KR100524698B1 - Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology - Google Patents

Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology Download PDF

Info

Publication number
KR100524698B1
KR100524698B1 KR10-2003-0022662A KR20030022662A KR100524698B1 KR 100524698 B1 KR100524698 B1 KR 100524698B1 KR 20030022662 A KR20030022662 A KR 20030022662A KR 100524698 B1 KR100524698 B1 KR 100524698B1
Authority
KR
South Korea
Prior art keywords
waste polystyrene
styrene monomer
molecular weight
melting
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR10-2003-0022662A
Other languages
Korean (ko)
Other versions
KR20040088685A (en
Inventor
최명재
김성보
이상봉
윤병태
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2003-0022662A priority Critical patent/KR100524698B1/en
Publication of KR20040088685A publication Critical patent/KR20040088685A/en
Application granted granted Critical
Publication of KR100524698B1 publication Critical patent/KR100524698B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 발명은 열분해 신공정으로 폐폴리스틸렌으로부터 스틸렌 단량체를 회수하는 방법에 관한 것으로서, 더욱 상세하게는 폐폴리스틸렌을 200 ∼ 300 ℃ 온도에서 30분 ∼ 5 시간 동안 용융하여 불용성 물질을 제거하며 분자량을 조절하는 전처리 과정을 실시한 후, 스크루우를 통해 열분해 반응기에 투입하여 반응속도를 증가시킴으로써 고수율의 스틸렌 단량체를 회수하는 방법에 관한 것이다. The present invention relates to a method for recovering styrene monomer from waste polystyrene in a new pyrolysis process, and more particularly, pretreatment for melting waste polystyrene at a temperature of 200 to 300 ° C. for 30 minutes to 5 hours to remove insoluble substances and to control molecular weight. After carrying out the process, it is directed to a method for recovering a high yield of styrene monomer by adding to the pyrolysis reactor through a screw to increase the reaction rate.

Description

열분해 신공정으로 폐폴리스틸렌으로부터 스틸렌 단량체를 회수하는 방법{Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology} Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology

본 발명은 열분해 신공정으로 폐폴리스틸렌으로부터 스틸렌 단량체를 회수하는 방법에 관한 것으로서, 더욱 상세하게는 폐폴리스틸렌을 200 ∼ 300 ℃ 온도에서 30분 ∼ 5시간 동안 용융하여 불용성 물질을 제거하는 전처리 과정을 실시한 후 스크루우를 통해 열분해 반응기에 투입하여 반응속도를 증가시킴으로써 고수율의 스틸렌 단량체를 회수하는 방법에 관한 것이다. The present invention relates to a method for recovering styrene monomer from waste polystyrene in a new pyrolysis process, and more particularly, after performing a pretreatment process in which waste polystyrene is melted at a temperature of 200 to 300 ° C. for 30 minutes to 5 hours to remove insoluble materials. The present invention relates to a method for recovering a high yield of styrene monomer by adding a reaction rate to a pyrolysis reactor through a screw.

전자제품, 포장재, 상자, 쿠션재, 식품용접시, 냉장보존 용기 등이 폐기됨으로써, 우리나라에서만에도 매년 30 만톤 정도의 폐폴리스틸렌이 발생되고 있다. 이러한 폐폴리스틸렌은 주로 재생수지 제조, 경량 콘크리트 제조, 접착제 제조 등에 재활용되고 있다.By disposing of electronic products, packaging materials, boxes, cushioning materials, food welding, cold storage containers, etc., about 300,000 tons of waste polystyrene is generated annually in Korea alone. This waste polystyrene is mainly recycled to recycled resin production, lightweight concrete production, adhesive production.

그러나 상기 재활용은 물리적 방법을 사용하여 재생하는 것으로 그 부가가치가 대단히 낮으며 여러번 반복 재생시에는 재활용할 수 없는 다량의 폐폴리스틸렌이 발생한다. However, the recycling is a regeneration by using a physical method, the added value is very low and generates a large amount of waste polystyrene that can not be recycled after repeated regeneration.

또한 농수산 시장이나 건축폐기물에서 배출되는 다량의 폐폴리스틸렌은 다른 폐폴리스틸렌에 비하여 청결하지 못해 물리적 재생방법을 사용하기가 곤란하다.In addition, a large amount of waste polystyrene emitted from agricultural and fish market or construction waste is not clean compared to other waste polystyrene, and it is difficult to use a physical regeneration method.

특히 폐폴리스틸렌은 다른 것에 비해 약 50배 이상으로 그 처리량이 많아 매립이나 물리적 재활용이 어려워 매립이나 소각 등에 의해 처리되고 있으나 소각에 의한 방법은 다이옥신 등의 환경문제를 야기하고 있다. In particular, waste polystyrene is about 50 times more than the others, and its throughput is high, so it is difficult to bury or physically recycle. However, incineration method causes environmental problems such as dioxins.

