KR100541939B1 - Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same - Google Patents

Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same Download PDF

Info

Publication number
KR100541939B1
KR100541939B1 KR1020030023385A KR20030023385A KR100541939B1 KR 100541939 B1 KR100541939 B1 KR 100541939B1 KR 1020030023385 A KR1020030023385 A KR 1020030023385A KR 20030023385 A KR20030023385 A KR 20030023385A KR 100541939 B1 KR100541939 B1 KR 100541939B1
Authority
KR
South Korea
Prior art keywords
chalcogenide
precursor
thin film
vapor deposition
chemical vapor
Prior art date
Application number
KR1020030023385A
Other languages
Korean (ko)
Other versions
KR20040088938A (en
Inventor
정한철
손창호
최광식
이영철
조중영
심일운
김홍기
Original Assignee
애경화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애경화학 주식회사 filed Critical 애경화학 주식회사
Priority to KR1020030023385A priority Critical patent/KR100541939B1/en
Publication of KR20040088938A publication Critical patent/KR20040088938A/en
Application granted granted Critical
Publication of KR100541939B1 publication Critical patent/KR100541939B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System

Abstract

본 발명은 화학증착법(Chemical Vapor Deposition, 이하 CVD라고 함)으로 칼코겐화물 박막제조시 유용하게 사용할 수 있는 하기 화학식 1로 표시되는 유기금속 화합물인 전구체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 하기 화학식 1의 전구체를 사용하여 저온에서 금속과 칼코겐 원소의 조성이 1:1인 칼코겐화물(chalcogenide) 박막을 제공한다. The present invention relates to a precursor which is an organometallic compound represented by the following formula (1) which can be usefully used in the preparation of a chalcogenide thin film by chemical vapor deposition (hereinafter referred to as CVD), and more particularly, The precursor of Formula 1 is used to provide a chalcogenide thin film having a 1: 1 composition of a metal and a chalcogen element at low temperature.

Figure 112003020233412-pat00001
Figure 112003020233412-pat00001

(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.)

칼코겐화물 * 박막 * 화학증착 * 전구체Chalcogenide * Thin film * Chemical vapor deposition * Precursor

Description

칼코겐화물 박막을 위한 화학증착용 전구체 및 그의 제조방법{Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same}Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same

본 발명은 화학증착법(Chemical Vapor Deposition, 이하 CVD라고 함)으로 칼코겐화물 박막제조시 유용하게 사용할 수 있는 하기 화학식 1로 표시되는 유기금속 화합물인 전구체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 하기 화학식 1의 전구체를 사용하여 저온에서 금속과 칼코겐 원소의 조성이 1:1인 칼코겐화물(chalcogenide) 박막을 제공한다. The present invention relates to a precursor which is an organometallic compound represented by the following formula (1) which can be usefully used in the preparation of a chalcogenide thin film by chemical vapor deposition (hereinafter referred to as CVD), and more particularly, The precursor of Formula 1 is used to provide a chalcogenide thin film having a 1: 1 composition of a metal and a chalcogen element at low temperature.

[화학식 1][Formula 1]

Figure 112003013092811-pat00002
Figure 112003013092811-pat00002

(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립 적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.)

칼코겐화물(chalcogenide)은 주기율표 제 6B족에 속하는 원소 중 황(S), 셀렌늄(Se), 텔루륨(Te)으로 구성된 화합물을 통칭하는 것으로, 대표적으로 황화아연(ZnS), 인듐셀레나이드(InSe, In2Se3), 카드늄텔루라이드(CdTe), CuInSe2(이하 CIS라고 함) 등이 있다. 상기의 칼코겐화물은 광자기메모리소자, n형 또는 p형 반도체, 태양전지 등에 이용되는 핵심소재로서 결함이 적은 양질의 박막을 제조하기 위해 여러 가지 박막공정이 개발중에 있다. Chalcogenide refers to a compound composed of sulfur (S), selenium (Se) and tellurium (Te) among elements belonging to group 6B of the periodic table, and typically zinc sulfide (ZnS) and indium selenide. (InSe, In 2 Se 3 ), cadmium telluride (CdTe), CuInSe 2 (hereinafter referred to as CIS), and the like. The chalcogenide is a core material used for magneto-optical memory devices, n-type or p-type semiconductors, solar cells, and the like, and various thin film processes are being developed to manufacture high quality thin films with few defects.

특히, 1990년대 초반부터 주목을 받고있는 카드늄텔루라이드(CdTe), CIS(CuInSe2)는 그린에너지라 불리는 태양전지의 핵심 소자인 광흡수층에 사용되는 신소재 칼코겐화물로, 상기 카드늄텔루라이드(CdTe), CIS(CuInSe2)를 사용한 태양전지 효율이 15% 이상으로 기존의 무결정실리콘 소재에 비해 월등한 성능을 보여 많은 연구가 진행 중 있으며, 무엇보다 칼코겐화합물의 박막 제조 기술은 태양전지 제작 공정의 핵심기술이 되고 있다. In particular, cadmium telluride (CdTe) and CIS (CuInSe 2 ), which have been attracting attention since the early 1990s, are new material chalcogenides used in the light absorption layer, which is a key element of solar cells, called green energy. ), Solar cell efficiency using CIS (CuInSe 2 ) is more than 15%, showing superior performance compared to conventional amorphous silicon materials, and many researches are underway. Above all, thin film manufacturing technology of chalcogenide It is becoming the core technology of the process.

종래의 칼코겐화물의 박막을 제조함에 있어서는 칼코겐 원소의 특성상 다른 원소들과 달리 고온에서 증기화할 수 있기 때문에 고온에서 증발시키는 증발법(Evaporation)을 이용하여 박막화 할 수 있었다. 그러나, 상기의 증발법은 손쉽게 박막을 제조 할 수 있지만, 금속과 칼코겐 원소의 증기압이 다르고 칼코겐 원소의 휘발온도(황(S)=444.67℃, 셀렌늄(Se)=684.9℃, 텔루륨(Te)=989.9℃) 또한 너무 높아 일정 조성을 갖는 양질의 박막을 얻기란 거의 불가능하다고 할 수 있다. In manufacturing a conventional thin film of chalcogenide can be vaporized at a high temperature unlike other elements due to the characteristics of the chalcogenide it could be thinned using an evaporation method (evaporation) at a high temperature. However, the above evaporation method can easily produce a thin film, but the vapor pressure of the metal and chalcogen element is different, the volatilization temperature of the chalcogen element (sulfur (S) = 444.67 ℃, selenium (Se) = 684.9 ℃, tellurium) (Te) = 989.9 ° C.) It is also almost impossible to obtain a high quality thin film having a high composition.

