KR100484258B1 - 반도체 소자 제조 방법 - Google Patents
반도체 소자 제조 방법 Download PDFInfo
- Publication number
- KR100484258B1 KR100484258B1 KR10-2001-0086313A KR20010086313A KR100484258B1 KR 100484258 B1 KR100484258 B1 KR 100484258B1 KR 20010086313 A KR20010086313 A KR 20010086313A KR 100484258 B1 KR100484258 B1 KR 100484258B1
- Authority
- KR
- South Korea
- Prior art keywords
- insulating film
- film
- plug
- forming
- semiconductor device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 12
- 238000004140 cleaning Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 230000002950 deficient Effects 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 7
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000008096 xylene Substances 0.000 claims description 6
- 230000009969 flowable effect Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 230000000149 penetrating effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 69
- 230000007547 defect Effects 0.000 description 11
- 238000005530 etching Methods 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 반도체 소자 제조 방법에 관한 것으로, 특히 비트라인 또는 비트라인 콘택 형성에 따른 오버랩 마진을 향상시키기에 적합한 반도체 소자 제조 방법을 제공하기 위한 것으로, 이를 위해 본 발명은, 절연막을 관통하여 기판에 콘택된 플러그를 형성하는 단계; 상기 플러그를 포함한 전면에 평탄화절연막을 형성하여 상기 플러그 표면의 결함 부분을 매립하는 단계; 세정에 의한 상기 평탄화절연막의 손실을 방지하기 위해 상기 평탄화절연막 상에 보호절연막을 형성하는 단계; 세정하는 단계; 및 상기 보호절연막과 상기 평탄화절연막을 관통하여 상기 플러그에 콘택된 전도막을 형성하는 단계를 포함하는 반도체 소자 제조 방법을 제공한다.
Description
본 발명은 반도체 기술에 관한 것으로, 특히 선택적 에피텍셜 성장(Selective Epitaxial Growth; 이하 SEG라 함)에 의한 플러그 형성 방법에 관한 것이다.
반도체 소자를 구성하는 일련의 제조 공정 중 자기정렬콘택(Self Align Contact; 이하 SAC라 함) 형성 공정을 진행한 다음, 플러그 물질의 형성법으로 SEG를 사용하는 연구가 활발히 진행되고 있는 바, SEG에 의해 플러그를 형성할 경우 기존의 증착에 비해 0.1㎛ 이하의 선폭의 기술에서 콘택저항을 1.5배 이상 줄일 수 있는 장점이 있다. 한편, SEG 형성 후에 층간절연막으로 HDP(High Density Plasma) 산화막을 증착하고 화학기계적연마(Chemical Mechanical Polishing; 이하 CMP라 함)를 실시하여 플러그 간을 격리(Isolation)시킨 후, 크게 다음의 두가지 경우로 공정이 진행된다.
가. USG(Undoped Silicate Glass)막을 증착하고 비트라인 콘택 형성 및 비트라인 배선 식각
나. HDP 산화막 증착 후 플라즈마 전면식각을 실시하고 비트라인 콘택 및 비트라인 배선식각
한편, 전술한 각각의 공정은 다음과 같은 문제점이 발생한다.
먼저, '가'의 경우는 HDP 산화막을 증착하고 CMP를 실시할 경우에 발생되는 미소 디싱(Dishing) 현상으로 인해 이후 비트라인 식각단계에서 비트라인간 단락을 유발하게 되는 바, 이는 종래기술에 따른 비트라인 형성 후의 반도체 소자의 평면 SEM 사진을 도시한 도 1의 'A'와 같다.
다음으로, '나'의 경우 SEG 증착 단계에서 형성된 SEG 퍼짓(Facet) 과도 발생 부위에서 HDP 산화막을 증착하는 단계에서 층잔절연막 상의 마이크로 보이드(Micro void) 또는 절연막 상의 파임성 결함(Defect)을 발생시키며 특히, 플라즈마 전면식각 단계를 통하여 이러한 결함이 현저하게 발전된다. 그리고, 이후 공정 단계인 텅스텐(W) 등의 비트라인과의 통전을 위한 비트라인 콘택 또는 비트라인 식각공정 중 이러한 결함으로 인해 유발되는 미세단차로 인해 결함이 발생된 지역에서는 사진식각 공정에서의 DOP 마진 부족을 유발하여 소자의 불량을 초래한다.
