KR100422944B1 - Semiconductor LED device - Google Patents

Semiconductor LED device Download PDF

Info

Publication number
KR100422944B1
KR100422944B1 KR10-2001-0030476A KR20010030476A KR100422944B1 KR 100422944 B1 KR100422944 B1 KR 100422944B1 KR 20010030476 A KR20010030476 A KR 20010030476A KR 100422944 B1 KR100422944 B1 KR 100422944B1
Authority
KR
South Korea
Prior art keywords
layer
light
ga
active layer
type
Prior art date
Application number
KR10-2001-0030476A
Other languages
Korean (ko)
Other versions
KR20010070709A (en
Inventor
유태경
김창태
Original Assignee
삼성전기주식회사
에피밸리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사, 에피밸리 주식회사 filed Critical 삼성전기주식회사
Priority to KR10-2001-0030476A priority Critical patent/KR100422944B1/en
Publication of KR20010070709A publication Critical patent/KR20010070709A/en
Application granted granted Critical
Publication of KR100422944B1 publication Critical patent/KR100422944B1/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

본 발명은 반도체 LED 소자에 관한 것으로서, 특히 이종 접합된 다층막에 의해 발광효율이 우수한 펌핑층과 그보다 밴드갭이 적어 수광된 빛을 모두 원하는 파장의 빛으로 전환시키는 동종접합의 다층막으로 된 활성층을 구비하였으므로, In 양이 적은 AlGaInN 재질의 펌핑층에서 광을 생성하고, 이를 얻고자하는 In 양이 많은 활성층에 입사시켜, 빛을 방출하게 하여 전류에 의한 단파장화(blue shift)를 감소시켜 효율을 향상시키고, 하나의 LED 소자에서 두 개 이상의 파장을 갖는 빛의 방출이 가능하여 다양한 파장의 빛을 하나의 소자에서 얻을 수 있으며, 연속되는 한번의 성장 공정으로 소자를 형성하므로 소자의 재현성이 우수하여 양산성이 향상되며, 백색광을 형성할 때 효율이 저하되는 형광물질을 사용하지 않아 효율이 증가되고, 활성층에서의 흡수율 The present invention is provided with a, in particular, two kinds of the cost down is excellent in luminous efficiency by the bonded multi-layer film pumped layer and than the band gap receiving light in all multi-layer film of the same joint for converting a light of a desired wavelength of the active layer as a semiconductor LED device hayeoteumeuro improve efficiency generate light at the pumping layer of AlGaInN material is in an amount less, which was incident on a number of the in amount to be obtained it the active layer, it reduces to emit light shorter wavelength by the current (blue shift) and, it is possible to obtain the possible emission of light having at least two wavelengths in one of the LED light of different wavelengths from a single element, so forming a device with a single growth process are successively reproducibility of the device excellent in mass production this property is enhanced, and does not use a fluorescent material which is effective in forming the white light, the efficiency degradation increases, absorption in the active layer 활성층의 두께 및 수를 조절하여 높임으로써 펌핑층이 활성층의 파장으로 모두 변환된 단파장 단색 LED도 구현이 가능하다. The pumped layer by increasing by adjusting the thickness and number of the active layer is all converted into the wavelength of the short wavelength active layer monochromatic LED also can be implemented.

Description

반도체 엘이디(LED) 소자{Semiconductor LED device} The semiconductor LED (LED) elements {Semiconductor LED device}

본 발명은 반도체 엘이디(light emitting diode; 이하 LED라 칭함) 소자에 관한 것으로서, 특히 AlGaInN계 LED로서 전류의 빛 변환 효율이 높은 펌핑(pumping)층을 이용하여, 원하는 파장의 빛을 방출하는 활성층에 빛을 펌핑(pumping) 하여 활성층에서 파장 변환을 하여 하나의 소자 내에서 파장 변환된 단색의 LED 소자를 구현할 수 있고, 펌핑층의 일부를 이용하여, 한 소자 내에서 두 파장을 혼합하여 백색광을 구현할 수 있는 반도체 LED 소자에 관한 것이다. The present invention is a semiconductor LED; using, in particular, a high light conversion efficiency of the current pumping (pumping) as AlGaInN-based LED layer relates to a (light emitting diode referred to as LED hereinafter) element, the active layer emitting light of a desired wavelength it is possible to wavelength conversion in the active layer to light by pumping (pumping) to implement a wavelength LED element of the filtered solid in a single device, by using a portion of the pumped layer, to implement white light by mixing the two wavelengths within the devices relates to a semiconductor LED device that can.

도 1은 종래 기술의 제1실시예에 따른 LED 소자의 단면도로서, 절연기판을 사용한 예이다. 1 is a cross-sectional view of an LED device according to the first embodiment of the prior art example, an example of using an insulating substrate.

먼저, 일반적인 AlGaInN계 LED 소자(1)는, 절연성 기판, 예를 들어 사파이어나 석영 재질의 기판(10) 상에 버퍼층(11), n형 AlGaInN층(12), AlGaInN 활성층(13), p형 AlGaInN층(14) 및 투명전극(15)이 순차적으로 적층 되어 있으며,상기 투명전극(15)의 일측 상부에는 p형 금속전극(18)이 형성되어있고, 타측의 투명전극(15)과 p형 AlGaInN층(14), AlGaInN 활성층(13) 및 n형 AlGaInN층(12)의 일부 두께가 제거되고 노출된 n형 AlGaInN층(12)의 상부에 n형 금속전극(17)이 형성되어있다. First, a typical AlGaInN-based LED element 1, an insulating substrate, such buffer layer 11 on a substrate 10 of sapphire or quartz material, n-type AlGaInN layer (12), AlGaInN active layer (13), p-type AlGaInN layer 14 and transparent electrode 15 are sequentially stacked, and has a side upper portion of the transparent electrode 15 and the p-type metal electrode 18 is formed, of the other transparent electrode 15 and the p-type AlGaInN layer (14), AlGaInN active layer 13 and the n type AlGaInN layer n-type metal electrode 17 on the upper portion of the n type AlGaInN layer 12, a portion of the thickness is removed, and the exposure (12) is formed.