따라서, 최근 개선된 박막 제조 방법으로 대한민국특허 공개 제 2002-0059162호에 사용하고 있는 물리증착법(PVD)을 이용하여 (GeaBibSbc)TeX와 같은 다양한 조성의 칼코겐화물의 박막을 제조법을 기재하고 있으며, 그 외에도 전통 화학적인 방법을 이용한 용액성장법(CBD ; Chemical Bath Deposition, 대한민국 특허 제10-0220371호, CdS박막제조) 및 전기화학을 이용한 일종의 도금방법인 전착법(Electrodeposition, 미국특허 제 6,036,822호, 미국특허 제5,772,431호) 등의 방법이 다양한 칼코겐화물의 박막 제조 기술로 보고되어 있다. 그 외에도 칼코겐화물 중에 태양전지 광흡수층으로 사용되는 신소재 CIS(CuInSe2) 박막 제조함에 있어서, 종래의 고온에서의 휘발성을 이용한 증발법을 개선하여 보다 쉬운 공정으로 박막을 제조하는 방법으로 진공하에서 동시에 증발시켜 박막화하는 진공증발증착법(Vacuum Evaporation Deposition)과 같은 많은 연구가 수행되었다(미국특허 제4,523,051호, 미국특허 제5,045,409호). 또한, 최근 들어서는 먼저 합성된 이원화합물을 직접 증발시킴으로써 각각의 조성을 보다 쉽게 조절할 수 있는 이원화물을 이용한 진공증발증착법이 보고되고 있다(대한민국 특허 공개 특2002-0007777호, CuInSe2 박막제조). Therefore, using a physical vapor deposition method (PVD) used in the Republic of Korea Patent Publication No. 2002-0059162 as a recent improved thin film manufacturing method to prepare a thin film of chalcogenide of various compositions such as (Ge a Bi b Sb c ) Te X The manufacturing method is described, and in addition, the solution growth method using a conventional chemical method (CBD; Chemical Bath Deposition, Korean Patent No. 10-0220371, CdS thin film production) and the electrodeposition method, which is a kind of plating method using electrochemistry, U. S. Patent No. 6,036, 822, U. S. Patent No. 5, 772, 431) and the like have been reported as thin film manufacturing techniques of various chalcogenides. In addition, in the preparation of a new material CIS (CuInSe 2 ) thin film used as a solar cell light absorption layer in the chalcogenide, by improving the evaporation method using the volatility at a high temperature in the prior art at the same time under the vacuum method to produce a thin film in an easier process Many studies have been performed, such as Vapor Evaporation Deposition, which evaporates and thins (US Pat. No. 4,523,051, US Pat. No. 5,045,409). In addition, recently, a vacuum evaporation method using a binary material that can be easily controlled by directly evaporating the synthesized binary compound has been reported (Korean Patent Laid-Open Publication No. 2002-0007777, CuInSe 2 thin film production).

상기에서 언급한 바와 같이, 박막제조방법은 크게 2가지로 분류할 수 있으며, 물리증착법(PVD), 진공증발증착법과 같이 상변형을 이용한 물리적인 방법과 용액성장법, 전착법과 같이 화학적 반응이 수반되는 화학적인 방법으로 구분할 수 있 다. 그러나, 상기 두가지 방법 모두 특정한 조성비를 갖는 칼코겐화합물 박막을 제공함에 있어서는 공정중에 다양한 조건 인자가 필요하게 된다. 예를 들면, 증기압을 맞추고, 용액의 농도비를 유지하는 것과 같은 복잡한 인자가 필요하게 된다. 뿐만 아니라 상기 언급한 박막화 방법은 제조비용이 비교적 저렴하고, 제조설비가 간편하다는 장점이 있으나, 칼코겐화물의 특성상 조성을 조절하기가 어려우며, 박막의 두께 및 균일도에 대한 재현성을 보기가 어렵다. 특히, 진공증발법은 대부분의 칼코겐 원소들이 휘발점이 높아 고온, 고압에서 증착해야 하며, 각각의 원소의 휘발점 또한 다르기 때문에 원하는 조성으로 증착하기는 공정의 난이도가 크게 증가한다. 또한, 증착 후 손실원소의 보충과 상 형성을 위해 고온에서 열처리하는 후공정이 필요(미국특허 제6,323,417호)하는 등 많은 단점들이 있다. As mentioned above, the thin film manufacturing method can be classified into two types, and physical methods using phase deformation, such as physical vapor deposition (PVD) and vacuum evaporation, are accompanied by chemical reactions such as solution growth and electrodeposition. It can be distinguished by chemical methods. However, both methods require various condition factors during the process to provide a chalcogenide thin film having a specific composition ratio. For example, complex factors such as matching the vapor pressure and maintaining the concentration ratio of the solution are required. In addition, the above-mentioned thinning method has advantages in that the manufacturing cost is relatively low and the manufacturing equipment is simple, but it is difficult to control the composition due to the characteristics of the chalcogenide, and it is difficult to see the reproducibility of the thickness and uniformity of the thin film. In particular, in the vacuum evaporation method, most chalcogen elements have a high volatilization point and must be deposited at high temperature and high pressure. Since the volatilization points of the respective elements are also different, the difficulty of depositing a desired composition greatly increases. In addition, there are many disadvantages such as the need for a post-process of heat treatment at a high temperature for replenishment of loss elements and phase formation after deposition (US Pat. No. 6,323,417).

따라서, 상기의 문제점을 해결하고자 많은 연구가 수행되었으며, 그 중에 대표적인 방법이 화학증착법(CVD)이다. 화학증착법(CVD)은 제조된 박막이 균일하고 선택적 증착이 가능하며, 일정한 조성을 갖는 전구체를 이용한다면 단일 조성의 박막을 손쉬운 공정을 통해 재현성 있게 제공할 수 있다는 장점으로 금속전극, 금속산화물 등의 반도체 제조 공정에서 널리 이용되고 있다. 상기 화학증착법을 위해서는 금속과 칼코겐 원소가 필요한 특정 조성비를 이루고 있으면서 승화 특성이 있는 전구체가 필요하다. 이러한 연구로는 미국특허 제 5,112,650호에서 TiS2 박막을 제조하였으며, 미국특허 5,837,320에서는 2가 금속(Ca, Sr, Ba, Zn, Cd, Pb, Ga, In, Sb, Bi)에 티오카복실레이트기를 도입하여 황화금속(Metal-S) 박막 제조를 위한 전 구체를 제안하였다. 그러나, 기존의 유기금속 전구체의 경우에는 황화금속의 박막제조에 한정되어 특정한 용도에만 한정되어 있다. Therefore, many studies have been conducted to solve the above problems, and a representative method is chemical vapor deposition (CVD). Chemical vapor deposition (CVD) has the advantage of uniform and selective deposition of the manufactured thin films, and if a precursor having a constant composition is used, a single composition thin film can be provided reproducibly through an easy process. It is widely used in manufacturing processes. The chemical vapor deposition method requires a precursor having sublimation characteristics while achieving a specific composition ratio of a metal and a chalcogen element. In this study, TiS 2 thin films were prepared in US Pat. No. 5,112,650. In the US Pat. Nos. 5,837,320, thiocarboxylate groups were formed on divalent metals (Ca, Sr, Ba, Zn, Cd, Pb, Ga, In, Sb, Bi). Introduced a sphere for the production of metal sulfide (Metal-S) thin film. However, existing organometallic precursors are limited to the manufacture of thin films of metal sulfides and limited to specific applications.