따라서 폐폴리스틸렌을 화학적으로 처리하는 회수방법을 통하여 스틸렌 단량체 같은 원료로 회수하여 자원화 함으로써 경제성을 크게 향상시킬 수 있으며, 이는 자원의 순환이라는 측면에서 매우 가치가 있는 방법이다.Therefore, it is possible to greatly improve the economics by recovering the raw material, such as styrene monomer, and recycling the waste polystyrene chemically, which is very valuable in terms of resource circulation.

화학적 처리 방법에 의한 폴리스틸렌으로부터 스틸렌 단량체의 회수 방법은 1997년에 니시자키(Nishizaki)에 의해 처음으로 시도되었는바, 733??K 온도에서 열분해에 의해 폴리스틸렌으로부터 스틸렌 단량체의 약 50 % 가량이 회수가 가능하다고 보고하였다. 이러한 기술을 토대로 스틸렌 단량체의 수율을 증가시키기 위하여 많은 연구자들에 의해 여러 촉매의 영향이 검토되어 많은 촉매들이 개발되어지고 있다.Recovery of styrene monomer from polystyrene by chemical treatment was first attempted by Nishizaki in 1997, and about 50% of styrene monomer was recovered from polystyrene by pyrolysis at a temperature of 733 ° K. Reported possible. In order to increase the yield of styrene monomers based on this technology, many catalysts have been investigated by many researchers and many catalysts have been developed.

그러나, 상기 개발되어진 촉매는 그 특성에 따라 부산물인 에틸벤젠, 알파메틸스틸렌, 벤젠, 톨루엔 등을 증가시켜 스틸렌의 선택도를 감소시키는 단점이 있다. However, the developed catalyst has a disadvantage in that the selectivity of styrene is reduced by increasing by-products ethylbenzene, alphamethyl styrene, benzene, toluene and the like.

이에 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구 노력한 결과, 폐폴리스틸렌을 열분해 반응시키기 이전에 용융시켜 난연제나 이물질 등의 불용성 물질을 제거하는 전처리 공정을 수행하도록 하며, 특히 상기 용융시 온도와 시간의 조건을 조절하여 반응성이 좋은 분자량으로 한정한 폐폴리스틸렌을 선별하여 스크루우를 이용하여 반응기에 투입하면 반응속도가 증가되어 열분해 반응성이 향상되어진다는 것을 알게되어 본 발명을 완성하게 되었다.Therefore, the present inventors have conducted research to solve the above problems, and before the pyrolysis reaction of the waste polystyrene to perform a pretreatment process to remove insoluble materials such as flame retardant or foreign matter, in particular the temperature and time during the melting By adjusting the conditions of the selected polystyrene wastes limited to the high molecular weight with high reactivity, and introduced into the reactor using a screw, the reaction rate is increased to realize that the pyrolysis reactivity is improved to complete the present invention.

따라서 본 발명은 종래 스틸렌 단량체의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스틸렌, 벤젠, 톨루엔 등의 생성을 억제시켜 고수율로 스틸렌 단량체를 회수하는 새로운 방법을 제공하는데 그 목적이 있다. Therefore, an object of the present invention is to provide a new method for recovering styrene monomer in high yield by suppressing the production of ethylbenzene, alphamethylstyrene, benzene, toluene, etc., which are generated by side reactions in the conventional recovery process of styrene monomer.

본 발명은 폐폴리스틸렌을 열분해 반응하여 스틸렌 단량체를 회수하는 방법에 있어서, 1) 사출성형기(1)에서 폐폴리스틸렌을 파쇄하여 용융조(2)에 투입하는 단계; 2) 상기 폐폴리스틸렌을 200 ~ 300 ℃ 온도에서 30분 ~ 5시간 동안 용융하여 불용성 물질을 제거한 후, 상기 불용성 물질이 제거된 폐폴리스틸렌의 분자량을 90,000 ~ 200,000 범위로 조절하는 단계; 3) 상기 용융된 폐폴리스틸렌을 스크루우를 이용하여 반응기(3)에 투입하고 200 ~ 1000 ℃ 온도에서 1 ~ 2 시간동안 열분해하는 단계; 및 4) 상기 열분해된 기체를 열교환기(4)를 통해 액화시켜 얻어진 오일을 오일 저장조(5)에서 수집하는 단계가 포함되는 폐폴리스틸렌으로부터 스틸렌 단량체의 회수 방법에 그 특징이 있다.The present invention relates to a method for recovering styrene monomer by pyrolyzing waste polystyrene, comprising: 1) crushing waste polystyrene in an injection molding machine (1) and introducing the waste polystyrene into a melting tank (2); 2) melting the waste polystyrene at a temperature of 200 to 300 ° C. for 30 minutes to 5 hours to remove an insoluble substance, and then adjusting the molecular weight of the waste polystyrene from which the insoluble substance is removed to a range of 90,000 to 200,000; 3) injecting the molten waste polystyrene into the reactor (3) using a screw and pyrolyzing at a temperature of 200 ~ 1000 ℃ for 1 to 2 hours; And 4) a method for recovering the styrene monomer from the waste polystyrene including collecting the oil obtained by liquefying the pyrolyzed gas through the heat exchanger (4) in the oil reservoir (5).

