KR100458982B1 - Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same - Google Patents

Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same Download PDF

Info

Publication number
KR100458982B1
KR100458982B1 KR20010036919A KR20010036919A KR100458982B1 KR 100458982 B1 KR100458982 B1 KR 100458982B1 KR 20010036919 A KR20010036919 A KR 20010036919A KR 20010036919 A KR20010036919 A KR 20010036919A KR 100458982 B1 KR100458982 B1 KR 100458982B1
Authority
KR
South Korea
Prior art keywords
gas
semiconductor device
manufacturing apparatus
device manufacturing
method
Prior art date
Application number
KR20010036919A
Other languages
Korean (ko)
Other versions
KR20020013383A (en
Inventor
황철주
심경식
박창수
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR20000046216 priority Critical
Priority to KR1020000046216 priority
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Publication of KR20020013383A publication Critical patent/KR20020013383A/en
Application granted granted Critical
Publication of KR100458982B1 publication Critical patent/KR100458982B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans

Abstract

An apparatus and method for performing atomic layer deposition. A plurality of substrates are loaded into a plurality of reaction cells. The reaction cells are disposed in a reaction chamber isolated from an exterior condition. Various paper substances are ultimately and repeatedly applied onto each substrate such that a thin film is formed on each substrate. The plurality of vapor injection pipes each inject one of the vapor substances by periodically scanning over each substrate to apply substance.

Description

회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를 이용한 박막증착방법{Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same} Once the semiconductor device manufacturing apparatus having a typical gas injector, and a film deposition method using the same {Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same}

본 발명은 반도체소자 제조장치 및 이를 이용한 박막증착방법에 관한 것으로서, 특히 회전형 가스분사기를 구비하여 균일도가 매우 뛰어난 박막을 증착할 수 있도록 하는 반도체소자 제조장치 및 이를 이용한 박막증착방법에 관한 것이다. The present invention relates to a film deposition method relates to a film deposition method and manufacturing a semiconductor device unit this purpose, in particular times and with a typical gas injector semiconductor device manufacturing apparatus to deposit a very excellent thin film uniformity, and this.

웨이퍼가 대구경화 될수록 웨이퍼 전표면에 균일한 두께의 박막을 증착하는 것이 어려진다. The wafer becomes difficult to deposit a thin film of uniform thickness on the wafer surface before the more curing cod. 하나의 반응챔버에 여러개의 웨이퍼를 장입하고 이들 웨이퍼에 박막을 증착하는 경우에도 모든 웨이퍼에 동일한 두께의 박막을 형성시키는 것이 매우 어렵다. It is very difficult for a single loading of multiple wafers in the reaction chamber and form a thin film of uniform thickness on all the wafers, even when depositing a thin film on these wafers. 이는, 반응챔버 내에 원료가스들이 균일하게 분포하지 못하기 때문이다. This is because they do not have the raw material gas not uniformly distributed in the reaction chamber. 하나의 반응챔버 내에 여러개의 웨이퍼를 장입하여 박막을 동시에 증착하게 되면 생산수율이 좋아짐에도 불구하고, 상기와 같은 이유 때문에 이러한 시도가 사장되어가고 있다. When the contents of multiple wafers in a reaction chamber to deposit a thin film at the same time, despite the production yield it is jotahjim and, going these attempts is the boss because of the reason as described above.

도 1은 종래기술에 따른 반도체소자 제조장치를 설명하기 위한 개략도이다. 1 is a schematic diagram for describing a semiconductor device manufacturing apparatus according to the prior art. 도 1을 참조하면, 반응챔버(100) 내부에는 외부와 차단되는 반응공간이 형성되며,반응챔버(100)는 하부챔버(110a)와 상부챔버(110b)로 구성된다. 1, the internal reaction chamber 100 is formed in a reaction space that is isolated from the outside, the reaction chamber 100 is composed of a lower chamber (110a) and an upper chamber (110b). 박막형성을 위한 원료가스들은 측면에 형성된 가스주입구(140)를 통해 수평적인 흐름을 가지고 반응챔버(100) 내부의 웨이퍼(130) 상으로 공급되며, 측면에 형성된 가스배출구(150)를 통하여 외부로 배출된다. The raw material gas for thin film formation may be fed to the gas inlet 140, the reaction chamber wafer 130 of the inner 100 has a horizontal flow through a formed on the side surfaces, to the outside through the gas discharge port 150 formed in the side It is discharged.

상술한 종래의 반도체소자 제조장치로 CVD 공정을 수행하면, 원료가스가 수평적으로 흘러 웨이퍼(130) 상부를 지나가기 때문에, 가스주입구(140) 쪽에 위치하는 웨이퍼 표면과 그 반대쪽에 위치하는 웨이퍼 표면에 흡착되는 가스량이 달라져서 웨이퍼(130) 상에 증착되는 박막의 두께가 불균일하게 된다. When performing a CVD process to a conventional semiconductor device manufacturing apparatus described above, the raw material gas is due to the horizontal as flow to pass by the upper wafer 130, a wafer located on the wafer surface and the other end of which is located on the side gas inlets 140, surface the amount of gas adsorbed on dalrajyeoseo is the thickness of the thin film deposited on the wafer 130 is non-uniform. 이러한 현상은 웨이퍼(130)가 대구경화 될수록 더욱 크게 나타난다. This phenomenon slows the wafer 130, large diameter appear more significantly. 또한, 박막증착이 수평적인 원료가스 흐름에 의하여 이루어지므로, 원료가스의 웨이퍼(130)에 대한 흡착률이 낮아서 박막증착속도도 늦게 된다. Further, since the film deposition is achieved by a horizontal source gas flow, the rate of absorption for the wafer of the source gas 130 lower the film deposition rate is also late.

대량생산을 위해서 반응챔버(100) 내에 웨이퍼를 다수개 장입할 경우에는, 하나의 웨이퍼에 대해서 뿐만 아니라 여러 웨이퍼들 사이에서도 박막이 불균일하게 증착된다. When a plurality of charged wafers in the reaction chamber 100 to a mass-produced, the thin film is deposited to the non-uniformity among the various wafers as well as for a single wafer. 더욱이, 웨이퍼를 여러 장 장입하기 위해서는 반응챔버(100)의 크기를 증가시켜야 하기 때문에 이러한 불균일성 문제는 더욱 심각하게 나타난다. Furthermore, in order to charge several sheets of wafer non-uniformity of these problems because the need to increase the size of the reaction chamber 100 it is shown in more severe.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 회전형 가스분사기를 구비함으로써 균일도가 매우 뛰어난 박막을 증착할 수 있도록 하는 반도체소자 제조장치를 제공하는 데 있다. Accordingly, the object of the present invention is to provide a semiconductor device manufacturing apparatus to deposit a very excellent uniformity of the thin film by providing the rotary gas injector.

본 발명이 이루고자 하는 다른 기술적 과제는, 상기 기술적 과제의 달성에 의해 제공되는 반도체소자 제조장치를 이용하여 균일도가 뛰어난 박막을 증착하는 방법을 제공하는 데 있다. The present invention is to provide a method of depositing a thin film with excellent uniformity by using a semiconductor element manufacturing apparatus provided by the achievement of the technical problem.

도 1 및 도 2는 종래기술에 따른 반도체소자 제조장치를 설명하기 위한 개략도; 1 and 2 are schematic views for illustrating a semiconductor device manufacturing apparatus according to the prior art;

도 3 내지 도 8은 본 발명의 실시예에 따른 반도체소자 제조장치를 설명하기 위한 도면들이다. Figures 3 to 8 are views for explaining a semiconductor device manufacturing apparatus according to an embodiment of the present invention.