이를 해결하기 위해서 모든 성분이 특정한 조성비로 이루어진 칼코겐화물의 화학증착법용 단일 유기금속 전구체(Single Organometallic Precursor)는 특정 금속과 칼코겐 원소(S, Se, Te)를 일정한 조성비로 하여 화학착물을 형성하고 낮은 온도에서 적절한 휘발 특성을 가져야 하며, 상대적으로 낮은 분해온도가 요구되고 기화과정에서는 비교적 열에 안정하여 분해 후 쉽게 칼코겐화물의 상을 형성할 수 있어야 한다. 최근, 이러한 연구는 갈륨(Ga), 알루미늄(Al), 인듐(In) 금속에 터셔리 부틸기를 이용하여 칼코겐 원소를 도입한 단일 유기금속 전구체(미국특허 제5,300,320호)가 보고되고는 있으나, 다양한 성분 및 조성을 요구하는 칼코겐화물 박막 제조에있어서는 아직도 금속 선택에 많은 제약이 있으며 다중금속으로 이루어진 칼코겐화물에의 제조에 있어서는 여전히 증발증착법과 같이 휘발성이 강한 원소인 S 또는 Se이 부족한 조성을 갖게되는 문제점을 가지고 있는 실정이다.To solve this problem, a single organometallic precursor for chemical vapor deposition of chalcogenides, in which all components have a specific composition ratio, forms a chemical complex using a specific metal and a chalcogen element (S, Se, Te) in a constant composition ratio. It should be able to form a phase of chalcogenide after decomposition because it needs to have proper volatilization at low temperature, relatively low decomposition temperature, and relatively stable to heat during vaporization. Recently, such a study has reported a single organometallic precursor (US Pat. No. 5,300,320) in which a chalcogen element is introduced using a tertiary butyl group in gallium (Ga), aluminum (Al), and indium (In) metal. In the preparation of chalcogenide thin films requiring various components and compositions, there are still many limitations in the selection of metals, and in the preparation of chalcogenides composed of multiple metals, they still have a composition lacking S or Se, which is a highly volatile element such as evaporation. There is a problem that becomes.

이에, 본 발명자들은 상기한 문제점을 해결하기 위해 금속과 칼코겐 원소가 일정한 조성비로 이루어져 있으며 낮은 온도에서 화학 증착이 가능한 다양한 금속 칼코겐화물 전구체 화합물을 연구한 결과, 하기 화학식 1의 구조를 갖는 전구체를 합성하여 ME(M: 금속, E: 칼코겐원소) 구조의 금속과 칼코겐 원소의 조성이 1:1인 칼코겐화물 박막을 제조할 수 있음을 발견하고, 본 발명을 완성하였다. Accordingly, the inventors of the present invention have studied a variety of metal chalcogenide precursor compounds composed of a constant composition ratio of metal and chalcogen elements and capable of chemical vapor deposition at a low temperature in order to solve the above problems, the precursor having the structure of Formula 1 The synthesis was found to be able to prepare a chalcogenide thin film having a composition of a metal of the ME (M: metal, E: chalcogen element) structure and a chalcogen element of 1: 1, thereby completing the present invention.

따라서, 본 발명의 목적은 화학증착법으로 금속과 칼코겐 원소의 조성이 1:1인 칼코겐화물 박막제조시 유용한 하기 화학식 1의 전구체를 제공하는 것이다. Accordingly, an object of the present invention is to provide a precursor of Chemical Formula 1, which is useful for producing a chalcogenide thin film having a composition of 1: 1 of a metal and a chalcogenide by chemical vapor deposition.

또한, 본 발명의 다른 목적은 상기 전구체의 제조방법을 제공하는 것이다.
Another object of the present invention is to provide a method for producing the precursor.

상기한 목적을 달성하기 위하여, 본 발명의 화학증착법에 의한 칼코겐화물 박막제조를 위한 전구체는 하기 화학식 1로 표시되는 유기금속 화합물임을 특징으로 한다. In order to achieve the above object, the precursor for preparing a chalcogenide thin film by the chemical vapor deposition method of the present invention is characterized in that the organometallic compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112003013092811-pat00003
Figure 112003013092811-pat00003

(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.)

이하, 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 상기 화학식 1로 표시되는 전구체는 크게 두 가지 방법으로 합성할 수 있다. The precursor represented by Formula 1 of the present invention can be synthesized largely by two methods.

(1) 알킬화금속과 칼코겐원소의 알콜형태인 칼코겐올(R1-EH, E는 칼코겐 원소, R1은 알킬기)을 출발 물질로하는 합성법 ; 및 (2) 디알킬디칼코겐(R1-E-E-R1, E는 칼코겐 원소, R1은 알킬기)를 출발물질로 하는 합성법으로 나눌 수 있다. (1) a synthesis method using as a starting material a chalcogenol (R 1 -EH, E is a chalcogen element, R 1 is an alkyl group) in the alcohol form of an alkylated metal and a chalcogen element; And (2) a dialkyldicalcogen (R 1 -EER 1, E is a chalcogen element, R 1 is an alkyl group) as a starting method.

이하, 본 발명의 전구체를 합성하는 방법에 대해 단계별로 구체적으로 설명한다. Hereinafter, the method for synthesizing the precursor of the present invention will be described in detail step by step.

먼저, 합성법 1을 설명한다. First, the synthesis method 1 is demonstrated.

[합성법 1]Synthesis Method 1

하기 반응식 1로 표시되는 알킬화금속과 칼코겐원소의 알콜형태인 칼코겐올(R1-EH, E는 칼코겐 원소, R1은 알킬기)을 출발 물질로 하는 상기 화학식 1 화합물의 합성법 (1)은,Synthesis method (1) of the compound of formula (I) using as a starting material a chalcogenol (R 1 -EH, E is a chalcogen element, R 1 is an alkyl group) which is an alcoholic form of an alkylated metal and a chalcogen element represented by the following Scheme 1 ,

먼저, 칼코겐올 1당량을 정제된 용매에 용해시키는 단계; 상기 용액을 슈링크라인을 사용하여 알킬화금속(MR) 1당량에 혼합하는 단계; 상기 혼합 용액을 0℃ 아르곤 분위기에서 3-4시간 교반하며 반응시키는 단계; 및 용매를 제거하고 불용성의 중합물을 분리, 정제하여 상기 화학식 1의 화합물을 제조하는 단계;로 이루어진다. First, dissolving 1 equivalent of chalcogenol in a purified solvent; Mixing the solution with 1 equivalent of an alkylated metal (MR) using a shrink line; Reacting the mixed solution with stirring at 4 ° C. in an argon atmosphere for 3-4 hours; And removing the solvent and separating and purifying the insoluble polymer to prepare the compound of Chemical Formula 1.

Figure 112003013092811-pat00004
Figure 112003013092811-pat00004

(상기 식중, M, E, R, 및 R1은 상기 화학식 1에서 정의한 바와 동일하다.)(Wherein, M, E, R, and R 1 are the same as defined in the formula (1).)

상기 칼코겐올은 티올(thiol) 또는 셀렌놀(selenol)이며, 상기 용매는 구체적으로 테트라하이드라퓨란(THF), 에스터, 펜탄, 또는 메틸렌클로라이드이다. The chalcogenol is thiol or selenol, and the solvent is specifically tetrahydrofuran (THF), ester, pentane, or methylene chloride.

이어, 합성법 2를 설명한다. Next, the synthesis method 2 is demonstrated.

