KR100481043B1 - A fine-grained lightweight aggregate by use of the waste glass and the method for producing it - Google Patents

A fine-grained lightweight aggregate by use of the waste glass and the method for producing it Download PDF

Info

Publication number
KR100481043B1
KR100481043B1 KR10-2001-0076420A KR20010076420A KR100481043B1 KR 100481043 B1 KR100481043 B1 KR 100481043B1 KR 20010076420 A KR20010076420 A KR 20010076420A KR 100481043 B1 KR100481043 B1 KR 100481043B1
Authority
KR
South Korea
Prior art keywords
weight
aggregate
waste glass
parts
molding
Prior art date
Application number
KR10-2001-0076420A
Other languages
Korean (ko)
Other versions
KR20030046564A (en
Inventor
임태영
김병일
현부성
박태호
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR10-2001-0076420A priority Critical patent/KR100481043B1/en
Publication of KR20030046564A publication Critical patent/KR20030046564A/en
Application granted granted Critical
Publication of KR100481043B1 publication Critical patent/KR100481043B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 폐유리를 이용한 인조 골재에 관한 것으로서, 본 발명의 골재는 고형분 기준으로 폐 유리 분말 70-95중량%, 발포제 4-20중량% 및 성형조제로서 유기 또는 무기 바인더 1-10중량%를 함유하는 조성물을 발포성형한 미립 인조경량골재로서, 입도 1mm 이하의 미립경량골재의 제조가 가능하고, 또한 원재료로서 폐유리 및 무기질 폐부산물을 이용할 수 있기 때문에 환경보호 및 자원재활용 차원에서 매우 가치가 있고, 이를 통해 많은 선박에 이러한 경량골재 사용이 확산될 수 있으며, 군용 선박에 있어서도 적용이 되면 큰 효과가 기대된다.The present invention relates to an artificial aggregate using waste glass, the aggregate of the present invention is based on solids 70-95% by weight of waste glass powder, 4-20% by weight foaming agent and 1-10% by weight of organic or inorganic binder as a molding aid It is very valuable in terms of environmental protection and recycling of resources because it is possible to manufacture fine-grained aggregates having a particle size of 1 mm or less as a raw artificial lightweight aggregate of foam-containing compositions, and to use waste glass and inorganic waste by-products as raw materials. And, through this, the use of such lightweight aggregates can be spread to many ships, if applied to military ships is expected to have a great effect.

Description

폐유리를 이용한 미립 경량골재 및 그 제조방법{A fine-grained lightweight aggregate by use of the waste glass and the method for producing it} A fine-grained lightweight aggregate by use of the waste glass and the method for producing it}

본 발명은 인조 골재에 관한 것으로서, 보다 구체적으로는 원재료로서 폐유리 및 무기질 폐부산물을 이용하여 선박의 데크나 고층빌딩의 구조재료로서 유용한 미립자상의 인조 경량골재를 제조하는 방법에 관한 것이다. The present invention relates to artificial aggregates, and more particularly, to a method for producing fine particulate artificial lightweight aggregates useful as structural materials for decks and high-rise buildings of ships using waste glass and inorganic waste by-products as raw materials.

콘크리트는 건축 및 토목용 재료로서 예전부터 가장 보편적으로 널리 애용되어 오고 있다. 그러나 최근 콘크리트 건축물들이 고층화 및 대형화되어 감에 따라 그 중량을 감소시키기 위한 노력을 하고 있으며, 이에 대한 해결책의 하나로서 콘크리트의 재료 중 비중에 가장 큰 영향을 미치고 있는 골재를 경량화하기 위해 많은 노력을 하고 있다. 아울러서 한정된 골재원 속에서 양질의 콘크리트용 골재를 수급하기가 점차 어려워지고 있으며, 하천으로부터 채취되는 강모래, 강자갈 등의 골재들도 수급 부족현상이 나타나고 있는 실정이다. 따라서 이러한 문제의 해결을 위해 인조경량골재에 대한 관심도가 높아지고 있으며, 특히 구조용 인조경량골재에 대해서는 특히 많은 연구개발이 이루어지고 있는 상황이다. 즉 이러한 경량골재를 사용하여 경량콘크리트(Lightweight Concrete)를 구조용으로 적용할 수 있으며, 이에 따라 건물의 고층화와 함께 건물의 단열성능향상을 통한 에너지 절감효과와 부족한 천연골재의 의존도를 낮출 수 있다.Concrete is the most widely used material for construction and civil engineering. However, as concrete buildings are getting higher and larger in recent years, efforts have been made to reduce their weight.As a solution to this, many efforts have been made to lighten the aggregates that have the greatest influence on the specific gravity of concrete materials. have. In addition, it is becoming increasingly difficult to supply high-quality concrete aggregates in limited aggregate sources, and shortages of supply and demand for aggregates such as river sand and strong gravel collected from rivers are also appearing. Therefore, in order to solve these problems, interest in artificial lightweight aggregates is increasing, and in particular, many research and developments are being made on artificial lightweight aggregates. In other words, using such lightweight aggregate can be applied to the lightweight concrete (Lightweight Concrete) for structural use, thereby reducing the energy dependence and the dependence of the lack of natural aggregate through the increase of the building and the insulation performance of the building.

또한 선박의 데크(Deck)에는 용접부와 같은 미려하지 못한 부분의 일정 두께(약 7mm)를 마무리하여야 하는데, 예전에는 불연재인 폴리머시멘트나 폴리머와 같은 재료를 사용하여 얇게 도포하여 마감하였다. 그러나 시멘트는 비중이 높아 선박의 전체 중량을 감소시키는데 문제점을 갖고 있었으며, 폴리머와 같은 경우는 화재시 유독가스의 발생으로 사용치 못하고 있다. 따라서 화재시 문제점이 없으며, 선박의 전체무게를 줄일 수 있고, 시공재료의 강도 향상을 고려하여 시멘트에 무기질 재료인 경량골재를 채움재로 사용하는 것이 바람직하다고 할 수 있다. 그러나 기존의 경량골재는 너무 크기 때문에 이를 선박에 적용하기에는 문제점을 갖고 있다.In addition, the deck of the ship should be finished with a certain thickness (about 7mm) of unsatisfactory parts such as welded parts. In the past, a thin coating was applied using a material such as polymer cement or polymer which is a nonflammable material. However, cement has a problem of reducing the total weight of the ship due to its high specific gravity, and in the case of polymers, it is not available due to the generation of toxic gas in the fire. Therefore, there is no problem in fire, it is possible to reduce the overall weight of the vessel, in consideration of improving the strength of the construction material it can be said that it is preferable to use a lightweight aggregate, which is an inorganic material in cement as a filler. However, existing lightweight aggregates are so large that they have problems to apply to ships.