< 도면의 주요 부분에 대한 참조번호의 설명 > <Description of reference numerals of the Related Art>

300: 가스배출구 301: 서셉터 지지대 300: gas exhaust port 301: susceptor support

302: 웨이퍼 로딩부 303: 서셉터 302: wafer loading section 303: susceptor

304: 반응챔버 305-1: 회전축 304: 305-1 reaction chamber: rotating shaft

305-2: 실린더 305-3: 가스주입공 305-2: 305-3 cylinder: gas injection hole

305-4: 환형홈 305-5: 마그네틱 실링 305-4: an annular groove 305-5: Magnetic sealing

305-6: 오링관 305-7: 나사결합공 305-6: O-ring tube 305-7: threaded ball

305-8: 베어링 305-9: 가스공급관 305-8: Bearings 305-9: gas supply

306: 관통구멍 307:분사공 306: through hole 307: injection port

308: 프로펠러형 가스분사기 308a, 308b, 308c, 308d:분기관 308 propeller-type gas injectors 308a, 308b, 308c, 308d: branch

312: 히터 314: 웨이퍼 312: Heater 314: Wafer

316: 위치제어기 316: CONTROLLER

상기 기술적 과제들을 달성하기 위한 본 발명에 따른 반도체소자 제조장치는, 내부의 가스를 배출하기 위한 가스배출구가 마련되는 반응챔버와; And the reaction chamber, which is the technical problem of manufacturing a semiconductor device according to the present invention for achieving the apparatus, a gas outlet provided for discharging the gas inside; 상기 반응챔버 내에 수평하게 마련되는 서셉터 지지대와; And a susceptor support is horizontally provided in the reaction chamber; 상기 서셉터 지지대 상에 설치되며, 웨이퍼가 안착되는 적어도 하나의 서셉터와; Is provided on the susceptor support, at least one stand of the susceptor and the wafer is mounted; 상기 반응챔버의 상부외벽에 수직 결합되며, 내벽 둘레를 따라 복수개의 환형홈이 형성되고, 상기 환형홈 각각은 측벽을 관통하도록 형성된 복수개의 가스주입공과 각각 연결되는 실린더와; It is coupled to a vertical upper outer wall of said reaction chamber, a plurality of annular grooves along the circumferential wall is formed as a cylinder in which the annular grooves each of which connects a plurality of gas inlet ball and each formed so as to penetrate through the side wall; 상기 실린더 내벽에 밀착되어 회전운동 가능하도록 상기 실린더에 삽입되어 상기 반응챔버 내부로 수직하게 내삽되며, 내부에는 길이방향과 나란하게 복수개의 가스공급관이 마련되고, 상기 가스공급관 각각의 일단은 상기 환형홈에 각각 연통되는 회전축과; Is brought into close contact with the cylinder inner wall is inserted into the cylinder so as to be rotatable motion of the reaction and vertically interpolated into the chamber, the inside of a plurality of gas parallel to the longitudinal feed pipe is provided, one end each of the gas supply pipe is the annular groove rotation axis and in communication with each; 상기 회전축의 삽입끝단에서 상기 가스공급관과 각각 연결되어 수평하게 방사형으로 분기되는 분기관을 가지며, 상기 분기관 각각에는 복수개의 분사공이 마련되고, 상기 회전축의 회전운동에 의해 수평회전하는 프로펠러형 가스분사기를 구비하는 것을 특징으로 한다. Has a branch pipe which branches radially levels are respectively connected to the gas supply pipe at the insertion end of the rotating shaft, the manifold each of which is provided a ball plurality of injection, the propeller-type gas injectors rotated horizontally by the rotational motion of the rotation axis in that it comprises the features.

여기서, 상기 가스배출구는 상기 서셉터의 하부에 위치하도록 상기 반응챔버에 형성되는 것이 바람직하며, 상기 분사공은, 상기 분기관의 아랫방향과 상기 프로펠러형 가스분사기의 회전방향 사이의 방향을 향하도록 마련되는 것이 바람직하다. Here, the gas outlet is facing the direction between the stand and is formed in the reaction chamber, preferably so as to be positioned on the susceptor bottom, wherein the injection port is, the branch downward and rotational direction of the propeller-type gas injector of the engine is provided is preferable. 그리고, 상기 실린더 벽 내부에는 수냉관이 더 설치되고, 상기 서셉터 지지대 내부에는 가열수단이 더 설치되는 것이 바람직하다. In addition, the cylinder and the wall of the water-cooled pipe inside the installation further, it is preferred that the susceptor support inside which the heating means are further provided. 또한, 상기 서셉터 지지대는 수평회전 및 상하운동 가능하도록 설치되는 것이 바람직하다. In addition, the susceptor support is preferably installed to be rotated horizontally and up and down motion.

상기 프로펠러형 가스분사기는 금속재질로 이루어져서 RF 공급전력원과 전기적으로 연결되도록 설치될 수 있다. The propeller-type gas injectors may be installed so that a metal material yirueojyeoseo supply RF power source and electrically connected. 상기 회전축과 상기 실린더의 밀착은 마그네틱 실링에 의해 구현될 수 있다. The rotation axis of the cylinder and close contact can be implemented by a magnetic seal. 상기 서셉터 지지대는 상기 서셉터가 놓이지 않은 부분에 상기 가스배출구와 연결되는 적어도 하나의 관통구멍을 가질 수 있다. The susceptor support may be a portion where the susceptor placed the document have at least one through-hole connected to the gas outlet.

상기 다른 기술적 과제들을 달성하기 위한 본 발명에 따른 박막증착방법은, 상기 서셉터에 웨이퍼를 안착시킨 후에, 상기 복수개의 가스주입공을 통하여 가스를 주입하면서 상기 회전축을 회전시키는 단계를 포함하는 것을 특징으로 한다. The other film deposition method according to the present invention for achieving the technical problem is characterized in that after mounting the susceptor wafer on, while the gases injected through the plurality of gas injection hole includes rotating the rotary shaft It shall be.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. In the following, with reference to the accompanying drawings a preferred embodiment of the present invention will be described in detail.

도 3은 본 발명의 실시예에 따른 반도체소자 제조장치를 설명하기 위한 개략도이다. Figure 3 is a schematic diagram for describing a semiconductor device manufacturing apparatus according to an embodiment of the present invention. 도 3을 참조하면, 반응챔버(304)에는 내부 가스를 배출하기 위한 가스배출구(300)가 마련된다. 3, the reaction chamber 304 is provided with a gas discharge port 300 for discharging the gas inside. 반응챔버(304) 내에는 서셉터 지지대(301)가 수평하게 설치된다. Into the reaction chamber 304 is installed to susceptor support 301 is horizontal. 도 4에 도시된 바와 같이, 서셉터 지지대(301) 상에는 4개의 서셉터(303)가 놓여지며, 각각의 서셉터(303) 상에는 웨이퍼(314)가 놓여진다. 4, the susceptor support is placed four susceptor 303 is formed on the (301), each of the susceptor on the wafer 314, 303 is placed. 서셉터 지지대(301)는 서셉터(303)가 놓이지 않은 부분에 가스배출구(300)와 연결되는 적어도 하나의관통구멍(306)을 가진다. A susceptor support (301) has a susceptor at least one through-hole 306 (303) is connected to the gas outlet 300 are placed on the part.