도 2a 내지 도 2d는 전술한 종래의 문제점을 각각 도시한 평면 및 단면 SEM 사진이다.
도 2a에 도시된 'B'는 SEG의 퍼짓이 발생했던 부위를 나타내며, 이는 후속 FDp 산화막 증착 후 파임성 결함을 유발하게 되며, 도 2b는 비트라인 식각 후의 평면 SEM 사진으로서, 도시된 'C'는 비트라인 형성 단게에서 비트라인 브릿지(Bridge) 발생 원인으로 진화한다. 도 2c의 'D'와 'E'는 각각 비트라인 콘택 형성 후 및 폴리실리콘 증착 후의 결함을 나타낸다.
또한, 도 2d는 도 2a의 단면 SEM 사진으로서, 도시된 'F'는 SEG의 퍼짓이 약간 심한 것으로서, 이러한 부위에서 HDP 산화막의 두께 및 모폴로지(Morphology)가 파인 형태로 나타난다.
한편, 차세대 소자의 경우 비트라인과 비트라인 콘택 간의 오버랩(Overlap) 마진의 감소가 설계상 및 공정상의 문제로 인해 크게 감소한다.
이러한 공정상의 문제점을 방지하기 위해 0.1㎛ 이하의 선폭을 갖는 반도체 소자 기술에서는 절연산화막의 갭-필(Gap-fill) 특성에 있어서 콘택홀 등의 스페이스가 감소하고 종횡비(Aspect ratio)가 점점 증가함에 따라 완전한 필링(Filling, 채움)이 불가능하여, 보이드(Void)가 생기는 문제점이 발생하는 바, 이러한 문제점을 해결하기 위해 플로우 특성을 갖는 절연막 즉, 유동성 절연막을 형성하는 기술인 APL(Advanced Planalization Layer) 박막에 대한 연구가 활발히 진행되고 있다.
이러한, APL 박막 기술 중 자기 평탄화 CVD(화학기상증착; 이하 CVD라 함)막은 상당히 유동성이 높은 반응 중간체를 형성하는 것으로, 막 형성을 할 때 우수하게 채움 평탄화를 실현할 수 있다. 그 때문에 평탄화된 층간절연막 형성을 단일한 공정으로 할 수 있어서 종래의 복잡한 공정에 비해서 공정 비용을 효과적으로 줄일 수 있는 바, 자기 평탄화 CVD막은 저압화학기상증착(Low Pressure Chemical Vapor Deposition; 이하 LPCVD라 함)법을 이용하여 반응소스로 과수(H2O2)와 사일렌(SiH4
)을 이용하여 형성하며, 자체적인 플로우 특성을 갖고 있어 갭-필 특성이 우수한 장점이 있다.
전술한 유동성 절연막의 장점을 요약하면 다음과 같다.
가. 갭-필 특성이 우수하다.
나. 막 안정성이 높다.
다. 크랙(Crack)과 들뜸(Lifting) 형상이 발생하지 않는다.
라. 650℃ 이하의 온도에서 증착하므로 열경비(Thermal budget)가 낮다.
마. 1000℃ 이상의 온도에 대한 내성이 있다.
바. 강한 케미컬에 대한 내성과 평탄성을 갖는다.
그러나, 유동성 절연막은 HF 또는 완충산화막식각제(Buffered Oxide Etchant; 이하 BOE라 함)을 이용한 습식 세정 방식에 의한 전세정(Pre-cleaning)시 유동성 절연막이 불산계 용액에서 식각속도가 빨라 상부의 임계치수가 넓어지는 현상(Top Critical Dimension Widening)이 발생하여 후속 전도성의 물질을 증착한 다음에 비트라인 형성 공정시, 비트라인과 비트라인 콘택간의 오버랩 마진이 크게 감소하게 된다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 비트라인 또는 비트라인 콘택 형성에 따른 오버랩 마진을 향상시키기에 적합한 반도체 소자 제조 방법을 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위해 본 발명은, 절연막을 관통하여 기판에 콘택된 플러그를 형성하는 단계; 상기 플러그를 포함한 전면에 평탄화절연막을 형성하여 상기 플러그 표면의 결함 부분을 매립하는 단계; 세정에 의한 상기 평탄화절연막의 손실을 방지하기 위해 상기 평탄화절연막 상에 보호절연막을 형성하는 단계; 세정하는 단계; 및 상기 보호절연막과 상기 평탄화절연막을 관통하여 상기 플러그에 콘택된 전도막을 형성하는 단계를 포함하는 반도체 소자 제조 방법을 제공한다.