종래, 인조경량골재는 그 원료에 있어서 석탄재(국내특허 공고 제95-8609호)라든가, 석면(국내특허공고 제81-123호), 폐플라스틱(국내특허공고 제80-1056호), 탄광폐석(국내특허공고 제80-1054호), 혈암(국내특허공고 제79-1985호), 침전지의 침전물(국내특허공고 제73-166호), 적와용 점토(국내특허공고 제71-242호)등과 같은 폐원료를 위주로 개발하여 왔다. 이러한 재료들을 이용하는 것은 폐기물을 재활용하는 방법에 있어서 바람직하다고 할 수 있으나, 본 발명의 목표에는 적합하지 않다고 할 수 있다. Conventionally, artificial light weight aggregates include coal ash (domestic patent publication No. 95-8609), asbestos (domestic patent publication No. 81-123), waste plastic (domestic patent publication No. 80-1056), coal mine waste materials as raw materials. (Domestic Patent Publication No. 80-1054), Shale (Domestic Patent Publication No. 79-1985), Sedimentation of sedimentation basins (Domestic Patent Publication No. 73-166), Red Clay Clay (Domestic Patent Publication No. 71-242) It has been developed mainly for waste raw materials. Using these materials may be desirable in the method of recycling waste, but may not be suitable for the purposes of the present invention.

즉, 상기한 대다수의 특허들에 있어서는 경량골재의 입도가 크고 원료자체를 잡다한 폐기물을 사용하였으므로 비중과 셀의 형태도 매우 불균질한 상태이다. 따라서 이러한 원료와 방법으로는 미립의 입도를 조절할 수 없으며, 입도를 조절하였다 하더라도 셀의 형성에 있어서 매우 거칠고 크기 때문에 미립의 경량골재 제조에는 많은 문제점이 있으며, 제조되었다 하더라도 강도에 있어서도 문제점이 있다고 할 수 있다. That is, in the above-mentioned majority of the patents, the weight of the aggregate is large and the waste of the raw material itself is used, so the specific gravity and the shape of the cell are also very heterogeneous. Therefore, these raw materials and methods can not control the particle size of the fine particles, even if the particle size is controlled, because of the very rough and large in the formation of the cell, there are many problems in the production of fine aggregate aggregates, there is a problem in strength even if manufactured Can be.

따라서 본 발명은 상기한 바와 같은 선행기술의 제반 문제점을 감안하여, 경량골재의 입도와 그 안에 형성되는 셀의 형태를 미세하게 제어하여 기존의 재료와는 용도와 형태가 다른 미립의 경량골재의 조성과 이를 이용한 경량골재의 제조방법을 제공하는 것을 기술적 과제로 한다. Therefore, the present invention, in view of all the problems of the prior art as described above, by finely controlling the granularity of the lightweight aggregate and the form of the cells formed therein, the composition of the lightweight aggregate of the fine aggregate different in use and form from the existing materials And to provide a method for producing a lightweight aggregate using the same as a technical problem.

상기한 과제를 해결한 본 발명에 의하면, 고형분 기준으로 폐유리 분말 70-95중량%, 발포제 4-20 중량% 및 성형조제 1-10중량%를 함유하는 조성물을 발포성형한 것임을 특징으로 하는 미립자상 인조경량골재가 제공된다. According to the present invention that solved the above problems, the fine particles characterized in that the composition containing 70-95% by weight of the waste glass powder, 4-20% by weight of the blowing agent and 1-10% by weight of the molding aid based on the solid content The artificial light weight aggregate is provided.

또한 상기 조성물은 폐유리분말, 발포제 및 성형조제의 합량(合量) 100중량부 기준으로, 규조토, 플라이애쉬 및 퍼라이트분말로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물로 되는 보조첨가제 0-40중량부(고형분)와 수산화나트륨 0-20중량부(고형분)를 더 함유하는 것을 특징으로 한다.In addition, the composition is based on 100 parts by weight of the total amount of waste glass powder, foaming agent and molding aid, the auxiliary additive 0- consisting of one or two or more mixtures selected from the group consisting of diatomaceous earth, fly ash and perlite powder It further comprises 40 parts by weight (solid content) and 0-20 parts by weight (solid content) of sodium hydroxide.

또한 본 발명에 의하면, 상기 조성물을 로타리킬른에 공급하여 300-450℃의 온도에서 1차 성형하여 응집체를 제조한 후, 상기 응집체를 로타리킬른에서 800℃ 이상 1100℃ 이하의 온도로 2차 성형하여 발포시키는 것을 특징으로 하는 미립자상 인조경량골재의 제조방법이 제공된다. In addition, according to the present invention, by supplying the composition to the rotary kiln and primary molding at a temperature of 300-450 ° C to produce agglomerates, the aggregate is secondary molded at a temperature of 800 ℃ or more and 1100 ° C or less in the rotary kiln There is provided a method for producing particulate artificial light weight aggregate, characterized in that the foaming.

또한 본 방법은 응집체를 2차성형할 때 유리보다 고온에서 소결되는 세라믹계 이형제를 투입하여 수행한 후 상기 이형제를 회수하여 재사용하는 것을 특징으로 한다. In addition, the method is characterized by recovering and releasing the releasing agent after the addition of the ceramic-based releasing agent sintered at a higher temperature than glass when secondary agglomerates.

이하, 본 발명을 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

본 발명 인조경량골재의 조성에 있어서 필수성분은 폐유리분말, 발포제 및 성형조제이다. Essential components in the composition of the artificial light weight aggregate of the present invention are waste glass powder, foaming agent and molding aid.

폐유리 분말은 폐기된 소다석회 유리, 붕규산 유리, 알루미노 실리케이트 유리 등과 같은 폐유리의 분쇄물로서, 필수성분 중 그 바람직한 함량은 70-95중량%, 보다 바람직하게 80-90중량%이다. 폐유리의 함량이 70중량% 미만이면 소망하는 경량골재를 제조하는 것이 곤란하고 강도가 저하할 우려가 있으며, 95중량% 초과 시에는 비중조절이 곤란하고 경량골재로 사용하기에 부적합하게 된다. The waste glass powder is a pulverized product of waste glass such as discarded soda lime glass, borosilicate glass, aluminosilicate glass and the like, with the preferred content of essential components being 70-95% by weight, more preferably 80-90% by weight. If the content of the waste glass is less than 70% by weight, it is difficult to produce the desired lightweight aggregate and there is a fear that the strength is lowered. When it exceeds 95% by weight, it is difficult to control the specific gravity and is not suitable for use as a lightweight aggregate.

필수성분 중 발포제의 함량은 고형분 기준으로 바람직하게 5-20중량%, 보다 바람직하게 7-10중량%가 적당한데, 그 함량이 5중량% 미만인 경우에는 비중이 과도하게 상승될 수 있고, 20중량% 초과하는 경우에는 비중이 과도하게 저하되고 강도가 저하될 수 있다. 유리 및 세라믹의 발포는 적당한 발포제(재료가 연화하는 온도에서 분해되어야 함)를 혼합한 원료를 가열하여 발포제가 분해됨과 동시에 연화되어 포를 형성하게 된다. 그러나 균질하고 원하는 적당한 포의 크기를 얻기 위해서는 적당한 발포제와 적당한 유리를 필요로 하게 된다. 발포제로는 분해되면서 가스성분을 발생할 수 있는 성분이면 모두 가능하지만 균질한 포를 형성하기 위해서는 적당한 발포제의 선정과 많은 실험이 뒷받침되어야만 원하는 형태의 포(cell)를 얻을 수 있다.The content of the blowing agent in the essential component is preferably 5-20% by weight, more preferably 7-10% by weight based on solids, when the content is less than 5% by weight, the specific gravity may be excessively increased, 20% by weight If it exceeds%, the specific gravity may be excessively lowered and the strength may be lowered. Foaming of glass and ceramics heats the raw material mixed with a suitable blowing agent (which must be decomposed at the temperature at which the material softens) to soften and deform at the same time as the blowing agent is decomposed. However, in order to achieve a homogeneous and desired desired fabric size, the appropriate blowing agent and the appropriate glass are required. Any foaming agent can be used as long as it can decompose gas. However, in order to form a homogeneous foam, a cell of the desired form can be obtained only after the selection of a suitable foaming agent and many experiments.