이와 같은 본 발명을 상세히 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명은 폐폴리스틸렌으로부터 스틸렌 단량체를 회수하는 열분해 반응 이전에 전처리 과정으로서 용융하는 과정을 실시하여 불용성 물질을 제거하고 폐폴리스틸렌의 분자량을 반응성이 좋게 한정하였으며, 그리고 상기 전처리 과정을 거친 폐폴리스틸렌을 스크루우를 이용하여 반응기에 투입하여 반응속도를 향상시켜 종래 스틸렌 단량체의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스틸렌, 벤젠, 톨루엔 등의 생성을 억제시킴으로써 회수되는 스틸렌 단량체의 수율을 증가시키는 회수방법에 관한 것이다.The present invention is carried out a melting process as a pretreatment process before the pyrolysis reaction to recover the styrene monomer from the waste polystyrene to remove the insoluble material and to restrict the molecular weight of the waste polystyrene to reactivity, and screw the waste polystyrene after the pretreatment process Recovery to increase the yield of styrene monomer recovered by adding to the reactor by using the rain to improve the reaction rate to inhibit the production of ethylbenzene, alpha methyl styrene, benzene, toluene, etc. generated by side reactions in the conventional recovery process of styrene monomer It is about a method.

첨부도면 도 1은 본 발명에 따른 스틸렌 단량체의 회수하는 공정을 개략적으로 나타낸 공정도로서, 도 1을 중심으로 본 발명을 더욱 상세히 설명하면 다음과 같다.1 is a process diagram schematically showing a process for recovering a styrene monomer according to the present invention. Hereinafter, the present invention will be described in more detail with reference to FIG. 1.

도 1의 장치는 사출성형기(1), 용융조(2), 반응기(3), 열교환기(4), 오일저장조(5)로 구성된다. 상기와 같이 구성된 장치를 이용하여 스틸렌 단량체를 얻는 공정을 살펴보면, 폐폴리스틸렌을 사출성형기(1)에 의해 약 3 ㎝ 이하의 크기로 파쇄하여 용융조(2)에 투입하는 단계; 상기 투입된 폐폴리스틸렌을 200 ∼ 300 ℃ 온도에서 30분 ∼ 5 시간 동안 용융하여 불용성 물질을 제거 및 분자량을 한정하는 단계; 상기 단계에서 용융된 폐폴리스틸렌을 스크루우를 이용하여 반응기(3)에 투입하고 200 ∼ 1000 ℃ 온도에서 1 ∼ 2 시간동안 열분해하는 단계; 및 상기 분해된 기체를 열교환기(4)를 통해 액화시켜 얻어진 오일을 오일저장조(5)에서 수집하는 단계로 이루어진다. 이때, 열분해 과정 중에 생성되는 스틸렌 혼합물이 쉽게 배출되기 위하여 질소를 30 ml/min의 유량으로 반응기(3)내에 공급하였다. The apparatus of FIG. 1 is composed of an injection molding machine 1, a melting tank 2, a reactor 3, a heat exchanger 4, and an oil storage tank 5. Looking at the process of obtaining a styrene monomer using the device configured as described above, the step of crushing the waste polystyrene to a size of about 3 cm or less by the injection molding machine (1) and put into the melting tank (2); Melting the injected waste polystyrene at a temperature of 200 to 300 ° C. for 30 minutes to 5 hours to remove insoluble materials and to limit molecular weight; Injecting the molten waste polystyrene in the step into the reactor (3) using a screw and pyrolyze at 200 ~ 1000 ℃ temperature for 1 to 2 hours; And collecting the oil obtained by liquefying the decomposed gas through the heat exchanger (4) in the oil reservoir (5). At this time, nitrogen was supplied into the reactor 3 at a flow rate of 30 ml / min so that the styrene mixture produced during the pyrolysis process was easily discharged.