도 2는 종래 기술의 제2실시예에 따른 LED 소자(2)의 단면도로서, 도전성 기판인 SiC 또는 Si을 사용한 예이며, 도전성 기판인 SiC 또는 Si 기판(19) 상에 버퍼층(20), n형 AlGaInN층(21), AlGaInN 활성층(22) 및 p형 AlGaInN층(23)을 MOCVD(Metal Organic Chemical Vapor Deposition)방법에 따라 순차적으로 결정 성장시킨 후, 상기 p형 AlGaInN층(23)의 일측 상부에 p형 금속전극(24)을 형성하고 상기 기판(19)의 타측 면에 n형 금속전극(25)을 형성한 구조이다. Also a cross-sectional view of the LED element 2 according to the second is the conventional second example of the described embodiments, an example using the SiC or Si conductive substrate, the SiC or Si substrate 19, buffer layer 20 on the electrically conductive substrate, the n one side of the upper portion of the type AlGaInN layer (21), AlGaInN active layer 22 and p-type AlGaInN layer 23, the MOCVD (Metal Organic Chemical Vapor Deposition), then depending on how growth sequentially crystal, the p-type AlGaInN layer 23 in the form a p-type metal electrode 24 and the structure in which the n-type metal electrode 25 on the other side of the substrate 19.

상기의 두종류 LED에서 보듯이 일반적인 화합물 반도체 광소자의 원리는 p형 금속전극을 통해 들어오는 정공과 n형 금속전극을 통해 들어오는 전자가 단층 또는 다층의 활성층에서 결합하여 활성층 물질 조성의 밴드갭(bandgap)에 해당하는 빛을 방출하는 구조이다. As shown in the two kinds of LED of the principle characters typical compound semiconductor optical device is of the composition the active layer materials in combination in the former is a single-layer or multi-layer of the active layer coming in through the holes and the n-type metal electrode coming in through the p-type metal electrode band gap (bandgap) a structure for emitting light corresponding to. 이렇게 활성층에서 방출된 빛은 활성층의 윗면과 아랫면으로 대부분 방출되게 되는데, AlGaInN계 LED의 경우 활성층의 상층부는 투명 전극을, 하층부는 기판이 빛에 대하여 투명하기 때문에 이러한 동작이 가능하다. Thus the light emitted from the active layer there is presented the most discharged into the top and bottom of the active layer, in the case of the AlGaInN-based LED to the transparent electrode is the upper part of the active layer, the lower layer is such an operation is possible because the substrate is transparent to light.

일반적으로 LED의 출력과 파장등 중요한 특성은 활성층에서 결정되며 그만큼 활성층의 결정질 구조 조성이 매우 중요하게 된다. In general, important characteristics such as the output of the LED and the wavelength is determined in the active layer is so vital for a crystalline structure The composition of the active layer.

종래의 AlGaInN계 LED 구조는 반도체 소자에서는 단 한 개 파장의 빛이 활성층으로부터 방출하기 때문에, 흰색의 빛을 얻기 위해서는 도 3에 도시되어있는 것과 같은 LED 패키지(3)를 구성하게 된다. Since conventional AlGaInN-based LED structure to emit light from the end of one wavelength of the active layer in the semiconductor device, in order to obtain the white light constitutes an LED package (3) such as that shown in Fig.

즉, 금속제 리드프레임(29)의 상부에 도 1의 LED 소자(1)를 탑재하여 LED 소자(1)의 금속전극들과 리드프레임(29)을 와이어로 연결하고, 상기의 LED 소자(1)를 형광물질(26)로 감싸고, 이를 다시 투명한 수지로 몰딩하여 형성한다. That is, with the LED device 1 of Figure 1 the upper portion of the metal lead frame 29 by connecting the metal electrode and the lead frame 29 of the LED 1 to the wire, and wherein the LED 1 wrapped with a fluorescent material 26, it is formed by molding it back to the transparent resin.

상기의 백색광 LED 패키지(3)는 LED 소자(1)에 인가된 전압 전류에 의해 LED 소자(1)로 부터 일차 파장의 빛(27)이 방출되고, 이 빛이 형광물질에 입사되어 형광물질에 의한 새로운 이차 파장의 빛(28)이 발생되며, 상기의 일차 파장 빛(27)과 이차 파장 빛(28)이 혼합된 빛을 얻게 되는데, 두 빛이 보색 관계이면 백색광을 두 파장의 혼합만으로 얻을 수 있다. White-light LED package (3) in is released the light 27 of the primary wavelength from the LED element 1 by a voltage current applied to the LED 1, the light is incident on the fluorescent material in the fluorescent substance by light 28 of the new secondary wavelength is generated, there is the primary wavelength of light 27 and the secondary wavelength of light (28) of the two gain mixed light, two light complementary relation is obtained white light only by mixing of the two wavelengths can.

예를 들면 깊은 청색(450 nm) 파장의 LED 빛으로 YAG가 함유된 형광 물질을 여기 시켜 450nm와 보색인 황색(590nm)의 파장의 빛을 발생시키면, 두 색의 혼합으로 백색광의 LED 패키지를 얻을 수 있다. For example, deep blue light (450 nm) to excite the fluorescent material YAG is contained in an LED light having a wavelength when generating light having a wavelength of 450nm and the complementary color of yellow (590nm), to obtain an LED package of the white light by mixture of two colors can. 이때 YAG 형광층의 성분을 조절하여 황색 파장을 튜닝하고, 형광층의 두께를 조절하여 두 빛의 광량의 비율을 조절하여 백색을 얻게 된다. At this time, by adjusting the composition of the YAG phosphor layer and a yellow wavelength tuning, by adjusting the ratio of the quantity of light of the two light by adjusting the thickness of the fluorescent layer it is obtained a white color.

백색의 LED는 전구나, 디스플레이의 백 라이트(back light) 광원 등을 대체할 수 있는 하는 기술이다. As a white LED is Laguna former, a technology that can replace the back of the display such as light (back light) light source. 그러나 상기와 같은 종래 기술에 따른 백색광 LED 패키지는 비교적 그 구조나 제조 공정이 간단하나, 형광물질의 신뢰성이 LED 소자에 비해 떨어져 장시간 사용함에 따라 변색이 일어나거나, 발광 효율이 저하되는 문제점이 있다. However, the white light LED package according to the prior art as described above is relatively the structure and the manufacturing process is a simple, the reliability of the fluorescent material is discolored according to the long period of time using apart compared to the LED device up or there is a problem that the luminous efficiency decreases.

또한 일차 청색 LED의 파장과 파워의 칩 투 칩(chip-to-chip) 변화에 따른형광 물질의 성분과 두께 조절이 용이하지 않아 양산에 따른 백색 튜닝이 어려워지는 문제점이 있다. In addition, there is a problem in that component and the thickness of the fluorescent material adjusted according to the wavelength and power of the chip-to-chip (chip-to-chip) changes in the primary blue LED is not easy difficult tuning of the white mass.