반응챔버(304)의 상부에는 실린더(305-2)와, 회전축(305-1)과, 프로펠러형 가스분사기(도 7의 308)로 이루어지는 회전형 가스분사기가 설치된다. The upper portion of the reaction chamber 304, the cylinder 305-2, a rotational axis 305-1, a typical gas injector times consisting of propeller-type gas injector (308 in FIG. 7) are provided. 제조공정 진행시에, 프로펠러형 가스분사기(도 7의 308)는 회전을 하면서 반응공간으로 원료가스를 분사한다. In the process the manufacturing process, the propeller-type gas injector (308 in FIG. 7) injects the raw material gas into the reaction space, while the rotation. 경우에 따라서는, 프로펠러형 가스분사기(308) 대신에 서셉터 지지대(301)를 수평회전운동시킬 수 있도록 서셉터 지지대(301)를 수평회전 가능하게 설치한다. In some cases, the installation of the susceptor support 301 so as to horizontally rotating the susceptor support (301) in place of the propeller-type gas injector 308 enables horizontal rotation. 또한, 공정에 따라서 프로펠러형 가스분사기(308)와 서셉터(303) 사이의 거리를 조절할 필요가 있으므로, 서셉터 지지대(301)와 회전축(305-1)을 각각 상하운동할 수 있도록 설치한다. In addition, the installation since it is necessary in accordance with the process to adjust the distance between the propeller-type gas injector 308 and the susceptor 303, susceptor support to move up and down to 301 and the rotational axis 305-1, respectively.

설명되지 않은 참조번호 302는 웨이퍼 로딩부를, 312는 웨이퍼(314)를 가열하기 위해 서셉터 지지대(301) 내부에 동심원 구조로 배치된 히터를 나타낸 것이다. Unexplained reference number 302 is a wafer loading portion, 312 shows a heater disposed in a concentric circle structure inside the susceptor support 301 to heat the wafer (314).

도 5 및 도 6은 실린더(305-2)와 회전축(305-1)을 보다 상세하게 설명하기 위한 개략도들이다. 5 and 6 are schematic views for explaining in more detail a cylinder 305-2 and the rotary shaft 305-1.

도 1과 결부하여 도 5 및 도 6을 설명하면, 실린더(305-2)는 반응챔버(304)의 상부외벽에 수직하게 플랜지 결합된다. Referring to the Fig. 5 and 6 coupled with the first cylinder 305-2 is coupled to a vertical flange on the upper outer wall of the reaction chamber 304. 나사결합공(305-7)은 반응챔버(304)와 실린더(305-2)를 나사 결합시키기 위한 것이다. Threaded hole (305-7) is for screwing the reaction chamber 304 and the cylinder 305-2. 반응챔버(304)에 밀착되는 부분에는 리크(leak)가 발생하지 않도록 오링이 설치될 수 있는 오링관(305-6)이 마련된다. Part in close contact with the reaction chamber 304, the O-ring leakage pipe (305-6), which may be an O-ring is installed so that (leak) from occurring, is provided.

실린더(305-2)의 내벽 둘레를 따라서는 4개의 환형홈(305-4)이 형성되어 있다. Therefore, the inner wall circumference of the cylinder 305-2 has four annular groove (305-4) is formed. 실린더(305-2)의 측벽에는 측벽을 관통하여 4개의 환형홈(305-4)과 각각 연결되는 가스주입공(305-3)이 4개 마련된다. The side wall of the cylinder 305-2 is through the side wall 4 of the annular groove (305-4) and the gas injection hole (305-3) connected to each of the four are provided. 도 6은 하나의 환형홈(305-4)과 이에 연결되는 가스주입공(305-3)을 도시한 것이다. Figure 6 shows a gas injection hole (305-3) is a single annular groove (305-4) and its connections.

회전축(305-1)은 실린더(305-2) 내벽에 삽입되어 반응챔버(304) 내부로 수직하게 내삽된다. Rotary shaft 305-1 is inserted into the cylinder 305-2 inner wall is interpolated vertically into the reaction chamber 304. 회전축(305-1)의 내삽길이를 제어할 수 있도록 내삽부위에 위치제어기(316)가 설치된다. The rotary shaft position controller 316 in the inner portion to control the inner length of 305-1 is provided. 회전축(305-1)의 내부에는 길이방향으로 4개의 가스공급관(305-9)이 뚫려있다. The inside of the rotational shaft 305-1 has perforated the four gas supply pipe (305-9) in the longitudinal direction. 각각의 가스공급관(305-9)의 일단은 환형홈(305-4)과 연통되도록 설치된다. One end of each of the gas supply pipe (305-9) is provided to communicate with the annular groove (305-4). 회전축(305-1)은 실린더(305-2)와 밀착되면서 회전운동할 수 있도록 설치된다. Rotary shaft 305-1 is provided so as to come into close contact with the cylinder 305-2 rotary motion. 회전축(305-1)이 용이하게 회전할 수 있도록 실린더(305-2)의 내벽에는 베어링(305-8)이 설치되며, 회전축(305-1)과 실린더(305-2)는 마그네틱 실링(305-5)에 의해 서로 밀착된다. Rotary shaft 305-1 is provided with a bearing (305-8), the inner wall of the cylinder (305-2) so that can be easily rotated, the rotational axis 305-1 and the cylinder 305-2 is magnetic seal (305 by a-5) it is brought into close contact with each other. 회전축(305-1)이 회전할 때 발생하는 마찰열을 무마시키기 위하여 실린더(305-2) 벽 내부에는 수냉관(미도시)이 설치된다. The inner cylinder rotation axis 305-2 wall so as to diffuse the friction heat generated when 305-1 to the rotation is provided with a water-cooled tube (not shown).

가스주입공(305-3), 환형홈(304-4) 및 가스공급관(305-9)은 서로 일대일 대응하도록 동일한 갯수로 설치된다. Gas injection hole (305-3), the annular groove (304-4) and the gas supply pipe (305-9) is provided in the same number to each other one-to-one correspondence. 가스주입공(305-3)을 통하여 가스를 각각 주입하면, 가스는 환형홈(305-4) 및 가스공급관(305-9)을 순차적으로 거쳐 프로펠러형 가스분사기(도 7의 308)를 통하여 반응챔버(304)의 내부로 분사되게 된다. When through the gas injection hole (305-3), each of the gas injection, the gas is an annular groove (305-4) and the gas supply pipe (305-9) through a gas injector in order propeller type (308 in FIG. 7) via the reaction It is to be injected into the interior of the chamber 304. 회전축(305-1)이 회전하더라도, 4개의 가스공급관(305-9)과 4개의 환형홈(305-4)은 일대일 대응 상태로 항상 연통된 상태로 존재하기 때문에, 상기의 가스공급은 회전축(305-1)의 회전에 관계없이 항상 이루어진다. Even if the rotational axis 305-1 rotation, due to the presence of four gas supply pipe (305-9) and four annular groove (305-4) is always in communication with one-to-one state condition, the gas supply of said rotation axis is ( always done regardless of the rotation of the 305-1).