특히, 본 발명은 폐폴리스틸렌을 용융시켜 난연제나 이물질 등의 불용성 물질을 제거하고, 또한 적절히 용융온도와 용융시간을 조절하여 반응성이 좋은 분자량으로 한정된 폐폴리스틸렌을 열분해 반응기에 투입하여 반응성을 증가시키는데 그 특징이 있다. 상기 용융시키는 조건은 200 ∼ 300 ℃ 온도에서 30분 ∼ 3시간으로 하는 것이 바람직하며, 만일 용융온도가 200 ℃ 미만이면 용융이 거의 되지않아 주입에 어려움이 있으며 300 ℃를 초과하면 열분해반응이 진행되어 가스가 발생하는 문제가 있으며, 용융시간이 30분 미만이면 분자량 조절이 어려우며 5시간 초과하면 폴리스틸렌의 절단반응이 초과 진행되어 분자량이 크게 감소하여 반응서이 크게 저하하는 문제가 있다. 상기의 용융온도와 용융시간의 조절로 반응기에 투입되는 폐폴리스틸렌은 반응성이 좋은 90,000 ∼ 200,000의 분자량을 가진다. 열분해 반응되는 폐폴리스틸렌의 분자량이 90,000 미만이면 스틸렌으로의 열분해 반응속도가 저하되며 200,000을 초과하면 최적분자량 보다 반응성이 저하되는 문제가 있다.In particular, the present invention melts waste polystyrene to remove insoluble materials such as flame retardants or foreign substances, and also adjusts the melting temperature and melting time to suitably increase the reactivity by introducing waste polystyrene limited to high molecular weight into the pyrolysis reactor. There is a characteristic. The melting conditions are preferably 30 minutes to 3 hours at a temperature of 200 ~ 300 ℃, if the melting temperature is less than 200 ℃ is hardly melted injection is difficult, and if it exceeds 300 ℃ thermal decomposition reaction proceeds There is a problem that the gas is generated, if the melting time is less than 30 minutes, it is difficult to control the molecular weight, and if it exceeds 5 hours, the cleavage reaction of the polystyrene is excessively proceeded, so that the molecular weight is greatly reduced, thereby greatly reducing the reaction. The waste polystyrene introduced into the reactor by controlling the melting temperature and melting time has a high molecular weight of 90,000 to 200,000 with high reactivity. If the molecular weight of the pyrolysis reaction waste polystyrene is less than 90,000, the pyrolysis reaction rate to styrene is lowered, and if it exceeds 200,000, there is a problem that the reactivity is lower than the optimum molecular weight.

그리고, 본 발명에 있어서 상기와 같이 전처리 과정을 거친 폐폴리스틸렌은 스크로우 형태의 주입기와 분자량 조절조 및 상기 분자량 조절조를 통해 증류물을 냉각·응축할 수 있는 냉각기가 부착된 2 ℓ용량의 연속흐름탱크교반(CSTR)의 반응기를 사용하여 150 ∼ 300 rpm 회전속도로 교반하며 반응을 실시한다. 상기 열분해 반응시 반응조건은 200 ∼ 1000 ℃ 온도에서 1 ∼ 2 시간으로 하는 것이 바람직하며, 만일 200 ℃ 미만이면 열분해 반응이 진행되지 않는 문제가 있고, 1000 ℃를 초과하면 스틸렌이 열분해 되어 가스로 전환되어 스틸렌의 선택도가 크게 저하되는 문제가 있으며, 열분해 시간이 1 시간 미만이면 반응시간이 충분하지 않아 스틸렌 단량체의 회수량이 적으며, 2 시간을 초과하면 에너지 소비를 크게 함으로 생산성이 저하되는 문제가 있다.In the present invention, the waste polystyrene that has undergone the pretreatment as described above has a continuous capacity of 2 L with a cooler capable of cooling and condensing distillate through a screw-type injector, a molecular weight control tank and the molecular weight control tank. The reaction is carried out while stirring at a rotational speed of 150 to 300 rpm using a reactor of a flow tank stirring (CSTR). In the thermal decomposition reaction, the reaction conditions are preferably set at 1 to 2 hours at a temperature of 200 to 1000 ° C., if the temperature is less than 200 ° C., the pyrolysis reaction does not proceed. If the temperature exceeds 1000 ° C., the styrene is pyrolyzed to convert to gas. There is a problem that the selectivity of styrene is greatly reduced, and if the pyrolysis time is less than 1 hour, the reaction time is not enough, the recovery amount of the styrene monomer is small, and if it exceeds 2 hours, the productivity is reduced by increasing the energy consumption. There is.

이와 같이, 본 발명은 열분해 반응전에 용융하는 전처리 공정과 반응기에 스크루우를 이용하여 투입하는 공정의 수행으로 용융에 의해 불용성 물질이 제거되고, 반응성이 좋게 한정된 분자량의 폐폴리스틸렌을 사용하여 반응속도를 증가시켜 수율을 높임으로써, 스틸렌 단량체의 회수율을 높이는 효과를 가진다. As described above, the present invention removes insoluble materials by melting by performing pretreatment of melting before pyrolysis reaction and adding a screw to the reactor, and uses a highly reactive molecular weight waste polystyrene to improve the reaction rate. By increasing the yield by increasing, it has the effect of increasing the recovery rate of the styrene monomer.