본 발명은 상기와 같은 문제점들을 해결하기 위하여 것으로서, 본 발명의 목적은 고출력이 가능한 펌핑층을 소자 내부에 구비시켜 펌핑층으로부터 발생한 빛을 활성층에 흡수시켜 이 흡수된 빛이 활성층에서 다시 재결합하여, 얻고자 하는 LED 파장의 빛을 얻을 수 있는 반도체 LED 소자를 제공함에 있다. The present invention is to solve the above problems, an object of the present invention is a high output is provided with a pumping layer inside the device by this absorbed light by absorbing light emitted from the pumping layer on the active layer recombine again in the active layer, It is a semiconductor LED device can have the light of LED wavelengths to be obtained to provide.

도 1은 종래 기술의 제1실시예에 따른 LED 소자의 단면도. Figure 1 is a cross-sectional view of an LED device according to the first embodiment of the prior art.

도 2는 종래 기술의 제2실시예에 따른 LED 소자의 단면도. Figure 2 is a cross-sectional view of an LED device according to the second embodiment of the prior art.

도 3은 도1의 LED 소자를 탑재한 백색광 LED 패키지의 단면도. Figure 3 is a cross-sectional view of a white light LED package with the LED device of Figure 1;

도 4는 본 발명의 제1실시예에 따른 반도체 LED 소자의 단면도. Figure 4 is a cross-sectional view of a semiconductor LED device according to the first embodiment of the present invention.

도 5는 도 4의 LED의 밴드 다이어그램. Figure 5 is a band diagram of the LED 4.

도 6은 본 발명의 제2실시예에 따른 반도체 LED 소자의 단면도. Figure 6 is a cross-sectional view of a semiconductor LED device according to the second embodiment of the present invention.

도 7은 본 발명의 제3실시예에 따른 반도체 LED 소자의 단면도. Figure 7 is a cross-sectional view of a semiconductor LED device according to a third embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 > <Description of the Related Art>

1 : 절연기판 AlGaInN계 LED 소자 2 : 도전기판 AlGaInN계 LED 소자 1: an insulating substrate AlGaInN-based LED element 2: the conductive substrate AlGaInN-based LED element

3 : LED 패키지 10,19, 30,50,70 : 기판 3: LED packages 10,19, 30,50,70: board

11,20,31,51,71 : 버퍼층 12,21,32,34,52,72 : n형 AlGaInN층 11,20,31,51,71: 12,21,32,34,52,72 buffer layer: n-type AlGaInN layer

13,22,3353,57,73 : 활성층 14,23,36,56,58,77 : p형 AlGaInN층 13,22,3353,57,73: 14,23,36,56,58,77 active layer: p-type AlGaInN layer

15 : 투명전극 17,25,37,60,80 : n형 금속전극 15: a transparent electrode 17,25,37,60,80: n-type metal electrode

18,24,38,59,76 : p형 금속전극 26 : 형광물질 18,24,38,59,76: p-type metal electrode 26: fluorophore

27 : 1차 방출광 28 : 2차 방출광 27: primary emitted light 28: secondary light emitted

29 : 금속 패키지 프레임 35,55,75 : 펌핑층 29: Metal frame package 35,55,75: Pump layer

40 : 펌핑층의 밴드갭 41 : 활성층의 밴드갭 40: a pump band gap layer 41: active layer of the band gap

42 : 전자 43 : 정공 42: E-43: hole

44 : 펌핑층으로부터 방출된 빛 45 : 활성층에 흡수된 빛 44: emitted from the pumping light layer 45: light absorbed in the active layer

46 : 흡수된 빛에 의한 전자 47 : 흡수된 빛에 의한 정공 46: by light absorbed e 47: a hole by light absorbed

48 : 활성층에서 방사된 빛 78 : 창 48: emitted light in the active layer 78: window

79 : 펌핑층으로부터 창을 통해 방출되는 빛 79: The light emitted through the window layer from the pumping

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 LED 소자의 특징은, Example of a semiconductor LED device according to the present invention for achieving the above object is,

AlGaInN 계 LED 소자에 있어서, In the AlGaInN-based LED element,

1개 이상의 동종접합의 다층의 Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질의 활성층과, A multi-layer of Al x Ga y In z N / Al x1 Ga y1 In z1 N material of the active layer and at least one homozygous,

이종접합의 다층의 Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질의 펌핑층을 활성층과 함께 적어도 하나씩 구비하여 수직으로 집적되어 LED 소자를 구성하되 단층 또는 다층의 활성층 Al x Ga y In z N 의 웰 부분의 밴드갭이 단층 또는 다층의 펌핑층 Al a Ga b In c N 의 웰 부분의 밴드갭보다 적게 형성됨에 있다. Of the heterojunction multilayer Al a Ga b In c N / Al a1 Ga b1 In c1 N to the pumping layer of material having at least one by one with the active layer is integrated vertically, but configuring the LED element a single-layer or multi-layer of the active layer Al x Ga y the band gap of the well portion of the in z N is formed on less than the band gap of the well layer of the pumping section of the single-layer or multi-layer Al a Ga b in c N.

또한 상기 펌핑층에서 먼 활성층 상에 형성되는 전극이 전면전극이거나, 상기 전면전극이 패턴닝되어 창이 형성되어 양면으로 빛이 방사되거나, 상기 창의 오픈 되는 폭을 0∼300㎛ 로하거나, 상기 LED 소자의 기판으로서 투명기판이나 도전기판을 사용할 수 있다. In addition, or an electrode formed on the active layer distant from the pumping layer the front electrode, the front electrode is patterning a window is formed in the light emitted or to both sides, or the width of the open window in 0~300㎛, the LED as the substrate may be a transparent substrate or a conductive substrate.