본 발명은, 플러그 형성을 위한 평탄화 공정시 플러그 상부의 퍼짓 등의 표면 결함에 의한 후속 비트라인 또는 비트라인 콘택 형성 공정에서의 결함 및 오버랩 마진 감소 형성을 극복하기 위해 퍼짓 등의 표면 결함을 유동성 절연막 또는 사일렌을 이용한 USG(Undoped Silicate Glass)막 등을 이용하여 매립한 후, 그 상부에 TEOS(Tetra Ethyl Ortho Silicate)막 또는 HDP(High Density Plasma) 산화막 등을 적층하여 사용하는 것을 기술적 특징으로 한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명하는 바, 도 3a 내지 도 3d는 본 발명의 일실시예에 따른 반도체 소자 제조 공정을 도시한 단면도이다.
먼저, 도 3a에 도시된 바와 같이 반도체 소자를 이루기 위한 여러 요소가 형성된 기판(10) 상에 소정의 도전패턴을 형성하는 바, 도전패턴은 비트라인 또는 게이트전극 등을 포함하며, 이하에서는 게이트전극을 그 일예로 하여 설명한다.
구체적으로, 산화막계열의 게이트절연막(11)과 폴리실리콘, 텅스텐 또는 텅스텐 실리사이드 등을 단독 또는 혼합하여 게이트전극용 전도막(12)과 질화막 등의 하드마스크(13)을 차례로 증착한 후, 게이트전극 마스크를 이용한 사진식각 공정을 실시하여 게이트전극을 형성한다.
이어서, 게이트전극 측벽을 보호하기 위해 스페이서(14)를 형성하는 바, 이 때 실리콘질화막 또는 실리콘산화질화막을 이용하여 50Å ∼ 500Å의 두께로 형성한다.
계속해서, 게이트전극 사이의 스페이스를 충분히 채울 수 있을 정도로 층간절연막(15)을 증착한 다음, SAC 공정을 통해 게이트전극 사이의 기판(10) 표면 예컨대, 소스/드레인 등의 불순물 확산영역을 오픈시킨다. 이어서, SEG 또는 폴리실리콘 증착을 통해 SAC 공정에 의해 노출된 기판(10)에 콘택된 플러그(16)를 헝성한다.
이 때, 전술한 바와 같이 도면부호 '17' 등의 퍼짓이 발생하게 된다.
계속해서, 이웃하는 플러그(16)와의 격리를 위해 HDP 산화막 등을 이용하여 절연막(18)을 형성한다.
다음으로, 도 3b에 도시된 바와 같이 CMP 또는 건식에 의한 전면식각 등의 평탄화 공정을 실시하여 플러그(16)간을 격리시킨다. 이 때, 전술한 퍼짓(17)이 여전히 남아 있게 되는 바, 이는 후속 공정 예컨대, 비트라인 콘택홀 형성 및 비트라인 형성 공정에서의 큰 부담으로 작용하게 된다.
따라서, 이를 극복하기 위해 도 3c에 도시된 바와 같이 플러그(16)를 포함한 전면에 유동성 절연막 또는 사일렌을 이용한 USG막 등을 이용하여 평탄화절연막(19)을 형성하여 전술한 퍼짓(17) 등의 표면 결함을 매립시킨다.
이어서, 후속 세정 공정에서의 평탄화절연막(19)의 손실을 방지하기 위해 그 상부에 TEOS막 또는 HDP 산화막을 이용하여 보호절연막(20)을 형성한 후, 세정 공정을 실시하는 바, 이 때 보호절연막(20)은 평탄화절연막(19)의 손실을 방지하게 된다.