도 7은 프로펠러형 가스분사기(308)를 보다 설명하기 위한 개략도이다. Figure 7 is a schematic diagram for explaining than the propeller-type gas injector 308. 프로펠러형 가스분사기(308)는 회전축(305-1)의 삽입끝단에서 가스공급관(305-9)과 각각 연결되어 수평하게 방사형으로 분기되는 4개의 분기관(308a, 308b, 308c, 308d)을 가지며, 분기관(308a, 308b, 308c, 308d) 각각에는 복수개의 분사공(307)이 마련된다. A propeller-type gas injector 308 has four branch pipes (308a, 308b, 308c, 308d) at the insertion end of the horizontal are respectively connected to the gas supply pipe (305-9) are branched in a radial direction of the rotational axis 305-1 , minutes, the plurality of injection holes 307 are provided engine (308a, 308b, 308c, 308d) respectively. 플라즈마 공정을 행하기 위해, 프로펠러형 가스분사기(308)를 금속재질로 만들고, 여기에 RF 공급전력원을 전기적으로 연결시킬 수도 있다. For effecting a plasma process, it is also possible to create a propeller-type gas sprayer 308 of a metal material, electrically connected to the RF power supply source here.

프로펠러형 가스분사기(308)는 회전축(305-1)의 회전운동에 의해 수평회전한다. A propeller-type gas injector 308 is horizontally rotated by a rotation movement of the rotation axis 305-1. 분사공(307)은 분기관(308a, 308b, 308c, 308d)의 아랫면에 형성될 수도 있지만, 도 8에 도시된 바와 같이 분기관(308a, 308b, 308c, 308d)의 아랫방향과 프로펠러형 가스분사기(308)의 회전방향 사이의 방향을 향하도록 형성되는 것이 바람직하다. Injection port 307 is branch downward and the propeller-type gas of a branch (308a, 308b, 308c, 308d), as shown in also FIG. 8, but is formed on the underside of the (308a, 308b, 308c, 308d) to be formed toward the direction between the rotational direction of the injector 308 is preferable. 이는, 프로펠러형 가스분사기(308)의 회전을 감안할 때, 후자의 경우가 반응공간에 가스가 더 균일하게 분포될 수 있기 때문이다. This is because, in the latter case could be a more uniform gas distribution in the reaction space, given the rotation of the propeller-type gas injector 308.

도 3의 반도체소자 제조장치를 이용하여 행하는 박막증착은, 서셉터(303) 각각에 웨이퍼(314)를 안착시킨 후에, 4개의 가스주입공(305-3)을 통하여 가스를 주입하면서 회전축(305-1)을 회전시킴으로써 구현된다. The film deposition is performed using a semiconductor device manufacturing apparatus of Figure 3, the susceptor 303, the rotating shaft (305 Following the introduction of gas through the after mounting the wafer 314 on each of the four gas injection hole (305-3) -1) it is realized by the rotation. 4개의 가스주입공(305-3)에 각각 주입되는 가스는 모두 다른 가스일 수도 있고, 경우에 따라서는 일부가 같은 가스일 수도 있다. Gas is injected into each of four gas injection hole (305-3) may be all other gas, as the case may be part of the same gas. 가스주입공(305-3)으로 공급된 가스는 가스주입공(305-3)에 대응하는 환형홈(305-4)과, 이에 연통되는 가스공급관(305-9)을 거쳐, 최종적으로 프로펠러형 가스분사기(308)의 분사공(307)을 통하여 상기 반응공간으로 분사된다. The gas supplied to the gas injection hole (305-3) is via the annular groove (305-4) and a gas supply pipe (305-9) in fluid communication corresponding to a gas injection hole (305-3), and finally, propeller type through the injection port 307 of the gas injector 308 is injected into the reaction space.

가스주입공(305-3) 전체에 동일한 가스를 공급할 경우에는 굳이 프로펠러형 가스분사기(308)를 회전시킬 필요가 없지만, 서로 다른 가스를 공급하여 이들의 화학반응을 통하여 박막을 증착시키고자 하는 경우에는 프로펠러형 가스분사기(308)의 회전이 필요하다. Gas injection hole (305-3) When supplying the same gas when the whole does not have a need to dare to rotate the propeller-type gas injectors 308, to each other to supply the other gas and depositing a thin film through the chemical reaction of these chairs it is required for the rotation of the propeller-type gas injector 308.

예컨대, TiN 박막을 형성시키고자 할 경우에는, 도 7의 제1 분기관 및 제3 분기관(308a, 308c)은 TDEAT(Tetrakis Diethylamido Titanium, Ti[N(C 2 H 5 ) 2 ] 4 ) 전구체가 열분해되어 형성된 증기를, 그리고 제2 분기관 및 제4 분기관(308b, 308d)은 NH 3 가스를 지속적으로 분사하도록 하는 동시에, 프로펠러형 가스분사기(308)를 회전시켜야 한다. For example, when forming a TiN thin film and characters, the first manifold and the third manifold (308a, 308c) is TDEAT (Tetrakis Diethylamido Titanium, Ti [ N (C 2 H 5) 2] 4) in Fig. 7 precursor is the thermal decomposition is formed of steam, and at the same time that the second branch pipe and the fourth branch pipes (308b, 308d) is to be continuously injected into the NH 3 gas, it is necessary to rotate the propeller-type gas injector 308. 그러면 TDEAT 증기와 NH 3 가스가 반응공간 내에 균일하게 분포되어 4개의 웨이퍼(314) 상에 TiN 박막이 균일하게 형성된다. Then the steam TDEAT and NH 3 gas is uniformly distributed in the reaction space is TiN thin film is formed uniformly on the four wafers 314. 물론 웨이퍼(314) 표면에서 화학반응이 일어나도록 웨이퍼(314)를 가열해야 하는 것은 당연하다. Of course, at the wafer 314 surface should heat the wafer 314, a chemical reaction to take place is natural.

서셉터 지지대(301)의 관통구멍(306)은 반드시 있어야 할 필요는 없으며, 관통구멍(306)이 없는 경우에는 서셉터 지지대(301)와 반응챔버(304) 내벽 사이의 틈을 통하여 가스배출구(300)로 배기된다. The susceptor gas outlet port through the gap between the through hole 306 of the support 301 is not necessarily be the case without the through holes 306. In the susceptor support 301 and the reaction chamber 304, the inner wall ( 300) is evacuated to a.

본 실시예에서는 가스분사관들이 회전하는 방식을 위주로 설명하였으나, 프로펠러형 가스분사기(308)가 정지한 상태에서 서셉터 지지대(301)를 회전시키는 방식을 통해서도 유사한 효과를 얻을 수 있다. In the present embodiment it has been described how the gas injection pipe rotate focusing, it is possible to obtain a similar effect through the method of the acceptor to rotate the support 301 in a state that the propeller-shaped gas injector 308 is stopped. 이 경우, 프로펠러형 가스분사기(308)에 RF 전력을 공급하여 공정가스를 플라즈마화시켜 활성화시킬 수도 있다. In this case, it may be activated by plasma, a processing gas by supplying RF power to the propeller-type gas injector 308.

이와 같이 만들어진 반도체 소자 제조장치는 일반적인 CVD 공정에도 적용할 수 있지만, 가스분사기(308)의 분기관(308a, 308b, 308c, 308d)마다 다른 가스가 공급되도록 한다면 원자층 증착(Atomic Layer Deposition; : ALD) 공정에도 적용할수 있다. Thus was created the semiconductor device manufacturing apparatus is a typical CVD process, even can be applied, the gas sprayer 308 of the branch pipe (308a, 308b, 308c, 308d) each, if that other gas is supplied to an atomic layer deposition (Atomic Layer Deposition;: ALD) can be applied to a process.