또한 본 발명의 다른 특징은, In addition, another feature of the invention,

투명기판상에 순차적으로 적층되어 있는 버퍼층과, n형 AlGaInN층, Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질이 동종접합으로 반복적층된 활성층과, n형 AlGaInN층과, Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질이 이종접합으로 반복적층된 펌핑층과, p형 AlGaInN층 및 p형 금속전극과 상기 n형 AlGaInN층의 일측에 형성되어있는 n형 금속전극을 구비하되, A transparent substrate a buffer layer that are sequentially stacked on the, n-type AlGaInN layer, Al x Ga y In z N / Al x1 Ga y1 In z1 N material is and the repeated layer active layer with homogeneous bonding, n-type AlGaInN layer, Al a Ga b in c n / Al a1 Ga b1 in c1 n material with heterojunction repeatedly layer pumped layer, p-type AlGaInN layer, and a p-type metal electrode and an n-type metal is formed on a side of the n type AlGaInN layer including at the electrode,

상기 활성층은 동종접합으로서 조성이 다른 Al x Ga y In z N / Al x1 Ga y1 In z1 N 두층이 반복 적층되어 있고, 상기 펌핑층은 이종접합의 Al a Ga b In c N / Al a1 Ga b1 In c1 N 의 다층 구조이며, 활성층에 해당하는 Al x Ga y In z N층의 밴드갭 Eg(Al x Ga y In z N) 이 활성층을 구성하고 있는 베리어층인 Al x1 Ga y1 In z1 N 층의 밴드갭 Eg(Al x1 Ga y1 In z1 N) 보다 작고, Eg(Al x Ga y In z N)가 Eg(Al a Ga b In c N) 보다 작으며, x+y+z=1 및 x1+y1+z1=1 을 만족시키는 것에 있다. The active layer has a composition of other Al x Ga y In z N / Al x1 Ga y1 In z1 N two layers are repeatedly stacked, and the pump layer is of a heterojunction Al a Ga b In c N / Al a1 Ga b1 as homozygous the multilayer structure of in c1 N, the band of the Al x Ga y in z N layer corresponding to the active gap Eg (Al x Ga y in z N) is a barrier layer of Al x1 Ga y1 in z1 N layer constituting the active layer the band gap Eg (Al x1 Ga y1 in z1 N) smaller, Eg (Al x Ga y in z N) is smaller than the Eg (Al a Ga b in c N), x + y + z = 1 , and x1 + lies in that satisfies y1 + z1 = 1.

또한 상기 펌핑층과 p형 AlGaInN층의 사이에 p형 AlGaInN층과 활성층을 개재시켜 두곳의 활성층에서 단파장이나 다파장의 빛을 방사시키거나, 상기 p형 금속전극이 패턴닝되어 빛을 방출하는 창이 형성되어 양면으로 빛을 방사하거나 상기 투명기판을 도전기판으로 대체하고, p형 금속전극을 투명전극으로 형성한다. In addition, a window for emitting the pump layer and the p-type short-wavelength or multi as to emit light having a wavelength of, or is turning the p-type metal electrode pattern light by interposing a p-type AlGaInN layer, and an active layer between the AlGaInN layer at the two places the active layer It is formed to emit light on both sides or replace the transparent substrate of a conductive substrate, and forming a p-type metal electrode as a transparent electrode.

이하, 본 발명에 따른 반도체 LED 소자에 관하여 첨부 도면들을 참조하여 상세히 설명한다. With reference to the accompanying drawings, with respect to the semiconductor LED device according to the present invention will be described in detail.

본 발명의 기본 원리를 살펴보면 다음과 같다. Looking at the basic principles of the present invention are as follows.

먼저, 일반적인 AlGaInN 계 광소자는 활성층에 In 양이 많이 들어갈수록 효율이 감소하는 특성이 있다. First, The typical AlGaInN-based optical device has a characteristic which contains a lot of amount of In in the active layer toward the efficiency is reduced. 보통 In이 약 35% 들어가는 AlGaInN 활성층의 파장은 약 470nm인데 이 경우 출력은 소자의 구조에 따라 약 3∼5mW이다. In inde usually a wavelength of about 35% into AlGaInN active layer is about 470nm this case, the output is about 3~5mW depending on the geometry of the device. 반면 In이 약 5% 들어가는 380nm 혹은 In이 약 22% 들어가는 430nm 파장의 활성층의 경우에는 동일한 구조에서도 출력이 약 10mW를 쉽게 상회한다. In this case, while about 5% of the entering 380nm or 430nm wavelength from entering the active layer In about 22% are to easily exceed the output is approximately 10mW in the same structure. 이것은 활성층의 In량이 증가할수록 결정의 질이 약화되어 효율이 급격히 저하되는 특성이 있기 때문이다. This is because increasing the amount of In in the active layer there is a characteristic that is the quality of the crystal weakening efficiency is rapidly lowered. 또한 In 양이 증가하면, 이 활성층에 전류가 주입되어 빛으로 변환되는 과정에서 파장이 짧은 쪽으로 옮겨지는 (blue shift) 현상이 증가하여 효율이 더욱 악화된다. In addition, when the amount is increased, the current is injected into the active layer is increased while it is placed towards the short wavelengths in the process of being converted into light (blue shift) developing more efficient deteriorated.

본 발명의 새로운 구조는 In 조성이 적은 양질의 펌핑층의 장점과 In 조성 높은 활성층 특히 전류에 의한 재결합 방출이 아니라, 빛의 흡수를 그대로 빛으로 전환시키는 활성층의 장점을 이용하는 것이다. The new structure of the present invention is to use the benefits of the active layer that recombine and not emitted by the active layer, particularly high strengths and In composition of the pumping current layer of the low In composition of good quality, the conversion of the absorbed light as the light. 따라서, 얻고자 하는 빛의 파장을 종래의 pn 구조에서가 아니고, 동일 도전형(conductive type), 예를 들면 nn 활성층으로부터 얻을 수 있다.. Thus, the wavelength of light to be obtained, not in the conventional pn structure, for the same conductivity type (conductive type), for example, can be obtained from the active layer. Nn

이 원리를 의해 효율이 좋은 단 파장, 예를 들면 380~430nm 파장의 빛을 발광하는 펌핑층을 이용하여 효율이 좋지 않은 470nm(청색), 525nm(녹색), 635nm(적색)의 빛으로 쉽게 변환할 수 있다. The principle for efficient only by the wavelength, for example 380 to easily convert the light of 470nm using a pumping layers for emitting light of a 430nm wavelength efficiency are side (blue), 525nm (green), 635nm (red) can do.

