographic projection apparatus comprises a channel located closer to the optical axis of the projection system than the first gas outlet.
  15. 제14항에 있어서, 15. The method of claim 14,
    상기 채널은 제2가스유입구인 것을 특징으로 하는 리소그래피 투영장치. The channel is a lithographic projection apparatus, characterized in that the second gas inlet job.
  16. 제15항에 있어서, 16. The method of claim 15,
    상기 채널은 상기 공간내의 액체의 수위보다 위에 있는 환경으로 개방되는 것을 특징으로 하는 리소그래피 투영장치. The channel is a lithographic projection apparatus, characterized in that opening into the environment above the water level of the liquid in the space.
  17. 제3항에 있어서, 4. The method of claim 3,
    상기 가스유입구는 상기 제1가스유출구보다 상기 투영시스템의 광학축선으로부터 더욱 바깥쪽에 위치하는 것을 특징으로 하는 리소그래피 투영장치. The gas inlet is a lithographic projection apparatus is characterized in that location even outside from the optical axis of the projection system than the first gas outlet.
  18. 제3항에 있어서, 4. The method of claim 3,
    상기 가스유입구 및 가스유출구 각각은, 상기 기판에 대향하는 상기 시일부재의 상기 표면내의 홈과, 이격된 위치에서 상기 홈으로 유도되는 복수의 도관을 포함하는 것을 특징으로 하는 리소그래피 투영장치. The gas inlet and gas outlet, respectively, the lithographic projection apparatus in a home, and a spaced position in the surface of the sealing member that faces the substrate characterized in that it comprises a plurality of conduits leading to the groove.
  19. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 시일부재의 상기 표면과 상기 기판 사이의 간격 및 상기 기판의 토포그래피(topography) 중 하나 이상을 측정하는 센서들을 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. A lithographic projection apparatus according to claim further comprising a sensor for measuring one or more of the topography (topography) of the distance between the substrate and the surface of said seal member and said substrate.
  20. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 시일부재와 상기 기판간의 강성(stiffness)을 제어하는 상기 가스시일수단내의 가스압력 및 상기 시일부재와 상기 기판간의 간격 중 하나 이상을 제어하기 위한 제어수단을 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. Said seal member and a lithographic projection according to the gas pressure and characterized in that further comprising a control means for controlling at least one of a gap between the sealing member and the substrate within the gas sealing means for controlling the rigidity (stiffness) between the substrate Device.
  21. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 시일부재와 상기 가스시일수단의 안쪽에 있는 상기 기판의 표면 사이의 갭은, 모세관 작용이 액체를 갭 안으로 끌어당기는 것과 가스가 상기 가스시일수단으로부터 상기 투영시스템과 상기 기판 사이의 상기 공간으로 들어가는 것을 막는 것 중 하나 이상을 행하기 위하여, 작은 것을 특징으로 하는 리소그래피 투영장치. The gap between the surface of the substrate on the inside of the seal member and the gas seal means is a capillary action is to pull liquid into the gap as a gas from entering into the space between the projection system and the substrate from the gas seal means in order to carry out one or more of the would prevent the lithographic projection apparatus is smaller.
  22. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 시일부재는 상기 투영시스템과 상기 기판 사이의 상기 공간 주위에 폐쇄된 루프를 형성하는 것을 특징으로 하는 리소그래피 투영장치. It said seal member is a lithographic projection apparatus, characterized in that for forming a closed loop around the space between the projection system and the substrate.
  23. 리소그래피 투영장치에 있어서, A lithographic projection apparatus comprising:
    - 방사선 투영빔을 공급하는 방사선시스템; A radiation system for supplying a projection beam of radiation;
    - 소정 패턴에 따라 투영빔을 패터닝하는 역할을 하는 패터닝수단을 지지하는 지지구조체; A support structure for supporting patterning means, the patterning means serving to pattern the projection beam according to a desired pattern;
    - 기판을 잡아주는 기판테이블; A substrate table for holding a substrate;
    - 상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영시키는 투영시스템; A projection system for projecting the patterned beam onto a target portion of the substrate; And
    - 상기 기판 및 상기 투영시스템의 최종 요소 사이의 공간을 적어도 부분적으로 액체로 채우기 위한 액체공급시스템을 포함하여 이루어지고, - a liquid supply system for filling with a liquid to a space between the substrate and a final element of the projection system, at least in part,
    상기 공간은 덕트를 통하여 액체 저장기와 연결된 액체내에 있고, 유체흐름방향에 직각인 평면에서의 상기 덕트의 최소 단면적은 적어도 It said space is the minimum cross-sectional area of ​​the ducts in the duct and through the liquid in the storage group associated liquid, perpendicular to the fluid flow direction is at least plane
    Figure 112003042440315-pat00004
    (여기서, △ V 는 시간 t min 이내에 상기 공간으로부터 제거되어야만 하는 액체의 체적이고, L 은 덕트의 길이이며, η는 상기 공간내 액체의 점도이고, △ P max 는 상기 최종 요소상의 허용가능한 최대압력임)인 것을 특징으로 하는 리소그래피 투영장치. (Where, △ V is the body and, L is the length of the duct of the liquid to be removed from the space within the time t min, η is the viscosity of the liquid in the space, △ P max is the maximum allowable pressure on the end element a lithographic projection apparatus, characterized in that Im).
  24. 제23항에 있어서, 24. The method of claim 23,
    상기 공간은, 액체가 상기 공간내에 존재할 때, 상기 액체가 상부 자유수면(free upper surface)을 가지지 않도록 둘러싸인 것을 특징으로 하는 리소그래피 투영장치. The space, when the liquid is present in the space, the lithographic projection apparatus, characterized in that the liquid is enclosed so as to have an upper free surface (free upper surface).
  25. 리소그래피 투영장치에 있어서, A lithographic projection apparatus comprising:
    - 방사선 투영빔을 공급하는 방사선시스템; A radiation system for supplying a projection beam of radiation;
    - 소정 패턴에 따라 투영빔을 패터닝하는 역할을 하는 패터닝수단을 지지하는 지지구조체; A support structure for supporting patterning means, the patterning means serving to pattern the projection beam according to a desired pattern;
    - 기판을 잡아주는 기판테이블; A substrate table for holding a substrate;
    - 상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영시키는 투영시스템; A projection system for projecting the patterned beam onto a target portion of the substrate; And
    - 상기 기판 및 상기 투영시스템의 최종 요소 사이의 공간을 적어도 부분적으로 액체로 채우기 위한 액체공급시스템을 포함하여 이루어지고, - a liquid supply system for filling with a liquid to a space between the substrate and a final element of the projection system, at least in part,
    상기 액체공급시스템은, 상기 액체공급시스템내의 액체의 최상면 상에, 물결파(wave)의 조성을 억제하고 압력해제수단을 포함하는 억제수단을 더 포함하여 이루어지는 것을 특징으로 하는 리소그래피 투영장치. The liquid supply system, on the top surface of the liquid in the liquid supply system, a wave file lithographic projection apparatus which comprises a composition to suppress the (wave), and further includes a restraining means including a pressure release means.
  26. 제25항에 있어서, 26. The method of claim 25,
    상기 억제수단은 유연한 멤브레인(flexible membrane)을 포함하는 것을 특징으로 하는 리소그래피 투영장치. The restraining means is a lithographic projection apparatus comprising a flexible membrane (flexible membrane).
  27. 제25항 또는 제26항에 있어서, 26. The method of claim 25 or claim 26,
    상기 억제수단은, 상기 액체의 상기 최상면의 최대면적이 메시 개구(mesh opening)와 같도록 하는 메시를 포함하는 것을 특징으로 하는 리소그래피 투영장치. The inhibition means is a lithographic projection apparatus comprising: a mesh that the maximum area of ​​the top surface of the liquid to be the same as the mesh openings (mesh opening).
  28. 제25항 또는 제26항에 있어서, 26. The method of claim 25 or claim 26,
    상기 억제수단은 어떤 압력 이상의 액체를 통과시키는 안전 밸브를 포함하는 것을 특징으로 하는 리소그래피 투영장치. The restraining means is a lithographic projection apparatus comprising: a safety valve for passing the liquid over any pressure.
  29. 제25항에 있어서, 26. The method of claim 25,
    상기 억제수단은 상기 액체와 섞이지 않는 고점성(high viscosity) 액체인 것을 특징으로 하는 리소그래피 투영장치. The restraining means is a lithographic projection apparatus, characterized in that the liquid that is immiscible with the viscosity (high viscosity) liquid.