[합성법 2] Synthesis Method 2

하기 반응식 2로 표시되는 디알킬디칼코겐(R1-E-E-R1, E는 칼코겐 원소, R1은 알킬기)를 출발물질로 하는 상기 화학식 1 화합물의 합성법 (2)는,Synthesis method (2) of the compound of Formula 1 as a starting material using a dialkyldichalcogen represented by the following Scheme 2 (R 1 -EER 1, E is a chalcogen element, R 1 is an alkyl group),

먼저, 글로브 박스에서 정량된 알킬화금속(MR)를 플라스크에 넣고 용매인 펜탄을 슈링크라인을 사용하여 0℃를 유지하며 투입한 후, 켄눌라(cannula)를 이용하여 디알킬디설파이드((R1E)2 ; CH3S-SCH3) 또는 디알킬디셀렌나이드((R 1E)2 ; CH3SeSeCH3)를 주입하는 단계; 상기 혼합용액을 상온에서 12시간 교반하며 반응시키는 단계; 및 미반응물과 용매를 분리, 정제하여 상기 화학식 1의 화합물을 제조하는 단계;로 이루어진다. First, the metallized alkylation (MR) quantified in the glove box is placed in a flask and pentane, which is a solvent, is added at a temperature of 0 ° C. using a shrink line, and then dialkyldisulfide ((R 1 ) is used with a cannula. E) injecting 2 ; CH 3 S-SCH 3 ) or dialkyldiselenide ((R 1 E) 2 ; CH 3 SeSeCH 3 ); Reacting the mixed solution while stirring at room temperature for 12 hours; And separating and purifying the unreacted material and the solvent to prepare a compound of Chemical Formula 1.

Figure 112003013092811-pat00005
Figure 112003013092811-pat00005

(상기 식중, M, E, R, 및 R1은 상기 화학식 1에서 정의한 바와 동일하다.)(Wherein, M, E, R, and R 1 are the same as defined in the formula (1).)

상기 반응식 1 또는 반응식 2에 의해 합성된 화합물은 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통해 분석한다. Compounds synthesized by Scheme 1 or 2 are analyzed by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometer.

이하, 실시예를 들어 본 발명을 보다 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다. Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to these examples.

[실시예 1] [Me2In(μ-SC(CH3)3)]2의 합성 Example 1 Synthesis of [Me 2 In (μ-SC (CH 3 ) 3 )] 2

2-메틸-2-프로판티올(6.25m㏖, 0.564g)을 공통용매인 2차 정제된 테트라하이드라퓨란(THF) 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸인듐 (6.25m㏖,1.020g)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 흰색 고체인 [Me2In(μ-SC(CH3)3)]2 화합물을 합성하였다. 상기 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다. 2-methyl-2-propanethiol (6.25 mmol, 0.564 g) was dissolved in 70 ml of secondary purified tetrahydrafuran (THF), a common solvent, and then trimethylindium (6.25 mmol) was used using a Schrinline. , 1.020 g). Next, the mixed solution was reacted under stirring at 0 ° C. in an argon atmosphere for 3 to 4 hours, and then the solvent was removed and the insoluble polymer was separated and purified to obtain a white solid [Me 2 In (μ-SC (CH 3 ) 3 ). ] 2 compound was synthesized. The compound was identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 2] [Me2In(μ-SCH(CH3)CH2CH3)]2 의 합성 Example 2 Synthesis of [Me 2 In (μ-SCH (CH 3 ) CH 2 CH 3 )] 2

부탄 2-티올(6.25m㏖, 0.564g)을 공통용매인 2차 정제된 메틸렌클로라이드 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸인듐(6.25m㏖)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 점성을 갖는 무색액체인 [Me2In(μ-SCH(CH3)CH2CH3)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다.Butane 2-thiol (6.25 mmol, 0.564 g) was dissolved in 70 ml of secondary purified methylene chloride, a common solvent, and then mixed with trimethylindium (6.25 mmol) using a Schhrlein. Next, the mixed solution was reacted under stirring at 0 ° C. in an argon atmosphere for 3-4 hours, and then the solvent was removed and the insoluble polymer was separated and purified to obtain a viscous colorless liquid [Me 2 In (μ-SCH (CH 3). ) CH 2 CH 3 )] 2 compound was synthesized. Synthesized compounds were identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 3] [Me2In(μ-SC(CH3)2CH2CH3)]2 의 합성Example 3 Synthesis of [Me 2 In (μ-SC (CH 3 ) 2 CH 2 CH 3 )] 2

2-메틸부탄 2-티올(6.25m㏖, 0.651g)을 공통용매인 2차 정제된 테트라하이드라퓨란(THF) 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸인듐(6.25m㏖)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 점성을 갖는 무색액체인[Me2In(μ-SC(CH3)2CH2CH3)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다.2-methylbutane 2-thiol (6.25 mmol, 0.651 g) was dissolved in 70 ml of secondary purified tetrahydrafuran (THF), a common solvent, and then trimethylindium (6.25 mmol) was obtained using a shrink line. Mixed in. Next, the mixed solution was reacted under stirring at 0 ° C. in an argon atmosphere for 3 to 4 hours, and then the solvent was removed and the insoluble polymer was separated and purified to give a viscous colorless liquid [Me 2 In (μ-SC (CH 3 ) 2 CH 2 CH 3 )] 2 compound was synthesized. Synthesized compounds were identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 4] [Me2In(μ-SC6H5)]2 의 합성Example 4 Synthesis of [Me 2 In (μ-SC 6 H 5 )] 2

메틸티올을 대신하여 벤젠티올(6.25m㏖, 0.689g)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 1, except that benzenethiol (6.25 mmol, 0.689 g) was used instead of methyl thiol.

[실시예 5] [Me2In(μ-SCH(CH3)2]2 의 합성[Example 5] [Me 2 In (μ -SCH (CH 3) 2] 2 : Synthesis of

메틸티올을 대신하여 프로판 2-티올(6.25m㏖, 0.476g)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 1, except that propane 2-thiol (6.25 mmol, 0.476 g) was used instead of methyl thiol.

[실시예 6] [Me2In(μ-SCH2CH(CH3)2]2 의 합성 [Example 6] [Me 2 In (μ -SCH 2 CH (CH 3) 2] 2 : Synthesis of

2-메틸-2-프로판티올을 대신하여 2-메틸-1-프로판티올(6.25m㏖, 0.546g)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 1, except that 2-methyl-1-propanethiol (6.25 mmol, 0.546 g) was used instead of 2-methyl-2-propanethiol.