또한 이 원리를 이용하면 한 개의 LED 소자에서 한 개 이상의 파장을 가지는 빛을 얻을 수 있고, 이런 두개 이상 파장의 빛의 적절한 혼합으로 새로운 색 파장의 빛을 얻을 수 있다. In addition, use of this principle can be obtained when the light having the at least one wavelength from a single LED element, a proper mixture of these two or more wavelengths of light may have the light color of the new wavelength. 예를 들면 펌핑층에서 발생된 깊은 청색(~450 nm) 파장의 빛이 활성층에 흡수되어, 이 색과 보색 관계인 황색(590nm) 빛을 낼 때 활성층의 두께와 활성층의 수를 조절하여, 깊은 청색(~450nm) 파장 빛의 활성층에서의 흡수량과 투과량 등을 조절하여 흰색의 빛을 얻을 수가 있다. For example, a deep blue light having a wavelength (~ 450 nm) generated in the pumping layer is absorbed by the active layer, when make a color and a complementary color relationship yellow (590nm) light by varying the number of the thickness and the active layer of the active layer, the deep blue (~ 450nm) to adjust the water absorption amount and transmission amount and so on at a wavelength of light to the active layer can be obtained for the white light.

또 다른 방법으로 펌핑층의 빛을 일부분 방출시키고, 활성층의 빛과 혼합하여도 2 개 파장의 빛을 얻을 수도 있다. In addition it was the other way portion emitting light of a pumping layer, also obtained even with light of two wavelengths in combination with the active layer of the light.

이와 같은 다파장 LED는 형광 물질을 사용하지 않아 소자의 신뢰성이 혁신적으로 향상되며, 또한 한번의 에피성장 과정에서 얻어진 에피웨이퍼를 기존의 청색 LED 공정을 그대로 적용하여 제작이 가능하여 공정이 간단해지고, 소자 특성의 균일성이 우수하여 양산성이 향상된다. The multi-wavelength LED, such is not a fluorescent substance, and the reliability of the device dramatically improve, and the process becomes simple and the epitaxial wafer obtained in the epitaxial growth process, a single production is possible by directly applying the conventional blue LED step, the mass productivity is improved and the uniformity of excellent device characteristics.

도 4는 본 발명의 제1실시예에 따른 반도체 LED 소자의 단면도로서, nn형 동종 접합 활성층과 펌핑층이 수직으로 집적된 LED 의 예이다. Figure 4 is a first embodiment of an integrated LED with a vertical-type homozygous nn layer and pumping the active layer a cross-sectional view of the semiconductor LED device according to an embodiment of the present invention.

먼저, 알루미나, 사파이어 또는 석영 등의 투명재질의 기판(30)상에 AlGaInN 재질의 버퍼층(31 ) 과, n형 AlGaInN층(32), Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질이 반복적층된 다층 활성층(33)과, n형 AlGaInN층(34)과, Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질이 반복적층된 다층의 펌핑층(35)과, p형 AlGaInN층(36)을 순차적으로 MOCVD등의 방법으로 성장시킨다. First, alumina, sapphire, or the buffer layer 31 of the AlGaInN material on a substrate 30 of transparent material such as quartz, n-type AlGaInN layer (32), Al x Ga y In z N / Al x1 Ga y1 In z1 N material is repeated, the layer multi-layer active layer 33 and the n type AlGaInN layer 34, and Al a Ga b in c N / Al a1 Ga b1 in c1 N material is repeated, layers of a multi-layer pumping layer 35 with, a p-type AlGaInN layer 36 are sequentially grown by the MOCVD method or the like. 이때 상기 투명기판(30)의 일측에는 n형 AlGaInN층(32) 일부와 그 상부층들이 제거되어 있고, 노출되어있는 n형 AlGaInN층(32) 상에 n형 금속전극(37)이 형성되어 있으며, 상기 p형 AlGaInN층(36) 상에는 불투명한 재질의 p형금속전극(38)이 형성되어있다. In this case, and one side of the transparent substrate 30, the n-type AlGaInN layer 32 and is removed portion and the top layer are, the n-type AlGaInN layer 32, the n-type metal electrode 37 a is formed with exposure, wherein a p-type AlGaInN layer 36 opaque material of the p-type metal electrode 38 formed on is formed.

상기에서 활성층(33)과 펌핑층(35)은 밴드갭이 다른 서로 다른 조성을 가지는 두개의 층이 반복적층되어 있는 층들로서 도 4에서는 편의상 단일층으로 도시되어있으며, 상기 활성층(33)은 n형 또는 p형의 도전형으로서 조성이 다른 AlGaInN/AlGaInN 두층이 반복 적층되어있는 구조이고, 펌핑층(35)은 pn 접합의 AlGaInN/AlGaInN 의 다층 구조이다. In the active layer 33 and the pump layer 35 also as layer that is the two layers are band gap having another different composition repeatedly layer 4 is illustrated for convenience a single layer, the active layer 33 is n-type or a conductivity type of p-type and having different compositions AlGaInN / AlGaInN structure in which two layers are repeatedly stacked, the pumping layer 35 is a multi-layer structure of an AlGaInN / AlGaInN of the pn junction. 여기서 활성층(33)은 x+y+z=1 및 x1+y1+z1=1 을 만족시키며, 활성층에 해당하는 Al x Ga y In z N층의 밴드갭 Eg(Al x Ga y In z N) 이 활성층을 구성하고 있는 베리어층인 Al x1 Ga y1 In z1 N 층의 밴드갭 Eg(Al x1 Ga y1 In z1 N) 보다 작다. The active layer 33 is x + y + z = 1 and x1 + y1 + z1 = satisfies the 1, Al x Ga y In z N layer bandgap (Al x Ga y In z N) Eg of the corresponding to the active layer It is smaller than the configuration of the active layer and the barrier layer of Al x1 Ga y1 in z1 N layer band gap Eg of (Al x1 Ga y1 in z1 N ) in.

이와 같이 형성된 반도체 LED 소자의 동작 원리를 도 5를 참조하여 설명한다. Thus formed will be described with the operation principle of the LED semiconductor device with reference to Fig.

도 5는 도 4 반도체 LED 소자의 밴드 다이어그램으로서, 활성층(33) 및 펌핑층(35)의 베리어 구조를 AlGaInN층인 경우로 단순화 시켜 예시한 것이며, x1=0, y1=1, z1=0, a1=0, b1=1, c1=0 인 경우이고, 펌핑층(35)의 웰부분 밴드갭(40) Eg( Al a Ga b In c N ) 가 활성층(33)의 웰부분 밴드갭(41) Eg(Al x Ga y In z N) 보다 커야 한다. 5 is 4 as a band diagram of a semiconductor LED, will illustrate simplify the barrier structure of the active layer 33 and the pump layer 35 in the case AlGaInN layer, x1 = 0, y1 = 1, z1 = 0, a1 = 0, b1 = 1, c1 = 0 in the case, and the well portion bandgap 40 of the pump layer (35) Eg (Al a Ga b in c N), a well portion bandgap 41 of the active layer 33 It should be larger than the Eg (Al x Ga y In z N).