KR1020030079336A 2002-11-12 2003-11-11 Lithographic Apparatus and Device Manufacturing Method KR100585476B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02257822.3 2002-11-12
EP02257822 2002-11-12
EP03252955.4 2003-05-13
EP03252955 2003-05-13

Publications (2)

Publication Number Publication Date
KR20040044119A KR20040044119A (en) 2004-05-27
KR100585476B1 true KR100585476B1 (en) 2006-06-07

Family

ID=33160979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030079336A KR100585476B1 (en) 2002-11-12 2003-11-11 Lithographic Apparatus and Device Manufacturing Method

Country Status (6)

Country Link
US (7) US6952253B2 (en)
JP (4) JP3977324B2 (en)
KR (1) KR100585476B1 (en)
CN (1) CN100470367C (en)
SG (3) SG121818A1 (en)
TW (1) TWI232357B (en)

Families Citing this family (605)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7367345B1 (en) * 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
JP3639807B2 (en) * 2001-06-27 2005-04-20 キヤノン株式会社 Optical element and manufacturing method
US7372541B2 (en) 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN100568101C (en) 2002-11-12 2009-12-09 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60335595D1 (en) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographic apparatus with immersion and method for manufacturing a device
KR100585476B1 (en) 2002-11-12 2006-06-07 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
KR101036114B1 (en) * 2002-12-10 2011-05-23 가부시키가이샤 니콘 Exposure apparatus, exposure method and method for manufacturing device
KR101085372B1 (en) * 2002-12-10 2011-11-21 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2004053955A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
SG158745A1 (en) * 2002-12-10 2010-02-26 Nikon Corp Exposure apparatus and method for producing device
US7948604B2 (en) * 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
JP4352874B2 (en) * 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
AT365962T (en) * 2002-12-19 2007-07-15 Koninkl Philips Electronics Nv Method and device for irradiating a layer by means of a light spot
DE10261775A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Device for optical measurement of an imaging system
EP2466625B1 (en) * 2003-02-26 2015-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101181688B1 (en) * 2003-03-25 2012-09-19 가부시키가이샤 니콘 Exposure system and device production method
EP1612850B1 (en) * 2003-04-07 2009-03-25 Nikon Corporation Exposure apparatus and method for manufacturing a device
JP4488004B2 (en) * 2003-04-09 2010-06-23 株式会社ニコン Immersion lithography fluid control system
EP3352010A1 (en) * 2003-04-10 2018-07-25 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
WO2004090633A2 (en) * 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
KR20170064003A (en) * 2003-04-10 2017-06-08 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
EP3232271A1 (en) 2003-04-10 2017-10-18 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid injection and recovery system for immersion lithography
EP1616220B1 (en) 2003-04-11 2013-05-01 Nikon Corporation Apparatus and method for maintaining immersion fluid under a lithographic projection lens
KR101597475B1 (en) * 2003-04-11 2016-02-24 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
AT542167T (en) 2003-04-17 2012-02-15 Nikon Corp Lithographic immersion device
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
TWI511181B (en) 2003-05-23 2015-12-01 尼康股份有限公司
TWI474380B (en) 2003-05-23 2015-02-21 尼康股份有限公司
EP1628330A4 (en) 2003-05-28 2009-09-16 Nikon Corp Exposure method, exposure device, and device manufacturing method
TWI347741B (en) * 2003-05-30 2011-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10324477A1 (en) * 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101528016B1 (en) 2003-06-13 2015-06-12 가부시키가이샤 니콘 Exposure method, substrate stage, exposure apparatus and method for manufacturing device
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
KR101146962B1 (en) 2003-06-19 2012-05-22 가부시키가이샤 니콘 Exposure device and device producing method
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
JP3862678B2 (en) * 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
EP1975721A1 (en) * 2003-06-30 2008-10-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7236232B2 (en) * 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
EP2853943B1 (en) * 2003-07-08 2016-11-16 Nikon Corporation Wafer table for immersion lithography
EP2264532B1 (en) * 2003-07-09 2012-10-31 Nikon Corporation Exposure apparatus and device manufacturing method
KR101296501B1 (en) * 2003-07-09 2013-08-13 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
CN102944981A (en) * 2003-07-09 2013-02-27 株式会社尼康 Exposure apparatus, and device fabricating method
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005010960A1 (en) 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
EP2264533B1 (en) * 2003-07-28 2012-09-19 Nikon Corporation Exposure apparatus, method for producing device, and exposure method
EP1503244A1 (en) * 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7370659B2 (en) * 2003-08-06 2008-05-13 Micron Technology, Inc. Photolithographic stepper and/or scanner machines including cleaning devices and methods of cleaning photolithographic stepper and/or scanner machines
KR101475995B1 (en) * 2003-08-21 2014-12-23 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US8149381B2 (en) * 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
KR101094114B1 (en) 2003-08-26 2011-12-15 가부시키가이샤 니콘 Optical element and exposure device
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4325622B2 (en) * 2003-08-29 2009-09-02 株式会社ニコン Exposure apparatus and device manufacturing method
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR101477850B1 (en) * 2003-08-29 2014-12-30 가부시키가이샤 니콘 Liquid recovery apparatus, exposure apparatus, exposure method, and device production method
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
KR101238114B1 (en) * 2003-09-03 2013-02-27 가부시키가이샤 니콘 Apparatus and method for providing fluid for immersion lithography
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
DE60302897T2 (en) * 2003-09-29 2006-08-03 Asml Netherlands B.V. A lithographic apparatus and method for manufacturing a device
EP2312395B1 (en) 2003-09-29 2015-05-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US7158211B2 (en) * 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
WO2005036623A1 (en) 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
KR101111364B1 (en) 2003-10-08 2012-02-27 가부시키가이샤 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
JP2005136364A (en) * 2003-10-08 2005-05-26 Nikon Corp Substrate carrying device, exposure device and device manufacturing method
TWI376724B (en) 2003-10-09 2012-11-11 Nikon Corp
EP1524558A1 (en) * 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005041276A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411653B2 (en) * 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
KR101117429B1 (en) 2003-10-31 2012-04-16 가부시키가이샤 니콘 Exposure apparatus and devce producing method
US7528929B2 (en) * 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3139214B1 (en) 2003-12-03 2019-01-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JPWO2005057635A1 (en) * 2003-12-15 2007-07-05 株式会社ニコン Projection exposure apparatus and the stage apparatus, and exposure method
KR101499405B1 (en) 2003-12-15 2015-03-05 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
US20070081133A1 (en) * 2004-12-14 2007-04-12 Niikon Corporation Projection exposure apparatus and stage unit, and exposure method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005191394A (en) * 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
JP2005191393A (en) * 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
JP4954444B2 (en) * 2003-12-26 2012-06-13 株式会社ニコン The flow path forming member, an exposure apparatus and device manufacturing method
KR101911681B1 (en) * 2004-01-05 2018-10-25 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101135232B1 (en) * 2004-01-20 2012-04-12 칼 짜이스 에스엠테 게엠베하 Microlithographic projection exposure apparatus
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7990516B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with liquid detection apparatus
KR101554772B1 (en) 2004-02-04 2015-09-22 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
WO2005076325A1 (en) * 2004-02-04 2005-08-18 Nikon Corporation Exposure equipment and method, position control method and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
WO2005081291A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and method of producing device
DE102004013886A1 (en) 2004-03-16 2005-10-06 Carl Zeiss Smt Ag A method for multiple exposure, microlithography projection exposure apparatus and projection system
WO2005093791A1 (en) * 2004-03-25 2005-10-06 Nikon Corporation Exposure apparatus and method for manufacturing device
US7034917B2 (en) * 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7317504B2 (en) * 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101330370B1 (en) * 2004-04-19 2013-11-15 가부시키가이샤 니콘 Exposure apparatus and device producing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3981368B2 (en) * 2004-05-17 2007-09-26 松下電器産業株式会社 The pattern forming method
US7616383B2 (en) * 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) * 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070216889A1 (en) * 2004-06-04 2007-09-20 Yasufumi Nishii Exposure Apparatus, Exposure Method, and Method for Producing Device
EP1774405B1 (en) 2004-06-04 2014-08-06 Carl Zeiss SMT GmbH System for measuring the image quality of an optical imaging system
US20070103661A1 (en) * 2004-06-04 2007-05-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3203498A1 (en) * 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
KR101556454B1 (en) 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
KR101577515B1 (en) * 2004-06-10 2015-12-14 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20070139628A1 (en) * 2004-06-10 2007-06-21 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20070222959A1 (en) * 2004-06-10 2007-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN100547730C (en) 2004-06-10 2009-10-07 尼康股份有限公司;尼康工程股份有限公司 Exposure equipment and element manufacturing method
US7481867B2 (en) * 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
JP4623095B2 (en) * 2004-06-17 2011-02-02 株式会社ニコン Fluid pressure compensation immersion lithography lens
US8698998B2 (en) * 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006024715A (en) * 2004-07-07 2006-01-26 Toshiba Corp Lithography apparatus and pattern forming method
WO2006006565A1 (en) 2004-07-12 2006-01-19 Nikon Corporation Exposure equipment and device manufacturing method
US7161663B2 (en) * 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US8169591B2 (en) * 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7304715B2 (en) * 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1801853A4 (en) * 2004-08-18 2008-06-04 Nikon Corp Exposure apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060044533A1 (en) * 2004-08-27 2006-03-02 Asmlholding N.V. System and method for reducing disturbances caused by movement in an immersion lithography system
JP2006080143A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Aligner and pattern formation method
TWI610340B (en) 2004-09-17 2018-01-01 Nikon Corp
CN100539019C (en) * 2004-09-17 2009-09-09 株式会社尼康 Exposure device, exposure method, and device manufacture method
US7522261B2 (en) * 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) * 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) * 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4625673B2 (en) * 2004-10-15 2011-02-02 株式会社東芝 Exposure method and apparatus
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) * 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196768B2 (en) 2004-10-26 2007-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI416265B (en) * 2004-11-01 2013-11-21 尼康股份有限公司
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) * 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) * 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7362412B2 (en) * 2004-11-18 2008-04-22 International Business Machines Corporation Method and apparatus for cleaning a semiconductor substrate in an immersion lithography system
US7230681B2 (en) * 2004-11-18 2007-06-12 International Business Machines Corporation Method and apparatus for immersion lithography
US7145630B2 (en) * 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7256121B2 (en) * 2004-12-02 2007-08-14 Texas Instruments Incorporated Contact resistance reduction by new barrier stack process
US7161654B2 (en) * 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) * 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7248334B2 (en) * 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7196770B2 (en) * 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7397533B2 (en) * 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7180571B2 (en) * 2004-12-08 2007-02-20 Asml Netherlands B.V. Lithographic projection apparatus and actuator
JP4752473B2 (en) * 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
GB0427104D0 (en) 2004-12-10 2005-01-12 Exitech Ltd Positioning device
US7403261B2 (en) * 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4551758B2 (en) * 2004-12-27 2010-09-29 株式会社東芝 Method for manufacturing a liquid immersion exposure method and a semiconductor device
US7491661B2 (en) * 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060147821A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) * 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1681597B1 (en) 2005-01-14 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124351A1 (en) * 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2006078292A1 (en) * 2005-01-21 2006-07-27 Nikon Corporation Offset partial ring seal in immersion lithographic system
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
KR101942138B1 (en) * 2005-01-31 2019-01-24 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
JP2011258999A (en) * 2005-01-31 2011-12-22 Nikon Corp Exposure device and device manufacturing method
JP5005226B2 (en) * 2005-01-31 2012-08-22 株式会社ニコン Exposure apparatus and device manufacturing method, the liquid holding method
CN101128775B (en) 2005-02-10 2012-07-25 Asml荷兰有限公司 Immersion liquid, exposure apparatus, and exposure process
JP5343958B2 (en) * 2005-02-21 2013-11-13 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4807086B2 (en) * 2005-02-21 2011-11-02 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US7224431B2 (en) * 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7282701B2 (en) 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
US7428038B2 (en) * 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