상술한 바와 같이 본 발명에 따른 반도체소자 제조장치 및 이를 이용한 박막증착방법에 의하면, 프로펠러형 가스분사기(308)를 통하여 웨이퍼(314)들이 놓여있는 부분 상부에서 가스가 분사되고, 웨이퍼(314) 밑공간으로 가스가 배출되기 때문에, 종래와 같은 원료가스의 수평흐름에 의한 박막 균일도의 저하가 크게 감소하게 된다. According to the film deposition method using the manufacturing apparatus, and this semiconductor device according to the invention as described above, the wafer 314 through a propeller-type gas injector 308 to the gas being injected from the upper part of which lies, the wafer 314 beneath the since the gas is discharged into the room, the deterioration of the thin film uniformity caused by the horizontal flow of the source gas as in the prior art is greatly reduced. 따라서, 하나의 반응챔버에 다수의 웨이퍼를 장입하더라도 모든 웨이퍼에 매우 좋은 균일도의 박막을 증착할 수 있기 때문에 생산성을 향상시킬 수 있다. Therefore, even if a large number of charged wafers in a reaction chamber, it is possible to improve the productivity, it is possible to deposit a very good uniformity of the thin film on all the wafer.

Claims (11)

  1. 내부의 가스를 배출하기 위한 가스배출구가 마련되는 반응챔버와; And a reaction chamber in which a gas outlet provided for discharging the gas inside;
    상기 반응챔버 내에 수평하게 마련되는 서셉터 지지대와; And a susceptor support is horizontally provided in the reaction chamber;
    상기 서셉터 지지대 상에 설치되며, 웨이퍼가 안착되는 적어도 하나의 서셉터와; Is provided on the susceptor support, at least one stand of the susceptor and the wafer is mounted;
    상기 반응챔버의 상부외벽에 수직 결합되며, 내벽 둘레를 따라 복수개의 환형홈이 형성되고, 상기 환형홈 각각은 측벽을 관통하도록 형성된 복수개의 가스주입공과 각각 연결되는 실린더와; It is coupled to a vertical upper outer wall of said reaction chamber, a plurality of annular grooves along the circumferential wall is formed as a cylinder in which the annular grooves each of which connects a plurality of gas inlet ball and each formed so as to penetrate through the side wall;
    상기 실린더 내벽에 밀착되어 회전운동 가능하도록 상기 실린더에 삽입되어 상기 반응챔버 내부로 수직하게 내삽되며, 내부에는 길이방향과 나란하게 복수개의 가스공급관이 마련되고, 상기 가스공급관 각각의 일단은 상기 환형홈에 각각 연통되는 회전축과; Is brought into close contact with the cylinder inner wall is inserted into the cylinder so as to be rotatable motion of the reaction and vertically interpolated into the chamber, the inside of a plurality of gas parallel to the longitudinal feed pipe is provided, one end each of the gas supply pipe is the annular groove rotation axis and in communication with each;
    상기 회전축의 삽입끝단에서 상기 가스공급관과 각각 연결되어 수평하게 방사형으로 분기되는 분기관을 가지며, 상기 분기관 각각에는 복수개의 분사공이 마련되고, 상기 회전축의 회전운동에 의해 수평회전하는 프로펠러형 가스분사기를 구비하는 것을 특징으로 하는 반도체소자 제조장치. Has a branch pipe which branches radially levels are respectively connected to the gas supply pipe at the insertion end of the rotating shaft, the manifold each of which is provided a ball plurality of injection, the propeller-type gas injectors rotated horizontally by the rotational motion of the rotation axis the semiconductor device manufacturing apparatus comprising a.
  2. 제1항에 있어서, 상기 가스배출구가 상기 서셉터의 하부에 위치하도록 상기 반응챔버에 형성되는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus, characterized in that formed in the reaction chamber is the gas discharge port to the standing position in the lower portion of the susceptor.
  3. 제1항에 있어서, 상기 분사공이, 상기 분기관의 아랫방향과 상기 프로펠러형 가스분사기의 회전방향 사이의 방향을 향하도록 마련되는 것을 특징으로 하는 반도체소자 제조장치. According to claim 1, wherein said injection hole, a semiconductor device manufacturing apparatus characterized in that is provided to face the direction between the branch and the downward direction of rotation of the propeller-type gas injectors of the engine.
  4. 제1항에 있어서, 상기 실린더 벽 내부에 설치되는 수냉관을 더 구비하는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus according to claim 1, further comprising a water-cooling pipe is installed inside the cylinder walls.
  5. 제1항에 있어서, 상기 프로펠러형 가스분사기가, 금속재질로 이루어지며 RF 공급전력원과 전기적으로 연결되도록 설치되는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus characterized in that the propeller-type gas injector composed of a metallic material, which is installed to supply RF power source and electrically connected.
  6. 제1항에 있어서, 상기 서셉터 지지대가 수평회전 가능하도록 설치되는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus characterized in that said susceptor support, which is installed to be rotated horizontally.
  7. 제1항에 있어서, 상기 서셉터 지지대가 상하운동 가능하도록 설치되는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus characterized in that said susceptor support, which is installed so as to be up-and-down motion.
  8. 제1항에 있어서, 상기 서셉터 지지대 내부에 설치되는 가열수단을 더 구비하는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus according to claim 1, further comprising a heating means is provided inside the susceptor support.
  9. 제1항에 있어서, 상기 회전축과 상기 실린더는 마그네틱 실링에 의해 서로 밀착되는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1, wherein the semiconductor device manufacturing apparatus characterized in that the axis of rotation and that the cylinder is in close contact with each other by the magnetic sealing.
  10. 제1항에 있어서, 상기 서셉터 지지대는 상기 서셉터가 놓이지 않은 부분에 상기 가스배출구와 연결되는 적어도 하나의 관통구멍을 가지는 것을 특징으로 하는 반도체소자 제조장치. The method of claim 1 wherein the susceptor support includes a semiconductor device manufacturing apparatus, characterized by having at least one through-hole in a portion where the susceptor placed the stand connected to the gas outlet.
  11. 제1항의 반도체소자 제조장치를 이용한 박막증착방법에 있어서, In the film deposition method using the semiconductor device manufacturing apparatus of claim 1,
    상기 서셉터에 웨이퍼를 안착시킨 후에, 상기 복수개의 가스주입공을 통하여 가스를 주입하면서 상기 회전축을 회전시키는 단계를 포함하는 것을 특징으로 하는 박막증착방법. After mounting of the wafer on the susceptor standing, thin film forming method characterized in that while the gas is injected through the plurality of gas injection hole includes rotating the rotary shaft.
KR20010036919A 2000-08-09 2001-06-27 Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same KR100458982B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20000046216 2000-08-09
KR1020000046216 2000-08-09

Publications (2)

Publication Number Publication Date
KR20020013383A KR20020013383A (en) 2002-02-20
KR100458982B1 true KR100458982B1 (en) 2004-12-03

Family

ID=19682530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20010036919A KR100458982B1 (en) 2000-08-09 2001-06-27 Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same

Country Status (2)

Country Link
US (2) US6634314B2 (en)
KR (1) KR100458982B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950076B1 (en) 2008-03-28 2010-03-26 주식회사 휘닉스 디지탈테크 Apparatus for depositing thin film for spraying gas as form of air curtain
KR101083234B1 (en) * 2009-07-14 2011-11-14 주식회사 테스 Method for depositing thin film
KR101514671B1 (en) * 2014-11-10 2015-04-23 (주) 일하하이텍 Member of processing thin film and apparatus of processing substrate having the same