이 새로운 구조의 원리는 두개의 전극으로부터 공급된 전류에 의해 p형 AlGaInN층(36)을 통해 들어온 정공(43)이 펌핑층(35)에 제한되고, n형 AlGaInN층(32)을 통해 들어온 전자(42)가 펌핑층(35)에 제한되어 이 두개의 전자 및 정공이 pn 펌핑층(35)에서 결합하여 펌핑층(35)의 밴드갭 ( Eg(40)) 에 해당하는 빛(44)을 방출하는데, 펌핑층(35)의 하부로 방출된 빛(45)은 그대로 활성층(32)에 흡수되고, 펌핑층(35)의 상부로 방출된 빛은 p형 금속전극(38)에서 반사되어 다시 활성층(33)에 흡수되게 된다. The principle of this new structure is a hole 43 coming through a p-type AlGaInN layer 36 by the current supplied from the two electrodes are limited to the pumping layer 35, an electron entering through the n-type AlGaInN layer 32 42 is a light 44, for the pumping layer 35 limits are the two e and the band gap (Eg (40)) of the hole is pumped layer 35 combines in pn pumping layer 35 on is reflected by the emit, discharge into the lower portion of the pumping layer 35, the light 45 is still being absorbed by the active layer 32, the pumping layer the light is p-type metal electrode 38 is discharged to the upper portion of the unit 35 again It is absorbed in the active layer 33. 이렇게 흡수된 빛은 활성층(33)에서 전자(46)와 정공(47)으로 변환되고 활성층(33)의 베리어층에 의해 제한되어 있다가 활성층(33)에서 다시 결합하여 활성층(33)의 밴드갭(Eg(41)에 해당하는 빛(48)을 방출하게 된다. 이런 빛은 LED 구조에서 에너지가 가장 작은 빛으로 더 이상 어느 층에도 흡수되지 않고 기판을 통해 전부 방출시킬 수 있다. Al의 량이 증가하면 밴드갭이 감소하고, In의 량이 증가하면 밴드갭이 감소되는 성질을 이용하여 활성층(33)과 펌핑층(35)의 밴드갭을 조절할 수 있다. Thus absorbed light in the active layer 33, e 46 and is converted into the hole 47 of the active layer 33 that is limited by the barrier layer an active layer (33) to recombine in the active layer 33 of bandgap (Eg is emitting light (48) corresponding to 41. this light may be all discharged through the substrate not to absorb more than one layer with the smallest energy light in the LED structure increasing the amount of Al If the reduction in band gap, and may be an increase in the amount of in with the property of reducing the band gap adjusted for the band gap of the active layer 33 and the pump layer 35.

도 6은 본 발명의 제2실시예에 따른 반도체 LED 소자의 단면도로서, 도 4의 LED와 유사한 구조이나, 펌핑층의 상부에도 활성층이 적층되어있는 경우의 예이다. Figure 6 is an example of a case in which in the upper part of the second embodiment as a cross-sectional view of a semiconductor LED device according to the embodiment, a similar structure or, the pumping of the layer and the LED 4 of the present invention is the active layer is laminated.

즉, 투명재질의 기판(50)상에 버퍼층(51)과, n형 AlGaInN층(52), Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질이 반복적층된 다층 활성층(53)과, n형 AlGaInN층(54)과, Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질이 반복적층된 다층의 펌핑층(55)과, p형 AlGaInN층(56), 다층의 활성층(57), p형 AlGaInN층(58) 및 p형 금속전극(59)이 순차적으로 형성되어 있으며, 상기 기판(50) 일측의 n형 AlGaInN층(52) 상에는 n형 금속전극(60)이 형성되어 있다. That is, the buffer layer on a substrate 50 of transparent material (51) and, n-type AlGaInN layer (52), Al x Ga y In z N / Al x1 Ga y1 In z1 N multilayered active layer of the material is repeated layer 53 and, n-type AlGaInN layer 54 and, Al a Ga b in c N / Al a1 Ga b1 in c1 N material is repeatedly pumped layers of the layer multi-layer 55, and, p-type AlGaInN layer 56, a multi-layer an active layer (57), a p-type AlGaInN layer 58 and the p-type metal electrode 59 a is formed in sequence, said substrate (50) n-type AlGaInN layer n-type metal electrode 60 is formed on the part 52 of the one side It is formed.

이와 같이 펌핑층(55)의 양측에 활성층들(53), (57)이 존재하여 양측에서 빛이 방사되므로 활성층들(53), (57)의 조성 및 두께 등을 조절하면 다파장의 빛이나 백색광을 하나의 소자에서 얻을 수 있다. According to this active layer (53) on either side of the pump layer 55, since the light is emitted from both sides by 57, it is present regulate such composition and thickness of the active layer (53), (57) is a wavelength of light, it is possible to obtain white light in a single device.

또한 상기 p형 금속전극(59)을 투명전극으로 형성하여 양방향으로 다른 파장의 광이 방사되도록 할 수도 있다. It may also be bi-directional so that the light emission of different wavelengths to form the p-type metal electrode 59 as a transparent electrode.

도 7은 본 발명의 제3실시예에 따른 반도체 LED 소자의 단면도로서, 도 4의 LED와 유사한 구조이나, p형 금속전극의 일부를 패턴닝하여 빛을 방사하는 창을 형성한 예이다. 7 is an example in which a window for emitting the third embodiment to light by turning a cross-sectional view of a semiconductor LED, a part of the pattern or the structures, the p-type metal electrode is similar to the LED of Figure 4 according to the present invention.

즉, 투명한 기판(70)상에 버퍼층(71)과, n형 AlGaInN층(72), Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질이 반복적층된 다층 활성층(73)과, n형 AlGaInN층(74)과, Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질이 반복적층된 다층의 펌핑층(75)과, p형 AlGaInN층(76) 및 p형 금속전극(77)이 순차적으로 형성되어 있으며, 상기 p형 금속전극(77)의 일부가 패턴닝되어 상기 p형 AlGaInN층(76)을 노출시키는 창(78)이 형성되어있어 빛(79)이 방사되며, 일측의 n형 AlGaInN층(52) 상에는 n형 금속전극(80)이 형성되어 있다. That is, on a transparent substrate 70, the buffer layer 71 and a n-type AlGaInN layer (72), Al x Ga y In z N / Al x1 Ga y1 In z1 N material is repeated, layers of a multi-layer active layer 73 and, n-type AlGaInN layer 74 and, Al a Ga b in c n / Al a1 Ga b1 in c1 n material is repeatedly pumped layers of the layer multi-layer 75, and, p-type AlGaInN layer 76 and the p-type metal electrode 77 is are formed in sequence, a portion of the p-type metal electrode 77 is patterning a window 78 exposing the p-type AlGaInN layer 76 is formed on it with light (79) are emitted , the n-type AlGaInN layer (52) n-type metal electrode 80 formed on the one side is formed.