JP4262252B2 (en) * 2005-03-02 2009-05-13 キヤノン株式会社 Exposure apparatus
US7324185B2 (en) * 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) * 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
JP5040646B2 (en) * 2005-03-23 2012-10-03 株式会社ニコン Exposure apparatus and an exposure method, and device manufacturing method
US7330238B2 (en) * 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
JP4605219B2 (en) 2005-03-30 2011-01-05 株式会社ニコン Method of determining the exposure conditions, exposure method and an exposure apparatus, and device manufacturing method
TW200705110A (en) * 2005-03-31 2007-02-01 Nikon Corp Exposure apparatus, exposure method, and device production method
US20070132976A1 (en) * 2005-03-31 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2007019463A (en) * 2005-03-31 2007-01-25 Nikon Corp Exposure device, exposure method, and method of manufacturing device
US7411654B2 (en) * 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7291850B2 (en) * 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101555707B1 (en) 2005-04-18 2015-09-25 가부시키가이샤 니콘 The exposure apparatus and exposure methods, and device manufacturing method
US20060232753A1 (en) * 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
JP5125505B2 (en) 2005-04-25 2013-01-23 株式会社ニコン Exposure method and an exposure apparatus, and device manufacturing method
CN100555568C (en) * 2005-04-28 2009-10-28 株式会社尼康 Exposure method, exposure apparatus and device manufacturing method
US7317507B2 (en) * 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) * 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) * 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7315033B1 (en) 2005-05-04 2008-01-01 Advanced Micro Devices, Inc. Method and apparatus for reducing biological contamination in an immersion lithography system
CN100445872C (en) 2005-05-09 2008-12-24 浙江大学 Liquid delivering and airtight device in submersible photoetching system
JP2006339448A (en) 2005-06-02 2006-12-14 Canon Inc Exposure device with photodetection unit
JP2006344329A (en) * 2005-06-10 2006-12-21 Sony Corp Optical disk recording/reproducing apparatus
US20070085989A1 (en) * 2005-06-21 2007-04-19 Nikon Corporation Exposure apparatus and exposure method, maintenance method, and device manufacturing method
JP4884708B2 (en) * 2005-06-21 2012-02-29 株式会社ニコン Exposure apparatus and device manufacturing method
JP4708876B2 (en) * 2005-06-21 2011-06-22 キヤノン株式会社 Immersion exposure apparatus
US7751027B2 (en) * 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20080018158A (en) 2005-06-21 2008-02-27 가부시키가이샤 니콘 Exposure apparatus, exposure method, maintenance method and device manufacturing method
US7652746B2 (en) * 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7468779B2 (en) * 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) * 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) * 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7170583B2 (en) * 2005-06-29 2007-01-30 Asml Netherlands B.V. Lithographic apparatus immersion damage control
KR20080026082A (en) 2005-06-30 2008-03-24 가부시키가이샤 니콘 Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
US7583358B2 (en) * 2005-07-25 2009-09-01 Micron Technology, Inc. Systems and methods for retrieving residual liquid during immersion lens photolithography
US7535644B2 (en) * 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) * 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7580112B2 (en) * 2005-08-25 2009-08-25 Nikon Corporation Containment system for immersion fluid in an immersion lithography apparatus
US7456928B2 (en) * 2005-08-29 2008-11-25 Micron Technology, Inc. Systems and methods for controlling ambient pressure during processing of microfeature workpieces, including during immersion lithography
TWI345685B (en) 2005-09-06 2011-07-21 Asml Netherlands Bv Lithographic method
EP1933371A1 (en) 2005-09-09 2008-06-18 Nikon Corporation Exposure apparatus, exposure method, and device production method
US7426011B2 (en) * 2005-09-12 2008-09-16 Asml Netherlands B.V. Method of calibrating a lithographic apparatus and device manufacturing method
EP1936665A4 (en) 2005-09-21 2010-03-31 Nikon Corp Exposure device, exposure method, and device fabrication method
US20070070323A1 (en) * 2005-09-21 2007-03-29 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US7357768B2 (en) * 2005-09-22 2008-04-15 William Marshall Recliner exerciser
JP2007096050A (en) 2005-09-29 2007-04-12 Canon Inc Aligner
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1950794A4 (en) * 2005-10-07 2010-03-31 Nikon Corp Optical characteristic measuring method, exposure method, device manufacturing method, inspecting apparatus and measuring method
JP4125315B2 (en) 2005-10-11 2008-07-30 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2007142366A (en) 2005-10-18 2007-06-07 Canon Inc Exposure apparatus and method of manufacturing device
DE102005052757B4 (en) * 2005-11-04 2007-07-26 Vistec Semiconductor Systems Gmbh Device for measuring the position of an object with a laser interferometer system
US20070127002A1 (en) * 2005-11-09 2007-06-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
JPWO2007055199A1 (en) 2005-11-09 2009-04-30 株式会社ニコン Exposure apparatus and method, and device manufacturing method
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
CN100462845C (en) 2005-11-11 2009-02-18 台湾积体电路制造股份有限公司 Improved infiltrating type micro-image system with wafer sealing structure and method thereof
JPWO2007055373A1 (en) * 2005-11-14 2009-04-30 株式会社ニコン The liquid recovery member, an exposure apparatus, exposure method, and device manufacturing method
KR20080068006A (en) 2005-11-15 2008-07-22 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
US7864292B2 (en) * 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200721260A (en) 2005-11-16 2007-06-01 Nikon Corp Substrate processing method, photomask manufacturing method, photomask and device manufacturing method
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7656501B2 (en) * 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7633073B2 (en) * 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) * 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US20070124987A1 (en) * 2005-12-05 2007-06-07 Brown Jeffrey K Electronic pest control apparatus
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR20080071552A (en) 2005-12-06 2008-08-04 가부시키가이샤 니콘 Exposure method, exposure apparatus, and method for manufacturing device
KR100768849B1 (en) * 2005-12-06 2007-10-22 엘지전자 주식회사 Power supply apparatus and method for line conection type fuel cell system
EP1970944A4 (en) 2005-12-06 2010-04-28 Nikon Corp Exposure apparatus, exposure method, projection optical system and device manufacturing method
US20070126999A1 (en) * 2005-12-07 2007-06-07 Nikon Corporation Apparatus and method for containing immersion liquid in immersion lithography
US7420194B2 (en) * 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
US8953148B2 (en) * 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8472004B2 (en) * 2006-01-18 2013-06-25 Micron Technology, Inc. Immersion photolithography scanner
KR101431405B1 (en) * 2006-01-19 2014-08-18 가부시키가이샤 니콘 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
US7848516B2 (en) * 2006-01-20 2010-12-07 Chiou-Haun Lee Diffused symmetric encryption/decryption method with asymmetric keys
JP2007201252A (en) * 2006-01-27 2007-08-09 Canon Inc Exposure apparatus, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR20080103564A (en) 2006-02-16 2008-11-27 가부시키가이샤 니콘 Exposure apparatus, exposing method, and device manufacturing method
EP1986223A4 (en) 2006-02-16 2010-08-25 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
JP5177674B2 (en) 2006-02-21 2013-04-03 株式会社ニコン Measuring apparatus and method, a pattern forming apparatus and method, and device manufacturing method
JP5115859B2 (en) 2006-02-21 2013-01-09 株式会社ニコン Patterning apparatus, an exposure apparatus and an exposure method, and device manufacturing method
CN101980085B (en) 2006-02-21 2012-11-07 株式会社尼康 Exposure apparatus, exposure method, and device manufacturing method
JP5077770B2 (en) * 2006-03-07 2012-11-21 株式会社ニコン A device manufacturing method, device manufacturing system and test apparatus
US8045134B2 (en) * 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
KR20080114691A (en) 2006-03-13 2008-12-31 가부시키가이샤 니콘 Exposure apparatus, maintenance method, exposure method and device manufacturing method
US7307687B2 (en) 2006-03-20 2007-12-11 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and substrate
JP4889331B2 (en) * 2006-03-22 2012-03-07 大日本スクリーン製造株式会社 The substrate processing apparatus and a substrate processing method
US8027019B2 (en) 2006-03-28 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007266504A (en) * 2006-03-29 2007-10-11 Canon Inc Exposure device
US20070238261A1 (en) * 2006-04-05 2007-10-11 Asml Netherlands B.V. Device, lithographic apparatus and device manufacturing method
EP1843206B1 (en) 2006-04-06 2012-09-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7903232B2 (en) * 2006-04-12 2011-03-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20090007282A (en) * 2006-04-14 2009-01-16 가부시키가이샤 니콘 Exposure method, exposure apparatus and device manufacturing method
US9477158B2 (en) * 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701551B2 (en) * 2006-04-14 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7675604B2 (en) * 2006-05-04 2010-03-09 Taiwan Semiconductor Manufacturing Company, Ltd. Hood for immersion lithography
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal attenuation
JPWO2007132862A1 (en) * 2006-05-16 2009-09-24 株式会社ニコン A projection optical system, an exposure method, an exposure apparatus, and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US8144305B2 (en) * 2006-05-18 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
KR20090023335A (en) * 2006-05-22 2009-03-04 가부시키가이샤 니콘 Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
EP2023379A4 (en) 2006-05-31 2009-07-08 Nikon Corp Exposure apparatus and exposure method
TW200816271A (en) 2006-06-09 2008-04-01 Nikon Corp Pattern formation method, pattern formation device, exposure method, exposure device, and device manufacturing method
US7656502B2 (en) * 2006-06-22 2010-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5245825B2 (en) 2006-06-30 2013-07-24 株式会社ニコン Maintenance method, exposure method and apparatus, and device manufacturing method
US7826030B2 (en) * 2006-09-07 2010-11-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5029611B2 (en) * 2006-09-08 2012-09-19 株式会社ニコン Cleaning member, a cleaning method, an exposure apparatus, and device manufacturing method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8330936B2 (en) 2006-09-20 2012-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2008044612A1 (en) 2006-09-29 2008-04-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20080100812A1 (en) * 2006-10-26 2008-05-01 Nikon Corporation Immersion lithography system and method having a wafer chuck made of a porous material
JP2008124194A (en) 2006-11-10 2008-05-29 Canon Inc Liquid-immersion exposure method and liquid-immersion exposure apparatus
US20080158531A1 (en) 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
JP4902505B2 (en) * 2006-12-07 2012-03-21 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
JP4758977B2 (en) * 2006-12-07 2011-08-31 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic projection apparatus, device manufacturing method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) * 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
JP2008147577A (en) * 2006-12-13 2008-06-26 Canon Inc Exposure apparatus, and method of manufacturing device
US8416383B2 (en) * 2006-12-13 2013-04-09 Asml Netherlands B.V. Lithographic apparatus and method
US8634052B2 (en) * 2006-12-13 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and method involving a ring to cover a gap between a substrate and a substrate table
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
TWI371572B (en) 2007-04-12 2012-09-01 Nikon Corp
US8947629B2 (en) * 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) * 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US7900641B2 (en) * 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US20090122282A1 (en) * 2007-05-21 2009-05-14 Nikon Corporation Exposure apparatus, liquid immersion system, exposing method, and device fabricating method
US8435593B2 (en) 2007-05-22 2013-05-07 Asml Netherlands B.V. Method of inspecting a substrate and method of preparing a substrate for lithography
WO2008146819A1 (en) 2007-05-28 2008-12-04 Nikon Corporation Exposure apparatus, device manufacturing method, cleaning device, cleaning method and exposure method
US8164736B2 (en) * 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
US8514365B2 (en) * 2007-06-01 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8264662B2 (en) * 2007-06-18 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. In-line particle detection for immersion lithography
US7576833B2 (en) * 2007-06-28 2009-08-18 Nikon Corporation Gas curtain type immersion lithography tool using porous material for fluid removal
US20090002656A1 (en) * 2007-06-29 2009-01-01 Asml Netherlands B.V. Device and method for transmission image detection, lithographic apparatus and mask for use in a lithographic apparatus
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US9019466B2 (en) * 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
KR101409149B1 (en) 2007-07-24 2014-06-17 가부시키가이샤 니콘 Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
NL1035757A1 (en) * 2007-08-02 2009-02-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
US8064151B2 (en) * 2007-08-14 2011-11-22 Asml Netherlands B.V. Lithographic apparatus and thermal optical manipulator control method
US7924404B2 (en) * 2007-08-16 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US20090051895A1 (en) * 2007-08-24 2009-02-26 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, device manufacturing method, and processing system
WO2009036192A1 (en) * 2007-09-13 2009-03-19 Applied Precision, Inc. Method of dispersing immersion liquid on a specimen substrate for high resolution imaging and lithographie
US8681308B2 (en) * 2007-09-13 2014-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4533416B2 (en) * 2007-09-25 2010-09-01 キヤノン株式会社 Exposure apparatus and device manufacturing method
NL1035908A1 (en) * 2007-09-25 2009-03-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
SG151198A1 (en) 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
NL1035942A1 (en) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
JP2009094145A (en) * 2007-10-04 2009-04-30 Canon Inc Exposure device and method, and device manufacturing method
NL1036009A1 (en) * 2007-10-05 2009-04-07 Asml Netherlands Bv An Immersion Lithography Apparatus.