이하, 본 발명을 다음의 실시예에 의하여 더욱 상세하게 설명하겠는 바, 본 발명이 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention.

실시예 1Example 1

본 발명에 사용된 폐폴리스틸렌은 가락동 농수산시장 중심에서 수거되는 감용 잉곳(Ingot)의 파쇄물을 이용하였으며, 상기 파쇄물 입자는 3 cm 이내의 불규칙한 크기를 가지고 있다.Waste polystyrene used in the present invention was used for the debris of the ingot (Ingot) collected in the center of the Garak-dong agricultural and fisheries market, the crushed particles have an irregular size within 3 cm.

폐폴리스틸렌을 사출성형기(1)에 의해 약 3 ㎝이하 크기로 파쇄하여 일정 속도로 용융조(2)에 투입하였다. 투입된 폐폴리스틸렌을 300 ℃의 온도에서 3 시간동안 용융하여 불용성 물질을 제거하였고, 분자량이 94,000에 도달하였다. 상기에서 얻어진 폐폴리스틸렌을 스크루우를 이용하여 반응기(3)에 투입하여 1시간 동안 200 rpm의 회전속도로 반응물을 교반하며 380 ℃에서 열분해하여 얻어진 분해된 기체를 열교환기(4)를 통하여 액화시켜 얻어진 오일을 오일저장조(5)에서 수집하였다. 이때, 열분해 과정 중에 생성되는 스틸렌 혼합물이 쉽게 배출되기 위하여 질소를 30 ㎖/min의 유량으로 반응기(3)내에 공급하였으며, 투입되는 폐폴리스틸렌의 양은 얻어지는 오일의 양과 동일하게 공급하였다.The waste polystyrene was crushed to a size of about 3 cm or less by the injection molding machine 1 and introduced into the melting tank 2 at a constant speed. The injected waste polystyrene was melted at a temperature of 300 ° C. for 3 hours to remove insoluble matters, and the molecular weight reached 94,000. The waste polystyrene obtained above was introduced into the reactor 3 using a screw, and the reactant was stirred at a rotational speed of 200 rpm for 1 hour, and the decomposed gas obtained by pyrolysis at 380 ° C. was liquefied through the heat exchanger 4. The oil obtained was collected in an oil reservoir (5). At this time, in order to easily discharge the styrene mixture generated during the pyrolysis process, nitrogen was supplied into the reactor 3 at a flow rate of 30 ml / min, and the amount of waste polystyrene introduced was equally supplied to the amount of oil obtained.

상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며, 상기의 폐폴리스틸렌 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. The resulting oil was observed in the degree of pyrolysis by measuring the volume with time using a mesocylinder, and the result obtained in the waste polystyrene molecular weight was shown in FIG. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

실시예 2Example 2

실시예 1과 동일하게 실시하되, 상기 용융온도를 280 ℃로 대신하여 분자량이 119,000인 폐폴리스틸렌을 얻어 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며 상기 폐폴리스틸렌의 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. The reaction was carried out in the same manner as in Example 1 except that the waste polystyrene having a molecular weight of 119,000 was obtained by replacing the melting temperature with 280 ° C. The resulting oil was observed in the degree of pyrolysis by measuring the volume over time using a measuring cylinder, and the result obtained from the molecular weight of the waste polystyrene was substituted into the first reaction rate equation and is shown in FIG. 2. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

실시예 3Example 3

실시예 1과 동일하게 실시하되, 상기 용융온도를 250 ℃로 대신하여 분자량이 134,000인 폐폴리스틸렌을 얻어 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며 상기 폐폴리스틸렌의 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. The reaction was carried out in the same manner as in Example 1 except that the waste polystyrene having a molecular weight of 134,000 was obtained by replacing the melting temperature with 250 ° C. The resulting oil was observed in the degree of pyrolysis by measuring the volume over time using a measuring cylinder, and the result obtained from the molecular weight of the waste polystyrene was substituted into the first reaction rate equation and is shown in FIG. 2. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

실시예 4Example 4

실시예 1과 동일하게 실시하되, 상기 용융온도를 235 ℃로 대신하여 분자량이 98,000인 폐폴리스틸렌을 얻어 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며 상기 폐폴리스틸렌의 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. The reaction was carried out in the same manner as in Example 1 except that the waste temperature was replaced with 235 ° C. to obtain waste polystyrene having a molecular weight of 98,000. The resulting oil was observed in the degree of pyrolysis by measuring the volume over time using a measuring cylinder, and the result obtained from the molecular weight of the waste polystyrene was substituted into the first reaction rate equation and is shown in FIG. 2. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