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812157B1 (en) * 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
US20040224504A1 (en) * 2000-06-23 2004-11-11 Gadgil Prasad N. Apparatus and method for plasma enhanced monolayer processing
US20040129212A1 (en) * 2002-05-20 2004-07-08 Gadgil Pradad N. Apparatus and method for delivery of reactive chemical precursors to the surface to be treated
TW495879B (en) * 2000-05-02 2002-07-21 Tokyo Electron Ltd Oxidizing method and oxidation system
KR100458982B1 (en) * 2000-08-09 2004-12-03 주성엔지니어링(주) Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same
JP3980840B2 (en) * 2001-04-25 2007-09-26 東京エレクトロン株式会社 Vapor growth apparatus and vapor growth film forming method
JP3886424B2 (en) * 2001-08-28 2007-02-28 鹿児島日本電気株式会社 Substrate processing apparatus and method
US6730367B2 (en) * 2002-03-05 2004-05-04 Micron Technology, Inc. Atomic layer deposition method with point of use generated reactive gas species
US7220312B2 (en) * 2002-03-13 2007-05-22 Micron Technology, Inc. Methods for treating semiconductor substrates
US7524532B2 (en) * 2002-04-22 2009-04-28 Aixtron Ag Process for depositing thin layers on a substrate in a process chamber of adjustable height
US6861094B2 (en) * 2002-04-25 2005-03-01 Micron Technology, Inc. Methods for forming thin layers of materials on micro-device workpieces
JP4338355B2 (en) * 2002-05-10 2009-10-07 東京エレクトロン株式会社 The plasma processing apparatus
US6838114B2 (en) * 2002-05-24 2005-01-04 Micron Technology, Inc. Methods for controlling gas pulsing in processes for depositing materials onto micro-device workpieces
US7118783B2 (en) * 2002-06-26 2006-10-10 Micron Technology, Inc. Methods and apparatus for vapor processing of micro-device workpieces
US6821347B2 (en) * 2002-07-08 2004-11-23 Micron Technology, Inc. Apparatus and method for depositing materials onto microelectronic workpieces
US20070243317A1 (en) * 2002-07-15 2007-10-18 Du Bois Dale R Thermal Processing System and Configurable Vertical Chamber
KR100476370B1 (en) * 2002-07-19 2005-03-16 주식회사 하이닉스반도체 Batch type Atomic Layer Deposition and method for insitu-cleaning in the batch type atomic layer deposition
US7153542B2 (en) * 2002-08-06 2006-12-26 Tegal Corporation Assembly line processing method
US20040058293A1 (en) * 2002-08-06 2004-03-25 Tue Nguyen Assembly line processing system
US20030047536A1 (en) * 2002-10-02 2003-03-13 Johnson Wayne L. Method and apparatus for distributing gas within high density plasma process chamber to ensure uniform plasma
US6916374B2 (en) * 2002-10-08 2005-07-12 Micron Technology, Inc. Atomic layer deposition methods and atomic layer deposition tools
US6972055B2 (en) * 2003-03-28 2005-12-06 Finens Corporation Continuous flow deposition system
KR100973666B1 (en) * 2003-06-17 2010-08-03 주성엔지니어링(주) Gas valve assembly of atomic layer deposition apparatus
KR101070353B1 (en) * 2003-06-25 2011-10-05 주성엔지니어링(주) Gas injector for use in semiconductor fabrication apparatus
WO2005007927A1 (en) * 2003-07-16 2005-01-27 Konica Minolta Holdings, Inc. Method for forming thin film and base having thin film formed by such method
KR101015063B1 (en) * 2003-08-27 2011-02-16 주성엔지니어링(주) Holder for multiple substrates and chamber with the same
US7282239B2 (en) * 2003-09-18 2007-10-16 Micron Technology, Inc. Systems and methods for depositing material onto microfeature workpieces in reaction chambers
US20050098107A1 (en) * 2003-09-24 2005-05-12 Du Bois Dale R. Thermal processing system with cross-flow liner
US20050121145A1 (en) * 2003-09-25 2005-06-09 Du Bois Dale R. Thermal processing system with cross flow injection system with rotatable injectors
US7323231B2 (en) * 2003-10-09 2008-01-29 Micron Technology, Inc. Apparatus and methods for plasma vapor deposition processes
US7647886B2 (en) 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US7258892B2 (en) 2003-12-10 2007-08-21 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, e.g., CVD deposition
US7906393B2 (en) * 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
US20050172897A1 (en) * 2004-02-09 2005-08-11 Frank Jansen Barrier layer process and arrangement
KR100574569B1 (en) * 2004-04-30 2006-05-03 주성엔지니어링(주) Methode for depositing atomic layer and ALD system having separate jet orifice for spouting purge-gas
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
KR100589206B1 (en) * 2004-09-30 2006-06-14 주식회사 하이닉스반도체 Method for depositiion of thin film in semiconductor device using rotating injector
KR100558922B1 (en) * 2004-12-16 2006-03-02 (주)퓨전에이드 Apparatus and method for thin film deposition
FR2882064B1 (en) * 2005-02-17 2007-05-11 Snecma Propulsion Solide Sa Process for densifying porous thin substrates by chemical vapor infiltration and such substrates loading device
US20060237138A1 (en) * 2005-04-26 2006-10-26 Micron Technology, Inc. Apparatuses and methods for supporting microelectronic devices during plasma-based fabrication processes
KR100675893B1 (en) * 2005-06-14 2007-02-02 주식회사 하이닉스반도체 Method of fabricating HfZrO layer using atomic layer deposition
KR100719330B1 (en) * 2005-09-30 2007-05-18 코스텍시스템(주) Plasma enhanced chemical vapor deposition equipment for the fabrication of organic light emission diode and liquid crystal display panel
DE102005055468A1 (en) * 2005-11-22 2007-05-24 Aixtron Ag Coating one or more substrates comprises supplying gases to process chamber via chambers with gas outlet openings
US20070151842A1 (en) * 2005-12-15 2007-07-05 Fluens Corporation Apparatus for reactive sputtering
JP2009531535A (en) * 2006-03-03 2009-09-03 ガードギール,プラサード Apparatus and method for chemical vapor deposition of a wide range multi atomic layer thin film
US20070218702A1 (en) * 2006-03-15 2007-09-20 Asm Japan K.K. Semiconductor-processing apparatus with rotating susceptor
AT507320T (en) * 2006-03-26 2011-05-15 Lotus Applied Technology Llc Atomic layer deposition system and method for coating of flexible substrates
US20070234956A1 (en) * 2006-04-05 2007-10-11 Dalton Jeremie J Method and apparatus for providing uniform gas delivery to a reactor
KR20070099913A (en) 2006-04-06 2007-10-10 주성엔지니어링(주) Method of forming oxide and oxide depositing apparatus
US20070281089A1 (en) * 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
KR100799735B1 (en) * 2006-07-10 2008-02-01 삼성전자주식회사 Method of forming metal oxide and apparatus for performing the same
WO2008016836A2 (en) * 2006-07-29 2008-02-07 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
KR100826502B1 (en) * 2006-09-18 2008-05-02 삼성전자주식회사 Semiconductor Manufacturing Apparatus
KR20080027009A (en) * 2006-09-22 2008-03-26 에이에스엠지니텍코리아 주식회사 Atomic layer deposition apparatus and method for depositing laminated films using the same
US7692222B2 (en) * 2006-11-07 2010-04-06 Raytheon Company Atomic layer deposition in the formation of gate structures for III-V semiconductor
US20090130858A1 (en) * 2007-01-08 2009-05-21 Levy David H Deposition system and method using a delivery head separated from a substrate by gas pressure
US8043432B2 (en) * 2007-02-12 2011-10-25 Tokyo Electron Limited Atomic layer deposition systems and methods
US20080217293A1 (en) * 2007-03-06 2008-09-11 Tokyo Electron Limited Processing system and method for performing high throughput non-plasma processing
US20080241384A1 (en) * 2007-04-02 2008-10-02 Asm Genitech Korea Ltd. Lateral flow deposition apparatus and method of depositing film by using the apparatus
KR100888067B1 (en) 2007-05-18 2009-03-11 한양대학교 산학협력단 Batch-type atomic layer deposition apparatus and atomic layer deposition method using the same
US7964040B2 (en) 2007-11-08 2011-06-21 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
KR101376336B1 (en) 2007-11-27 2014-03-18 한국에이에스엠지니텍 주식회사 Atomic layer deposition apparatus
US8333839B2 (en) * 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
US20090291209A1 (en) * 2008-05-20 2009-11-26 Asm International N.V. Apparatus and method for high-throughput atomic layer deposition
US9238867B2 (en) 2008-05-20 2016-01-19 Asm International N.V. Apparatus and method for high-throughput atomic layer deposition
US20090324826A1 (en) * 2008-06-27 2009-12-31 Hitoshi Kato Film Deposition Apparatus, Film Deposition Method, and Computer Readable Storage Medium
US8465592B2 (en) * 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
JP5310283B2 (en) 2008-06-27 2013-10-09 東京エレクトロン株式会社 Film forming method, the film forming apparatus, a substrate processing apparatus and a storage medium
US8465591B2 (en) * 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8303715B2 (en) * 2008-07-31 2012-11-06 Tokyo Electron Limited High throughput thermal treatment system and method of operating
US8323410B2 (en) * 2008-07-31 2012-12-04 Tokyo Electron Limited High throughput chemical treatment system and method of operating
US8287688B2 (en) * 2008-07-31 2012-10-16 Tokyo Electron Limited Substrate support for high throughput chemical treatment system
US8303716B2 (en) * 2008-07-31 2012-11-06 Tokyo Electron Limited High throughput processing system for chemical treatment and thermal treatment and method of operating
US8470718B2 (en) * 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
US8808456B2 (en) * 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
JP5423205B2 (en) * 2008-08-29 2014-02-19 東京エレクトロン株式会社 The film-forming apparatus
US9416448B2 (en) * 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
JP5276387B2 (en) * 2008-09-04 2013-08-28 東京エレクトロン株式会社 Film forming apparatus, a substrate processing apparatus, a recording medium recording a program for executing the film forming method and the film forming method
JP5280964B2 (en) * 2008-09-04 2013-09-04 東京エレクトロン株式会社 Film forming apparatus, a substrate processing apparatus, a film forming method and a storage medium
JP5253932B2 (en) * 2008-09-04 2013-07-31 東京エレクトロン株式会社 Film forming apparatus, a substrate processing apparatus, a film forming method and a storage medium
JP5107185B2 (en) * 2008-09-04 2012-12-26 東京エレクトロン株式会社 Film forming apparatus, a substrate processing apparatus, a recording medium recording a program for executing the film forming method and the film forming method
JP5253933B2 (en) * 2008-09-04 2013-07-31 東京エレクトロン株式会社 Film forming apparatus, a substrate processing apparatus, a film forming method and a storage medium
JP2010084230A (en) * 2008-09-04 2010-04-15 Tokyo Electron Ltd Film deposition apparatus, substrate process apparatus, and turntable
JP5276388B2 (en) * 2008-09-04 2013-08-28 東京エレクトロン株式会社 Deposition apparatus and a substrate processing apparatus
JP5062143B2 (en) * 2008-11-10 2012-10-31 東京エレクトロン株式会社 The film-forming apparatus
JP5062144B2 (en) * 2008-11-10 2012-10-31 東京エレクトロン株式会社 Gas injector
JP5445044B2 (en) * 2008-11-14 2014-03-19 東京エレクトロン株式会社 The film-forming apparatus
US9297072B2 (en) * 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
JP5056735B2 (en) * 2008-12-02 2012-10-24 東京エレクトロン株式会社 The film-forming apparatus
JP5083193B2 (en) * 2008-12-12 2012-11-28 東京エレクトロン株式会社 Film forming apparatus, film forming method and a storage medium
FI122940B (en) * 2009-02-09 2012-09-14 Beneq Oy The reactor chamber
US20100221426A1 (en) * 2009-03-02 2010-09-02 Fluens Corporation Web Substrate Deposition System
JP5107285B2 (en) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 Deposition apparatus, a film forming method, a program, and a computer-readable storage medium
US20100227059A1 (en) * 2009-03-04 2010-09-09 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP5181100B2 (en) * 2009-04-09 2013-04-10 東京エレクトロン株式会社 Substrate processing apparatus, a substrate processing method and a storage medium
JP5131240B2 (en) * 2009-04-09 2013-01-30 東京エレクトロン株式会社 Film forming apparatus, film forming method and a storage medium
US8758512B2 (en) 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
JP5287592B2 (en) * 2009-08-11 2013-09-11 東京エレクトロン株式会社 The film-forming apparatus
US20110076421A1 (en) * 2009-09-30 2011-03-31 Synos Technology, Inc. Vapor deposition reactor for forming thin film on curved surface
JP5434484B2 (en) * 2009-11-02 2014-03-05 東京エレクトロン株式会社 Film forming apparatus, film forming method and a storage medium
JP5257328B2 (en) * 2009-11-04 2013-08-07 東京エレクトロン株式会社 Substrate processing apparatus, a substrate processing method and a storage medium
JP5310512B2 (en) * 2009-12-02 2013-10-09 東京エレクトロン株式会社 The substrate processing apparatus
JP5553588B2 (en) * 2009-12-10 2014-07-16 東京エレクトロン株式会社 The film-forming apparatus
JP5327147B2 (en) * 2009-12-25 2013-10-30 東京エレクトロン株式会社 The plasma processing apparatus
JP5497423B2 (en) * 2009-12-25 2014-05-21 東京エレクトロン株式会社 The film-forming apparatus
US8034723B2 (en) * 2009-12-25 2011-10-11 Tokyo Electron Limited Film deposition apparatus and film deposition method
US20110226419A1 (en) * 2010-03-18 2011-09-22 Yong Hyun Lee Process Chamber, Semiconductor Manufacturing Apparatus and Substrate Processing Method Having the Same
US9284643B2 (en) * 2010-03-23 2016-03-15 Pneumaticoat Technologies Llc Semi-continuous vapor deposition process for the manufacture of coated particles
JP5423529B2 (en) 2010-03-29 2014-02-19 東京エレクトロン株式会社 Film forming apparatus, film forming method and a storage medium
KR101145118B1 (en) * 2010-06-01 2012-05-15 주성엔지니어링(주) Thin film manufacturing apparatus and thin film deposition method using the same
JP2012004196A (en) * 2010-06-15 2012-01-05 Tokyo Electron Ltd Plasma processing apparatus and processing gas supply structure for the same
US20120027953A1 (en) * 2010-07-28 2012-02-02 Synos Technology, Inc. Rotating Reactor Assembly for Depositing Film on Substrate
JP5625624B2 (en) * 2010-08-27 2014-11-19 東京エレクトロン株式会社 Film forming apparatus, film forming method and a storage medium
US9093646B2 (en) * 2010-12-14 2015-07-28 Sharp Kabushiki Kaisha Vapor deposition method and method for manufacturing organic electroluminescent display device
KR101829669B1 (en) 2011-01-04 2018-02-19 주식회사 원익아이피에스 Method of depositing thin film and Apparatus for depositing thin film
US20120180954A1 (en) 2011-01-18 2012-07-19 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
KR101804127B1 (en) * 2011-01-28 2018-01-10 주식회사 원익아이피에스 Method of depositing thin film
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
US8840726B2 (en) * 2011-06-08 2014-09-23 Asm Technology Singapore Pte Ltd Apparatus for thin-film deposition
KR101288129B1 (en) 2011-07-13 2013-07-19 삼성디스플레이 주식회사 Vapor deposition apparatus, method for vapor deposition and method for manufacturing organic light emitting display apparatus
KR101328980B1 (en) * 2011-07-13 2013-11-13 삼성디스플레이 주식회사 Vapor deposition apparatus, method for vapor deposition and method for manufacturing organic light emitting display apparatus
US10224182B2 (en) 2011-10-17 2019-03-05 Novellus Systems, Inc. Mechanical suppression of parasitic plasma in substrate processing chamber
KR101879175B1 (en) * 2011-10-20 2018-08-20 삼성전자주식회사 Chemical Vapor Deposition Apparatus
KR101145119B1 (en) * 2011-11-09 2012-05-15 주성엔지니어링(주) Thin film manufacturing apparatus and thin film deposition method using the same
US9484233B2 (en) 2012-04-13 2016-11-01 Novellus Systems, Inc. Carousel reactor for multi-station, sequential processing systems
CN104380434B (en) * 2012-05-29 2018-05-11 周星工程股份有限公司 Substrate processing apparatus and substrate processing method
US20130323422A1 (en) * 2012-05-29 2013-12-05 Applied Materials, Inc. Apparatus for CVD and ALD with an Elongate Nozzle and Methods Of Use
JP5953994B2 (en) * 2012-07-06 2016-07-20 東京エレクトロン株式会社 Film forming apparatus and a film forming method
JP6040609B2 (en) * 2012-07-20 2016-12-07 東京エレクトロン株式会社 Film forming apparatus and a film forming method
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
KR101404985B1 (en) * 2012-10-26 2014-06-10 주식회사 선익시스템 Linear Type Evaporation Source of In-Line Deposition System
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9449795B2 (en) 2013-02-28 2016-09-20 Novellus Systems, Inc. Ceramic showerhead with embedded RF electrode for capacitively coupled plasma reactor
JP6262115B2 (en) 2014-02-10 2018-01-17 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US10096495B2 (en) * 2014-12-26 2018-10-09 Tokyo Electron Limited Substrate processing apparatus
JP6398761B2 (en) * 2015-02-04 2018-10-03 東京エレクトロン株式会社 The substrate processing apparatus
US20160273105A1 (en) * 2015-03-17 2016-09-22 Asm Ip Holding B.V. Atomic layer deposition apparatus
KR20170003408A (en) * 2015-06-30 2017-01-09 도쿄엘렉트론가부시키가이샤 The substrate processing method and substrate processing device
KR101784669B1 (en) 2016-01-13 2017-10-12 제주대학교 산학협력단 Multi layer depositon method based roll to roll