US8279399B2 (en) 2007-10-22 2012-10-02 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP5145524B2 (en) * 2007-10-25 2013-02-20 株式会社ブイ・テクノロジー Exposure apparatus
NL1036069A1 (en) * 2007-10-30 2009-05-07 Asml Netherlands Bv An Immersion Lithography Apparatus.
JP5017232B2 (en) 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning apparatus and an immersion lithographic apparatus
JP2009117832A (en) 2007-11-06 2009-05-28 Asml Netherlands Bv Method of preparing substrate for lithography, substrate, device manufacturing method, sealing coating applicator, and sealing coating measuring device
US9013681B2 (en) * 2007-11-06 2015-04-21 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
JP4986185B2 (en) * 2007-11-07 2012-07-25 株式会社ニコン Exposure apparatus and an exposure method, and device manufacturing method
US9256140B2 (en) * 2007-11-07 2016-02-09 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction
US8665455B2 (en) * 2007-11-08 2014-03-04 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8422015B2 (en) 2007-11-09 2013-04-16 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
NL1036187A1 (en) * 2007-12-03 2009-06-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL1036211A1 (en) * 2007-12-03 2009-06-04 Asml Netherlands Bv Lithographic Apparatus and Device Manufacturing Method.
NL1036194A1 (en) * 2007-12-03 2009-06-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL1036186A1 (en) * 2007-12-03 2009-06-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL1036253A1 (en) * 2007-12-10 2009-06-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
CN101680746B (en) 2007-12-11 2013-11-20 株式会社尼康 Moving body device, exposure device, pattern formation device, and device manufacturing method
NL1036279A1 (en) * 2007-12-13 2009-06-16 Asml Netherlands Bv A device for transmission image detection, for use in a lithographic projection apparatus and a method for-determining third order distortions of a patterning device and / or a projection system or Such a lithographic apparatus.
US8711327B2 (en) * 2007-12-14 2014-04-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
NL1036273A1 (en) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus.
NL1036306A1 (en) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8953141B2 (en) 2007-12-21 2015-02-10 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with asymmetric acceleration profile of substrate table to maintain meniscus of immersion liquid
US8269945B2 (en) 2007-12-28 2012-09-18 Nikon Corporation Movable body drive method and apparatus, exposure method and apparatus, pattern formation method and apparatus, and device manufacturing method
CN102566320B (en) 2007-12-28 2015-01-28 株式会社尼康 Exposure apparatus, exposure method and device manufacturing method
NL1036333A1 (en) * 2008-01-02 2009-07-07 Asml Netherlands Bv Immersion lithography.
US8629970B2 (en) * 2008-01-23 2014-01-14 Asml Netherlands B.V. Immersion lithographic apparatus with immersion fluid re-circulating system
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009182328A (en) * 2008-01-29 2009-08-13 Asml Holding Nv Immersion lithography apparatus
WO2009098891A1 (en) 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
US8889042B2 (en) * 2008-02-14 2014-11-18 Asml Netherlands B.V. Coatings
NL1036596A1 (en) * 2008-02-21 2009-08-24 Asml Holding Nv Re-flow and buffer system for immersion lithography.
NL1036571A1 (en) * 2008-03-07 2009-09-08 Asml Netherlands Bv Lithographic Apparatus and Methods.
NL1036631A1 (en) * 2008-03-24 2009-09-25 Asml Netherlands Bv Immersion Lithographic Apparatus and Device Manufacturing Method.
KR101448152B1 (en) * 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
NL1036715A1 (en) * 2008-04-16 2009-10-19 Asml Netherlands Bv Lithographic apparatus.
NL1036709A1 (en) 2008-04-24 2009-10-27 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
NL1036766A1 (en) * 2008-04-25 2009-10-27 Asml Netherlands Bv Methods Relating to immersion lithography and an immersion lithographic apparatus.
NL1036835A1 (en) * 2008-05-08 2009-11-11 Asml Netherlands Bv Lithographic Apparatus and Method.
US8421993B2 (en) * 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
EP2131241A3 (en) * 2008-05-08 2014-12-24 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
AT548679T (en) 2008-05-08 2012-03-15 Asml Netherlands Bv Lithographic immersion device, drying device, immersion metrology apparatus and process for manufacturing a device
EP2128703A1 (en) 2008-05-28 2009-12-02 ASML Netherlands BV Lithographic Apparatus and a Method of Operating the Apparatus
NL1036924A1 (en) * 2008-06-02 2009-12-03 Asml Netherlands Bv Substrate table, lithographic apparatus and device manufacturing method.
EP2131242A1 (en) 2008-06-02 2009-12-09 ASML Netherlands B.V. Substrate table, lithographic apparatus and device manufacturing method
NL2002964A1 (en) * 2008-06-16 2009-12-17 Asml Netherlands Bv Lithographic Apparatus, a Metrology Apparatus and a Method of Using the Apparatus.
EP2136250A1 (en) 2008-06-18 2009-12-23 ASML Netherlands B.V. Lithographic apparatus and method
NL2002983A1 (en) * 2008-06-26 2009-12-29 Asml Netherlands Bv A lithographic apparatus and a method of operating the lithographic apparatus.
JP4922359B2 (en) * 2008-07-25 2012-04-25 エーエスエムエル ネザーランズ ビー.ブイ. Fluid handling structure, a lithographic apparatus and device manufacturing method
NL2003226A (en) 2008-08-19 2010-03-09 Asml Netherlands Bv Lithographic apparatus, drying device, metrology apparatus and device manufacturing method.
NL2003341A (en) * 2008-08-22 2010-03-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
SG159467A1 (en) 2008-09-02 2010-03-30 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
TWI457714B (en) * 2008-09-17 2014-10-21 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus
NL2003392A (en) 2008-09-17 2010-03-18 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
US8384875B2 (en) 2008-09-29 2013-02-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
NL2003362A (en) * 2008-10-16 2010-04-19 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2003421A (en) * 2008-10-21 2010-04-22 Asml Netherlands Bv Lithographic apparatus and a method of removing contamination.
US8634055B2 (en) * 2008-10-22 2014-01-21 Nikon Corporation Apparatus and method to control vacuum at porous material using multiple porous materials
US8477284B2 (en) * 2008-10-22 2013-07-02 Nikon Corporation Apparatus and method to control vacuum at porous material using multiple porous materials
NL2003333A (en) * 2008-10-23 2010-04-26 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
NL2003575A (en) 2008-10-29 2010-05-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2003638A (en) * 2008-12-03 2010-06-07 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2003758A (en) * 2008-12-04 2010-06-07 Asml Netherlands Bv A member with a cleaning surface and a method of removing contamination.
TWI438577B (en) 2008-12-08 2014-05-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2196857A3 (en) 2008-12-09 2010-07-21 ASML Netherlands BV Lithographic apparatus and device manufacturing method
JP5001343B2 (en) * 2008-12-11 2012-08-15 エーエスエムエル ネザーランズ ビー.ブイ. Method of reducing the fluid extraction system, an immersion lithographic apparatus, and the pressure fluctuation of the immersion liquid used in the immersion lithographic apparatus
EP2199858A1 (en) * 2008-12-18 2010-06-23 ASML Netherlands BV Lithographic apparatus and method of irradiating at least two target portions
NL2003820A (en) * 2008-12-22 2010-06-23 Asml Netherlands Bv Fluid handling structure, table, lithographic apparatus, immersion lithographic apparatus, and device manufacturing methods.
US8896806B2 (en) 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
NL2004162A (en) * 2009-02-17 2010-08-18 Asml Netherlands Bv A fluid supply system, a lithographic apparatus, a method of varying fluid flow rate and a device manufacturing method.
EP2221669A3 (en) 2009-02-19 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method
NL2004102A (en) * 2009-02-25 2010-08-26 Asml Holding Nv A fluid handling device, an immersion lithographic apparatus and a device manufacturing method.
NL2004305A (en) * 2009-03-13 2010-09-14 Asml Netherlands Bv Substrate table, immersion lithographic apparatus and device manufacturing method.
NL2004362A (en) * 2009-04-10 2010-10-12 Asml Netherlands Bv A fluid handling device, an immersion lithographic apparatus and a device manufacturing method.
JP2010251745A (en) * 2009-04-10 2010-11-04 Asml Netherlands Bv Immersion lithography device and device manufacturing method
NL2004363A (en) * 2009-04-22 2010-10-26 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
WO2010125813A1 (en) * 2009-04-30 2010-11-04 株式会社ニコン Exposure method, method for manufacturing device, and method for measuring superposition error
NL2004497A (en) 2009-05-01 2010-11-02 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
NL2004523A (en) * 2009-05-08 2010-11-09 Asml Netherlands Bv Immersion lithographic apparatus and device manufacturing method.