실시예 5Example 5

실시예 1과 동일하게 실시하되, 상기 용융온도를 220 ℃로 대신하여 분자량이 164,000인 폐폴리스틸렌을 얻어 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며 상기 폐폴리스틸렌의 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. In the same manner as in Example 1, but instead of the melting temperature to 220 ℃ to obtain a waste polystyrene having a molecular weight of 164,000 was carried out for the reaction. The resulting oil was observed in the degree of pyrolysis by measuring the volume over time using a measuring cylinder, and the result obtained from the molecular weight of the waste polystyrene was substituted into the first reaction rate equation and is shown in FIG. 2. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

실시예 6Example 6

실시예 1과 동일하게 실시하되, 상기 용융온도를 200 ℃로 대신하여 분자량이 180,000인 폐폴리스틸렌을 얻어 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였으며 상기 폐폴리스틸렌의 분자량에서 얻은 결과를 1차 반응 속도식에 대입하여 도 2에 나타내었다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. The reaction was carried out in the same manner as in Example 1 except that the waste polystyrene having a molecular weight of 180,000 was obtained by replacing the melting temperature with 200 ° C. The resulting oil was observed in the degree of pyrolysis by measuring the volume over time using a measuring cylinder, and the result obtained from the molecular weight of the waste polystyrene was substituted into the first reaction rate equation and is shown in FIG. 2. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

비교예Comparative example

실시예 1과 동일하게 실시하되, 상기 용융시키는 과정 없이 폐폴리스틸렌을 반응기에 직접 투입하여 반응을 실시하였다. 상기 생성되는 오일은 메스실린더를 사용하여 시간에 따른 부피를 측정하여 열분해 정도를 관찰하였다. 또한 상기 방법에 의해 얻어진 생성물의 분석은 모세관 컬럼(HP-1, 25 m ×0.2 mm ×0.11 ㎛, Crosslinked 5 % PH ME 실록산)이 장착된 GC/FID(DONAM 기기)를 사용하여 이를 표 1에 나타내었다. In the same manner as in Example 1, the reaction was carried out by directly adding waste polystyrene to the reactor without the melting process. The resulting oil was measured for volume over time using a measuring cylinder to observe the degree of pyrolysis. In addition, the analysis of the product obtained by the above method was performed in Table 1 using GC / FID (DONAM instrument) equipped with a capillary column (HP-1, 25 m × 0.2 mm × 0.11 μm, Crosslinked 5% PH ME siloxane). Indicated.

구분division 분자량Molecular Weight 용융조건Melting condition 오일의 성분 (중량%)Component of Oil (wt%) 온도(℃)Temperature (℃) 시간(hr)Hours (hr) 스틸렌Styrene 알파메틸스틸렌Alphamethylstyrene 톨루엔toluene 벤젠benzene 에틸벤젠Ethylbenzene 다이머이상Dimer abnormality 실시예 1Example 1 94,00094,000 300300 33 66.7066.70 4.634.63 1.981.98 0.110.11 1.561.56 25.0225.02 실시예 2Example 2 119,000119,000 280280 33 66.4166.41 3.853.85 2.822.82 0.120.12 1.501.50 25.0325.03 실시예 3Example 3 134,000134,000 250250 33 69.1969.19 2.472.47 0.950.95 0.120.12 0.340.34 26.9526.95 실시예 4Example 4 150,000150,000 235235 33 67.8567.85 3.613.61 1.671.67 0.120.12 0.860.86 26.0026.00 실시예 5Example 5 164,000164,000 220220 33 64.5764.57 4.374.37 1.711.71 0.150.15 1.551.55 27.6527.65 실시예 6Example 6 180,000180,000 200200 33 62.9662.96 5.035.03 2.002.00 0.130.13 2.152.15 27.7327.73 비교예Comparative example 200,000200,000 -- -- 62.8662.86 5.095.09 2.052.05 0.150.15 2.252.25 27.6027.60

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 용융 과정을 실시하고, 반응성이 좋은 분자량의 폐폴리스틸렌을 스크루우를 이용하여 반응기에 투입하여 열분해 반응시킨 실시예 1 ∼ 6은 직접 열분해 반응기에 투입하여 열분해 반응시킨 비교예에 비해 회수되는 오일 중에 스틸렌 단량체의 함량이 높아 고수율로 스틸렌 단량체를 회수할 수 있음을 확인할 수 있었다. 또한 실시예 1 ∼ 6의 각 용융온도에 따른 반응속도 상수를 나타낸 도 2를 살펴보면, 반응속도 상수는 평균 0.02 ∼ 0.07 정도였고 실시예 4의 250 ℃에서 약 0.07의 최고값을 나타내었다. As shown in Table 1, the Examples 1 to 6 subjected to the melting process according to the present invention, and pyrolysis reaction of the high molecular weight waste polystyrene having a high molecular weight into the reactor using a screw is directly added to the pyrolysis reactor It was confirmed that the styrene monomer can be recovered in a high yield because the content of the styrene monomer is higher in the oil recovered than the comparative example subjected to the pyrolysis reaction. In addition, referring to FIG. 2 showing the reaction rate constants according to the melting temperatures of Examples 1 to 6, the reaction rate constants were about 0.02 to 0.07 on average and exhibited a maximum value of about 0.07 at 250 ° C of Example 4.