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696779A (en) * 1969-12-29 1972-10-10 Kokusai Electric Co Ltd Vapor growth device
US3783822A (en) * 1972-05-10 1974-01-08 J Wollam Apparatus for use in deposition of films from a vapor phase
SE393967B (en) * 1974-11-29 1977-05-31 Sateko Oy Process and to perform stroleggning between layers in a timber packages
US5062386A (en) * 1987-07-27 1991-11-05 Epitaxy Systems, Inc. Induction heated pancake epitaxial reactor
JPH0443634A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Semiconductor manufacturing equipment
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
JPH0812846B2 (en) * 1991-02-15 1996-02-07 アルキヤンテック株式会社 Semiconductor manufacturing equipment
JPH0812847B2 (en) * 1991-04-22 1996-02-07 アルキヤンテック株式会社 The method of manufacturing a semiconductor manufacturing apparatus and a semiconductor device
US5338362A (en) * 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
JP3181171B2 (en) * 1994-05-20 2001-07-03 シャープ株式会社 Vapor deposition apparatus and a vapor phase growth method
US5702532A (en) * 1995-05-31 1997-12-30 Hughes Aircraft Company MOCVD reactor system for indium antimonide epitaxial material
US6174377B1 (en) * 1997-03-03 2001-01-16 Genus, Inc. Processing chamber for atomic layer deposition processes
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
KR100347379B1 (en) * 1999-05-01 2002-08-07 주식회사 피케이엘 Atomic layer deposition apparatus for depositing multi substrate
KR100458982B1 (en) * 2000-08-09 2004-12-03 주성엔지니어링(주) Semiconductor device fabrication apparatus having rotatable gas injector and thin film deposition method using the same
US6528430B2 (en) * 2001-05-01 2003-03-04 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing Si2C16 and NH3
US6391803B1 (en) * 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
KR100432704B1 (en) * 2001-09-01 2004-05-24 주성엔지니어링(주) Method of forming hydrogenated silicon oxycarbide films having low dielectric constant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950076B1 (en) 2008-03-28 2010-03-26 주식회사 휘닉스 디지탈테크 Apparatus for depositing thin film for spraying gas as form of air curtain
KR101083234B1 (en) * 2009-07-14 2011-11-14 주식회사 테스 Method for depositing thin film
KR101514671B1 (en) * 2014-11-10 2015-04-23 (주) 일하하이텍 Member of processing thin film and apparatus of processing substrate having the same