발포제는 재료가 연화하는 온도에서 분해하면서 가스성분을 방출하는 것이면 모두 사용할 수 있다. 이러한 발포제의 예로는 액체 또는 고체 인산칼슘(CaO3P2O5H2O), 탄산칼슘(CaCO3), 탄소, 탄산나트륨(Na2CO3), 산화철(Fe2O3), 산화안티몬(Sb2O5), 산화비소(As2O5) 또는 이들의 혼합물 등이 있다. 이들 중에서 특히 바람직한 발포제는 인산칼슘 단독 또는 인산칼슘과 탄산나트륨의 혼합물이며, 인산칼슘은 고체인 경우보다 액체인 경우가 보다 효과적이다.A blowing agent can be used as long as it releases gaseous components while decomposing at a temperature at which the material softens. Examples of such blowing agents include liquid or solid calcium phosphate (CaO 3 P 2 O 5 H 2 O), calcium carbonate (CaCO 3 ), carbon, sodium carbonate (Na 2 CO 3 ), iron oxide (Fe 2 O 3 ), antimony oxide ( Sb 2 O 5 ), arsenic oxide (As 2 O 5 ), or mixtures thereof. Particularly preferred blowing agents among them are calcium phosphate alone or a mixture of calcium phosphate and sodium carbonate, and calcium phosphate is more effective in the case of liquid than in the case of solid.

상기한 발포제들 중 일부 발포제의 발포 메카니즘을 나타내면 다음과 같다. The foaming mechanism of some of the above blowing agents is as follows.

CaCO3 --> CaO + CO2CaCO 3- > CaO + CO 2

10CaO3P2O5H2O --> 10CaO3P2O5 + H2O ↑10CaO 3 P 2 O 5 H 2 O-> 10CaO 3 P 2 O 5 + H 2 O ↑

탄소 + 유리중 용존 SO3 --> S2 + CO ↑ + CO2Dissolved SO 3- > S 2 + CO ↑ + CO 2 ↑ in carbon + glass

탄소 + As2O5 --> As2O3 + CO2Carbon + As 2 O 5- > As 2 O 3 + CO 2

탄소 + Sb2O5 --> Sb2O3 + CO2Carbon + Sb 2 O 5- > Sb 2 O 3 + CO 2

균질하고 원하는 적당한 포의 크기를 얻기 위해서는 적당한 발포제와 적당한 유리를 필요로 하게 된다. 발포제로는 분해되면서 가스성분을 발생할 수 있는 성분이면 모두 가능하지만 균질한 포를 형성하기 위해서는 적당한 발포제의 선정과 많은 실험이 뒷받침되어야 원하는 형태의 포를 얻을 수 있다. 이러한 관점에서 인산칼슘은 1mm 이하의 적당한 강도와 폐기공을 갖는 경량골재를 제조하기 위해서 매우 적합한 발포제이다. 카본이나 탄산칼슘과 같은 발포제의 경우는 포의 상태는 좋지만 셀의 형태가 개방(open) 형태로서 경량골재로서는 바람직하지 않으며, Fe2O3의 경우는 셀벽이 너무 두꺼우므로 비중이 너무 커서 단독으로 사용하기에는 바람직하지 않다. 또한 보다 낮은 온도에서 2차 성형에 따른 발포가 이루어지도록 하기 위해서는 Na2CO3와 같이 낮은 온도에서 발포하는 발포제를 병용하는 것이 바람직하다. 도 1은 발포제의 종류를 달리하여 얻은 경량골재의 발포상태를 촬영한 전자현미경 사진으로, 카본발포제의 경우 포의 크기가 너무 커서 강도가 약하게 될 수 있으며, CaCO3의 경우는 포의 상태는 좋지만 셀의 형태가 개방형태로서 경량골재로서는 적합하지 않으며, Fe2O3 의 경우는 셀벽이 너무 두꺼우므로 비중이 너무 커서 단독으로는 발포제로서 역할을 하지 못하는 것으로 판단할 수 있으며, 인산칼슘 발포제가 경량골재의 발포제로서 가장 우수한 것으로 나타났다. 도 2는 인산칼슘을 이용한 발포 형태를 확인하기 위하여 배율을 높여서 촬영한 전자현미경 사진으로, 작고 균질한 발포 상태를 보여주고 있다. 이는 약 0.1-0.2mm의 미세한 포의 형성을 보여주고 있는데, 이는 열처리 온도를 조절함으로써 더 작게 조절이 가능하며, 1mm 이하의 적당한 강도와 폐기공을 갖는 경량골재를 제조하기 위해서는 적당한 발포제라고 판단된다.To obtain a homogeneous and desired size of the fabric, the appropriate blowing agent and the appropriate glass are required. Any foaming agent can be used as long as it can decompose the gas, but in order to form a homogeneous foam, it is necessary to select a suitable foaming agent and support many experiments to obtain a desired foam. In this respect, calcium phosphate is a very suitable blowing agent for producing lightweight aggregates having a suitable strength of less than 1 mm and closed holes. In the case of foaming agents such as carbon and calcium carbonate, the state of the fabric is good, but the shape of the cell is open, which is not preferable as a lightweight aggregate. In the case of Fe 2 O 3 , the cell wall is too thick, so the specific gravity is too large. Not preferred for use. In addition, in order to achieve the foaming according to the secondary molding at a lower temperature, it is preferable to use a blowing agent foamed at a low temperature, such as Na 2 CO 3 . 1 is an electron micrograph photographing the foaming state of the light weight aggregate obtained by different types of foaming agent, the carbon foaming agent is too large the size of the foam can be weak strength, in the case of CaCO 3 is good As the shape of the cell is open, it is not suitable as a lightweight aggregate. In the case of Fe 2 O 3 , the cell wall is too thick, so the specific gravity is too large to be considered as a foaming agent alone, and the calcium phosphate foaming agent is lightweight. It has been shown to be the best as a blowing agent for aggregates. Figure 2 is an electron microscope photograph taken to increase the magnification to confirm the foam form using calcium phosphate, showing a small and homogeneous foam state. This shows the formation of a fine fabric of about 0.1-0.2mm, which can be controlled smaller by controlling the heat treatment temperature, and is considered to be a suitable foaming agent for producing lightweight aggregates having a suitable strength of less than 1mm and waste holes. .