상술한 바와 같이, 본 발명은 열분해 반응전에 용융하는 전처리 공정과 반응기에 스크루우를 이용하여 투입하는 방법의 수행으로 용융에 의해 불용성 물질이 제거되고, 반응성이 좋게 한정된 분자량의 폐폴리스틸렌을 사용하여 반응속도를 증가시켜 반응성을 증가시키며 스틸렌 단량체의 회수공정에서 부반응으로 생성되는 에틸벤젠, 알파메틸스틸렌, 벤젠, 톨루엔 등의 생성을 억제시켜 회수되는 스틸렌 단량체의 수율을 높이는 효과를 가진다. As described above, in the present invention, insoluble matters are removed by melting by performing a pretreatment step of melting before the pyrolysis reaction and a method of adding a screw to the reactor, and the reaction is performed using waste polystyrene having a highly reactive molecular weight. Increasing the rate to increase the reactivity and has the effect of increasing the yield of styrene monomer recovered by inhibiting the production of ethylbenzene, alpha methyl styrene, benzene, toluene produced by the side reaction in the recovery process of the styrene monomer.

도 1은 본 발명에 따른 폐폴리스틸렌을 열분해하여 스틸렌 단량체를 회수하는 공정을 개략적으로 나타낸 공정도이다.1 is a process diagram schematically showing a process of recovering styrene monomer by pyrolyzing waste polystyrene according to the present invention.

도 2는 본 발명(실시예 1 ∼ 6)을 1차 반응속도식을 이용하여 산출한 용융온도에 따른 반응속도 상수를 나타낸 그래프이다. 2 is a graph showing reaction rate constants according to melting temperatures of the present invention (Examples 1 to 6) calculated using a first order reaction rate equation.

[도면의 부호에 대한 간단한 설명]Brief description of the symbols in the drawings

1: 사출성형기 2: 용융조1: injection molding machine 2: melter

3: 반응기 4: 열교환기3: reactor 4: heat exchanger

5: 오일저장조 5: oil reservoir

Claims (2)

폐폴리스틸렌을 열분해 반응하여 스틸렌 단량체를 회수하는 방법에 있어서, In the method of recovering the styrene monomer by pyrolyzing waste polystyrene, 1) 사출성형기(1)에서 폐폴리스틸렌을 파쇄하여 용융조(2)에 투입하는 단계;1) crushing the waste polystyrene in the injection molding machine (1) and put it in the melting tank (2); 2) 상기 폐폴리스틸렌을 200 ~ 300 ℃ 온도에서 30분 ~ 5시간 동안 용융하여 불용성 물질을 제거한 후, 상기 불용성 물질이 제거된 폐폴리스틸렌의 분자량을 90,000 ~ 200,000 범위로 조절하는 단계; 2) melting the waste polystyrene at a temperature of 200 to 300 ° C. for 30 minutes to 5 hours to remove an insoluble substance, and then adjusting the molecular weight of the waste polystyrene from which the insoluble substance is removed to a range of 90,000 to 200,000; 3) 상기 용융된 폐폴리스틸렌을 스크루우를 이용하여 반응기(3)에 투입하고 200 ~ 1000 ℃ 온도에서 1 ~ 2 시간동안 열분해하는 단계; 및 3) injecting the molten waste polystyrene into the reactor (3) using a screw and pyrolyzing at a temperature of 200 ~ 1000 ℃ for 1 to 2 hours; And 4) 상기 열분해된 기체를 열교환기(4)를 통해 액화시켜 얻어진 오일을 오일 저장조(5)에서 수집하는 단계가 포함되는 것을 특징으로 하는 폐폴리스틸렌으로부터 스틸렌 단량체의 회수 방법.4) collecting the styrene monomer from the waste polystyrene, characterized in that the oil obtained by liquefying the pyrolyzed gas through a heat exchanger (4) is collected in an oil reservoir (5). 삭제delete
KR10-2003-0022662A 2003-04-10 2003-04-10 Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology Expired - Lifetime KR100524698B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0022662A KR100524698B1 (en) 2003-04-10 2003-04-10 Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0022662A KR100524698B1 (en) 2003-04-10 2003-04-10 Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology

Publications (2)

Publication Number Publication Date
KR20040088685A KR20040088685A (en) 2004-10-20
KR100524698B1 true KR100524698B1 (en) 2005-11-01