도 7의 반도체 LED 소자는 창(78)의 크기를 조절하여 이쪽 면으로 방사되는 빛(79)의 양을 조절할 수 있으며, 상기 창(78)의 오픈 폭(Wo)은 0∼300㎛ 정도로 하며, 양방향의 광파장을 다르게 할 수도 있다. The semiconductor LED device is to control the amount of light (79) emitted by this surface by adjusting the size of the window 78, the open width (Wo) of the window 78 of Figure 7 and so 0~300㎛ , it may be different for both directions of the light wavelength.

또한 기판을 투명기판이 아닌 도전성기판을 사용할 수도 있으며, 이때는 p형 전극을 투명전극으로하여 이곳으로 빛이 방사되게 한다. Also can use a conductive substrate instead of the transparent substrate to the substrate, that case allows the light emitted from place to the p-type electrode of a transparent electrode.

상기에서 기판들은 모두 사파이어나 알루미나 석영 등의 투명기판이나, 이를 SiC 이나 Si등의 도전기판을 사용할 수도 있다. A transparent substrate, such as in the substrate are all sapphire, alumina or quartz, and it may be a conductive substrate such as SiC or Si.

상기의 층들은 MOCVD나 MBE(molecular beam epitaxy)나 VPE(vapor phase epitaxy) 등의 방법을 사용할 수 있다. The layer may use a method such as MOCVD or MBE (molecular beam epitaxy) or VPE (vapor phase epitaxy).

이상에서 설명한 바와 같이 본 발명에 따른 반도체 LED 소자는 이종 접합된 다층에 의해 발광효율이 우수한 펌핑층과 그보다 밴드갭이 적어 수광된 빛을 모두 원하는 파장의 빛으로 전환시킬 수 있는 동종접합의 다층으로된 활성층을 구비하였으므로, In 양이 적은 AlGaInN 재질의 펌핑층에서 광을 생성하고, 이를 얻고자하는 In 양이 많은 활성층에 입사시켜, 빛을 방출하게 하여 전류에 의한 단파장화(blue shift)를 감소시켜 효율을 향상시키고, 하나의 LED 소자에서 두 개 이상의 파장을 갖는 빛의 방출이 가능하여 다양한 파장의 빛을 하나의 소자에서 얻을 수 있으며, 연속되는 한번의 성장 공정으로 소자를 형성하므로 소자의 재현성이 우수하여 양산성이 향상되며, 백색광을 형성할 때 효율이 저하되는 형광물질을 사용하지 않아 효율이 증가되는 이점이 있 The semiconductor LED device according to the invention as described above is a multi-layer of the same joint, which can be converted into light of two kinds by a joint multi-layer all of the light of the light-emitting efficiency is excellent pumping layer and than the band gap is less light-receiving desired wavelength hayeoteumeuro having an active layer, and generating light in the pumped layer of AlGaInN material is in an amount less, by joining a number of the in amount to be obtained it the active layer, it reduces to emit light shorter wavelength by the current (blue shift) to improve the efficiency and it is possible to obtain the possible emission of light having at least two wavelengths in one of the LED light of different wavelengths from a single element, so forming a device with a single growth step of the subsequent reproduction of the element this is excellent to improve the mass productivity, not a fluorescent substance that efficiency is decreased when forming the white light there is an advantage that efficiency is increased 다. All.

또한, 활성층에서의 흡수율을 활성층의 두께 및 수를 조절하여 높임으로써 펌핑층이 활성층의 파장으로 모두 변환된 단파장 단색 LED도 구현이 가능하다. It is also possible that the short-wavelength monochromatic LED is pumped by enhancing layer by adjusting the thickness of the active layer and the absorption rate can both convert a wavelength of the active layer in the active layer is also implemented.

Claims (9)