NL2004547A (en) * 2009-05-14 2010-11-18 Asml Netherlands Bv An immersion lithographic apparatus and a device manufacturing method.
NL2004540A (en) * 2009-05-14 2010-11-18 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
EP2256553B1 (en) * 2009-05-26 2016-05-25 ASML Netherlands B.V. Fluid handling structure and lithographic apparatus
JP5016705B2 (en) 2009-06-09 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. Fluid handling structure
EP2264529A3 (en) 2009-06-16 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a method of manufacturing a device using a lithographic apparatus
NL2004716A (en) * 2009-06-17 2010-12-20 Asml Netherlands Bv Lithographic method and arrangement.
EP2264528A1 (en) 2009-06-19 2010-12-22 ASML Netherlands B.V. Sensor and lithographic apparatus
NL2004907A (en) 2009-06-19 2010-12-20 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2004808A (en) * 2009-06-30 2011-01-12 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
NL2004807A (en) * 2009-06-30 2011-01-04 Asml Netherlands Bv Substrate table for a lithographic apparatus, litographic apparatus, method of using a substrate table and device manufacturing method.
NL2004820A (en) * 2009-06-30 2011-01-04 Asml Netherlands Bv Lithographic apparatus and a method of measuring flow rate in a two phase flow.
NL2004980A (en) * 2009-07-13 2011-01-17 Asml Netherlands Bv Heat transfers assembly, lithographic apparatus and manufacturing method.
NL2005009A (en) * 2009-07-27 2011-01-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
TWI514087B (en) 2009-08-07 2015-12-21 尼康股份有限公司
KR101494493B1 (en) * 2009-08-07 2015-02-17 가부시키가이샤 니콘 Moving body apparatus, exposure apparatus, exposure method, and device manufacturing method
JP5507392B2 (en) 2009-09-11 2014-05-28 エーエスエムエル ネザーランズ ビー.ブイ. Shutter member, a lithographic apparatus and device manufacturing method
NL2005120A (en) * 2009-09-21 2011-03-22 Asml Netherlands Bv Lithographic apparatus, coverplate and device manufacturing method.
NL2005126A (en) * 2009-09-21 2011-03-22 Asml Netherlands Bv Lithographic apparatus, coverplate and device manufacturing method.
NL2005089A (en) * 2009-09-23 2011-03-28 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
NL2005207A (en) * 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
NL2005208A (en) * 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
NL2005167A (en) * 2009-10-02 2011-04-05 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
NL2005478A (en) * 2009-11-17 2011-05-18 Asml Netherlands Bv Lithographic apparatus, removable member and device manufacturing method.
NL2005479A (en) * 2009-11-17 2011-05-18 Asml Netherlands Bv Lithographic apparatus, removable member and device manufacturing method.
NL2005610A (en) 2009-12-02 2011-06-06 Asml Netherlands Bv Lithographic apparatus and surface cleaning method.
NL2005528A (en) * 2009-12-02 2011-06-07 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL2005657A (en) * 2009-12-03 2011-06-06 Asml Netherlands Bv A lithographic apparatus and a method of forming a lyophobic coating on a surface.
US20110134400A1 (en) * 2009-12-04 2011-06-09 Nikon Corporation Exposure apparatus, liquid immersion member, and device manufacturing method
NL2005655A (en) 2009-12-09 2011-06-14 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
NL2005666A (en) * 2009-12-18 2011-06-21 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
NL2005717A (en) * 2009-12-18 2011-06-21 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
NL2005874A (en) 2010-01-22 2011-07-25 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
NL2005951A (en) * 2010-02-02 2011-08-03 Asml Netherlands Bv Lithographic apparatus and a device manufacturing method.
NL2006054A (en) 2010-02-09 2011-08-10 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
NL2005974A (en) 2010-02-12 2011-08-15 Asml Netherlands Bv Lithographic apparatus and a device manufacturing method.
US8841065B2 (en) 2010-02-12 2014-09-23 Nikon Corporation Manufacturing method of exposure apparatus and device manufacturing method
NL2006127A (en) 2010-02-17 2011-08-18 Asml Netherlands Bv A substrate table, a lithographic apparatus and a method for manufacturing a device using a lithographic apparatus.
NL2006076A (en) 2010-03-04 2011-09-06 Asml Netherlands Bv A lithographic apparatus and a method of manufacturing a device using a lithographic apparatus.
JP5981855B2 (en) * 2010-03-05 2016-08-31 テラダイオード, インコーポレーテッド Wavelength beam combining systems and methods
JP2011192991A (en) 2010-03-12 2011-09-29 Asml Netherlands Bv Lithographic apparatus and method
NL2006203A (en) * 2010-03-16 2011-09-19 Asml Netherlands Bv Cover for a substrate table, substrate table for a lithographic apparatus, lithographic apparatus, and device manufacturing method.
NL2006244A (en) * 2010-03-16 2011-09-19 Asml Netherlands Bv Lithographic apparatus, cover for use in a lithographic apparatus and method for designing a cover for use in a lithographic apparatus.
NL2006243A (en) * 2010-03-19 2011-09-20 Asml Netherlands Bv A lithographic apparatus, an illumination system, a projection system and a method of manufacturing a device using a lithographic apparatus.
NL2006389A (en) 2010-04-15 2011-10-18 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and a device manufacturing method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
NL2006272A (en) 2010-05-04 2011-11-07 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2006615A (en) 2010-05-11 2011-11-14 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
JP5313293B2 (en) 2010-05-19 2013-10-09 エーエスエムエル ネザーランズ ビー.ブイ. The fluid handling structure and a device manufacturing method for a lithographic apparatus, use in a lithographic apparatus
NL2006648A (en) 2010-06-01 2011-12-06 Asml Netherlands Bv A fluid supply system, a lithographic apparatus, a method of varying fluid flow rate and a device manufacturing method.
JP2012004465A (en) 2010-06-19 2012-01-05 Nikon Corp Illumination optical system, exposure equipment, and device manufacturing method
NL2006818A (en) 2010-07-02 2012-01-03 Asml Netherlands Bv A method of adjusting speed and/or routing of a table movement plan and a lithographic apparatus.
NL2006913A (en) 2010-07-16 2012-01-17 Asml Netherlands Bv Lithographic apparatus and method.
EP2423749B1 (en) 2010-08-24 2013-09-11 ASML Netherlands BV A lithographic apparatus and device manufacturing method
NL2007453A (en) 2010-10-18 2012-04-19 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2007477A (en) 2010-10-22 2012-04-24 Asml Netherlands Bv Method of optimizing a lithographic process, device manufacturing method, lithographic apparatus, computer program product and simulation apparatus.
NL2007633A (en) 2010-11-22 2012-05-23 Asml Netherlands Bv A positioning system, a lithographic apparatus and a method for positional control.
TWI542952B (en) 2010-12-02 2016-07-21 Asml Holding Nv Patterning device support
NL2007768A (en) 2010-12-14 2012-06-18 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
NL2007818A (en) 2010-12-20 2012-06-21 Asml Netherlands Bv Method of updating calibration data and a device manufacturing method.
NL2007802A (en) 2010-12-21 2012-06-25 Asml Netherlands Bv A substrate table, a lithographic apparatus and a device manufacturing method.
NL2007498A (en) 2010-12-23 2012-06-27 Asml Netherlands Bv Lithographic apparatus and method of modifying a beam of radiation within a lithographic apparatus.
EP2490073B1 (en) 2011-02-18 2015-09-23 ASML Netherlands BV Substrate holder, lithographic apparatus, and method of manufacturing a substrate holder
NL2008183A (en) 2011-02-25 2012-08-28 Asml Netherlands Bv A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method.
NL2008199A (en) 2011-02-28 2012-08-29 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2008285A (en) 2011-03-11 2012-09-12 Asml Netherlands Bv Method of controlling a lithographic apparatus, device manufacturing method, lithographic apparatus, computer program product and method of improving a mathematical model of a lithographic process.
NL2008335A (en) 2011-04-07 2012-10-09 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and method of correcting a mask.
NL2008630A (en) 2011-04-27 2012-10-30 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
NL2008701A (en) 2011-05-31 2012-12-03 Asml Netherlands Bv Method of optimizing a die size, method of designing a pattern device manufacturing method, and computer program product.
NL2008751A (en) 2011-06-06 2012-12-10 Asml Netherlands Bv Temperature sensing probe, burl plate, lithographic apparatus and method.
TWI519816B (en) 2011-06-13 2016-02-01 尼康股份有限公司 Illumination optical system, exposure apparatus, and device manufacturing method
NL2008833A (en) 2011-06-21 2012-12-28 Asml Netherlands Bv Lithographic apparatus, method of deforming a substrate table and device manufacturing method.
NL2008980A (en) * 2011-07-11 2013-01-14 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2008979A (en) * 2011-07-11 2013-01-14 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
JP5232901B2 (en) * 2011-07-22 2013-07-10 株式会社ニコン Exposure apparatus and device manufacturing method
NL2009139A (en) 2011-08-05 2013-02-06 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
JP5778093B2 (en) 2011-08-10 2015-09-16 エーエスエムエル ネザーランズ ビー.ブイ. Substrate table assembly, an immersion lithographic apparatus and a device manufacturing method
NL2009189A (en) 2011-08-17 2013-02-19 Asml Netherlands Bv Support table for a lithographic apparatus, lithographic apparatus and device manufacturing method.
SG188036A1 (en) 2011-08-18 2013-03-28 Asml Netherlands Bv Lithographic apparatus, support table for a lithographic apparatus and device manufacturing method
US8937707B2 (en) 2011-08-23 2015-01-20 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and method of calibrating a displacement measuring system
NL2009272A (en) 2011-08-31 2013-03-04 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2009271A (en) 2011-09-15 2013-03-18 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2009487A (en) 2011-10-14 2013-04-16 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
NL2009472A (en) 2011-10-24 2013-04-25 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
NL2009692A (en) 2011-12-07 2013-06-10 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
NL2009899A (en) 2011-12-20 2013-06-24 Asml Netherlands Bv A pump system, a carbon dioxide supply system, an extraction system, a lithographic apparatus and a device manufacturing method.
NL2009858A (en) 2011-12-27 2013-07-01 Asml Netherlands Bv Substrate holder, lithographic apparatus, and device manufacturing method.