Family

ID=37370358

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0022662A Expired - Lifetime KR100524698B1 (en) 2003-04-10 2003-04-10 Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology

Country Status (1)

Country Link
KR (1) KR100524698B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868236B1 (en) 2007-06-27 2008-11-11 한국화학연구원 Method for preparing adsorbent using pyrolysis residue of waste polystyrene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3635043B1 (en) 2017-06-06 2023-02-15 INEOS Styrolution Group GmbH Recycling method for styrene-containing plastic waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209175A (en) * 1991-12-03 1993-08-20 Fuji Risaikuru Kk Method for reutilizing wastes of plastic
US5672794A (en) * 1993-10-21 1997-09-30 Basf Aktiengesellschaft Recovery of styrene from waste polystyrene
KR19980070079A (en) * 1997-11-06 1998-10-26 마명덕 Emulsification Method and Apparatus of Waste Plastic
JP2000191825A (en) * 1998-12-25 2000-07-11 San Kaihatsu Kk Process for recovering styrene monomer from polystyrene resin waste
KR20030006459A (en) * 2001-07-13 2003-01-23 주식회사 리플코리아 Oil creation method and the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209175A (en) * 1991-12-03 1993-08-20 Fuji Risaikuru Kk Method for reutilizing wastes of plastic
US5672794A (en) * 1993-10-21 1997-09-30 Basf Aktiengesellschaft Recovery of styrene from waste polystyrene
KR19980070079A (en) * 1997-11-06 1998-10-26 마명덕 Emulsification Method and Apparatus of Waste Plastic
JP2000191825A (en) * 1998-12-25 2000-07-11 San Kaihatsu Kk Process for recovering styrene monomer from polystyrene resin waste
KR20030006459A (en) * 2001-07-13 2003-01-23 주식회사 리플코리아 Oil creation method and the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868236B1 (en) 2007-06-27 2008-11-11 한국화학연구원 Method for preparing adsorbent using pyrolysis residue of waste polystyrene

Also Published As

Publication number Publication date
KR20040088685A (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US5639937A (en) Process for the production of olefins
US7884230B2 (en) Process for chemical recycling of post consumption poly(ethylene terephthalate) and apparatus for chemical recycling of post consumption polyethylene terephthalate
US6881303B2 (en) Method and system for pyrolyzing plastic and pyrolysate product
CN114829475B (en) Method for depolymerizing polystyrene in presence of foreign polymer
US12296504B2 (en) Pyrolysis method of waste plastics using batch reactor
KR100265273B1 (en) Emulsification Method and Apparatus of Waste Plastic
EP4363128A1 (en) Systems and methods for processing mixed plastic waste
KR20230013238A (en) How to recycle waste polystyrene products
US20140155662A1 (en) Thermal de-polymerization process of plastic waste materials
EP4314199A1 (en) Process and system for the recycling of composite plastic materials, mixed and pure waste plastics
US5072068A (en) Method for retrieving styrene monomer from discarded polystyrene scrap through pyrolytic reduction
KR100508334B1 (en) Manufacturing Device of Alternative Fuel Oil from Non-Catalytic Pyrolysis Process
KR100524698B1 (en) Method for recovery of styrene monomer from waste polystyrene by new thermal degradation technology
KR101149320B1 (en) Continuous reactor for thermal degradation of polystyrene and method for recovery of styrene using it
JPH0789900A (en) Method for recovering high-quality monomer from plastic
KR100759583B1 (en) Emulsification Method of Waste Plastic and Reactor for the Method
US8449725B2 (en) Apparatus for recovering styrene monomer and method of recovering styrene monomer using auxiliary solvent
CA2576355C (en) Treatment of waste using three temperature stages within one chamber
EP4298077B1 (en) Recycling of styrene oligomers by de-polymerization process
KR101237744B1 (en) Apparatus for recovering styrene monomer using auxiliary solvent
WO2023161414A1 (en) A method for the production of a pyrolysis oil from end-of-life plastics
KR100513495B1 (en) Continuous reactor for thermal degradation of polystyrene and method for recovery of styrene using it
JP2004010690A (en) Method for producing useful substances from plastics
KR20080080264A (en) Three-stage catalytic pyrolysis process for recovering hydrocarbons from mixed synthetic resins.
KR100868236B1 (en) Method for preparing adsorbent using pyrolysis residue of waste polystyrene

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20030410

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20050628

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20051013

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20051021

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20051024

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20080930

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20090928

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20100930

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20110915

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20121002

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20121002

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20130911

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20130911

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18

PR1001 Payment of annual fee

Payment date: 20141001

Start annual number: 10

End annual number: 18

PC1801 Expiration of term

Termination date: 20231010

Termination category: Expiration of duration