또한 상기한 필수성분 중 성형조제의 함량은 고형분 기준으로 바람직하게 1-10중량%, 보다 바람직하게 3.5-5중량%이다. 성형조제의 함량이 너무 낮으면 부서지기 쉬우므로 성형이 곤란하고, 성형조제의 함량이 너무 많으면 자체 응집 및 설비에 점착 등이 발생하여 성형이 곤란하게 된다. 성형조제로는 무기 또는 유기 바인더가 바람직하며, 그 예로는 규산 소다(물유리)와 같은 무기 바인더, PVA 수용액, 메틸셀룰로오스 수용액 등과 같은 유기바인더를 들 수 있다. In addition, the content of the molding aid in the above-mentioned essential components is preferably 1-10% by weight, more preferably 3.5-5% by weight on a solids basis. If the content of the molding aid is too low, the molding is difficult to break, and if the content of the molding aid is too high, self-aggregation and adhesion to the equipment occurs, making molding difficult. The molding aid is preferably an inorganic or organic binder, and examples thereof include an inorganic binder such as sodium silicate (water glass), an organic binder such as an aqueous PVA solution, an aqueous methyl cellulose solution, and the like.

또한 본 발명의 인조경량골재는 선택성분으로 수산화나트륨 또는 보조첨가제를 함유할 수 있다. In addition, the artificial light weight aggregate of the present invention may contain sodium hydroxide or an auxiliary additive as an optional component.

선택성분 중 수산화나트륨의 고형분 함량은 필수성분 100중량부 기준으로 바람직하게 0-20중량부, 보다 바람직하게 4-10중량부이다. 수산화나트륨은 발포불량 및 2차 성형온도 상승을 방지하는 작용을 하는 것으로서, 그 함량이 너무 많으면 발포 과다 및 강도 저하를 유발할 수 있다. The solids content of sodium hydroxide in the optional ingredient is preferably 0-20 parts by weight, more preferably 4-10 parts by weight based on 100 parts by weight of the essential ingredient. Sodium hydroxide is to prevent the poor foaming and the rise of the secondary molding temperature, too high content may cause excessive foaming and strength decrease.

또한 본 조성물의 선택성분 중 보조첨가제의 고형분 함량은 필수성분 100중량부 기준으로 바람직하게 0-40중량부, 보다 바람직하게 0-20중량부이다. 이와 같이 보조첨가제를 배합하는 경우 최종 골재제품의 강도를 효과적으로 향상시킬 수 있게 된다. 보조첨가제는 강도를 높이면서 저비중화가 가능하나, 기포벽을 두껍게하므로 1㎜ 이상의 조립 제조시에 사용효과가 있고, 1㎜ 미만의 조립제조에는 첨가하지 않는 것이 바람직하다. 보조첨가제의 함량이 지나치게 많으면 기포벽이 과도하게 두꺼워져 발포불량이 발생할 수 있다. In addition, the solid content of the auxiliary additive in the optional ingredient of the present composition is preferably 0-40 parts by weight, more preferably 0-20 parts by weight based on 100 parts by weight of the essential ingredient. As such, when the auxiliary additive is blended, the strength of the final aggregate product can be effectively improved. Auxiliary additives can be reduced in specific gravity while increasing the strength, but since the bubble wall is thick, it is effective to use in the production of granules of 1 mm or more, and it is preferable not to add the granules of less than 1 mm. If the content of the coadditive is excessively large, the bubble wall may be excessively thick, resulting in poor foaming.

본 발명에 의하면 1mm 이하의 미립경량골재를 제조하는 것이 가능하게 된다. 1mm 이하의 입자로 이루어진 경량골재의 내부에는 적어도 0.1mm 이하의 입도로 이루어진 균질한 셀들로 이루어진 상태가 되어야 경량골재로서 강도를 유지할 수 있다. According to the present invention, it becomes possible to produce fine particulate aggregate of 1 mm or less. The interior of the lightweight aggregate made of particles of 1mm or less should be in a state made up of homogeneous cells made of a particle size of at least 0.1mm or less to maintain the strength as a lightweight aggregate.

따라서 본 발명에서는 0.1mm 이하의 미세한 셀을 1mm 이하의 경량골재에 형성시키는 기술을 확립시킴으로서 골재의 강도를 유지할 수 있었으며, 유리를 원료로 하였으므로 흡수율 또한 낮으므로(폐기공으로서 표면에서만 흡수율을 나타냄), 경량골재로서의 좋은 면모를 갖추었다고 할 수 있다. Therefore, the present invention was able to maintain the strength of the aggregate by establishing a technology for forming fine cells of 0.1 mm or less in lightweight aggregates of 1 mm or less, and since glass is used as a raw material, the absorption rate is also low (absorption shows only absorption on the surface). It can be said that it has a good aspect as a lightweight aggregate.

또한 성형에 있어서 1mm 이하의 미립을 성형하는 기술 또한 발명의 효과라고 할 수 있는데, 일반적으로 경량골재는 그 크기가 5mm 이상은 된다. 이는 1차 및 2차 성형에 있어서 큰 문제점이 없다고 할 수 있으나, 본 발명의 성형은 1차 성형에서 육안으로는 분말의 상태를 이형제와 혼합한 후 2차 발포성형에서는 1mm이하의 입도를 나타내는 경량골재가 이루어진다. 따라서 성형기술에 있어서도 기존의 성형기술과는 다르다고 할 수 있다. 또한 이외의 발명의 효과로는 적당한 원료를 첨가함으로서 발포의 온도를 낮추어 생산비를 절감함은 물론 폐유리를 사용함으로써 폐자원의 재활용을 기할 수 있다. In addition, the technique of forming the granules of 1mm or less in the molding can also be said to be the effect of the invention, in general, the lightweight aggregate is 5mm or more in size. This can be said that there is no big problem in the primary and secondary molding, but the molding of the present invention is light weight showing the particle size of less than 1mm in the secondary foam molding after mixing the state of the powder with the release agent visually in the primary molding Aggregate is made. Therefore, it can be said that the molding technology is different from the existing molding technology. In addition, the effect of the invention other than by reducing the temperature of the foaming by adding a suitable raw material to reduce the production cost, as well as recycling the waste resources by using waste glass.

본 제조방법에 있어서, 주원료가 되는 소다석회 폐유리와 발포제는 1차 성형을 위하여 로타리킬른에 투입하기 전에 혼합과 동시에 분쇄하여 충분히 혼합한 후 로타리킬른에 투입하는 것이 바람직하다. 원할 경우 폐유리와 발포제를 혼합할 때 보조첨가제를 함께 혼합할 수도 있다. In this production method, the soda-lime waste glass and the blowing agent, which are the main raw materials, are preferably mixed and pulverized and mixed into the rotary kiln before being introduced into the rotary kiln for primary molding. If desired, auxiliary additives may be mixed together when mixing waste glass and blowing agent.

바람직하게, 1차 성형에 투입되는 유리분의 입도는 미분일수록 1차 성형 및 포의 균질도가 양호하게 된다. 바람직한 유리분의 입도는 약 200메쉬 이하이다. Preferably, the finer the particle size of the glass powder added to the primary molding, the better the homogeneity of the primary molding and the fabric. The particle size of the preferred glass powder is about 200 mesh or less.