여기서, HDP 산화막을 이용하는 경우에는 1000Å ∼ 10000Å의 두께로 형성하며, TEOS막을 이용하는 경우에는 400Å ∼ 5000Å의 두께, 유동성 절연막의 경우에는 100Å ∼ 5000Å의 두께, 그리고 사일렌을 이용한 USG막을 이용하는 경우에는 1000Å ∼ 5000Å의 두께로 각각 형성한다.
다음으로, 도 3d에 도시된 바와 같이 비트라인 등의 콘택 형성을 위한 포토레지스트 패턴(21)을 형성한 다음, 이를 식각마스크로 하여 보호절연막(20)과 평탄화절연막(19)을 차례로 식각하여 플러그(16) 표면을 노출시키는 오픈부(22)를 형성하는 바, 이 때 평탄화절연막(19)과 보호절연막(20)에 의해 하부의 결함을 보완하면서 막평탄화를 이룰수 있어 포토레지스트 패턴(21) 형성을 위한 포토레지스트의 도포 및 노광 공정에서의 공정 마진을 확보할 수 있다.
다음으로, 도 3e에 도시된 바와 같이 오픈부(22)를 매립하며 플러그(16)에 콘택된 비트라인 등의 전도막(23)을 형성하는 바, 금속막(23)과 플러그(16) 사이의 접촉 계면에 배리어막을 추가로 형성하며, Ti, TiN, TiW, TaW 또는 WN 등을 이용하여 50Å ∼ 1000Å의 두께로 하며, 전도막(23)은 W, WSi 또는 금속실리사이드 등을 단독 또는 적층하여 사용할 수 있으며 그 두께는 500Å ∼ 2000Å 정도로 한다.
도 4는 도 3e의 평면을 도시한 SEM 사진으로서, 이를 참조하면 본 발명의 공정 적용에 따라 예컨대, 하지 절연막의 평탄화로 인해 비트라인의 단락이 방지됨을 알 수 있다.
전술한 본 발명은, 유동성 절연막 등의 평탄화절연막과 TEOS막 등의 보호절연막을 플러그 상부에 적층구조로 형성하여 이용함으로써, 플러그 표면에서의 퍼짓 등에 의한 결함과 세정 공정에 의한 문제점 등을 극복할 수 있어, 후속 공정시 공정 마진을 향상시킬 수 있으며, 소자의 특성 열화를 방지할 수 있음을 실시예를 통해 알아 보았다.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
상술한 바와 같은 본 발명은, 하부 전도막 평탄화에 따른 문제점을 표면 결함 등을 극복함으로써 공정 마진을 향상시키며 특성 열화를 방지할 수 있어, 궁극적으로 반도체 소자의 수율을 향상시킬 수 있는 탁월한 효과를 기대할 수 있다.
도 1은 종래기술에 따른 비트라인 형성 후의 반도체 소자의 평면을 도시한 SEM 사진,
도 2a 내지 도 2d는 종래기술에 따른 문제점을 각각 도시한 평면 및 단면 SEM 사진,
도 3a 내지 도 3e는 본 발명의 일실시예에 따른 반도체 소자 제조 공정을 도시한 단면도,
도 4는 도 3e의 평면을 도시한 SEM 사진.
* 도면의 주요부분에 대한 부호의 설명 *
10 : 기판 11 : 게이트절연막
12 : 게이트전극용 전도막 13 : 하드마스크
14 : 스페이서 15 : 층간절연막
16 : 플러그 19 : 평탄화절연막
20 : 보호절연막 23 : 전도막
Claims (8)
- 절연막을 관통하여 기판에 콘택된 플러그를 형성하는 단계;상기 플러그를 포함한 전면에 평탄화절연막을 형성하여 상기 플러그 표면의 결함 부분을 매립하는 단계;세정에 의한 상기 평탄화절연막의 손실을 방지하기 위해 상기 평탄화절연막 상에 보호절연막을 형성하는 단계;세정하는 단계; 및상기 보호절연막과 상기 평탄화절연막을 관통하여 상기 플러그에 콘택된 전도막을 형성하는 단계를 포함하는 반도체 소자 제조 방법.