US8945407B2 (en) * 2011-12-27 2015-02-03 Intermolecular, Inc. Touchless site isolation using gas bearing
US9507274B2 (en) 2012-02-03 2016-11-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
WO2013156236A1 (en) 2012-04-19 2013-10-24 Asml Netherlands B.V. Substrate holder, lithographic apparatus, and device manufacturing method
CN104350426A (en) 2012-04-27 2015-02-11 Asml荷兰有限公司 Lithography equipment
CN107300835B (en) 2012-05-17 2019-02-15 Asml荷兰有限公司 Conditioning unit, lithographic equipment and device making method
KR101689226B1 (en) 2012-05-22 2016-12-23 에이에스엠엘 네델란즈 비.브이. Sensor, a method of producing a lithographic apparatus and a device
KR101671787B1 (en) 2012-05-29 2016-11-02 에이에스엠엘 네델란즈 비.브이. The support device, method of manufacturing a lithographic apparatus and a device
US9785055B2 (en) 2012-05-29 2017-10-10 Asml Netherlands B.V. Object holder and lithographic apparatus
WO2013186136A2 (en) 2012-06-11 2013-12-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN104471485B (en) 2012-07-18 2016-11-02 Asml荷兰有限公司 Magnetic means and the lithographic apparatus
NL2011261A (en) 2012-08-20 2014-02-24 Asml Netherlands Bv Method of preparing a pattern, method of forming a mask set, device manufacturing method and computer program.
JP6429017B2 (en) 2012-11-30 2018-11-28 株式会社ニコン Loading method, the transport system and exposure apparatus, and device manufacturing method
US9377697B2 (en) 2012-12-20 2016-06-28 Asml Netherlands B.V. Lithographic apparatus and table for use in such an apparatus
US9017934B2 (en) 2013-03-08 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist defect reduction system and method
US9502231B2 (en) 2013-03-12 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist layer and method
US9245751B2 (en) 2013-03-12 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-reflective layer and method
US9110376B2 (en) 2013-03-12 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9256128B2 (en) 2013-03-12 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing semiconductor device
US9543147B2 (en) 2013-03-12 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of manufacture
US9175173B2 (en) 2013-03-12 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Unlocking layer and method
US9354521B2 (en) 2013-03-12 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US8932799B2 (en) 2013-03-12 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9117881B2 (en) 2013-03-15 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive line system and process
NL2010527A (en) 2013-03-27 2014-09-30 Asml Netherlands Bv Object holder, lithographic apparatus, device manufacturing method, and method of manufacturing an object holder.
US9341945B2 (en) 2013-08-22 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of formation and use
WO2015028202A1 (en) 2013-08-30 2015-03-05 Asml Netherlands B.V. Immersion lithographic apparatus
EP3049869B1 (en) 2013-09-27 2017-11-08 ASML Netherlands B.V. Support table for a lithographic apparatus, lithographic apparatus and device manufacturing method
CN105830208A (en) 2013-10-30 2016-08-03 株式会社尼康 Substrate-holding apparatus, exposure apparatus, and device manufacturing method
US10036953B2 (en) 2013-11-08 2018-07-31 Taiwan Semiconductor Manufacturing Company Photoresist system and method
US10095113B2 (en) 2013-12-06 2018-10-09 Taiwan Semiconductor Manufacturing Company Photoresist and method
US9761449B2 (en) 2013-12-30 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Gap filling materials and methods
EP3096346A4 (en) 2014-01-16 2017-09-27 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
NL2013835A (en) 2014-01-20 2015-07-21 Asml Netherlands Bv Substrate holder, support table for a lithographic apparatus, lithographic apparatus and device manufacturing method.
US9599896B2 (en) 2014-03-14 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
JP6317825B2 (en) 2014-04-30 2018-04-25 エーエスエムエル ネザーランズ ビー.ブイ. Support table for a lithographic apparatus, a lithographic apparatus and device manufacturing method
US9581908B2 (en) 2014-05-16 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method
EP3155481A1 (en) 2014-06-10 2017-04-19 ASML Netherlands B.V. Lithographic apparatus and method of manufacturing a lithographic apparatus
US10095129B2 (en) 2014-07-04 2018-10-09 Asml Netherlands B.V. Lithographic apparatus and a method of manufacturing a device using a lithographic apparatus
EP3172623A1 (en) 2014-07-24 2017-05-31 ASML Netherlands B.V. Fluid handling structure, immersion lithographic apparatus, and device manufacturing method
JP6467506B2 (en) 2014-07-25 2019-02-13 エーエスエムエル ネザーランズ ビー.ブイ. Immersion lithographic apparatus and a device manufacturing method
JP6420895B2 (en) 2014-08-06 2018-11-07 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and the object positioning system
JP6384252B2 (en) * 2014-10-07 2018-09-05 株式会社ニコン Pattern exposure apparatus
KR20170075760A (en) 2014-10-23 2017-07-03 에이에스엠엘 네델란즈 비.브이. Support table for a lithographic apparatus, method of loading a substrate, lithographic apparatus and device manufacturing method
US10151988B2 (en) 2014-10-28 2018-12-11 Asml Netherlands B.V. Component for a lithography tool, a lithography apparatus, an inspection tool and a method of manufacturing a device
CN105739245B (en) * 2014-12-12 2018-12-14 上海微电子装备(集团)股份有限公司 Immersing an immersion lithography machine means anti-collision device and method
JP2017538159A (en) 2014-12-19 2017-12-21 エーエスエムエル ネザーランズ ビー.ブイ. Fluid handling structure, a lithographic apparatus and device manufacturing method
JP6384372B2 (en) * 2015-03-20 2018-09-05 株式会社ニコン Wet-processing apparatus
WO2016173779A1 (en) 2015-04-29 2016-11-03 Asml Netherlands B.V. Support apparatus, lithographic apparatus and device manufacturing method
KR20180008756A (en) 2015-06-11 2018-01-24 에이에스엠엘 네델란즈 비.브이. Method of loading the lithographic apparatus and the substrate
US20180231897A1 (en) 2015-06-23 2018-08-16 Asml Netherlands B.V. Support apparatus, lithographic apparatus and device manufacturing method
CN107850854A (en) 2015-07-16 2018-03-27 Asml荷兰有限公司 Inspection substrate and inspection method
NL2017128A (en) 2015-07-16 2017-01-23 Asml Netherlands Bv A lithographic apparatus, a projection system, a last lens element, a liquid control member and a device manufacturing method
WO2017036830A1 (en) 2015-08-31 2017-03-09 Asml Netherlands B.V. A gas leak detector and a method of detecting a leak of gas
WO2017054987A1 (en) 2015-10-01 2017-04-06 Asml Netherlands B.V. A lithography apparatus, and a method of manufacturing a device
NL2017699A (en) 2015-12-08 2017-06-14 Asml Netherlands Bv A Substrate Table, A Lithographic Apparatus And A Method Of Operating A Lithographic Apparatus
WO2017121547A1 (en) 2016-01-13 2017-07-20 Asml Netherlands B.V. Fluid handling structure and lithographic apparatus
NL2018653A (en) 2016-05-12 2017-11-15 Asml Netherlands Bv Extraction body for lithographic apparatus
WO2018007119A1 (en) 2016-07-04 2018-01-11 Asml Netherlands B.V. An inspection substrate and an inspection method
WO2018007118A1 (en) 2016-07-07 2018-01-11 Asml Netherlands B.V. An inspection substrate and an inspection method
NL2019453A (en) 2016-09-12 2018-03-15 Asml Netherlands Bv Fluid handling structure for lithographic apparatus
NL2019464A (en) 2016-09-20 2018-03-27 Asml Netherlands Bv A lithography apparatus and a method of manufacturing a device
NL2019572A (en) 2016-10-20 2018-04-24 Asml Netherlands Bv A pressure control valve, a fluid handling structure for lithographic apparatus and a lithographic apparatus
WO2018077517A1 (en) 2016-10-28 2018-05-03 Asml Netherlands B.V. A measurement substrate, a measurement method and a measurement system
WO2018108380A1 (en) 2016-12-14 2018-06-21 Asml Netherlands B.V. Lithography apparatus and device manufacturing method
NL2019979A (en) 2016-12-22 2018-06-28 Asml Netherlands Bv An Object in a Lithographic Apparatus
WO2018137816A1 (en) 2017-01-26 2018-08-02 Asml Netherlands B.V. A lithography apparatus and a method of manufacturing a device
WO2018166738A1 (en) 2017-03-15 2018-09-20 Asml Netherlands B.V. A sensor mark and a method of manufacturing a sensor mark
WO2018192710A1 (en) 2017-04-20 2018-10-25 Asml Netherlands B.V. Method of performance testing a fluid handling structure
WO2018202361A1 (en) 2017-05-05 2018-11-08 Asml Netherlands B.V. Method to predict yield of a device manufacturing process
NL2020866A (en) 2017-06-06 2018-12-11 Asml Netherlands Bv Method of unloading an object from a support table
WO2018233947A1 (en) 2017-06-20 2018-12-27 Asml Netherlands B.V. Determining edge roughness parameters
EP3432071A1 (en) 2017-07-17 2019-01-23 ASML Netherlands B.V. Information determining apparatus and method
WO2019015899A1 (en) 2017-07-17 2019-01-24 Asml Netherlands B.V. Information determining apparatus and method
WO2019020484A1 (en) 2017-07-25 2019-01-31 Asml Netherlands B.V. Method for parameter determination and apparatus thereof
EP3444675A1 (en) 2017-08-14 2019-02-20 ASML Netherlands B.V. Optical detector
EP3447581A1 (en) 2017-08-23 2019-02-27 ASML Netherlands B.V. A clear-out tool, a lithographic apparatus and a device manufacturing method
WO2019042809A1 (en) 2017-09-01 2019-03-07 Asml Netherlands B.V. Optical systems, metrology apparatus and associated methods
WO2019048145A1 (en) 2017-09-11 2019-03-14 Asml Netherlands B.V. Metrology in lithographic processes
EP3457211A1 (en) 2017-09-13 2019-03-20 ASML Netherlands B.V. A method of aligning a pair of complementary diffraction patterns and associated metrology method and apparatus
EP3462239A1 (en) 2017-09-27 2019-04-03 ASML Netherlands B.V. Metrology in lithographic processes
EP3385792A3 (en) 2018-04-26 2018-12-26 ASML Netherlands B.V. Stage apparatus for use in a lithographic apparatus

Family Cites Families (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221563C (en)
DE206607C (en)
DE224448C (en)
DE242880C (en)
GB1242527A (en) 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
US4280054A (en) 1979-04-30 1981-07-21 Varian Associates, Inc. X-Y Work table
DE2963537D1 (en) 1979-07-27 1982-10-07 Tabarelli Werner W Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
FR2474708B1 (en) 1980-01-24 1987-02-20 Dme Process for photomicrolithography has high resolution traits
JPS6346973B2 (en) 1980-09-19 1988-09-20 Hitachi Ltd
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4390273A (en) 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS6349893B2 (en) * 1981-03-18 1988-10-06 Hitachi Ltd
JPS58202448A (en) 1982-05-21 1983-11-25 Hitachi Ltd Exposing device
DD206607A1 (en) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech A method and device for eliminating interference effects
JPS5919912A (en) * 1982-07-26 1984-02-01 Hitachi Ltd Immersion distance holding device
US4441808A (en) * 1982-11-15 1984-04-10 Tre Semiconductor Equipment Corp. Focusing device for photo-exposure system
DD242880A1 (en) 1983-01-31 1987-02-11 Kuch Karl Heinz Means for photolithographic strukturuebertragung