또한 1차 성형은 로타리킬른의 작동하에 유리혼합분말 위에 성형조제를 뿌려주면서 성형하는 것이 바람직하다. 1차 성형은 발포제가 분해되지 않는 온도, 바람직하게 300-450℃의 온도에서 수행하는 것이 적당하다. 1차 성형온도가 너무 낮으면 응집력이 약해 성형강도가 낮아져서 쉽게 부서질 수 있으며, 너무 높으면 성분간 2 차반응(발포)이 발생하여 골재제조가 불가능하게 된다.In addition, the primary molding is preferably molded while spraying the molding aid on the glass mixture powder under the operation of the rotary kiln. The primary molding is suitably carried out at a temperature at which the blowing agent does not decompose, preferably at a temperature of 300-450 ° C. If the primary molding temperature is too low, the cohesive strength is weak and the molding strength is low and can be easily broken. If the primary molding temperature is too high, secondary reactions (foaming) occur between components, making aggregate production impossible.

본 방법에서 1차 성형에 의해 얻어진 성형물(구형의 응집체 상태)은 로타리킬른에서 2차 성형하여 발포시키게 된다. 바람직하게, 2차 성형에서 로타리킬른의 온도는 유리가 연화 및 소결되는 온도로 설정하게 된다. 특히, 800-1100℃가 적당하다. 이러한 2차 성형 온도에서 유리가 연화되고 소결됨과 동시에 발포제가 분해하면서 가스성분을 방출하게 되고 방출된 가스는 소결된 미립자의 내부에 미세한 셀을 형성하게 된다. 2차 성형시 온도가 너무 낮으면 발포가 제대로 이루어지지 않아 비중이 과다하게 되고 경량골재의 제조가 불가능하게 되며, 너무 높으면 과도한 액상생성으로 형태유지가 곤란하고 설명에 점착 등이 발생할 수 있다. 유리 및 세라믹의 발포는 적당한 발포제를 혼합한 원료를 가열하면 일시 수축한 후 연화온도에서 발포제가 분해됨과 동시에 연화되어 포를 형성하게 된다. In this method, the molded article obtained by primary molding (spherical aggregate state) is secondary molded in a rotary kiln and foamed. Preferably, the temperature of the rotary kiln in the secondary molding is set to the temperature at which the glass softens and sinters. In particular, 800-1100 degreeC is suitable. At this secondary molding temperature, the glass softens and sinters, and at the same time, the blowing agent decomposes, releasing gas components, and the released gas forms fine cells in the sintered fine particles. If the temperature is too low at the time of secondary molding, the foaming is not properly made, the specific gravity is excessive and the production of lightweight aggregate is impossible, too high may be difficult to maintain the shape due to excessive liquid production, and may occur in the description. The foaming of glass and ceramic causes the foaming agent to decompose and soften at the softening temperature after being temporarily contracted when the raw material mixed with the appropriate blowing agent is heated to form a fabric.

이러한 2차 성형에서 유리가 소결되면서 응집체들이 들러붙을 수 있게 되는데, 이를 방지하기 위하여 유리소결온도(대략 1200℃)에서 소결되지 않는 세라믹계 이형제를 응집체와 함께 투입하여 2차 성형하는 것이 바람직하다. 이러한 이형제는 성형이 끝나면 회수하여 재사용한다. 이러한 세라믹계 이형제로는 후술되는 실시예에서 사용한 지르콘 샌드, 카올린 뿐만아니라 유리보다 높은 온도에서 소결되는 저가의 일반 세라믹분말을 사용하여도 된다. 예를 들어 알루미나 분말, 규석분 등도 사용할 수 있다. 세라믹계 이형제는 본 조성물의 필수성분 100중량부 기준으로 바람직하게 0-40중량부(고형분), 보다 바람직하게 10-30중량부(고형분)가 되게 투입하는 것이 적당하다. 2차 성형에서 이형제를 투입하지 않거나 너무 적게 투입하면 조성물의 응집 및 설비에 점착이 발생할 수 있고 투입량이 너무 많은 경우에는 큰 문제는 없으나 골재의 생산성이 저하될 수 있다. In this secondary molding, the glass is sintered to allow the aggregates to adhere to each other. In order to prevent this, it is preferable to inject the ceramic-based mold release agent which is not sintered at the glass sintering temperature (approximately 1200 ° C.) together with the aggregate to perform secondary molding. These release agents are recovered and reused after molding. As such a ceramic mold release agent, you may use not only the zircon sand and kaolin used in the Example mentioned later but a low-cost general ceramic powder sintered at higher temperature than glass. For example, alumina powder, silica powder, etc. can also be used. The ceramic mold release agent is suitably added in an amount of preferably 0-40 parts by weight (solid content), more preferably 10-30 parts by weight (solid content) based on 100 parts by weight of the essential component of the present composition. In the second molding, if the release agent is not added or too little is added, coagulation of the composition and adhesion to the equipment may occur, and if the input amount is too large, there is no big problem, but the productivity of the aggregate may be reduced.

특별히 제한하기 위한 것은 아니지만, 로타리킬른의 온도조절은 약 세부분의 온도온구배를 갖는 것이 바람직하며, 로타리킬른의 회전속도를 조절 가능한 것이 바람직하다. Although not particularly limited, the temperature control of the rotary kiln preferably has a temperature and temperature gradient of about three minutes, and it is preferable that the rotational speed of the rotary kiln can be adjusted.

또한 상기 1차 성형 및 2차 성형을 각기 다른 로타리킬른에서 수행하여도 되고, 공정상의 비용절감을 위하여 단일 로타리킬른에서 1차 성형에 이어 2차 성형을 수행하여도 된다. In addition, the primary molding and the secondary molding may be performed in different rotary kilns, or in order to reduce process costs, the secondary molding may be performed after the primary molding in a single rotary kiln.

이상 설명한 바와 같은 본 발명에 의하면 폐유리를 이용하여 입도가 작고 그 안에 미세한 폐쇄셀(closed cell)을 가지며, 입도가 0.25∼2mm, 밀도(Bulk Density:Kg/dm3±10%)가 0.2∼0.3을 갖는 미립 경량골재를 제조하는 것이 가능하게 된다. 본 발명의 경량골재는 선박의 데크(Deck)에 사용할 수 있는 경량골재로서 화재시 문제점이 없으며, 선박의 전체무게를 줄일 수 있고, 시공재료의 강도 향상을 고려하여 시멘트에 무기질 재료인 경량골재를 채움재로 사용할 수 있다. According to the present invention as described above by using the waste glass has a small particle size and a fine closed cell therein, the particle size of 0.25 ~ 2mm, the density (Bulk Density: Kg / dm 3 ± 10%) of 0.2 ~ 0.3 It is possible to produce fine particulate aggregate having a. Light weight aggregate of the present invention is a light weight aggregate that can be used for the deck of the ship (Deck), there is no problem in the fire, can reduce the overall weight of the ship, considering the strength of the construction material lightweight aggregate, which is an inorganic material in the cement Can be used as a filler.

상기한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다. 단, 본 발명은 하기 실시예로 제한되는 것은 아니다. Features and other advantages of the present invention as described above will become more apparent from the following examples. However, the present invention is not limited to the following examples.