  1. 삭제 delete
  2. 삭제 delete
  3. 삭제 delete
  4. 삭제 delete
  5. 삭제 delete
  6. 투명기판상에 순차적으로 적층되어있는 AlGaInN 버퍼층과, n형 AlGaInN층, Al x Ga y In z N / Al x1 Ga y1 In z1 N 재질이 동종접합으로 반복적층된 활성층과, n형 AlGaInN층과, Al a Ga b In c N / Al a1 Ga b1 In c1 N 재질이 이종접합으로 반복적층된 펌핑층과, p형 AlGaInN층 및 p형 금속전극과 상기 n형 AlGaInN층의 일측에 형성되어있는 n형 금속전극을 구비하되, A transparent substrate AlGaInN buffer layer that are sequentially stacked on, and n-type AlGaInN layer, Al x Ga y In z N / Al x1 Ga y1 In z1 N material is repeated layers of the active layer and the n-type in homozygous AlGaInN layer; Al a Ga b in c n / Al a1 Ga b1 in c1 n material with heterojunction repeatedly layer pumped layer, p-type AlGaInN layer, and a p-type metal electrode and the n-type n-type which is formed on one side of the AlGaInN layer a second device, a metal electrode,
    상기 활성층은 동종접합으로서 조성이 다른 Al x Ga y In z N / Al x1 Ga y1 In z1 N 두층이 반복 적층되어있고, 상기 펌핑층은 이종접합의 Al a Ga b In c N / Al a1 Ga b1 In c1 N 의 다층 구조이며, 활성층에 해당하는 Al x Ga y In z N층의 밴드갭 Eg(Al x Ga y In z N) 이 활성층을 구성하고 있는 베리어층인 Al x1 Ga y1 In z1 N 층의 밴드갭 Eg(Al x1 Ga y1 In z1 N) 보다 작고, Eg(Al x Ga y In z N)가Eg(Al a Ga b In c N) 보다 작으며, x+y+z=1 및 x1+y1+z1=1 을 만족시키는 것을 특징으로 하는 반도체 LED 소자. The active layer has a composition of other Al x Ga y In z N / Al x1 Ga y1 In z1 N two layers are repeatedly stacked, and the pump layer is of a heterojunction Al a Ga b In c N / Al a1 Ga b1 as homozygous the multilayer structure of in c1 N, the band of the Al x Ga y in z N layer corresponding to the active gap Eg (Al x Ga y in z N) is a barrier layer of Al x1 Ga y1 in z1 N layer constituting the active layer the band gap Eg (Al x1 Ga y1 in z1 N) smaller, Eg (Al x Ga y in z N) is smaller than the Eg (Al a Ga b in c N), x + y + z = 1 , and x1 + y1 + semiconductor LED element, characterized in that to satisfy the z1 = 1.
  7. 제 6 항에 있어서, 7. The method of claim 6,
    상기 펌핑층과 p형 AlGaInN층의 사이에 p형 AlGaInN층과 활성층을 개재시켜 두곳의 활성층에서 단파장이나 다파장의 빛을 방사시키는 것을 특징으로 하는 반도체 LED 소자. The semiconductor LED element, characterized in that by interposing the p-type AlGaInN layer, and an active layer between the pump layer and the p-type AlGaInN layer for emitting a short wavelength or the wavelength of light in the active layer of the two locations.
  8. 제 6 항에 있어서, 7. The method of claim 6,
    상기 p형 금속전극이 패턴닝되어 빛을 방출하는 창이 형성되어 양면으로 빛을 방사하는 것을 특징으로 하는 반도체 LED 소자. The semiconductor LED element, characterized in that the turning is p-type metal electrode pattern is formed on a window for emitting light emits light to both sides.
  9. 제 6 항에 있어서, 7. The method of claim 6,
    상기 투명기판을 도전기판으로 대체하고, p형 금속전극을 투명전극으로 형성하는 것을 특징으로 하는 반도체 LED 소자. The semiconductor LED element, characterized in that the transparent substrate to form a replacement, and p-type metal electrode with a conductive substrate as a transparent electrode.
KR10-2001-0030476A 2001-05-31 2001-05-31 Semiconductor LED device KR100422944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0030476A KR100422944B1 (en) 2001-05-31 2001-05-31 Semiconductor LED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0030476A KR100422944B1 (en) 2001-05-31 2001-05-31 Semiconductor LED device
PCT/KR2002/001027 WO2002097902A1 (en) 2001-05-31 2002-05-30 Semiconductor led device

Publications (2)

Publication Number Publication Date
KR20010070709A KR20010070709A (en) 2001-07-27
KR100422944B1 true KR100422944B1 (en) 2004-03-12

Family

ID=19710232

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0030476A KR100422944B1 (en) 2001-05-31 2001-05-31 Semiconductor LED device

Country Status (2)

Country Link
KR (1) KR100422944B1 (en)
WO (1) WO2002097902A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10354936B4 (en) * 2003-09-30 2012-02-16 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component
US7402831B2 (en) 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
EP1670068A1 (en) * 2004-12-09 2006-06-14 SuperNova Optoelectronics Corporation Manufacturing method and device for white light emitting
US7745814B2 (en) 2004-12-09 2010-06-29 3M Innovative Properties Company Polychromatic LED's and related semiconductor devices
US7719015B2 (en) 2004-12-09 2010-05-18 3M Innovative Properties Company Type II broadband or polychromatic LED's
DE102006059612A1 (en) * 2006-12-12 2008-06-19 Forschungsverbund Berlin E.V. Semiconductor component and method for its production
JP2010525555A (en) 2007-03-08 2010-07-22 スリーエム イノベイティブ プロパティズ カンパニー Array of light emitting elements
CN101809764B (en) 2007-09-28 2012-05-23 欧司朗光电半导体有限公司 Radiation-emitting semiconductor body
CN102738341B (en) * 2011-04-01 2014-12-10 山东华光光电子有限公司 LED structure using AlGaInN quaternary material as quantum well and quantum barrier and manufacturing method thereof
US9331252B2 (en) 2011-08-23 2016-05-03 Micron Technology, Inc. Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods
US8975614B2 (en) 2011-08-23 2015-03-10 Micron Technology, Inc. Wavelength converters for solid state lighting devices, and associated systems and methods
FR3003402B1 (en) * 2013-03-14 2016-11-04 Centre Nat Rech Scient Monolithic light emitting device.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
US7193246B1 (en) * 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
JP3978858B2 (en) * 1998-04-03 2007-09-19 松下電器産業株式会社 The gallium nitride-based compound semiconductor light-emitting device
KR100639170B1 (en) * 1998-09-16 2006-10-27 크리 인코포레이티드 Vertical geometry ingan led
KR20010000545A (en) * 2000-10-05 2001-01-05 유태경 The multiple wavelength AlGaInN LED device with pumping layer

Also Published As

Publication number Publication date
KR20010070709A (en) 2001-07-27
WO2002097902A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
Koike et al. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications
US8536604B2 (en) Light emitting diode and method for fabricating the same
US7700938B2 (en) Adapting short-wavelength LED&#39;s for polychromatic, broadband, or “white” emission
US9419186B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US8330179B2 (en) Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
JP5237566B2 (en) Light emitting device package and manufacturing method thereof
US6949773B2 (en) GaN LED for flip-chip bonding and method of fabricating the same
US6956247B1 (en) Semiconductor light emitting device including photonic band gap material and luminescent material
JP2791448B2 (en) Light emitting diode
JP3486345B2 (en) Semiconductor light-emitting device
JP2014160854A (en) Optoelectronic semiconductor body and method for production thereof
EP1754265B1 (en) Led with a fluorescent substance
US7242030B2 (en) Quantum dot/quantum well light emitting diode
KR100532650B1 (en) Semiconductor luminous element of iii nitride group
US6163038A (en) White light-emitting diode and method of manufacturing the same
JP5193048B2 (en) Light emitting device having vertically stacked light emitting diodes
US7279350B2 (en) White-light emitting devices and methods for manufacturing the same
US6794688B2 (en) Semiconductor light-emitting device and manufacturing method therefor, and LED lamp and LED display
KR100850950B1 (en) Nitride based light emitting diode
US6744196B1 (en) Thin film LED
EP1162670A2 (en) White light emitting diode and method for fabricating the same
US7956364B2 (en) Thin film light emitting diode
US6329676B1 (en) Flat panel solid state light source
EP1132977A2 (en) Semiconductor light emitting device and method for manufacturing same
US6646292B2 (en) Semiconductor light emitting device and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170228

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180228

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190228

Year of fee payment: 16