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersion objective for stepwise projection imaging of a mask pattern
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Means for photolithographic strukturuebertragung
JPS6265326A (en) 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPS62121417A (en) 1985-11-22 1987-06-02 Hitachi Ltd Liquid-immersion objective lens device
JPS62150828A (en) 1985-12-25 1987-07-04 Mitsubishi Electric Corp Wafer drying apparatus
US4980896A (en) 1986-04-15 1990-12-25 Hampshire Instruments, Inc. X-ray lithography system
JPS6349893A (en) 1986-08-19 1988-03-02 Matsushita Electric Ind Co Ltd Bar code reader
JPS63157419A (en) 1986-12-22 1988-06-30 Toshiba Corp Fine pattern transfer apparatus
US4801352A (en) 1986-12-30 1989-01-31 Image Micro Systems, Inc. Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
US4778995A (en) 1987-05-12 1988-10-18 Eastman Kodak Company Stimulable phosphor imaging apparatus
US5040020A (en) 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
JPH0228312A (en) * 1988-07-18 1990-01-30 Nikon Corp Aligner
US5103102A (en) 1989-02-24 1992-04-07 Micrion Corporation Localized vacuum apparatus and method
GB8911336D0 (en) 1989-05-17 1989-07-05 Heinz Co H J Removing surface liquid from articles
JPH03209479A (en) 1989-09-06 1991-09-12 Sanee Giken Kk Exposure method
US5121256A (en) 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305915A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH04305917A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH0562877A (en) 1991-09-02 1993-03-12 Yasuko Shinohara Optical system for lsi manufacturing contraction projection aligner by light
JP3218478B2 (en) 1992-09-04 2001-10-15 株式会社ニコン Projection exposure apparatus and method
JPH06124873A (en) 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion-type projection exposure apparatus
JP2520833B2 (en) * 1992-12-21 1996-07-31 東京エレクトロン株式会社 Immersion of the liquid processing apparatus
JP3212199B2 (en) * 1993-10-04 2001-09-25 三菱電機株式会社 Plate-type cathode-ray tube
JPH07220990A (en) 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
US5517344A (en) * 1994-05-20 1996-05-14 Prime View Hk Limited System for protection of drive circuits formed on a substrate of a liquid crystal display
JP3116297B2 (en) 1994-08-03 2000-12-11 東京エレクトロン株式会社 Processing methods and apparatus
JPH08136475A (en) 1994-11-14 1996-05-31 Kawasaki Steel Corp Surface observing apparatus for plate-like material
JP3387075B2 (en) 1994-12-12 2003-03-17 株式会社ニコン Scanning exposure method, an exposure apparatus, and a scanning exposure apparatus
JPH08171054A (en) * 1994-12-16 1996-07-02 Nikon Corp Reflection refraction optical system
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
JP3747958B2 (en) 1995-04-07 2006-02-22 株式会社ニコン Catadioptric
JPH08316125A (en) 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
JPH08316124A (en) 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US5883704A (en) 1995-08-07 1999-03-16 Nikon Corporation Projection exposure apparatus wherein focusing of the apparatus is changed by controlling the temperature of a lens element of the projection optical system
US5795390A (en) 1995-08-24 1998-08-18 Camelot Systems, Inc. Liquid dispensing system with multiple cartridges
JPH103039A (en) 1996-06-14 1998-01-06 Nikon Corp Reflective/refractive optical system
JPH1020195A (en) * 1996-06-28 1998-01-23 Nikon Corp Cata-dioptric system
US6104687A (en) 1996-08-26 2000-08-15 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3612920B2 (en) 1997-02-14 2005-01-26 ソニー株式会社 Master fabrication exposure apparatus of an optical recording medium
JPH10255319A (en) 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JP3747566B2 (en) 1997-04-23 2006-02-22 株式会社ニコン The liquid immersion type exposure apparatus
JP3817836B2 (en) 1997-06-10 2006-09-06 株式会社ニコン An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof
US5900354A (en) 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH1133506A (en) 1997-07-24 1999-02-09 Furontetsuku:Kk Fluid treatment device and cleaning treatment system
US6103636A (en) 1997-08-20 2000-08-15 Micron Technology, Inc. Method and apparatus for selective removal of material from wafer alignment marks
JP3495891B2 (en) 1997-10-22 2004-02-09 株式会社湯山製作所 Drug division packaging device
JPH11176727A (en) 1997-12-11 1999-07-02 Nikon Corp Projection aligner
WO1999031717A1 (en) 1997-12-12 1999-06-24 Nikon Corporation Projection exposure method and projection aligner
US6126169A (en) 1998-01-23 2000-10-03 Nikon Corporation Air bearing operable in a vacuum region
JPH11239758A (en) 1998-02-26 1999-09-07 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
AU2747999A (en) * 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US5997963A (en) * 1998-05-05 1999-12-07 Ultratech Stepper, Inc. Microchamber
JP2000058436A (en) 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2000076707A (en) * 1998-08-31 2000-03-14 Sony Corp Master disk recording device for manufacture of optical recording medium
US6333775B1 (en) 1999-01-13 2001-12-25 Euv Llc Extreme-UV lithography vacuum chamber zone seal
TW552480B (en) * 1999-04-19 2003-09-11 Asml Netherlands Bv Moveable support in a vacuum chamber and its application in lithographic projection apparatus
TWI242111B (en) 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
JP4504479B2 (en) 1999-09-21 2010-07-14 オリンパス株式会社 Microscope for immersion objective lens
JP2001118773A (en) 1999-10-18 2001-04-27 Nikon Corp Stage device and exposure system
WO2001048800A1 (en) 1999-12-24 2001-07-05 Ebara Corporation Semiconductor wafer processing apparatus and processing method
US7187503B2 (en) * 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
KR100965330B1 (en) 2003-12-15 2010-06-22 칼 짜이스 에스엠티 아게 Objective as a microlithography projection objective with at least one liquid lens
EP1697798A2 (en) 2003-12-15 2006-09-06 Carl Zeiss SMT AG Projection objective having a high aperture and a planar end surface
JP2001272604A (en) 2000-03-27 2001-10-05 Olympus Optical Co Ltd Immersion objective lens and optical device using the same
DE60130754T2 (en) 2000-05-03 2008-01-24 Asml Holding, N.V. Apparatus for generating a purged optical path in a projection photolithography system and a corresponding method
JP2001358056A (en) 2000-06-15 2001-12-26 Canon Inc Exposure apparatus
DE60140780D1 (en) 2000-06-27 2010-01-28 Imec Method and apparatus for cleaning and drying a substrate
US7234477B2 (en) 2000-06-30 2007-06-26 Lam Research Corporation Method and apparatus for drying semiconductor wafer surfaces using a plurality of inlets and outlets held in close proximity to the wafer surfaces
US7093375B2 (en) * 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US6488040B1 (en) 2000-06-30 2002-12-03 Lam Research Corporation Capillary proximity heads for single wafer cleaning and drying
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6988326B2 (en) * 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US6954993B1 (en) * 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
JP2002033267A (en) 2000-07-18 2002-01-31 Nikon Corp Method and device for exhausting, and method and device for exposure
TW591653B (en) 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
TW497013B (en) * 2000-09-07 2002-08-01 Asm Lithography Bv Method for calibrating a lithographic projection apparatus and apparatus capable of applying such a method
JP2002170754A (en) 2000-11-30 2002-06-14 Nikon Corp Exposure system, method of detecting optical characteristic, and exposure method
KR100866818B1 (en) 2000-12-11 2008-11-04 가부시키가이샤 니콘 Projection optical system and exposure apparatus comprising the same
EP1231514A1 (en) * 2001-02-13 2002-08-14 Asm Lithography B.V. Measurement of wavefront aberrations in a lithographic projection apparatus
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
JP2002334862A (en) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device and apparatus for cleaning semiconductor substrate used therefor
GB2376873A (en) 2001-05-31 2002-12-31 Ian Robert Fothergill Analysis or disposal of surface adherents
US6600547B2 (en) 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
US6801301B2 (en) * 2001-10-12 2004-10-05 Canon Kabushiki Kaisha Exposure apparatus
WO2003040830A2 (en) 2001-11-07 2003-05-15 Applied Materials, Inc. Optical spot grid array printer
JP4003441B2 (en) 2001-11-08 2007-11-07 セイコーエプソン株式会社 Surface treatment apparatus and a surface treatment method
US6842256B2 (en) 2001-11-15 2005-01-11 Zygo Corporation Compensating for effects of variations in gas refractivity in interferometers
JP2003158173A (en) * 2001-11-20 2003-05-30 Miyazaki Oki Electric Co Ltd Wafer holder
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection objective for immersion lithography
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10211817A1 (en) 2002-03-16 2003-09-25 Schlafhorst & Co W spinning device
JPWO2003085708A1 (en) 2002-04-09 2005-08-18 株式会社ニコン Exposure method and an exposure apparatus, and device manufacturing method
DE10229818A1 (en) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag A method for focus detection and imaging system with a focus detection system
KR20050035890A (en) 2002-08-23 2005-04-19 가부시키가이샤 니콘 Projection optical system and method for photolithography and exposure apparatus and method using same
US6788477B2 (en) 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR100585476B1 (en) * 2002-11-12 2006-06-07 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
DE60335595D1 (en) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographic apparatus with immersion and method for manufacturing a device
US7213963B2 (en) * 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100568101C (en) 2002-11-12 2009-12-09 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
CN101349876B (en) 2002-11-12 2010-12-01 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (en) * 2002-11-18 2004-06-03 Infineon Technologies Ag Optical arrangement used in the production of semiconductor components comprises a lens system arranged behind a mask, and a medium having a specified refractive index lying between the mask and the lens system
SG121829A1 (en) 2002-11-29 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258718A1 (en) 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection objective, in particular for microlithography, and methods for tuning of a projection lens
WO2004053957A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
WO2004053955A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
SG158745A1 (en) 2002-12-10 2010-02-26 Nikon Corp Exposure apparatus and method for producing device
KR101036114B1 (en) 2002-12-10 2011-05-23 가부시키가이샤 니콘 Exposure apparatus, exposure method and method for manufacturing device
AU2003289237A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Exposure apparatus and method for manufacturing device
SG152063A1 (en) 2002-12-10 2009-05-29 Nikon Corp Exposure apparatus and method for producing device