[실시예 1] Example 1

고형분 기준으로 소다석회 폐유리 86.2 중량부와 액체 인산칼슘 발포제 8.6중량부를 볼밀에 투입하여 혼합과 동시에 분쇄하여 입도 200mesh 이하의 유리혼합물을 만들었다. 얻어진 미립자상 유리혼합물을 로타리킬른에 투입하고 물유리 5.2중량부(고형분 기준)를 뿌려주면서 1차 성형공정을 실시하였다. 이때 로타리킬른의 온도는 약 300∼450℃이었다. 다음, 1차 성형공정에서 얻은 응집체 100중량부와 보조첨가제로 지르콘샌드 20중량부 다른 로타리킬른에 공급하고 800-1000℃의 로타리킬른 온도에서 2차 성형하여 발포된 경량골재를 제조하였다.86.2 parts by weight of soda-lime waste glass and 8.6 parts by weight of liquid calcium phosphate foaming agent were added to a ball mill and ground at the same time as a solid to prepare a glass mixture having a particle size of 200 mesh or less. The obtained fine particle glass mixture was put into a rotary kiln, and the primary molding process was performed while spraying 5.2 parts by weight (based on solids) of water glass. At this time, the temperature of the rotary kiln was about 300 ~ 450 ℃. Next, 100 parts by weight of aggregates obtained in the primary molding process and 20 parts by weight of zircon sand as an auxiliary additive were supplied to other rotary kilns, and secondly molded at a rotary kiln temperature of 800-1000 ° C. to produce foamed lightweight aggregate.

도 3은 2차 성형 온도 및 시간에 따른 발포상태를 전자현미경으로 촬영한 사진들로, 도 3(a)는 900℃에서 30분간, 도 3(b)는 950℃에서 10분간, 도 3(c)는 950℃에서 20분간, 도 3(d)는 950℃에서 30분간, 도 3(e)는 1000℃에서 10분간 2차 성형하여 얻은 골재의 발포상태를 촬영한 것이다. 상기 사진들로부터 950℃ 이상의 온도에서 균질한 셀형성을 볼 수 있다. 3 is a photograph taken with an electron microscope of the foaming state according to the secondary molding temperature and time, Figure 3 (a) is 30 minutes at 900 ℃, Figure 3 (b) is 10 minutes at 950 ℃, Figure 3 ( c) is 20 minutes at 950 ℃, Figure 3 (d) is 30 minutes at 950 ℃, Figure 3 (e) is a picture of the foamed state of the aggregate obtained by secondary molding at 1000 ℃ 10 minutes. Homogeneous cell formation can be seen from the photographs at temperatures above 950 ° C.

[실시예 2-1 및 2-2][Examples 2-1 and 2-2]

본 실시예는 실시예 1이 비교적 높은 온도에서 발포되므로 열처리 온도를 낮추기 위해서 발포제로서 액체인산나트륨과 탄산나트륨을 함께 사용하여 실험한 것이다. 실시예 2-1의 실험조건은 폐유리를 84.7중량부 첨가하고, 발포제로서 액체인산칼슘 8.5 중량부와 탄산나트륨 1.7중량부 첨가하고, 물유리를 5.1 중량부 첨가한 것을 제외하고는 실시예 1과 동일하게 하였으며, 실시예 2-2의 경우는 폐유리를 82.6중량부 첨가하고, 발포제로서 액체인산칼슘 8.3 중량부와 탄산나트륨 4.1중량부 첨가하고, 물유리를 5.0 중량부 첨가한 것을 제외하고는 실시예 1과 동일하게 하였다. In this example, since Example 1 is foamed at a relatively high temperature, it was tested using liquid sodium phosphate and sodium carbonate together as a blowing agent to lower the heat treatment temperature. Experimental conditions of Example 2-1 were the same as those of Example 1, except that 84.7 parts by weight of waste glass was added, 8.5 parts by weight of liquid calcium phosphate, 1.7 parts by weight of sodium carbonate, and 5.1 parts by weight of water glass were added as a blowing agent. In Example 2-2, 82.6 parts by weight of waste glass was added, except that 8.3 parts by weight of liquid calcium phosphate and 4.1 parts by weight of sodium carbonate were added as a blowing agent, and 5.0 parts by weight of water glass was added. Same as

도 2는 실시예 2-1에서 2차 성형 온도 및 시간에 따른 발포상태를 전자현미경으로 촬영한 사진들로, 도 4(a)는 900℃에서 10분간, 도 4(b)는 900℃에서 20분간, 2차 성형하여 얻은 골재의 발포상태를 촬영한 것이다. 상기 사진들로부터 900℃/20분간 열처리한 결과가 가장 양호한 상태를 보여주고 있음을 알 수 있다. Figure 2 is a photograph taken with an electron microscope of the foaming state according to the secondary molding temperature and time in Example 2-1, Figure 4 (a) at 900 ℃ 10 minutes, Figure 4 (b) at 900 ℃ The foaming state of the aggregate obtained by secondary molding for 20 minutes was photographed. From the photographs, it can be seen that the result of heat treatment at 900 ° C./20 minutes shows the best condition.

도 3은 실시예 2-2에서 2차 성형 온도 및 시간에 따른 발포상태를 전자현미경으로 촬영한 사진들로, 도 5(a)는 800℃에서 20분간, 도 5(b)는 850℃에서 10분간, 도 5(c)는 850℃에서 20분간, 도 5(d)는 850℃에서 30분간 2차 성형하여 얻은 골재의 발포상태를 촬영한 것이다. 상기 사진들로부터 실시예 2-1 보다 낮은 800-850℃에서 열처리한 시편에서 양호한 상태를 보여주고 있음을 알 수 있다. 3 is a photograph taken with an electron microscope of the foaming state according to the secondary molding temperature and time in Example 2-2, Figure 5 (a) is 20 minutes at 800 ℃, Figure 5 (b) at 850 ℃ 10 (10), Figure 5 (c) is 20 minutes at 850 ℃, Figure 5 (d) is a picture of the foamed state of the aggregate obtained by secondary molding at 850 ℃ for 30 minutes. It can be seen from the above pictures that the specimens exhibited good condition in the specimens heat-treated at 800-850 ° C. lower than Example 2-1.

[실시예 3-1 및 3-2][Examples 3-1 and 3-2]

본 실시예는 실험공정을 단순하게 하기 위하여 고체인산칼슘을 사용한 것이다. This example uses solid calcium phosphate to simplify the experimental process.

실시예 3-1의 실험조건은 액체인산칼슘 대신에 고체인산캄슘을 사용한 것을 제외하고는 실시예 2-1과 동일하게 하였고, 실시예 3-2의 실험조건은 액체인산칼슘 대신에 고체인산캄슘을 사용한 것을 제외하고는 실시예 2-2과 동일하게 하였다. The experimental conditions of Example 3-1 were the same as those of Example 2-1 except that solid calcium phosphate was used instead of liquid calcium phosphate, and the experimental conditions of Example 3-2 were solid calcium phosphate instead of liquid calcium phosphate. Except that was used, it was the same as in Example 2-2.