- 제 1 항에 있어서,상기 평탄화 절연막은 유동성절연막 또는 사일렌을 이용한 USG막을 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 2 항에 있어서,상기 유동성절연막을 100Å ∼ 5000Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 2 항에 있어서,상기 사일렌을 이용한 USG막을 1000Å ∼ 5000Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 1 항에 있어서,상기 보호절연막은 HDP 산화막 또는 TEOS막을 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 5 항에 있어서,상기 HDP 산화막을 1000Å ∼ 10000Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 5 항에 있어서,상기 TEOS막을 400Å ∼ 5000Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.
- 제 1 항에 있어서,상기 플러그를 선택적 에피텍셜 성장법을 이용하여 형성하는 것을 특징으로 하는 반도체 소자 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0086313A KR100484258B1 (ko) | 2001-12-27 | 2001-12-27 | 반도체 소자 제조 방법 |
US10/293,497 US20030124465A1 (en) | 2001-12-27 | 2002-11-14 | Method for fabricating semiconductor device capable of covering facet on plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0086313A KR100484258B1 (ko) | 2001-12-27 | 2001-12-27 | 반도체 소자 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030056149A KR20030056149A (ko) | 2003-07-04 |
KR100484258B1 true KR100484258B1 (ko) | 2005-04-22 |
Family
ID=19717705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0086313A KR100484258B1 (ko) | 2001-12-27 | 2001-12-27 | 반도체 소자 제조 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20030124465A1 (ko) |
KR (1) | KR100484258B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101087889B1 (ko) * | 2009-09-21 | 2011-11-30 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6380576B1 (en) | 2000-08-31 | 2002-04-30 | Micron Technology, Inc. | Selective polysilicon stud growth |
KR100505419B1 (ko) * | 2003-04-23 | 2005-08-04 | 주식회사 하이닉스반도체 | 반도체 소자의 소자분리막 제조방법 |
US7294545B2 (en) | 2003-07-02 | 2007-11-13 | Micron Technology, Inc. | Selective polysilicon stud growth |
KR100602092B1 (ko) * | 2004-07-26 | 2006-07-14 | 동부일렉트로닉스 주식회사 | 반도체 소자 및 그 제조방법 |
US20060278912A1 (en) * | 2004-09-02 | 2006-12-14 | Luan Tran | Selective polysilicon stud growth |
KR100876758B1 (ko) * | 2006-12-26 | 2009-01-08 | 주식회사 하이닉스반도체 | 반도체 소자의 제조방법 |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US20130260564A1 (en) * | 2011-09-26 | 2013-10-03 | Applied Materials, Inc. | Insensitive dry removal process for semiconductor integration |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI766433B (zh) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990055776A (ko) * | 1997-12-27 | 1999-07-15 | 김영환 | 반도체 소자의 미세콘택 형성방법 |
KR19990070614A (ko) * | 1998-02-23 | 1999-09-15 | 구본준 | 반도체장치의 비트라인 평탄화 방법 |
KR20000045420A (ko) * | 1998-12-30 | 2000-07-15 | 김영환 | 반도체 소자의 플러그 폴리 형성방법 |
KR20010008518A (ko) * | 1999-07-01 | 2001-02-05 | 김영환 | 플러그폴리를 갖는 반도체장치의 층간절연막 형성방법 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3281209B2 (ja) * | 1995-01-30 | 2002-05-13 | 株式会社東芝 | 半導体装置の製造方法 |
US6541363B2 (en) * | 1996-10-17 | 2003-04-01 | Guobiao Zhang | Antifuse manufacturing process |
JPH1154504A (ja) * | 1997-08-04 | 1999-02-26 | Sony Corp | 積層絶縁体膜の形成方法およびこれを用いた半導体装置 |
US6063712A (en) * | 1997-11-25 | 2000-05-16 | Micron Technology, Inc. | Oxide etch and method of etching |