US7242455B2 (en) 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR101085372B1 (en) 2002-12-10 2011-11-21 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
JP4232449B2 (en) 2002-12-10 2009-03-04 株式会社ニコン Exposure method, an exposure apparatus, and device manufacturing method
JP4529433B2 (en) 2002-12-10 2010-08-25 株式会社ニコン Exposure apparatus and an exposure method, a device manufacturing method
US6992750B2 (en) 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
AU2003289007A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Optical device and projection exposure apparatus using such optical device
JP4352874B2 (en) 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
AU2003302831A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag A method for setting a desired optical characteristic of a projection lens and microlithographic projection exposure apparatus
CN100370533C (en) 2002-12-13 2008-02-20 皇家飞利浦电子股份有限公司 Liquid removal in a method and device for irradiating spots on a layer
US7010958B2 (en) * 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
JP4364806B2 (en) 2002-12-19 2009-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for irradiating a spot on the layer
AT365962T (en) 2002-12-19 2007-07-15 Koninkl Philips Electronics Nv Method and device for irradiating a layer by means of a light spot
US6781670B2 (en) 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
US7090964B2 (en) 2003-02-21 2006-08-15 Asml Holding N.V. Lithographic printing with polarized light
US7206059B2 (en) * 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
KR101181688B1 (en) * 2003-03-25 2012-09-19 가부시키가이샤 니콘 Exposure system and device production method
JP4488004B2 (en) * 2003-04-09 2010-06-23 株式会社ニコン Immersion lithography fluid control system
EP3352010A1 (en) 2003-04-10 2018-07-25 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
EP3232271A1 (en) * 2003-04-10 2017-10-18 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
WO2004090633A2 (en) 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
KR20170064003A (en) * 2003-04-10 2017-06-08 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
EP1616220B1 (en) 2003-04-11 2013-05-01 Nikon Corporation Apparatus and method for maintaining immersion fluid under a lithographic projection lens
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid injection and recovery system for immersion lithography
KR101597475B1 (en) 2003-04-11 2016-02-24 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
AT542167T (en) 2003-04-17 2012-02-15 Nikon Corp Lithographic immersion device
JP4146755B2 (en) * 2003-05-09 2008-09-10 松下電器産業株式会社 The pattern forming method
JP4025683B2 (en) * 2003-05-09 2007-12-26 松下電器産業株式会社 The pattern forming method and an exposure apparatus
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2282233A1 (en) 2003-05-13 2011-02-09 ASML Netherlands BV Lithographic apparatus
JP2005277363A (en) 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
TWI474380B (en) 2003-05-23 2015-02-21 尼康股份有限公司
US7274472B2 (en) 2003-05-28 2007-09-25 Timbre Technologies, Inc. Resolution enhanced optical metrology
JP5143331B2 (en) 2003-05-28 2013-02-13 株式会社ニコン Exposure method and an exposure apparatus, and device manufacturing method
DE10324477A1 (en) 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4084710B2 (en) * 2003-06-12 2008-04-30 松下電器産業株式会社 The pattern forming method
JP4054285B2 (en) * 2003-06-12 2008-02-27 松下電器産業株式会社 The pattern forming method
KR101146962B1 (en) * 2003-06-19 2012-05-22 가부시키가이샤 니콘 Exposure device and device producing method
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4084712B2 (en) * 2003-06-23 2008-04-30 松下電器産業株式会社 The pattern forming method
JP4029064B2 (en) * 2003-06-23 2008-01-09 松下電器産業株式会社 The pattern forming method
JP4343597B2 (en) 2003-06-25 2009-10-14 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2005019616A (en) 2003-06-25 2005-01-20 Canon Inc Immersion type exposure apparatus
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3862678B2 (en) * 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
US7236232B2 (en) 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
EP2853943B1 (en) 2003-07-08 2016-11-16 Nikon Corporation Wafer table for immersion lithography
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7061578B2 (en) 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
KR101238114B1 (en) 2003-09-03 2013-02-27 가부시키가이샤 니콘 Apparatus and method for providing fluid for immersion lithography
JP4378136B2 (en) 2003-09-04 2009-12-02 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP3870182B2 (en) 2003-09-09 2007-01-17 キヤノン株式会社 Exposure apparatus and device manufacturing method
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
US7678527B2 (en) * 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
JP2005159322A (en) 2003-10-31 2005-06-16 Nikon Corp Surface plate, stage apparatus, exposure device and exposing method
EP1685446A2 (en) 2003-11-05 2006-08-02 DSM IP Assets B.V. A method and apparatus for producing microchips
US7924397B2 (en) * 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005054953A2 (en) 2003-11-24 2005-06-16 Carl-Zeiss Smt Ag Holding device for an optical element in an objective
US7125652B2 (en) 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
JP2005175016A (en) 2003-12-08 2005-06-30 Canon Inc Substrate holding device, exposure device using the same, and method of manufacturing device
JP2005175034A (en) 2003-12-09 2005-06-30 Canon Inc Aligner
JP5102492B2 (en) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography projection objective lens having a crystal element
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005191393A (en) * 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
JP2005191381A (en) 2003-12-26 2005-07-14 Canon Inc Exposure method and system thereof
US20050147920A1 (en) * 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) * 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
JP4371822B2 (en) * 2004-01-06 2009-11-25 キヤノン株式会社 Exposure apparatus
JP4429023B2 (en) * 2004-01-07 2010-03-10 キヤノン株式会社 Exposure apparatus and device manufacturing method
US20050153424A1 (en) * 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
KR101179350B1 (en) * 2004-01-14 2012-09-11 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective
KR101233879B1 (en) 2004-01-16 2013-02-15 칼 짜이스 에스엠티 게엠베하 Polarization-modulating optical element
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
KR101135232B1 (en) 2004-01-20 2012-04-12 칼 짜이스 에스엠테 게엠베하 Microlithographic projection exposure apparatus
US7026259B2 (en) * 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) * 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
EP1723467A2 (en) 2004-02-03 2006-11-22 Rochester Institute of Technology Method of photolithography using a fluid and a system thereof
JP4018647B2 (en) 2004-02-09 2007-12-05 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1716454A1 (en) 2004-02-09 2006-11-02 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US20070165198A1 (en) 2004-02-13 2007-07-19 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
CN1922528A (en) 2004-02-18 2007-02-28 康宁股份有限公司 Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7027125B2 (en) * 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) * 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
JP4510494B2 (en) 2004-03-29 2010-07-21 キヤノン株式会社 Exposure apparatus
JP2005286068A (en) 2004-03-29 2005-10-13 Canon Inc Exposure device and method therefor
US7057702B2 (en) * 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7532310B2 (en) 2004-10-22 2009-05-12 Asml Netherlands B.V. Apparatus, method for supporting and/or thermally conditioning a substrate, a support table, and a chuck
US7411657B2 (en) * 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1681597B1 (en) 2005-01-14 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4262252B2 (en) 2005-03-02 2009-05-13 キヤノン株式会社 Exposure apparatus
US7411654B2 (en) * 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7760324B2 (en) 2006-03-20 2010-07-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL1036835A1 (en) * 2008-05-08 2009-11-11 Asml Netherlands Bv Lithographic Apparatus and Method.

Also Published As

Publication number Publication date
JP2012064979A (en) 2012-03-29
JP5017403B2 (en) 2012-09-05
JP3977324B2 (en) 2007-09-19
SG135052A1 (en) 2007-09-28
CN100470367C (en) 2009-03-18
US20150362844A1 (en) 2015-12-17
US20040207824A1 (en) 2004-10-21
US20060023189A1 (en) 2006-02-02
US7388648B2 (en) 2008-06-17
TW200426521A (en) 2004-12-01
SG121818A1 (en) 2006-05-26
US20110228241A1 (en) 2011-09-22
US20090002652A1 (en) 2009-01-01
US8208120B2 (en) 2012-06-26
JP2010135857A (en) 2010-06-17
KR20040044119A (en) 2004-05-27
US20130301017A1 (en) 2013-11-14
TWI232357B (en) 2005-05-11
US6952253B2 (en) 2005-10-04
US8797503B2 (en) 2014-08-05
CN1501173A (en) 2004-06-02
JP4567013B2 (en) 2010-10-20
US10222706B2 (en) 2019-03-05
JP5480880B2 (en) 2014-04-23
JP2007142460A (en) 2007-06-07
SG2010050110A (en) 2014-06-27
JP2004289126A (en) 2004-10-14
US7982850B2 (en) 2011-07-19
US9091940B2 (en) 2015-07-28
US20080218726A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
KR100546860B1 (en) Lithographic Apparatus and Device Manufacturing Method
JP5023187B2 (en) Lithographic apparatus
CN100507721C (en) Lithographic apparatus and device manufacturing method
US7295283B2 (en) Lithographic apparatus and device manufacturing method
US9829799B2 (en) Lithographic apparatus and device manufacturing method
CN101655671B (en) Lithographic apparatus and device manufacturing method
US8964164B2 (en) Lithographic apparatus and device manufacturing method
KR101194325B1 (en) Lithographic apparatus and device manufacturing method
JP5623880B2 (en) Lithographic apparatus, device manufacturing method, and burl plate
US8634053B2 (en) Lithographic apparatus and device manufacturing method
US7339650B2 (en) Immersion lithography fluid control system that applies force to confine the immersion liquid
US7868998B2 (en) Lithographic apparatus
US7158211B2 (en) Lithographic apparatus and device manufacturing method
CN102736446B (en) Exposure apparatus and method for producing device
US7081943B2 (en) Lithographic apparatus and device manufacturing method
EP2256553B1 (en) Fluid handling structure and lithographic apparatus
US9429853B2 (en) Lithographic apparatus and device manufacturing method
JP4028860B2 (en) Lithographic projection apparatus
US7352435B2 (en) Lithographic apparatus and device manufacturing method
EP2270599A1 (en) Lithographic apparatus
EP1647866B1 (en) Lithographic apparatus and device manufacturing method
US8810771B2 (en) Lithographic apparatus and device manufacturing method
JP5226637B2 (en) Lithographic apparatus and device manufacturing method
KR101227636B1 (en) Fluid handling structure, lithographic apparatus and device manufacturing method
CN1858655B (en) Lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130521

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140516

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 12