실시예 3-1의 경우는 발포상태가 좋지 못한 결과를 얻었으며, 실시예 3-2의 경우 2차 성형 온도 및 시간에 따른 발포상태를 전자현미경으로 분석한 결과, 액체인산칼슘을 사용했던 상태보다 고온에서 발포하는 것을 볼 수 있었으며, 포벽이 두꺼우므로 온도가 낮은 800-850℃에서 열처리한 시편에서 양호한 발포상태를 보여주고 있지만 액체인산칼슘을 사용했을 때보다 포의 균질도가 떨어지는 것을 볼 수 있었다 [도 6(a) 내지 도 6(f) 참조]. In the case of Example 3-1, a poor foaming state was obtained. In the case of Example 3-2, the state of foaming with secondary molding temperature and time was analyzed by electron microscope, and liquid calcium phosphate was used. It was found to foam at higher temperatures, and because of the thicker walls, the foams exhibited better foaming conditions in the heat-treated specimens at lower temperatures of 800-850 ° C, but the homogeneity of the foams was lower than that of liquid calcium phosphate. (See FIG. 6 (a)-FIG. 6 (f)).

[실시예 4-1 및 4-2][Examples 4-1 and 4-2]

본 실시예에서는 경량골재의 강도를 증진하기 위하여 규조토를 첨가하였다. In this embodiment, diatomaceous earth was added to increase the strength of the lightweight aggregate.

실시예 4-1의 실험조건은 폐유리를 76.3중량부 첨가하고, 발포제로서 액체인산칼슘 7.6 중량부와 탄산나트륨 3.8중량부 첨가하고, 보조첨가제로 규조토를 7.6중량부 첨가하고, 물유리를 4.6 중량부 첨가한 것을 제외하고는 실시예 1과 동일하게 하였으며, 실시예 2-2의 경우는 폐유리를 70.9중량부 첨가하고, 발포제로서 액체인산칼슘 7.1 중량부와 탄산나트륨 3.5중량부 첨가하고, 보조첨가제로 규조토를 14.2중량부 첨가하고, 물유리를 4.3 중량부 첨가한 것을 제외하고는 실시예 1과 동일하게 하였다.In the experimental conditions of Example 4-1, 76.3 parts by weight of waste glass was added, 7.6 parts by weight of liquid calcium phosphate and 3.8 parts by weight of sodium carbonate were added as a blowing agent, 7.6 parts by weight of diatomaceous earth was added as an auxiliary additive, and 4.6 parts by weight of water glass. Except for the addition, it was the same as in Example 1, and in the case of Example 2-2, 70.9 parts by weight of waste glass was added, 7.1 parts by weight of liquid calcium phosphate and 3.5 parts by weight of sodium carbonate were added as a blowing agent. The same procedure as in Example 1 was repeated except that 14.2 parts by weight of diatomaceous earth and 4.3 parts by weight of water glass were added.

얻어진 시료를 전자현미경 분석결과, 규조토를 사용하지 않은 경우 보다 포벽이 두꺼운 것을 알 수 있었으며, 특히 실시예 4-1의 경우 850℃에서 30분간 열처리시 포벽이 갑자기 두껍게 됨을 알 수 있었다 [참조: 도 7 (a) 내지 (c)]. 규조토의 첨가량이 많은 실시예 4-2의 경우는 실시예 4-1 보다 두꺼운 포벽이 형성되었다. As a result of electron microscopic analysis, it was found that the shell wall was thicker than the case in which diatomaceous earth was not used. Particularly, in Example 4-1, when the heat treatment was performed at 850 ° C. for 30 minutes, the wall was suddenly thickened. 7 (a) to (c)]. In Example 4-2, in which the amount of diatomaceous earth was added, a thicker wall was formed than in Example 4-1.

이상 설명한 바와 같이 본 발명은 입도 1mm 이하의 미립경량골재의 제조를 가능하게 하고, 또한 원재료로서 폐유리 및 무기질 폐부산물을 이용할 수 있기 때문에 환경보호 및 자원재활용 차원에서 매우 가치가 있고, 이를 통해 많은 선박에 이러한 경량골재 사용이 확산될 수 있으며, 군용 선박에 있어서도 적용이 되면 큰 효과가 기대되는 매우 유용한 발명이라고 할 수 있다. As described above, the present invention is very valuable in terms of environmental protection and recycling of resources because it enables the production of fine light aggregates having a particle size of 1 mm or less and also uses waste glass and inorganic waste by-products as raw materials. The use of such lightweight aggregates can be spread on ships, and if applied to military ships, it can be said that it is a very useful invention that a great effect is expected.

도 1은 폐유리를 이용한 미립 경량골재를 여러 가지 발포제를 사용하여 제조한 시료를 전자현미경으로 촬영한 사진이고, 1 is a photograph taken by electron microscopy of a sample prepared by using a variety of foaming agent fine lightweight aggregate using waste glass,

도 2는 도 1에서 액체 인산칼슘 발포제를 사용한 시료를 도 1 보다 높은 배율로 촬영한 전자현미경 사진이고,2 is an electron micrograph taken at a higher magnification of the sample using the liquid calcium phosphate blowing agent in FIG.

도 3 (a) 내지 (e)는 실시예 1의 2차 성형온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진들이고, 3 (a) to (e) are photographs taken with an electron microscope of the state of the sample according to the secondary molding temperature and time changes of Example 1,

도 4 (a) 내지 (b)는 실시예 2-1의 2차 성형온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진들이고, 4 (a) to (b) are photographs taken with an electron microscope of the state of the sample according to the secondary molding temperature and time change of Example 2-1,

도 5 (a) 내지 (d)는 실시예 2-2의 2차 성형온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진들이고, 5 (a) to (d) are photographs taken with an electron microscope of the state of the sample according to the secondary molding temperature and time change of Example 2-2,

도 6 (a) 내지 (f)는 실시예 3-2의 2차 성형온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진들이고, 6 (a) to (f) are photographs taken with an electron microscope of the state of the sample according to the secondary molding temperature and time change of Example 3-2,

도 7 (a) 내지 (c)는 실시예 4-1의 2차 성형온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진들이다. 7 (a) to (c) are photographs taken with an electron microscope of the state of the sample according to the secondary molding temperature and time change of Example 4-1.

도 8은 실시예 4-2에서 2차 성형을 850℃에서 온도 및 시간 변화에 따른 시료의 상태를 전자현미경으로 촬영한 사진8 is a photograph taken by electron microscope of the state of the sample according to the temperature and time changes at 850 ℃ the secondary molding in Example 4-2

Claims (4)