[실시예 7] [Me2In(μ-SeC6H5)]2 의 합성Example 7 Synthesis of [Me 2 In (μ-SeC 6 H 5 )] 2

벤젠셀렌놀(6.25m㏖, 0.982g)을 공통용매인 2차 정제된 테트라하이드라퓨란 (THF) 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸인듐(6.25m㏖)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 흰색 고체인 [Me2In(μ-SeC6H5)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다. Benzene selenol (6.25 mmol, 0.982 g) was dissolved in 70 ml of secondary purified tetrahydrafuran (THF), which was a common solvent, and then mixed with trimethylindium (6.25 mmol) using a Schhrinkline. Next, the mixed solution was stirred for 3 to 4 hours in an argon atmosphere at 0 ° C., and then the solvent was removed and the insoluble polymer was separated and purified to obtain a white solid [Me 2 In (μ-SeC 6 H 5 )] 2 Compounds were synthesized. Synthesized compounds were identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 8] Me2Ga(μ-SC(CH3)3)]2 의 합성Example 8 Synthesis of Me 2 Ga (μ-SC (CH 3 ) 3 )] 2

2-메틸-2-프로판티올(6.25m㏖, 0.564g)을 공통용매인 2차 정제된 테트라하이드라퓨란(THF) 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸갈륨(6.25m㏖, 0.723g)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 흰색 고체 인 Me2Ga(μ-SC(CH3)3)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다. 2-methyl-2-propanethiol (6.25 mmol, 0.564 g) was dissolved in 70 ml of secondary purified tetrahydrafuran (THF), a common solvent, and then trimethylgallium (6.25 mmol) was used using a shrink line. , 0.723 g). Next, the mixed solution was reacted under stirring at 0 ° C. in an argon atmosphere for 3 to 4 hours, and then the solvent was removed and the insoluble polymer was separated and purified to obtain a white solid Me 2 Ga (μ-SC (CH 3 ) 3 )]. 2 compounds were synthesized. Synthesized compounds were identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 9] [Me2Ga(μ-SCH(CH3)CH2CH3)]2 의 합성 Example 9 Synthesis of [Me 2 Ga (μ-SCH (CH 3 ) CH 2 CH 3 )] 2

부탄 2-티올(6.25m㏖, 0.564g)을 공통용매인 2차 정제된 메틸렌클로라이드 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸갈륨(6.25m㏖)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 점성을 갖는 무색액체인 [Me2Ga(μ-SCH(CH3)CH2CH3)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다. Butane 2-thiol (6.25 mmol, 0.564 g) was dissolved in 70 ml of secondary purified methylene chloride, a common solvent, and then mixed with trimethylgallium (6.25 mmol) using a Schhrlein. Next, the mixed solution was reacted under stirring at 0 ° C. in an argon atmosphere for 3-4 hours, and then the solvent was removed and the insoluble polymer was separated and purified to obtain a viscous colorless liquid [Me 2 Ga (μ-SCH (CH 3). ) CH 2 CH 3 )] 2 compound was synthesized. Synthesized compounds were identified by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 10] [Me2Ga(μ-SC(CH3)2CH2CH3)]2 의 합성Example 10 Synthesis of [Me 2 Ga (μ-SC (CH 3 ) 2 CH 2 CH 3 )] 2

2-메틸-2-프로판티올을 대신하여 2-메틸-2-부탄티올(6.25m㏖, 0.651g)을 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 8, except that 2-methyl-2-butanethiol (6.25 mmol, 0.651 g) was used instead of 2-methyl-2-propanethiol.

[실시예 11] [Me2Ga(μ-SC6H5)]2 의 합성Example 11 Synthesis of [Me 2 Ga (μ-SC 6 H 5 )] 2

2-메틸-2-프로판티올을 대신하여 벤젠티올(6.25m㏖, 0.689g)을 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 8, except that benzenethiol (6.25 mmol, 0.689 g) was used instead of 2-methyl-2-propanethiol.

[실시예 12] [Me2Ga(μ-SCH(CH3)]2 의 합성Example 12 Synthesis of [Me 2 Ga (μ-SCH (CH 3 )] 2

2-메틸-2-프로판티올을 대신하여 프로판 2-티올(6.25m㏖, 0.476g)을 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 8, except that propane 2-thiol (6.25 mmol, 0.476 g) was used instead of 2-methyl-2-propanethiol.

[실시예 13] [Me2Ga(μ-SCH2CH(CH3)2]2 의 합성 [Example 13] [Me 2 Ga (μ -SCH 2 CH (CH 3) 2] 2 : Synthesis of

2-메틸-2-프로판티올을 대신하여 2-메틸-1-프로판티올(6.25m㏖, 0.564g)을 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 합성하였다. Synthesis was carried out in the same manner as in Example 8, except that 2-methyl-1-propanethiol (6.25 mmol, 0.564 g) was used instead of 2-methyl-2-propanethiol.

[실시예 14] [Me2Ga(μ-SeC6H5)]2 의 합성Example 14 Synthesis of [Me 2 Ga (μ-SeC 6 H 5 )] 2

벤젠셀렌놀(6.25m㏖, 0.982g)을 공통용매인 2차 정제된 테트라하이드라퓨란 (THF) 70㎖에 용해시킨 후, 슈링크라인을 사용하여 트리메틸갈륨(6.25m㏖)에 혼합하였다. 다음, 혼합된 용액을 0℃ 아르곤 분위기에서 3~4시간 교반하며 반응시킨 후, 용매를 제거하고 불용성의 중합물을 분리, 정제하여 흰색 고체인 [Me2Ga(μ-SeC6H5)]2 화합물을 합성하였다. 합성된 화합물은 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 확인하였다. Benzene selenol (6.25 mmol, 0.982 g) was dissolved in 70 ml of secondary purified tetrahydrofuran (THF), which was a common solvent, and then mixed with trimethylgallium (6.25 mmol) using a Schrinline. Next, the mixed solution was reacted under stirring at 3 ° C. in an argon atmosphere at 0 ° C. for 3 hours, and then the solvent was removed and the insoluble polymer was separated and purified to obtain a white solid [Me 2 Ga (μ-SeC 6 H 5 )] 2 Compounds were synthesized. The synthesized compound was confirmed by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

상기 합성법 1의 방법으로 제조된 실시예 1~14을 하기 표 1에 나타내었다. Examples 1 to 14 prepared by the method of Synthesis Method 1 are shown in Table 1 below.

Figure 112003013092811-pat00006
Figure 112003013092811-pat00006

[실시예 15] [Me2In(μ-SeCH3)]2 의 합성 Example 15 Synthesis of [Me 2 In (μ-SeCH 3 )] 2

글로브 박스에서 트리메틸인듐(6.25m㏖,1.020g) 을 플라스크에 넣고, 용매인 펜탄 70㎖를 슈링크라인을 사용하여 0℃를 유지하며 투입한 후, 켄눌라(cannula)를 이용하여 디메틸디셀렌나이드(6.25m㏖, 1.175g)를 펜탄 70㎖에 녹인 용액을 주입하였다. 다음, 혼합용액을 상온에서 12시간 교반하면서 반응시켰다. 그 후, 미반응물과 용매를 분리, 정제하여 흰색고체인 [Me2In(μ-SeCH3)]2 화합물을 합성하였다. 합성된 화합물을 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 분석하였다. In a glove box, trimethylindium (6.25 mmol, 1.020 g) was added to the flask, and 70 ml of pentane, a solvent, was added at a temperature of 0 ° C. using a shrink line, followed by dimethyl diselen using cannula. A solution in which Nide (6.25 mmol, 1.175 g) was dissolved in 70 ml of pentane was injected. Next, the mixed solution was reacted with stirring at room temperature for 12 hours. Thereafter, the unreacted substance and the solvent were separated and purified to synthesize a white solid [Me 2 In (μ-SeCH 3 )] 2 compound. The synthesized compounds were analyzed by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

[실시예 16] [Me2Ga(μ-SeCH3)]2 의 합성Example 16 Synthesis of [Me 2 Ga (μ-SeCH 3 )] 2

글로브 박스에서 트리메틸갈륨(6.25m㏖, 0.723g)을 플라스크에 넣고 용매인 펜탄을 슈링크라인을 사용하여 0℃를 유지하며 투입한 후, 켄눌라(cannula)를 이용하여 디메틸디셀렌나이드(6.25m㏖, 1.175g)를 펜탄 70㎖에 녹인 용액을 주입하였다. 다음, 혼합용액을 상온에서 12시간 교반하며 반응시켰다. 그 후, 미반응물과 용매를 분리, 정제하여 흰색 고체인 [Me2Ga(μ-SeCH3)]2 화합물을 합성하였다. 합성된 화합물은 핵자기공명 분석(NMR, 1H, 13C), 적외선 분광기(IR) 및 질량분석기를 통하여 분석하였다.In a glove box, trimethylgallium (6.25 mmol, 0.723 g) was added to a flask, and pentane, a solvent, was added at a temperature of 0 ° C. using a shrink line, followed by dimethyl diselenide (6.25) using cannula. mmol, 1.175 g) was poured into a solution of 70 ml of pentane. Next, the mixed solution was reacted with stirring at room temperature for 12 hours. Thereafter, the unreacted material and the solvent were separated and purified to synthesize a white solid [Me 2 Ga (μ-SeCH 3 )] 2 compound. The synthesized compounds were analyzed by nuclear magnetic resonance analysis (NMR, 1 H, 13 C), infrared spectroscopy (IR) and mass spectrometry.

상기 합성법 2의 방법으로 제조한 실시예 15~16을 하기 표 2에 나타내었다. Examples 15 to 16 prepared by the method of Synthesis Method 2 are shown in Table 2 below.

실시예Example 물성 화합물              A physical compound 형상shape 1H-NMR (ppm) 1 H-NMR (ppm) 13C-NMR (ppm) 13 C-NMR (ppm) IR(cm-1)IR (cm -1 ) Mass (m/z)Mass (m / z) 1515 [Me2In(μ-SeCH3)]2 [Me 2 In (μ-SeCH 3 )] 2 흰색 고체White solid 0.117 [In-CH 3 (s)] 2.052 [Se-CH 3 (s)]0.117 [In- CH 3 (s)] 2.052 [Se- CH 3 (s)] -1.700 [In-CH 3 ] 0.053 [Se-CH 3 ] -1.700 [In- CH 3 ] 0.053 [Se- CH 3 ] 2920~2980 [ν(sp3C-H)] 1428, 1280, 900 [Se-CH3] 1158 [In-CH3] 680~720 [In-CH3 rock] 481, 521 [ν(In-C)]2920 ~ 2980 [ν (sp3C-H)] 1428, 1280, 900 [Se-CH 3 ] 1158 [In-CH 3 ] 680 ~ 720 [In-CH 3 rock] 481, 521 [ν (In-C)] 463463 1616 0.083 [Ga-CH 3 (s)] 1.984 [Se-CH 3 (s)]0.083 [Ga- CH 3 (s)] 1.984 [Se- CH 3 (s)] -0.148 [Ga-CH 3 ] 10.482 [Se-CH 3 ] -0.148 [Ga- CH 3 ] 10.482 [Se- CH 3 ] 2825~2960 [ν(sp3C-H)] 1430, 1278, 920 [Se-CH3] 1205 [Ga-CH3] 720~760 [Ga-CH3 rock] 540, 580 [ν(Ga-C)]2825 ~ 2960 [ν (sp3C-H)] 1430, 1278, 920 [Se-CH 3 ] 1205 [Ga-CH 3 ] 720 ~ 760 [Ga-CH 3 rock] 540, 580 [ν (Ga-C)] 388388 [Me2Ga(μ-SeCH3)]2 [Me 2 Ga (μ-SeCH 3 )] 2 흰색 고체White solid

[제조예 1~16] [Manufacture example 1-16]

상기의 실시예 1~16를 전구체로 사용하여 CVD 진공증착장치로 박막을 제조하였다. CVD 증착장치는 아르곤 분위기하에서 전구체의 버블러 온도를 80℃로 유지하고, 증착 기판(substrate) 온도를 250~370℃로 변화시켜가면서 증착하였다. 이때, CVD 챔버는 20mtorr 감압하였으며, 3시간에 걸쳐 두께 100~500㎚의 박막을 제조하였다. 각각의 경우, 제조된 박막은 XRD(X-Ray Diffraction)를 통하여 불순물이 전혀 없는 고순도의 칼코겐화물 단일상 박막이 형성되었음을 확인하였고, 전자현미경을 통하여 그레인 사이즈가 300 -500㎚ 크기의 칼코겐화물 박막이 제조되었음을 확인하였다. 또한, 열분석기를 통하여 전구체의 상압에서의 녹는점과 분해온도를 측정하였다. 그 결과를 하기 표 3에 나타내었으며, 녹는점과 분해온도 사이에서 승화 로 보이는 상변화를 확인할 수 있었으며 이를 기초로 하여 전구체의 온도를 80~100℃ 내외에서 증착하였다. Using the above Examples 1 to 16 as a precursor to prepare a thin film by a CVD vacuum deposition apparatus. The CVD deposition apparatus was deposited while keeping the bubbler temperature of the precursor at 80 ° C. under an argon atmosphere, and changing the deposition substrate temperature to 250˜370 ° C. At this time, the CVD chamber was decompressed 20mtorr, to prepare a thin film of 100 ~ 500nm thickness over 3 hours. In each case, the prepared thin film was confirmed to form a high purity chalcogenide single phase thin film without impurities through X-Ray Diffraction (XRD), and the chalcogen having a grain size of 300-500 nm was obtained through an electron microscope. It was confirmed that a cargo thin film was prepared. In addition, the melting point and decomposition temperature of the precursor at atmospheric pressure were measured by a thermal analyzer. The results are shown in Table 3 below, and the phase change seen as a sublimation between the melting point and the decomposition temperature was confirmed. Based on this, the temperature of the precursor was deposited at about 80 to 100 ° C.

제조예Production Example 전구체 종류  Precursor type 물성 화합물                    A physical compound 녹는점 (℃)Melting point (℃) 분해온도 (℃)Decomposition Temperature (℃) CVD 증착후 M/E 조성 분석결과 (M/E 조성비)M / E composition analysis result after CVD deposition (M / E composition ratio) 1One 실시예 1Example 1 [Me2In(μ-SC(CH3)3)]2 [Me 2 In (μ-SC (CH 3 ) 3 )] 2 8787 182182 In/S=1.02 In / S = 1.02 22 실시예 2Example 2 [Me2In(μ-SCH(CH3)CH2CH3)]2 [Me 2 In (μ-SCH (CH 3 ) CH 2 CH 3 )] 2 -- 236236 In/S=1.05 In / S = 1.05 33 실시예 3Example 3 [Me2In(μ-SC(CH3)2CH2CH3)]2 [Me 2 In (μ-SC (CH 3 ) 2 CH 2 CH 3 )] 2 -- 207207 In/S=1.13 In / S = 1.13 44 실시예 4Example 4 [Me2In(μ-SC6H5)]2 [Me 2 In (μ-SC 6 H 5 )] 2 115115 237237 In/S=1.04 In / S = 1.04 55 실시예 5Example 5 [Me2In(μ-SCH(CH3)2]2 [Me 2 In (μ-SCH (CH 3 ) 2 ] 2 4141 182182 In/S=1.10 In / S = 1.10 66 실시예 6Example 6 [Me2In(μ-SCH2CH(CH3)2]2 [Me 2 In (μ-SCH 2 CH (CH 3 ) 2 ] 2 6868 204204 In/S=1.01 In / S = 1.01 77 실시예 7Example 7 [Me2In(μ-SeC6H5)]2 [Me 2 In (μ-SeC 6 H 5 )] 2 131131 186186 In/Se=1.10 In / Se = 1.10 88 실시예 8Example 8 [Me2Ga(μ-SC(CH3)3)]2 [Me 2 Ga (μ-SC (CH 3 ) 3 )] 2 5252 211211 Ga/S=1.02 Ga / S = 1.02 99 실시예 9Example 9 [Me2Ga(μ-SCH(CH3)CH2CH3)]2 [Me 2 Ga (μ-SCH (CH 3 ) CH 2 CH 3 )] 2 -- 277277 Ga/S=1.11 Ga / S = 1.11 1010 실시예 10Example 10 [Me2Ga(μ-SC(CH3)2CH2CH3)]2 [Me 2 Ga (μ-SC (CH 3 ) 2 CH 2 CH 3 )] 2 -- 201201 Ga/S=1.08 Ga / S = 1.08 1111 실시예 11Example 11 [Me2Ga(μ-SC6H5)]2 [Me 2 Ga (μ-SC 6 H 5 )] 2 132132 272272 Ga/S=1.02 Ga / S = 1.02 1212 실시예 12Example 12 [Me2Ga(μ-SCH(CH3)2]2 [Me 2 Ga (μ-SCH (CH 3 ) 2 ] 2 -- nana Ga/S=1.05 Ga / S = 1.05 1313 실시예 13Example 13 [Me2Ga(μ-SCH2CH(CH3)2]2 [Me 2 Ga (μ-SCH 2 CH (CH 3 ) 2 ] 2 nana nana Ga/S=1.10 Ga / S = 1.10 1414 실시예 14Example 14 [Me2Ga(μ-SeC6H5)]2 [Me 2 Ga (μ-SeC 6 H 5 )] 2 122122 248248 Ga/Se=1.03 Ga / Se = 1.03 1515 실시예 15Example 15 [Me2In(μ-SeCH3)]2 [Me 2 In (μ-SeCH 3 )] 2 154154 185185 In/Se=1.01 In / Se = 1.01 1616 실시예 16Example 16 [Me2Ga(μ-SeCH3)]2 [Me 2 Ga (μ-SeCH 3 )] 2 112112 135135 Ga/Se=1.01 Ga / Se = 1.01

상기 표 3에서 알 수 있는 바와 같이, 실시예 1~16의 새로운 골격으로 합성된 칼코겐화 유기금속 전구체가 낮은 온도에서 휘발 특성을 가지며, 상대적으로 낮은 분해온도를 요구하는 전구체의 전형적인 특성을 잘 충족하는 것을 확인하였다. 특히, 가장 중요한 금속과 칼코겐화 원소의 조성비는 XPS(Xray Photoelectron Spectroscopy)를 통해 알 수 있는 바와 같이, 금속/칼코겐원소의 조성비가 1.01∼1.11로 아주 일정한 것으로 박막이 제조되었음을 알 수 있었다. 따라서, 본 발명세서 제조한 새로운 골격의 전구체는 금속과 칼코겐 원소의 조성비가 1:1인 칼코겐화물(chalcogenide, ME M: 금속, E: 칼코겐원소) 박막 제조를 위한 우수한 전구체임을 확인하였다.As can be seen in Table 3, the chalcogenide organometallic precursors synthesized with the new skeletons of Examples 1 to 16 have volatilization characteristics at low temperatures and well meet typical properties of precursors requiring relatively low decomposition temperatures. It was confirmed that. In particular, as the composition ratio of the most important metal and the chalcogenide element can be seen through XPS (Xray Photoelectron Spectroscopy), the composition ratio of the metal / chalcogen element was found to be very constant, 1.01 to 1.11, indicating that the thin film was prepared. Therefore, it was confirmed that the precursor of the new skeleton prepared in the present invention is an excellent precursor for the preparation of chalcogenide (chalcogenide, ME M: metal, E: chalcogen element) thin film having a composition ratio of metal to chalcogen element 1: 1. .

이상에서 설명한 바와 같이, 본 발명은 화학증착법을 이용한 태양전지의 광흡수박막층 제조를 위한 전 단계로 이원화합물 전구체에 대한 합성법을 제공하고, 이러한 방법으로 제조된 칼코겐화물 전구체가 화학증착법을 통하여 다양한 금속과 칼코겐 원소의 조성이 1:1인 단일상의 고순도 칼코겐화물(chalcogenide, ME M: 금속, E: 칼코겐원소) 박막을 제공할 수 있다. As described above, the present invention provides a method for synthesizing a binary compound precursor as a previous step for the production of a light-absorbing thin film layer of a solar cell using a chemical vapor deposition method, the chalcogenide precursor prepared in this manner is a variety of A single-phase high purity chalcogenide (chalcogenide, ME M: metal, E: chalcogen element) thin film having a metal and chalcogen element composition of 1: 1 can be provided.

Claims (5)