Also Published As

Publication number Publication date
US20020043216A1 (en) 2002-04-18
US6872421B2 (en) 2005-03-29
US20040035362A1 (en) 2004-02-26
KR20020013383A (en) 2002-02-20
US6634314B2 (en) 2003-10-21

Similar Documents

Publication Publication Date Title
US5730802A (en) Vapor growth apparatus and vapor growth method capable of growing good productivity
KR0144503B1 (en) Apparatus and method for a vapor phase process
US7479303B2 (en) Method for chemical vapor deposition (CVD) with showerhead and method thereof
KR101522725B1 (en) High Temperature ALD Inlet Manifold
JP3901252B2 (en) Chemical vapor deposition apparatus
KR100505310B1 (en) Single-substrate-processing cvd apparatus and method
US6106625A (en) Reactor useful for chemical vapor deposition of titanium nitride
CN101663734B (en) Apparatus and method for atomic layer deposition
JP4726369B2 (en) Chemical vapor deposition reactor and a thin film forming method using the same
US7138336B2 (en) Plasma enhanced atomic layer deposition (PEALD) equipment and method of forming a conducting thin film using the same thereof
US7018940B2 (en) Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6773507B2 (en) Apparatus and method for fast-cycle atomic layer deposition
US6284673B2 (en) Method for providing uniform gas delivery to substrates in CVD and PECVD processes
US4263872A (en) Radiation heated reactor for chemical vapor deposition on substrates
KR101314015B1 (en) Film forming apparatus, film forming method, and storage medium
US6872421B2 (en) Atomic layer deposition method
US6884296B2 (en) Reactors having gas distributors and methods for depositing materials onto micro-device workpieces
US8318611B2 (en) Combinatorial plasma enhanced deposition techniques
US6886491B2 (en) Plasma chemical vapor deposition apparatus
US7252716B2 (en) Gas injection apparatus for semiconductor processing system
KR100448112B1 (en) Film deposition apparatus and method
JP5372779B2 (en) Atomic layer deposition system and method
JP5287592B2 (en) The film-forming apparatus
KR100257302B1 (en) Film growth method
US4838983A (en) Gas treatment apparatus and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E801 Decision on dismissal of amendment
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141006

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171011

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 15