인조경량골재에 있어서, 고형분 기준으로 폐 유리 분말 70-95중량%, 발포제로서 인산칼슘, 탄산칼슘, 카본 중에서 선택되는 1종 또는 그 혼합물로서 4-20 중량% 및 성형조제로서 유기 또는 무기 바인더 1-10중량%를 함유하는 조성물을 발포성형한 것임을 특징으로 하는 폐유리를 이용한 미립 인조경량골재. In artificial light weight aggregate, 70-95% by weight of waste glass powder based on solid content, 4-20% by weight as one or a mixture thereof selected from calcium phosphate, calcium carbonate and carbon as a blowing agent, and an organic or inorganic binder 1 as a molding aid. Fine artificial light weight aggregate using waste glass, characterized in that the foam containing the composition containing -10% by weight. 제 1 항에 있어서, 상기 조성물이 폐유리분말, 발포제 및 성형조제로 되는 필수성분 100중량부 기준으로 규조토, 플라이애쉬 및 퍼라이트분말로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물로 되는 보조첨가제 0-40중량부(고형분)와 수산화나트륨 0-20중량부(고형분)를 선택성분으로 함유하는 것을 특징으로 하는 폐유리를 이용한 미립 인조경량골재.The auxiliary additive according to claim 1, wherein the composition comprises one or two or more mixtures selected from the group consisting of diatomaceous earth, fly ash and perlite powder based on 100 parts by weight of essential components of waste glass powder, foaming agent and molding aid. Granulated artificial lightweight aggregate using waste glass, characterized in that it contains 0-40 parts by weight (solid content) and 0-20 parts by weight (solid content) of sodium hydroxide as optional ingredients. 삭제delete 삭제delete
KR10-2001-0076420A 2001-12-05 2001-12-05 A fine-grained lightweight aggregate by use of the waste glass and the method for producing it KR100481043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076420A KR100481043B1 (en) 2001-12-05 2001-12-05 A fine-grained lightweight aggregate by use of the waste glass and the method for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076420A KR100481043B1 (en) 2001-12-05 2001-12-05 A fine-grained lightweight aggregate by use of the waste glass and the method for producing it

Publications (2)

Publication Number Publication Date
KR20030046564A KR20030046564A (en) 2003-06-18
KR100481043B1 true KR100481043B1 (en) 2005-04-07

Family

ID=29573052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0076420A KR100481043B1 (en) 2001-12-05 2001-12-05 A fine-grained lightweight aggregate by use of the waste glass and the method for producing it

Country Status (1)

Country Link
KR (1) KR100481043B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935573B1 (en) * 2007-12-21 2010-01-07 한국세라믹기술원 Ultra light weight inorganic fine-grained aggregate and its manufacturing method
KR100957674B1 (en) * 2009-07-24 2010-05-12 주식회사 테크팩홈솔루션 Lightweight composite material for construction
KR101400851B1 (en) * 2013-10-22 2014-05-29 한국건설생활환경시험연구원 The method of preparing lightweight-aggregate for concrete products using sludge of dyeing-waste water
CN110436837A (en) * 2019-08-26 2019-11-12 厦门美益兴业建材有限公司 A kind of renewable concrete and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732625B1 (en) * 2005-06-04 2007-06-27 요업기술원 Multi-layer ceramic panel and Process of producing thereof
KR100710042B1 (en) * 2005-11-17 2007-04-20 요업기술원 Lightweight aggregate that is manufactured using sludge from glass manufacturing process and rotary kiln and method for manufacturing them
KR100944523B1 (en) * 2007-10-05 2010-03-10 (주)콘솔베르 Lightweight partition for inner and outer wall of structure and menufacturing method of the same
CN110218034A (en) * 2019-06-20 2019-09-10 贵州工程应用技术学院 A kind of method of building waste recovery processing
RU2725997C1 (en) * 2019-08-12 2020-07-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Composition of composite material for production of porous granules of wide range of application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH07101758A (en) * 1993-10-05 1995-04-18 Masaki Saito High hardness artificial lightweight aggregate obtained by incorporating glass fine powder into coal ash
JPH10279334A (en) * 1997-04-03 1998-10-20 Nippon Cement Co Ltd Production of artificial lightweight aggregate
JPH11209130A (en) * 1998-01-22 1999-08-03 Kamaike Yutaka Manufacture of super-lightweight aggregate
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH07101758A (en) * 1993-10-05 1995-04-18 Masaki Saito High hardness artificial lightweight aggregate obtained by incorporating glass fine powder into coal ash
JPH10279334A (en) * 1997-04-03 1998-10-20 Nippon Cement Co Ltd Production of artificial lightweight aggregate
JPH11209130A (en) * 1998-01-22 1999-08-03 Kamaike Yutaka Manufacture of super-lightweight aggregate
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935573B1 (en) * 2007-12-21 2010-01-07 한국세라믹기술원 Ultra light weight inorganic fine-grained aggregate and its manufacturing method
KR100957674B1 (en) * 2009-07-24 2010-05-12 주식회사 테크팩홈솔루션 Lightweight composite material for construction
KR101400851B1 (en) * 2013-10-22 2014-05-29 한국건설생활환경시험연구원 The method of preparing lightweight-aggregate for concrete products using sludge of dyeing-waste water
CN110436837A (en) * 2019-08-26 2019-11-12 厦门美益兴业建材有限公司 A kind of renewable concrete and preparation method thereof
CN110436837B (en) * 2019-08-26 2021-08-24 厦门美益兴业建材有限公司 Renewable concrete and preparation method thereof

Also Published As

Publication number Publication date
KR20030046564A (en) 2003-06-18

Similar Documents

Publication Publication Date Title
Elzeadani et al. One part alkali activated materials: A state-of-the-art review
DE102006051216B4 (en) Process for the preparation of light aggregates, light aggregates obtainable by these processes, and use thereof for the manufacture of building materials
US20140047999A1 (en) Acid and high temperature resistant cement composites
CN105948704B (en) A kind of full solid waste exterior insulation and preparation method thereof based on ceramic polished slag
CN112334429A (en) Particle-stabilized foams using sustainable materials
AU2019343956A1 (en) Sintered geopolymer compositions and articles
CN108395271A (en) Full waste residue foamed ceramics of coal gangue-fly ash-silica sand tailing system and preparation method thereof
KR100481043B1 (en) A fine-grained lightweight aggregate by use of the waste glass and the method for producing it
EP2462075A1 (en) Composition for a light-weight refractory brick having a high anorthite percentage
KR20170036584A (en) Lightweight geopolymer using fly ash highly containing unburned carbon contents and red mud and manufacturing method for the same
CN108290797B (en) Catalytically active foam-forming powder
Font et al. Salt slag recycled by-products in high insulation alternative environmentally friendly cellular concrete manufacturing
KR100935573B1 (en) Ultra light weight inorganic fine-grained aggregate and its manufacturing method
Al-Saadi et al. Foaming geopolymers preparation by alkali activation of glass waste
CN108059430B (en) Autoclaved foam concrete production process based on carbon dioxide emission reduction
CN108911726A (en) A kind of gangue-permeable Ceramic Tiles of desulfurized gypsum-calcium carbonate system and preparation method thereof
CN113816678A (en) Foam light material utilizing dust removal ash solid waste and preparation method and application thereof
US6913643B2 (en) Lightweight foamed glass aggregate
CN115385716B (en) Baking-free lightweight aggregate and preparation method thereof
CN116874235A (en) Preparation method of fiber clay reinforced solid waste base polymer heat insulation material
KR102279744B1 (en) Manufacturing method of coal ash-based geopolymer foams by addition of silica fume as pore generating agent
RU2341483C2 (en) Raw mix for foam silicate heat-insulating material production and associated method of production
KR20020078079A (en) Light-weight porous aggregate for acoustic wave damping modules and method for manufacturing the same
Villaquirán-Caicedo et al. Valorization of a low-quality coal ash, in the preparation of alkali activated inks for applications in 3D additive manufacturing
JP2000226242A (en) Production of lightweight aggregate for highly strong concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130326

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140324

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160322

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180323

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190321

Year of fee payment: 15