삭제delete 칼코겐올 1당량을 정제된 용매에 용해시키는 단계; Dissolving 1 equivalent of chalcogenol in a purified solvent; 상기 용액을 슈링크라인을 사용하여 알킬화금속(MR) 1당량에 혼합하는 단계; Mixing the solution with 1 equivalent of an alkylated metal (MR) using a shrink line; 상기 혼합 용액을 0℃ 아르곤 분위기에서 3-4시간 교반하며 반응시키는 단계; 및Reacting the mixed solution with stirring at 4 ° C. in an argon atmosphere for 3-4 hours; And 용매를 제거하고 불용성의 중합물을 분리, 정제하는 단계;Removing solvent and separating and purifying insoluble polymer; 를 포함하는 하기 반응식 1의 단계에 의하여 하기 화학식 1로 표시되는 칼코겐화물(chalcogenide) 박막제조를 위한 화학증착용 전구체의 제조방법. Method of preparing a precursor for chemical vapor deposition for the preparation of chalcogenide (chalcogenide) thin film represented by the following formula (1) by the step of Scheme 1 comprising a. [화학식 1][Formula 1]
Figure 112003020233412-pat00008
Figure 112003020233412-pat00008
(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.) [반응식 1]Scheme 1
Figure 112003020233412-pat00009
Figure 112003020233412-pat00009
(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.)
글로브 박스에서 정량된 알킬화금속(MR)를 플라스크에 넣고 용매인 펜탄을 슈링크라인을 사용하여 0℃를 유지하며 투입한 후, 켄눌라(cannula)를 이용하여 디알킬디설파이드((R1E)2 ; CH3S-SCH3) 또는 디알킬디셀렌나이드((R1E)2 ; CH3SeSeCH3)를를 주입하는 단계; Put the metal alkylated (MR) quantified in the glove box into the flask and put pentane as a solvent while maintaining the 0 ℃ using a shrink line, and then dialkyl disulfide ((R 1 E) using a cannula (cannula) Injecting 2 ; CH 3 S-SCH 3 ) or dialkyldiselenide ((R 1 E) 2 ; CH 3 SeSeCH 3 ); 상기 혼합용액을 상온에서 12시간 교반하며 반응시키는 단계; 및 Reacting the mixed solution while stirring at room temperature for 12 hours; And 미반응물과 용매를 분리, 정제하는 단계;Separating and purifying the unreacted material and the solvent; 를 포함하는 하기 반응식 2의 단계에 의하여 하기 화학식 1로 표시되는 칼코겐화물(chalcogenide) 박막제조를 위한 화학증착용 전구체의 제조방법. Method of producing a precursor for chemical vapor deposition for the preparation of chalcogenide (chalcogenide) thin film represented by the following formula (1) by the step of Scheme 2 comprising a. [화학식 1][Formula 1]
Figure 112003020233412-pat00010
Figure 112003020233412-pat00010
(상기 식중, M은 In 및 Ga, E는 칼코겐 원소(S, Se)이며; R, R1는 각각 독립적으로 C1~C6의 알킬기를 나타낸다.)(Wherein, M is In and Ga, E is a chalcogen element (S, Se); R, R 1 each independently represent an alkyl group of C1 ~ C6.) [반응식 2]Scheme 2
Figure 112003020233412-pat00011
Figure 112003020233412-pat00011
(상기 식중, M, E, R, 및 R1은 상기 화학식 1에서 정의한 바와 동일하다.)(Wherein, M, E, R, and R 1 are the same as defined in the formula (1).)
제 2항에 있어서, 상기 칼코겐올은 티올(thiol) 또는 셀렌놀(selenol)임을 특징으로 하는 칼코겐화물(chalcogenide) 박막을 위한 화학증착용 전구체의 제조방법. According to claim 2, wherein the chalcogenol is a thiol or selenol (selenol) method of producing a precursor for chemical vapor deposition for the chalcogenide (chalcogenide) thin film. 제 2항에 있어서, 상기 용매는 테트라하이드라퓨란(THF), 에스터, 펜탄, 또는 메틸렌클로라이드을 특징으로 하는 칼코겐화물(chalcogenide) 박막을 위한 화학증착용 전구체의 제조방법. The method of claim 2, wherein the solvent is tetrahydrofuran (THF), ester, pentane, or methylene chloride, characterized in that the method for producing a chemical vapor deposition precursor for a chalcogenide (chalcogenide) thin film.
KR1020030023385A 2003-04-14 2003-04-14 Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same KR100541939B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030023385A KR100541939B1 (en) 2003-04-14 2003-04-14 Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030023385A KR100541939B1 (en) 2003-04-14 2003-04-14 Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same

Publications (2)

Publication Number Publication Date
KR20040088938A KR20040088938A (en) 2004-10-20
KR100541939B1 true KR100541939B1 (en) 2006-01-10

Family

ID=37370588

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030023385A KR100541939B1 (en) 2003-04-14 2003-04-14 Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same

Country Status (1)

Country Link
KR (1) KR100541939B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893744B1 (en) 2007-05-28 2009-04-17 중앙대학교 산학협력단 Precursor for Metal Organic Chemical Vapour Deposition to prepare the Chalcogen Compound Thin Films and Synthesis Process of it

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962623B1 (en) 2005-09-03 2010-06-11 삼성전자주식회사 Method of forming a phase changeable material layer, and methods of manufacturing a phase changeable memory unit and a phase changeable memory device using the same
KR101139162B1 (en) * 2005-12-30 2012-04-26 삼성코닝정밀소재 주식회사 Method for Preparing Chalcogenide Thin Film Using Cluster Compound
KR100755805B1 (en) * 2006-06-05 2007-09-05 주식회사 아이피에스 Method of depositing chalcogenide film for phase-change memory
KR100789064B1 (en) 2006-07-14 2007-12-26 중앙대학교 산학협력단 Manufacturing method of cuins2 thin film using metal organic chemical vapor deposition, cuins2 thin film thereby and manufacturing method of in2s3 thin film using thereof
KR100871692B1 (en) * 2006-11-07 2008-12-08 삼성전자주식회사 Metal precursor for low temperature deposition, method of forming metal layer using the precursor and method of fabricating phase-change memory device using the precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893744B1 (en) 2007-05-28 2009-04-17 중앙대학교 산학협력단 Precursor for Metal Organic Chemical Vapour Deposition to prepare the Chalcogen Compound Thin Films and Synthesis Process of it

Also Published As

Publication number Publication date
KR20040088938A (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR101633388B1 (en) A Method for Preparing Light Absorption Layer of copper-indium-gallium-sulfur-selenium Thin Film Solar Cells
US8545734B2 (en) Methods for photovoltaic absorbers with controlled group 13 stoichiometry
US6992202B1 (en) Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
US8449793B2 (en) Methods and articles for CAIGAS aluminum-containing photovoltaics
KR100789064B1 (en) Manufacturing method of cuins2 thin film using metal organic chemical vapor deposition, cuins2 thin film thereby and manufacturing method of in2s3 thin film using thereof
US8497390B2 (en) Methods and articles for CAIGS silver-containing photovoltaics
KR20140009975A (en) Deposition processes and devices for photovoltaics
CN110155959B (en) Method for preparing two-dimensional transition metal alloy chalcogenide by limited-area chemical vapor deposition
KR100857227B1 (en) Manufacturing method of i-iii-vi2 compound semiconductor thin films by one step metal organic chemical vapor deposition process
KR100541939B1 (en) Precursor for preparing a chalcogenide thin-film in the chemical vapor deposition method, and the preparing the same
KR100982475B1 (en) Manufacturing method of optical absorber film
KR101793515B1 (en) Manufacturing method of molybdenum disulfide nanoflake
Olgar et al. Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere
Hossain et al. Enhancement in structural and optical properties of copper tin sulphide (CTS) thin films via sulphurization process
KR20130097904A (en) Precursor for preparing the sns thin-film and manufacturing method thereof
Ming et al. Tunable structural, morphological and optical properties of undoped, Mn, Ni and Ag-doped CuInS2 thin films prepared by AACVD
KR100982972B1 (en) Precursor for producing a thin film and a method for manufacturing the thin film by chemical vapor deposition using the same
KR100893744B1 (en) Precursor for Metal Organic Chemical Vapour Deposition to prepare the Chalcogen Compound Thin Films and Synthesis Process of it
KR20230082832A (en) Novel Organo-Tin Compounds, Preparation method thereof, and Method for deposition of thin film using the same
Kim et al. Preparation of CuGaS2 thin films by two-stage MOCVD method
Contreras-Ruiz et al. Band gap tuning of Cu (In, Ga) Se 2 thin films by electrodeposition and their subsequent selenization using a rapid thermal annealing system
KR100679640B1 (en) Precursor for preparing 13-group metal chalcogenide in chemical vapor deposition, method threrof and thin film of chalcogenide using the precursor
Soto-Montero et al. Single-source pulsed laser deposition of MAPbI 3
KR20130097903A (en) Precursor for preparing the sns thin-film and manufacturing method thereof
KR20060074460A (en) Precursor for preparing the group 12 element chalcogenide thin-films in the chemical vapor deposition method, and the preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141204

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 13