US6337279B1 (en) * | 1998-12-17 | 2002-01-08 | United Microelectronics Corp. | Method of fabricating a shallow trench isolation |
US6376293B1 (en) * | 1999-03-30 | 2002-04-23 | Texas Instruments Incorporated | Shallow drain extenders for CMOS transistors using replacement gate design |
US6221780B1 (en) * | 1999-09-29 | 2001-04-24 | International Business Machines Corporation | Dual damascene flowable oxide insulation structure and metallic barrier |
KR100527577B1 (ko) * | 1999-12-24 | 2005-11-09 | 주식회사 하이닉스반도체 | 반도체소자의 제조방법 |
KR100431295B1 (ko) * | 2001-10-12 | 2004-05-12 | 주식회사 하이닉스반도체 | 반도체소자의 플러그 형성방법 |
US6548853B1 (en) * | 2002-02-13 | 2003-04-15 | Samsung Electronics Co., Ltd. | Cylindrical capacitors having a stepped sidewall and methods for fabricating the same |
US7160811B2 (en) * | 2002-10-22 | 2007-01-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Laminated silicate glass layer etch stop method for fabricating microelectronic product |
-
2001
- 2001-12-27 KR KR10-2001-0086313A patent/KR100484258B1/ko not_active IP Right Cessation
-
2002
- 2002-11-14 US US10/293,497 patent/US20030124465A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990055776A (ko) * | 1997-12-27 | 1999-07-15 | 김영환 | 반도체 소자의 미세콘택 형성방법 |
KR19990070614A (ko) * | 1998-02-23 | 1999-09-15 | 구본준 | 반도체장치의 비트라인 평탄화 방법 |
KR20000045420A (ko) * | 1998-12-30 | 2000-07-15 | 김영환 | 반도체 소자의 플러그 폴리 형성방법 |
KR20010008518A (ko) * | 1999-07-01 | 2001-02-05 | 김영환 | 플러그폴리를 갖는 반도체장치의 층간절연막 형성방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101087889B1 (ko) * | 2009-09-21 | 2011-11-30 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20030124465A1 (en) | 2003-07-03 |
KR20030056149A (ko) | 2003-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100484258B1 (ko) | 반도체 소자 제조 방법 | |
KR100800680B1 (ko) | 반도체 소자의 층간 절연막 형성 방법 | |
US6686286B2 (en) | Method for forming a borderless contact of a semiconductor device | |
KR20040004911A (ko) | 반도체 장치에서 셀프 얼라인 콘택홀 형성 방법 | |
JP2003124144A (ja) | 半導体素子の製造方法 | |
KR100502673B1 (ko) | 반도체소자의 티타늄막 형성방법 및 배리어금속막 형성방법 | |
KR100492898B1 (ko) | 반도체 소자 제조 방법 | |
KR100744104B1 (ko) | 콘택 형성 방법 | |
KR20070093794A (ko) | 반도체 소자의 콘택플러그 제조 방법 | |
US20090032900A1 (en) | Method of protecting shallow trench isolation structure and composite structure resulting from the same | |
KR20020017796A (ko) | 반도체 소자 제조방법 | |
KR100832018B1 (ko) | 반도체 소자 및 그 제조 방법 | |
KR100927394B1 (ko) | 선택적 에피택셜 성장 방식을 이용한 반도체소자 및 그제조 방법 | |
KR100578230B1 (ko) | 듀얼다마신공정을 이용한 비트라인 형성 방법 | |
KR100744001B1 (ko) | 랜딩 플러그 콘택 형성 방법 | |
KR100917639B1 (ko) | 반도체 소자 제조 방법 | |
KR100673772B1 (ko) | 절연막 스페이서를 이용한 비트라인 콘택 플러그 형성 방법 | |
KR100780614B1 (ko) | 반도체 소자 제조방법 | |
KR100428685B1 (ko) | 반도체 소자 제조 방법 | |
KR100849773B1 (ko) | 반도체 소자의 제조 방법 | |
KR100543459B1 (ko) | 자기 정렬 콘택 형성 방법 | |
KR20020002538A (ko) | 반도체소자의 콘택플러그 형성 방법 | |
KR20010008518A (ko) | 플러그폴리를 갖는 반도체장치의 층간절연막 형성방법 | |
KR20070090359A (ko) | 반도체 소자의 제조방법 | |
KR20010005109A (ko) | 반도체 소자의 콘택 형성방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080320 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |