KR100266128B1 - Resin-sealed type semiconductor device and its production method - Google Patents

Resin-sealed type semiconductor device and its production method Download PDF

Info

Publication number
KR100266128B1
KR100266128B1 KR1019980001579A KR19980001579A KR100266128B1 KR 100266128 B1 KR100266128 B1 KR 100266128B1 KR 1019980001579 A KR1019980001579 A KR 1019980001579A KR 19980001579 A KR19980001579 A KR 19980001579A KR 100266128 B1 KR100266128 B1 KR 100266128B1
Authority
KR
South Korea
Prior art keywords
film
polyimide
resin
semiconductor device
polyimide precursor
Prior art date
Application number
KR1019980001579A
Other languages
Korean (ko)
Other versions
KR19980070643A (en
Inventor
쥰 타나카
케이코 이소다
키요시 오가타
Original Assignee
가나이 쓰도무
가부시끼가이샤 히다치 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가나이 쓰도무, 가부시끼가이샤 히다치 세이사꾸쇼 filed Critical 가나이 쓰도무
Publication of KR19980070643A publication Critical patent/KR19980070643A/en
Application granted granted Critical
Publication of KR100266128B1 publication Critical patent/KR100266128B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/4951Chip-on-leads or leads-on-chip techniques, i.e. inner lead fingers being used as die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Abstract

본 발명에서는 강유전성막 및 표면보호막을 가진 반도체소자와 수지로 이루어지는 봉지부재를 구비하며, 표면보호막이 폴리이미드로 이루어지는 수지봉지형 반도체장치가 제공된다. 또 본 발명에서는 강유전체 박막을 가진 반도체소자의 표면에 폴리이미드 전구체 조성물막을 성막하는 공정과, 폴리이미드 전구체 조성물막을 가열하여 경화시켜 폴리이미드로 이루어지는 표면보호막으로 하는 공정과, 표면보호막이 형성된 반도체 소자를 봉지수지에 의해 봉지하는 공정을 구비하는 수지봉지형 반도체 장치의 제조방법이 제공된다. 폴리이미드는 유리전이온도가 240℃ ∼ 400℃이며, 영율이 2600MPa∼6GPa인 것이 바람직하다. 또 그 경화온도는 230℃ 이상 300℃ 이하로 하는 것이 바람직하다.The present invention provides a resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and a surface protective film and a sealing member made of resin, wherein the surface protective film is made of polyimide. In the present invention, a process of forming a polyimide precursor composition film on the surface of a semiconductor device having a ferroelectric thin film, a step of heating and curing the polyimide precursor composition film to form a surface protective film made of polyimide, and a semiconductor device having a surface protection film Provided is a method for manufacturing a resin encapsulated semiconductor device comprising a step of encapsulating with a encapsulating resin. It is preferable that polyimide has a glass transition temperature of 240 degreeC-400 degreeC, and a Young's modulus of 2600 Mpa-6 GPa. Moreover, it is preferable to make the hardening temperature into 230 degreeC or more and 300 degrees C or less.

Description

수지봉지형 반도체장치 및 그 제조방법Resin-sealed semiconductor device and manufacturing method

본 발명은 강유전체막을 가진 반도체소자를 구비한 수지봉지형 반도체 장치와 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin encapsulated semiconductor device including a semiconductor element having a ferroelectric film and a method of manufacturing the same.

최근 강유전체(고유전율을 가진 유전체 재료 또는 페로부스카이트형(회티탄석형) 결정구조를 가진 물질)의 박막을 가진 비휘발성 또는 대용량의 반도체 메모리소자가 제안되어 있다. 강유전체막은 자발분극이나 고유전율 특성등의 특징을 가지고 있다. 이 때문에 강유전체의 분극과 전계와의 사이에 히스테리시스 특성이 있으며, 이것을 이용하면 비휘발성 메모리를 실현할 수가 있다. 또 실리콘 산화막에 비하여 유전율이 대단히 크기 때문에 강유전체막을 용량절연막으로 사용하면 메모리셀 면적을 작게 할 수가 있고, 대용량 고집적의 RAM(Random Access Memory)를 실현할 수가 있다.Recently, a nonvolatile or large-capacity semiconductor memory device having a thin film of ferroelectric (a dielectric material having a high dielectric constant or a material having a perovskite type crystal structure) has been proposed. Ferroelectric films have characteristics such as spontaneous polarization and high dielectric constant. For this reason, there is a hysteresis characteristic between the polarization of the ferroelectric and the electric field. By using this, a nonvolatile memory can be realized. In addition, since the dielectric constant is much larger than that of the silicon oxide film, when the ferroelectric film is used as the capacitive insulating film, the memory cell area can be reduced, and a large capacity highly integrated random access memory (RAM) can be realized.

강유전체막은 금속산화물의 소결체로 이루어지며 반응성이 풍부한 산소를 많이 함유하고 있다. 이와같은 강유전체막을 용량절연막으로 사용하여 캐패시터를 형성하는 경우에는 용량절연막의 상부전극 및 하부전극에, 예를들면 백금을 주성분으로 하는 합금과 같은 산화반응에 대하여 안정한 물질을 사용하는 것이 불가결하다.The ferroelectric film is composed of a sintered body of a metal oxide and contains a lot of reactive oxygen. When a capacitor is formed using such a ferroelectric film as a capacitive insulating film, it is indispensable to use a material that is stable against oxidation reactions such as, for example, an alloy mainly composed of platinum, for the upper and lower electrodes of the capacitive insulating film.

캐패시터나 층간절연막 등이 형성된 후 소자의 최표면에 패시베이션막이 형성된다. 층간절연막이나 패시베이션막에는 질화실리콘이나 산화실리콘이 사용되며, 통상 CVD(Chemical Vapor Deposition)법으로 형성되기 때문에 그 막중에 수소가 취입되어 있을 때가 많다.After the capacitor, the interlayer insulating film and the like are formed, a passivation film is formed on the outermost surface of the device. Silicon nitride and silicon oxide are used for the interlayer insulating film and the passivation film, and since they are usually formed by a chemical vapor deposition (CVD) method, hydrogen is often blown into the film.

강유전체막을 사용한 반도체소자를 민생용 전자기기에 이용하는 경우에는 양산성이 좋은 저가격의 수지봉지형 반도체 장치인 것이 필요하다. 특히 강유전체 비휘발성 메모리는 저전력, 저전압으로, 또 리프레시 동작이 불필요한 비휘발성 특성으로 인해 프레시 메모리를 대체하는 메모리로서, 휴대기기용의 니즈가 크고 얇은 형태의 패키지로 하기 위해서도 수지봉지형 반도체장치가 요구되고 있다.When using a semiconductor device using a ferroelectric film for consumer electronics, it is necessary to be a low-cost resin-encapsulated semiconductor device having good mass productivity. In particular, ferroelectric nonvolatile memory replaces fresh memory due to its low power, low voltage, and nonvolatile characteristics that do not require refresh operation. A resin-encapsulated semiconductor device is required to make a thin package with a large need for portable devices. It is becoming.

그러나 현재 강유전체막을 용량절연막으로서 이용한 장치는 세라믹 봉지품이 주류이며 수지봉지품은 거의 없다. 또 대용량의 장치도 개발되어 있지 않다. 이것은 가열처리에 의해 강유전체막의 분극특성이 열화해버리기 때문이다.However, at present, the device using the ferroelectric film as a capacitive insulating film is mainly ceramic encapsulated product and few resin encapsulated products. Also, no large capacity devices have been developed. This is because the polarization characteristic of the ferroelectric film is deteriorated by the heat treatment.

강유전체막을 가진 캐패시터를 수소분위기하에서 어닐링 처리하면 분극특성이 열화하는 것이 알려져 있다(『'96 강유전체 박막메모리기술포럼 발행 강연집』 ((주)사이언스 포럼 발행) 제4-4페이지 1∼12째줄). 이 열화는 상하부전극의 백금이 수소와 작용하여 환원촉매로서 작용하여 강유전체막을 환원시키기 때문에 생긴다고 추정된다. 특히 대용량, 고집적의 소자인 경우는 강유전체막의 사이즈도 미세하게 되기 때문에 이 캐패시터의 특성열화가 소자전체의 특성에 크게 영향을 미치는 것으로 예상된다.It is known that the annealing treatment of a capacitor having a ferroelectric film under hydrogen atmosphere deteriorates the polarization characteristics ('96 Ferroelectric Thin Film Memory Technology Forum's Lectures published by Science Forum, page 4-4, lines 1 to 12). It is assumed that this deterioration occurs because platinum in the upper and lower electrodes acts as a reduction catalyst by acting with hydrogen to reduce the ferroelectric film. Particularly, in the case of a large-capacity, high-integration device, the size of the ferroelectric film is also reduced, so that deterioration of the characteristics of the capacitor is expected to greatly affect the properties of the entire device.

트랜서퍼 몰드 방식에 의한 반도체소자의 수지봉지에는 충전제(통상, 실리카)를 함유하는 봉지수지가 사용된다. 그러나 봉지수지에 함유되는 충전제의 입자가 단단하기 때문에 봉지에 있어서 이 충전제가 소자표면에 손상을 줄때가 있다. 또한 강유전체 재료가 압전성을 가지기 때문에 봉지시에 소자내의 강유전체막에 압력이 가해지면 강유전체막의 특성이 변화해 버린다. 또 DRAM(Dynamic Random Access Memory)의 제조에 있어서는 충전제에 함유되는 방사선 성분에서 α선이 방출되어, 이것이 메모리의 소프트에러를 일으킬 때가 있다. 그래서 충전제에 의한 소자표면에의 손상을 막고 강유전체막에의 가압을 방지하며 충전제로부터의 α선을 차단하기 위하여, 미리 소자표면에 폴리이미드로 이루어진 보호막을 형성해 둘 필요가 있다.A sealing resin containing a filler (usually silica) is used for the resin encapsulation of the semiconductor element by the transfer mold method. However, since the particles of the filler contained in the encapsulating resin are hard, the filler sometimes damages the element surface in the encapsulation. In addition, since the ferroelectric material has piezoelectricity, when a pressure is applied to the ferroelectric film in the element during sealing, the characteristics of the ferroelectric film change. In the manufacture of DRAM (Dynamic Random Access Memory), alpha rays are emitted from the radiation component contained in the filler, which sometimes causes soft errors in the memory. Therefore, in order to prevent damage to the element surface caused by the filler, to prevent pressurization to the ferroelectric film, and to block α rays from the filler, a protective film made of polyimide must be formed on the element surface in advance.

이 폴리이미드 표면 보호막은 폴리이미드 전구체조성물막(前驅體組成物膜)을 통상 350∼450℃정도의 온도에서 가열하므로써 경화시켜 형성한다. 이 폴리이미드 전구체의 가열경화동안에 패시메이션막이나 층간절연막에 함유되는 수소가 확산되므로써 강유전체막의 분극특성이 열화해 버린다. 따라서 열경화성 수지를 표면보호막으로서 사용한 소자의 수지봉지품은 현재로서는 알려져 있지 않다.The polyimide surface protective film is formed by curing the polyimide precursor composition film by heating at a temperature of about 350 to 450 占 폚. During the heat curing of the polyimide precursor, hydrogen contained in the passivation film or the interlayer insulating film is diffused, and thus the polarization characteristic of the ferroelectric film is deteriorated. Therefore, the resin-encapsulated product of the element which used a thermosetting resin as a surface protective film is currently unknown.

본 발명은 강유전체막의 분극특성이 양호하며 신뢰성이 높은 수지봉지형 반도체장치와 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a resin-encapsulated semiconductor device having a good polarization characteristic and high reliability, and a manufacturing method thereof.

도 1은 LOC(Lead on Chip)형의 수지봉지형 반도체장치의 단면도이다.1 is a cross-sectional view of a resin encapsulated semiconductor device of a lead on chip (LOC) type.

도 2(a) ∼ 도 2(f)는 수지봉지형 반도체장치의 제조공정예를 나타내는 설명도이다.2 (a) to 2 (f) are explanatory views showing an example of the manufacturing process of the resin encapsulated semiconductor device.

도 3은 실시예 1에서 제작한 수지봉지형 반도체장치의 단면도이다.3 is a cross-sectional view of the resin encapsulated semiconductor device fabricated in Example 1. FIG.

도 4는 강유전체막을 가진 반도체소자의 구성예를 나타내는 단면도이다.4 is a cross-sectional view showing a configuration example of a semiconductor device having a ferroelectric film.

강유전체막의 분극특성의 열화발생 조건에 대하여 검토한 바 300℃ 이상의 가열이 행하여진 경우에 열화(劣化)가 일어났다. 그래서 본 발명자들은 폴리이미드 표면보호막의 가열경화를 300℃ 이하에서 행하면 된다고 생각하였으나, 이와같은 저온에서 경화하는 종래의 폴리이미드 전구체를 사용한 경우 얻어진 수지봉지형 반도체장치의 솔더링리플로우 내성에 문제가 있었다.The deterioration conditions of the polarization characteristics of the ferroelectric film were examined. Deterioration occurred when heating was performed at 300 ° C. or higher. Therefore, the present inventors thought that the heat curing of the polyimide surface protective film should be performed at 300 ° C. or lower, but there was a problem in the soldering reflow resistance of the resin-encapsulated semiconductor device obtained when using a conventional polyimide precursor cured at such a low temperature. .

현재 수지봉지형 반도체장치를 프린트기판에 실장하는 방법은 면부착 실장법이 주류이다. 면부착 실장법은 반도체장치의 리드와 프린트기판의 배선을 크림 땜납에 의해 임시로 고정하여 반도체장치 및 기판의 전체를 가열하여 납땜을 하는 솔더링리플로우 방식을 사용하고 있다. 가열의 방법으로서는 적외선 복사열을 이용하는 적외선리플로우법 혹은 불소계 불활성 액체의 응축열을 이용하는 베이퍼 페이즈 리플로우법이 알려져 있다.Currently, the method of mounting a resin-encapsulated semiconductor device on a printed board is mainly a surface-mounting method. The surface mounting method uses a soldering reflow method in which the lead of the semiconductor device and the wiring of the printed board are temporarily fixed by cream solder, and the entire semiconductor device and the substrate are heated and soldered. As the heating method, an infrared reflow method using infrared radiation heat or a vapor phase reflow method using heat of condensation of a fluorine-based inert liquid is known.

또 봉지수지로서는 통상 에폭시수지가 사용된다. 이 에폭시수지는 통상의 환경하에서는 반드시 흡습한다. 솔더링리플로우에 있어서 수지봉지형 반도체장치는 215∼260℃의 고온에 쬐이게 되므로 흡습한 상태에서 수지봉지형 반도체 장치를 솔더링리플로우법에 의해 기판에 실장하면 급격한 수분의 증발로 인하여 크랙이 생겨 반도체장치의 신뢰성상 큰 문제로 되어 있다. 그래서 종래부터 봉지수지의 저흡습화나 고접착화의 관점에서 여러 가지의 개량이 가하여지고 있다(『열경화성수지』13권 4호(1992년 발행) 제37페이지 우측란 8∼23째줄).As the encapsulating resin, epoxy resin is usually used. This epoxy resin will necessarily absorb moisture under normal circumstances. In the soldering reflow, the resin-encapsulated semiconductor device is exposed to a high temperature of 215 to 260 ° C. When the resin-encapsulated semiconductor device is mounted on a substrate by the soldering reflow method in a hygroscopic state, cracks are generated due to rapid evaporation of moisture. This is a big problem in terms of reliability of semiconductor devices. Thus, various improvements have been made in view of low hygroscopicity and high adhesion of encapsulated resins (Thermosetting resins, vol. 13, no. 4, issued in 1992, line 37 on the right side, line 8 to 23).

본 발명자들은 종래의 수지봉지형 반도체장치에서 발생한 수지크랙을 조사하여, 폴리이미드 소자 표면보호막과 봉지수지와의 계면에서 박리가 일어나 이것을 발단으로하여 봉지수지에 크랙이 생기는 것을 발견하였다. 또 이 박리가 표면보호막의 물성, 특히 유리전이온도 및 영율에 의해 영향을 받는다는 것을 알아내었다.The inventors have investigated resin cracks generated in conventional resin-encapsulated semiconductor devices, and have found that peeling occurs at the interface between the polyimide element surface protective film and the encapsulating resin, which causes cracks in the encapsulating resin. It has also been found that this peeling is affected by the physical properties of the surface protective film, in particular the glass transition temperature and Young's modulus.

그래서 더욱 상세히 검토한 바, 폴리이미드 소자 표면보호막이 230℃ 이상 300℃ 이하의 온도범위에서 열처리하여 형성되는 경우 강유전체막의 분극특성의 열화가 작다는 것을 알아내었다. 또 이 열처리온도에서 형성된 폴리이미드는 유리전이온도가 240℃ 이상 400℃ 이하이며, 또 영율이 2600MPa 이상 6GPa 이하인 경우는 수지봉지된 반도체장치의 솔더링리플로우 내성이 우수하며, 솔더링리플로우시에 폴리이미드와 봉지수지 계면에서의 박리가 일어나지 않고, 신뢰성이 높은 것을 밝혀내었다.Therefore, in further examination, it was found that the deterioration of the polarization characteristics of the ferroelectric film is small when the polyimide element surface protective film is formed by heat treatment in the temperature range of 230 ° C to 300 ° C. The polyimide formed at the heat treatment temperature has excellent soldering reflow resistance of the resin-sealed semiconductor device when the glass transition temperature is 240 ° C or more and 400 ° C or less, and the Young's modulus is 2600MPa or more and 6GPa or less. It was found that peeling did not occur at the mid and sealing resin interface, and that the reliability was high.

이러한 새로운 지견에 의하여 본 발명에서는 강유전성막 및 표면보호막을 가진 반도체소자와 수지로 이루어지는 봉지부재를 구비하여 표면보호막이 폴리이미드로 이루어지는 수지봉지형 반도체장치가 제공된다. 이와 같은 장치는 본 발명에 의하여 처음으로 실현가능하게 되었다.With this new finding, the present invention provides a resin-encapsulated semiconductor device comprising a semiconductor element having a ferroelectric film and a surface protection film and a sealing member made of resin, wherein the surface protection film is made of polyimide. Such a device has been realized for the first time by the present invention.

또 본 발명에서는 강유전체박막을 가진 반도체소자의 표면에 폴리이미드 전구체 조성물막을 성막하는 공정과, 폴리이미드 전구체 조성물막을 가열하여 경화시켜 폴리이미드로 이루어지는 표면보호막으로하는 공정과, 표면보호막이 형성된 반도체소자를 봉지수지에 의해 봉지하는 공정을 구비하는 수지봉지형 반도체장치의 제조방법이 제공된다.In the present invention, a process of forming a polyimide precursor composition film on the surface of a semiconductor device having a ferroelectric thin film, a step of heating and curing the polyimide precursor composition film to form a surface protective film made of polyimide, and a semiconductor device having a surface protective film Provided is a method for manufacturing a resin encapsulated semiconductor device comprising a step of encapsulating with a encapsulating resin.

본 발명에 있어서 표면보호막으로서 사용되는 폴리이미드는 유리전이온도가 240℃∼400℃이며, 영율이 2600MPa∼6GPa인 것이 바람직하다. 이와같은 폴리이미드를 사용하므로써 솔더링리플로우에 의하여도 크랙이 발생하는 일이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있다. 폴리이미드 전구체 조성물막을 가열경화시키는 온도는 230℃ 이상 300℃ 이하로 하는 것이 바람직하다. 300℃보다 고온이라도 350℃ 이하의 단시간(사용하는 반도체 소자의 내열성에 따라 다르지만 통상 4분이내)의 열처리로, 형성되는 폴리이미드 막의 영율이 3500MPa 이상, 유리전이온도가 260℃ 이상이면 강유전체막의 분극특성을 열화시키는 일없이 본 발명의 목적을 달성할 수가 있다.The polyimide used as the surface protective film in the present invention preferably has a glass transition temperature of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa. By using such a polyimide, cracks do not occur even by soldering reflow, and a highly reliable semiconductor device can be obtained. It is preferable that the temperature which heat-cures a polyimide precursor composition film shall be 230 degreeC or more and 300 degrees C or less. Polarization characteristics of the ferroelectric film when the Young's modulus of the formed polyimide film is 3500 MPa or more and the glass transition temperature is 260 ° C or more by heat treatment for a short time (typically less than 4 minutes depending on the heat resistance of the semiconductor element used, even if it is higher than 300 ° C). The object of the present invention can be achieved without causing deterioration.

또 본 발명의 제조방법은, 예를들면 절연막 등 표면보호막 이외의 용도에 폴리이미드막을 사용하는 수지봉지형 적층체에도 적용가능하다.Moreover, the manufacturing method of this invention is applicable also to the resin-sealed laminated body which uses a polyimide film for uses other than surface protection films, such as an insulating film, for example.

230℃∼300℃에서 가열경화시킴으로써 유리전이온도가 240℃∼400℃이고, 영율이 2600MPa∼6GPa인 폴리이미드가 얻어지는 폴리이미드 전구체로서 본 발명에 적합한 것은 하기 일반식(Ⅰ)로 나타내는 반복단위로 이루어지는 폴리아미드산을 들 수 있다.The polyimide precursor from which polyimide having a glass transition temperature of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa is obtained by heat curing at 230 ° C. to 300 ° C., which is suitable for the present invention, is a repeating unit represented by the following general formula (I). The polyamic acid which consists of is mentioned.

(여기서, R1은 하기 화학식그룹(Ⅱ)에 나타내는 4가의 방향족 유기기 중의 적어도 어느 하나이며, R2는 하기 화학식그룹(Ⅲ) 및 (Ⅳ)에 나타내는 2가의 방향족 유기기 중의 적어도 어느 하나이다.)(Wherein R 1 is at least one of the tetravalent aromatic organic groups represented by the following general formula group (II), and R 2 is at least one of the divalent aromatic organic groups shown by the following general formula groups (III) and (IV). )

이들 폴리아미드산 중 R1은 하기 화학식그룹(Ⅶ)에 열거하는 것 중의 적어도 어느 하나이며, R2는 하기 화학식그룹(Ⅷ)에 열거하는 것 중의 적어도 어느 하나인 폴리아미드산이 특히 본 발명에 적합하다.Of these polyamic acids, R 1 is at least one of those listed in the following general formula (VII), and R 2 is at least one of those listed in the following general formula (VII), which is particularly suitable for the present invention. Do.

특히, 하기 화학식 (ⅩⅣ), (ⅩⅥ)∼(ⅩⅧ)에 나타내는 것이 본 발명에 적합하다. 이들중 화학식(ⅩⅥ)에 의하여 나타내는 반복단위로 이루어지는 폴리아미드가 가장 바람직하다.In particular, what is shown to following General formula (XIV), (XIV)-(XI) is suitable for this invention. Of these, polyamides composed of repeating units represented by the formula (XIV) are most preferred.

또 본 발명에서 사용되는 폴리아미드산은 분자내에 상기(Ⅰ)로 나타내는 반복단위에 더하여 상기(Ⅰ)과 같은 구조에 있어 R2로서 실록산기를 가진 반복단위를 전체 반복단위수의 10.0mol% 이하로 더 가지고 있어도 된다. 이때 R2로서 사용되는 실록산기는 방향족 실록산기 및 지방족 실록산기의 어느 것이라도 되고, 예를들면 하기 화학식 그룹(Ⅵ)에 나타내는 구조의 기들중 적어도 어느 하나일 수 있다.In the polyamic acid used in the present invention, in addition to the repeating unit represented by the above (I) in the molecule, the repeating unit having a siloxane group as R 2 in the same structure as the above (I) is 10.0 mol% or less of the total number of repeating units. You may have it. At this time, the siloxane group used as R <2> may be any of an aromatic siloxane group and an aliphatic siloxane group, for example, may be at least any one of the group of the structure shown to following General formula group (VI).

또 폴리이미드 전구체조성물은, 예를들면 조성물이 액상 와니스상인 경우에는 소자표면에 조성물을 도포 또는 스프레이하고, 필요하면 가열하여 반경화상태(완전히 이미드화되어 있지 않은 상태)로 하므로써 성막할 수가 있다. 예를들면 스피너를 사용한 회전도포등의 수단을 사용하여도 된다. 도포막두께는 도포수단, 폴리이미드 전구체 조성물의 고형분농도, 점도등에 의하여 조절할 수가 있다. 또 폴리이미드 전구체 조성물이 시트상이면 이것을 소자 표면에 얹거나 또는 첨부하여 성막할 수가 있다.The polyimide precursor composition can be formed by, for example, coating or spraying the composition on the surface of an element when the composition is in a liquid varnish phase, and heating it if necessary to bring it to a semi-cured state (not completely imidized). For example, a means such as rotating coating using a spinner may be used. The coating film thickness can be adjusted by the solid content concentration of a coating means, a polyimide precursor composition, a viscosity, etc. Moreover, when a polyimide precursor composition is a sheet form, it can be formed on a surface of an element or attaching and forming into a film.

표면보호막에는 본딩패드부 등 소망의 부위에서 하층을 노출시키기 위한 개구부를 형성할 때가 많다. 이와같은 개구부를 형성하기 위하여는 반경화 상태의 폴리이미드 전구체 조성물막 또는 가열경화후의 폴리이미드막의 표면에 레지스트막을 형성하여 통상의 미세가공기술로 패턴가공을 하여 레지스트막을 박리하면 된다. 반경화상태로 개구한 경우에는 패턴가공후 가열처리하여 완전히 경화시킨다.In the surface protective film, an opening for exposing the lower layer is often formed at a desired portion such as a bonding pad portion. In order to form such openings, a resist film may be formed on the surface of the semi-cured polyimide precursor composition film or the heat-cured polyimide film, followed by pattern processing by a conventional micromachining technique to peel off the resist film. In the case of opening in the semi-cured state, the pattern is heat-treated and completely cured.

또 폴리이미드 전구체 조성물이 감광성 조성물이면 소정 패턴의 마스크를 통하여 조성물막을 노광시킨 다음에 미노광부를 현상액으로 용해제거한 후 가열경화시키므로써 소망의 패턴의 폴리이미드막을 얻을 수가 있다.If the polyimide precursor composition is a photosensitive composition, a polyimide film having a desired pattern can be obtained by exposing the composition film through a mask of a predetermined pattern, then dissolving and removing the unexposed portion with a developer.

이 때문에 본 발명에 사용되는 폴리이미드 전구체 조성물은 상기 폴리아미드산 이외에 탄소-탄소 2중결합을 가진 아민화합물, 비스아지드화합물, 광중합개시제 및/또는 증감제등을 함유하는 감광성 폴리이미드 전구체 조성물인 것이 바람직하다.For this reason, the polyimide precursor composition used in the present invention is a photosensitive polyimide precursor composition containing an amine compound having a carbon-carbon double bond, a bisazide compound, a photopolymerization initiator and / or a sensitizer in addition to the polyamic acid. It is preferable.

아민화합물로서는, 구체적으로는 2-(N,N-디메틸아미노)에틸아크릴레이트, 2-(N,N-디메틸아미노)에틸메타크릴레이트, 3-(N, N-디메틸아미노)프로필아크릴레이트, 3-(N, N-디메틸아미노)프로필메타크릴레이트, 4-(N, N-디메틸아미노)부틸아크릴레이트, 4-(N, N-디메틸아미노)부틸메타크릴레이트, 5-(N, N-디메틸아미노)펜틸아크릴레이트, 5-(N, N-디메틸아미노)펜틸메타크릴레이트, 6-(N, N-디메틸아미노)헥실아크릴레이트, 6-(N, N-디메틸아미노)헥실메타크릴레이트, 2-(N, N-디메틸아미노)에틸신나메이트, 3-(N, N-디메틸아미노)프로필신나메이트, 2-(N, N-디메틸아미노)에틸-2,4-헥사디에노에이트, 3-(N,N-디메틸아미노)프로필-2,4-헥사디에노에이트, 4-(N, N-디메틸아미노)부틸-2,4-헥사디에노에이트, 2-(N, N-디메틸아미노)에틸-2,4-헥사디에노에이트, 3-(N, N-디메틸아미노)프로필-2,4-헥사디에노에이트 등을 바람직한 예로서 들 수 있다.Specific examples of the amine compound include 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 3- (N, N-dimethylamino) propyl acrylate, 3- (N, N-dimethylamino) propylmethacrylate, 4- (N, N-dimethylamino) butylacrylate, 4- (N, N-dimethylamino) butylmethacrylate, 5- (N, N -Dimethylamino) pentyl acrylate, 5- (N, N-dimethylamino) pentyl methacrylate, 6- (N, N-dimethylamino) hexyl acrylate, 6- (N, N-dimethylamino) hexyl methacryl Late, 2- (N, N-dimethylamino) ethylcinnamate, 3- (N, N-dimethylamino) propylcinnamate, 2- (N, N-dimethylamino) ethyl-2,4-hexadienoate , 3- (N, N-dimethylamino) propyl-2,4-hexadienoate, 4- (N, N-dimethylamino) butyl-2,4-hexadienoate, 2- (N, N- Dimethylamino) ethyl-2,4-hexadienoate, 3- (N, N-dimethylamino) propyl-2,4-hexa And the like diethoxy furnace benzoate as a preferable example.

또 이것들은 단독으로 사용하여도 되고 2종이상 혼합하여 사용하여도 된다. 이들의 배합비율은 폴리아미드산 폴리머 100중량부에 대하여 10중량부 이상, 400중량부 이하로 사용하는 것이 바람직하다.These may be used alone or in combination of two or more thereof. It is preferable to use these compounding ratios 10 weight part or more and 400 weight part or less with respect to 100 weight part of polyamic-acid polymers.

비스아지드 화합물로서는, 구체적으로는 하기 구조식그룹(Ⅸ) 및 (Ⅹ)에 열거하는 화합물이 적합한 것으로 들 수 있다. 또 이들은 단독으로 사용하여도 되고 2종이상 혼합하여 사용하여도 된다. 이들의 배합비율은 폴리머 100중량부에 대하여 0.5중량부 이상, 50중량부 이하로 사용하는 것이 바람직하다.As a bis azide compound, the compound specifically, listed in following structural formula (i) and (i) is mentioned. In addition, these may be used alone or in combination of two or more thereof. It is preferable to use these compounding ratios at 0.5 weight part or more and 50 weight part or less with respect to 100 weight part of polymers.

광중합개시제, 증강제에 대하여 바람직한 예로서는 구체적으로 미클러의 케톤, 비스-4,4'-디에틸아미노벤조페논, 벤조페논, 벤조일에테르, 벤조인이소프로필에테르, 안트론, 1,9-벤조안트론, 아크리딘, 니트로필렌, 1,8-디니트로필렌, 5-니트로아세토나프텐, 2-니프로플루오렌, 피렌-1,6-퀴논, 9-플루오렌, 1,2-벤조안트라퀴논, 안토안트론, 2-클로로-1,2-벤즈안트라퀴논, 2-브로모벤즈안트라퀴논, 2-클로로-1,8-프타로일나프탈렌, 3,5-디에틸티옥산톤, 3,5-디메틸티옥산톤, 3,5-디이소프로필티옥산톤, 벤질, 1-페닐-5-머캅토-1H-테트라졸, 1-페닐-5-메르텍스, 3-아세틸페난트렌, 1-인다논, 7-H-벤즈[de]안트라센-7-온, 1-나프트알데히드, 티오키산텐-9-온, 10-티오키산테논, 3-아세틸인돌 등을 들 수 있으나 이들에 한정되지 않는다. 또 이들은 단독 또는 여러개를 혼합하여 사용된다. 폴리머 100중량부에 대하여 0.1∼30중량부가 바람직하다.Preferred examples of the photopolymerization initiator and the enhancer specifically include Micler's ketone, bis-4,4'-diethylaminobenzophenone, benzophenone, benzoyl ether, benzoin isopropyl ether, anthrone, 1,9-benzoanthrone , Acridine, nitrophylene, 1,8-dinitrofilene, 5-nitroacetonaphthene, 2-niprofluorene, pyrene-1,6-quinone, 9-fluorene, 1,2-benzoanthraquinone , Anthrone, 2-chloro-1,2-benzanthraquinone, 2-bromobenzanthraquinone, 2-chloro-1,8-phthaloylnaphthalene, 3,5-diethylthioxanthone, 3, 5-dimethylthioxanthone, 3,5-diisopropylthioxanthone, benzyl, 1-phenyl-5-mercapto-1H-tetrazole, 1-phenyl-5-mertex, 3-acetylphenanthrene, 1 Indanone, 7-H-benz [ de ] anthracene-7-one, 1-naphthaldehyde, thiocanthene-9-one, 10-thiokistanenone, 3-acetylindole, and the like. It is not limited. Moreover, these are used individually or in mixture of many. 0.1-30 weight part is preferable with respect to 100 weight part of polymers.

상술의 포토리소그라피에 의한 패턴화에 사용되는 노광광원으로서는 자외선 외에 가시광선, 방사선 등도 사용할 수가 있다.As the exposure light source used for patterning by photolithography described above, visible light, radiation, and the like can be used in addition to ultraviolet light.

현상액으로서는 N-메틸-2-피롤리돈, N-아세틸-2-피롤리돈, N,N-디메틸포름아미드, N,N-디메틸아세토아미드, 디메틸술폭시드, 헥사메틸포스포르아미드, 디메틸이미다졸리디논, n-벤질-2-피롤리돈, N-아세톤-ε-카프로락탐, γ-부틸로락톤 등의 비프로톤성 극성용액을 단독으로 사용하든지 혹은 메탄올, 에탄올, 이소프로필알코올, 벤젠, 톨루엔, 크실렌, 메틸셀로솔브, 물 등의 폴리아미드산의 빈용매(貧溶媒)와 상술의 비프로톤성 극성용매와의 혼합액을 사용할 수가 있다.As the developer, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetoamide, dimethyl sulfoxide, hexamethylphosphoramide and dimethyl are Aprotic polar solutions such as midazolidinone, n-benzyl-2-pyrrolidone, N-acetone-ε-caprolactam, and γ-butylolactone may be used alone, or methanol, ethanol, isopropyl alcohol, benzene , A mixed liquid of a poor solvent of polyamic acid such as toluene, xylene, methyl cellosolve, water, and the above-mentioned aprotic polar solvent can be used.

현상에 의하여 형성한 패턴은, 이어 린스액에 의하여 세정하여 현상용매를 제거한다. 린스액으로는 현상액과의 혼화성이 좋은 폴리아미드산의 빈용매를 사용하는 것이 바람직하며, 상기의 메탄올, 에탄올, 이소프로필알코올, 벤젠, 톨루엔, 크실렌, 메틸셀로솔브, 물 등을 적합한 예로서 들 수 있다.The pattern formed by development is then washed with a rinse liquid to remove the developing solvent. As the rinse liquid, it is preferable to use a poor solvent of polyamic acid having good compatibility with the developer. Examples of suitable solvents include methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, methyl cellosolve, and water. It can be mentioned as.

폴리이미드 전구체 조성물막을 가열경화시킬 때의 처리방법으로서는 핫플레이트에 의한 가열이 바람직하다. 핫플레이트를 사용하므로써 오븐로나 확산로 등의 로체(爐體)를 사용한 가열처리에 비하여 단시간으로 폴리이미드 전구체 재료를 이미드화하여 성막할 수 있다. 이것에 의해 강유전체막의 가열시간을 단축하는 것이 가능하다.As a processing method at the time of heat-hardening a polyimide precursor composition film, heating by a hotplate is preferable. By using a hot plate, a polyimide precursor material can be imided and formed into a film in a short time compared with the heat processing using furnace bodies, such as an oven furnace and a diffusion furnace. This makes it possible to shorten the heating time of the ferroelectric film.

본 발명이 적용되는 반도체소자로는, 예를들면 비휘발성 반도체 메모리나 대용량의 DRAM을 들 수 있다. 또 반도체소자에서의 강유전체막은 고유전율을 가진 유전체 재료로 이루어지는 막이면 되고, 예를들면 회티탄석형 결정구조를 가진 강유전성재료를 들 수 있다.As a semiconductor element to which this invention is applied, a nonvolatile semiconductor memory and a large capacity DRAM are mentioned, for example. The ferroelectric film in the semiconductor device may be a film made of a dielectric material having a high dielectric constant, for example, a ferroelectric material having a gray titanium crystal type crystal structure.

유전체 재료로서는 티탄산 지르콘산납(Pb(Zr, Ti)O3, 약칭 : PZT), 티탄산바륨스트론튬((Ba, Sr)TiO3, 약칭 : BST), 탄탈산니오브스트론튬비스무트(SrBi2(Nb, Ta)2O9, 약칭 : Yl계) 등을 들 수 있다. 이들 재료는 화학증착법(CVP(Chemical Vapor Deposition)법), 졸겔법, 스퍼트링법 등에 의해 성막할 수가 있다.As the dielectric material, lead zirconate titanate (Pb (Zr, Ti) O 3 , abbreviated as: PZT), barium strontium titanate ((Ba, Sr) TiO 3 , abbreviated as: BST), niobium strontium bismuth (SrBi 2 (Nb, Ta) ) 2 O 9 , abbreviated as: Yl system). These materials can be formed by chemical vapor deposition (CVP (Chemical Vapor Deposition) method), sol-gel method, sputtering method and the like.

다음에 본 발명의 반도체장치의 예에 대하여 도 1에 도시하는 리드·온·칩형(이하, LOC형이라 한다)의 수지봉지형 반도체 장치를 예로서 설명한다. 본 발명의 반도체장치는 LOC형에 한정하지 않고 칩·온·리드형(이하, COL 형이라 한다)등 다른 형태의 수지봉지형 반도체 장치라도 된다.Next, an example of the semiconductor device of the present invention will be described as an example of a resin encapsulated semiconductor device of lead-on-chip type (hereinafter referred to as LOC type) shown in FIG. The semiconductor device of the present invention is not limited to the LOC type, but may be a resin-encapsulated semiconductor device of another type, such as a chip-on-lead type (hereinafter referred to as a COL type).

본 발명의 봉지형 반도체장치는 표면의 적어도 일부에 폴리이미드로 이루어지는 표면보호막(2)을 구비하는 반도체소자(1)와, 외부단자(3)와, 표면보호막(2)을 개재하여 반도체소자(1) 및 외부단자(3)를 접착하는 부착부재(4)와, 반도체소자(1) 및 외부단자(3)간의 도통(導通)을 계획하기 위한 배선(5)과, 반도체소자(1) 및 배선(5)의 전체를 봉지하는 봉지부재(6)를 구비한다. 표면보호막(2)은 상기 폴리이미드 전구체를 가열경화하여 얻어지는 폴리이미드로 이루어진다. 또 도 1에 도시하는 반도체장치에서는 외부단자(3)는 리드 프레임을 겸하고 있다.The encapsulated semiconductor device of the present invention comprises a semiconductor device (1) having a surface protection film (2) made of polyimide on at least part of its surface, an external terminal (3), and a surface protection film (2). 1) and the attachment member 4 for adhering the external terminal 3, the wiring 5 for planning the conduction between the semiconductor element 1 and the external terminal 3, the semiconductor element 1 and The sealing member 6 which encloses the whole wiring 5 is provided. The surface protective film 2 consists of polyimide obtained by heat-hardening the said polyimide precursor. In the semiconductor device shown in Fig. 1, the external terminal 3 also serves as a lead frame.

다음에 본 발명의 반도체장치의 제조방법 예에 대하여 도 2를 참조하여 상세히 기술한다. 또 도 2에는 도 1에 도시한 LOC형 반도체장치의 제조방법을 나타내었으나 본 발명의 제조방법은 LOC형 반도체장치의 제조방법에 한정하지 않으며, 반도체 소자와 외부단자(리드프레임)를 미리 접착하고나서 몰드수지에 의해 봉지하여 얻어지는 반도체장치이면 COL형 등 다른 반도체장치의 제조에도 적용할 수 있다.Next, an example of a method of manufacturing a semiconductor device of the present invention will be described in detail with reference to FIG. 2 shows a manufacturing method of the LOC type semiconductor device shown in FIG. 1, the manufacturing method of the present invention is not limited to the manufacturing method of the LOC type semiconductor device, and the semiconductor element and the external terminal (lead frame) are bonded in advance. If the semiconductor device is then obtained by sealing with a mold resin, it can be applied to the production of other semiconductor devices such as COL type.

(1) 표면보호막 형성공정(1) Surface protective film forming process

도 2(a)에 도시하는 것과 같이 소자영역 및 배선층을 만들어 넣은 실리콘웨이퍼(9)상에 폴리이미드로 이루어지는 표면보호막(2)을 형성한다. 표면보호막(2)의 형성방법으로서는, 예를들면 상술한 폴리이미드 전구체 조성물을 웨이퍼(9)표면에 도포하여 가열경화시키는 방법이나 미리 시트상으로 형성한 폴리이미드 전구체 조성물을 웨이퍼(9) 표면에 얹어 가열경화시키는 방법 등이 있다.As shown in Fig. 2A, a surface protective film 2 made of polyimide is formed on the silicon wafer 9 in which the device region and the wiring layer are formed. As the method for forming the surface protective film 2, for example, the method of applying the above-described polyimide precursor composition to the surface of the wafer 9 and curing it by heat or the polyimide precursor composition previously formed into a sheet form on the surface of the wafer 9. And heat curing.

또 상술한 바와 같이 표면보호막(2)은 미리 정하여진 위치에 개구부가 형성되어 있으며, 본딩패드부(7), 스크라이브영역(8)의 부분에서 소자(1)의 표면이 노출되어 있다. 본딩패드부(7)와 스크라이브영역(8)을 제외한 패턴의 표면보호막을 형성하는데는 상술한 포토레지스트와 폴리이미드의 에칭액을 사용하는 웨트에치법 이외에 패턴형성된 무기막 또는 금속막을 마스크로 하여 노출한 폴리이미드막을 산소플라즈마로 제거하는 드라이에치법등의 포토에칭 기술을 사용할 수가 있다. 또 마스크를 사용하여 영역(7, 8)의 부분을 제외하고 폴리이미드 전구체 조성물을 도포하여도 표면보호막(2)을 패턴화 할 수가 있다.As described above, the surface protective film 2 has an opening formed at a predetermined position, and the surface of the element 1 is exposed at the bonding pad portion 7 and the scribe region 8. A surface protective film having a pattern except for the bonding pad portion 7 and the scribe region 8 may be formed by exposing a patterned inorganic film or a metal film as a mask, in addition to the wet etching method using the etching solution of the photoresist and polyimide described above. Photo-etching techniques, such as dry etching which removes a polyimide film with oxygen plasma, can be used. Moreover, even if the polyimide precursor composition is apply | coated except the part of the area | regions 7 and 8 using a mask, the surface protection film 2 can be patterned.

이와같이 하여 표면보호막(2)을 형성한 실리콘(도 2(b))웨이퍼(9)의 스크라이브영역을 절단하여 표면보호막(2)을 구비하는 반도체소자(1)(도 2(b))를 얻는다. 또 여기서는 실리콘웨이퍼(9)상에 미리 표면보호막(2)을 형성하고나서 이것을 절단하여 표면보호막(2)을 구비하는 반도체소자(1)를 얻는 방법에 대하여 설명하였으나, 본 발명은 이것에 한정하지 않고 실리콘웨이퍼(9)를 절단하여 반도체소자(1)를 얻은 후 얻어진 반도체소자(1)의 표면에 폴리이미드 전구체 조성물의 막을 형성하여 이것을 가열경화시켜 표면보호막(2)을 구비하는 반도체소자(1)를 얻어도 된다.In this way, the scribe region of the silicon (Fig. 2 (b)) wafer 9 on which the surface protection film 2 is formed is cut to obtain a semiconductor device 1 (Fig. 2 (b)) including the surface protection film 2. . Here, the method of obtaining the semiconductor element 1 having the surface protective film 2 by forming the surface protective film 2 on the silicon wafer 9 in advance and then cutting it is explained. However, the present invention is not limited thereto. After the silicon wafer 9 is cut off to obtain the semiconductor device 1, a film of polyimide precursor composition is formed on the surface of the semiconductor device 1, which is then heat cured to provide the semiconductor device 1 with a surface protective film 2. ) May be obtained.

(2) 소자탑재공정(2) Device Mounting Process

외부단자(3)와 반도체소자(1)를 접착부재(4)를 개재하여 접착하고 도 2(c)에 나타내는 것과 같은 반도체소자(1)와 외부단자(3)가 표면보호막(2) 및 접착부재(4)를 개재하여 접속된 것을 얻는다. 또 도 2(d)에 나타내는 것과 같이 반도체소자(1)의 본딩패드부(7)와 외부단자(3)와의 사이에 타이어 본더로 금선(5)을 배선하여 반도체소자(1)와 외부단자(3)와의 도통을 확보한다.The external terminal 3 and the semiconductor element 1 are adhered through the adhesive member 4, and the semiconductor element 1 and the external terminal 3 as shown in Fig. 2 (c) are bonded to the surface protective film 2 and adhered to each other. What is connected through the member 4 is obtained. As shown in FIG. 2 (d), the gold wire 5 is wired between the bonding pad portion 7 and the external terminal 3 of the semiconductor element 1 with a tire bonder, so that the semiconductor element 1 and the external terminal ( 3) Ensure conduction with.

(3) 봉지공정(3) encapsulation process

도 2(e)에 나타내는 것과 같이 실리카함유 에폭시계수지를 사용하여 성형온도 180℃, 성형압력 70㎏/㎠으로 몰드하므로써 봉지부재(6)를 형성한다. 마지막에 외부단자(3)를 소정의 형으로 구부리므로써 도 2(f)에 나타내는 LOC형의 수지봉지형 반도체장치가 얻어진다.As shown in Fig. 2E, the sealing member 6 is formed by mold using a silica-containing epoxy resin at a molding temperature of 180 deg. C and a molding pressure of 70 kg / cm &lt; 2 &gt;. Finally, the external terminal 3 is bent into a predetermined type to obtain a LOC type resin encapsulated semiconductor device shown in Fig. 2F.

다음에 본 발명의 수지봉지형 반도체장치에 사용되는 반도체소자에 대하여 설명한다. 본 발명의 수지봉지형 반도체장치에 사용되는 반도체소자의 예로서 1트랜지스터/1캐패시터의 메모리셀로 이루어지는 강유전체 메모리의 메모리셀부의 단면도를 도 4에 나타낸다.Next, a semiconductor element used in the resin encapsulated semiconductor device of the present invention will be described. 4 is a cross-sectional view of a memory cell portion of a ferroelectric memory composed of memory cells of one transistor / 1 capacitor as an example of a semiconductor element used in the resin-encapsulated semiconductor device of the present invention.

이 강유전체 메모리소자(40)는 실리콘기판(41) 표면에 p 또는 n웰(421)과 소스(422) 및 드레인(423)과, 산화막(424)과 게이트(425)와 절연층(426)으로 이루어지는 CMOS(Complementary Metal Oxide Semiconductor) 트랜지스터층(42)이 형성되며, 또 절연막(426) 표면에 하부전극층(431)과 강유전체박막(432)과, 상부전극층(433)과 금속배선층(434) 및 절연층(435)로 이루어지는 캐패시터(43)가 형성되어 있는 적층체이다. 본 발명은 이와같이 강유전체박막(432)을 구비하는 적층체(반도체소자를 포함)의 표면에 폴리이미드 표면보호막을 형성한 후 수지봉지하는 경우에 적용된다. 도 4에 나타낸 예에서는 폴리이미드 표면보호막은 캐패시터(43)의 금속배선층(434) 및 절연층(435)을 덮는 것 같이 형성된다.The ferroelectric memory device 40 includes p or n well 421, a source 422 and a drain 423, an oxide film 424, a gate 425, and an insulating layer 426 on the surface of the silicon substrate 41. A Complementary Metal Oxide Semiconductor (CMOS) transistor layer 42 is formed, and the lower electrode layer 431, the ferroelectric thin film 432, the upper electrode layer 433, the metal wiring layer 434, and the insulation are formed on the surface of the insulating film 426. It is a laminated body in which the capacitor 43 which consists of layers 435 is formed. The present invention is applied to a resin encapsulation after forming a polyimide surface protective film on the surface of a laminate (including semiconductor elements) including the ferroelectric thin film 432 as described above. In the example shown in FIG. 4, the polyimide surface protection film is formed as if it covers the metal wiring layer 434 and the insulating layer 435 of the capacitor 43. As shown in FIG.

이상 상세히 기술한 것과 같이 본 발명에서는 폴리이미드의 표면보호막을 구비하는 수지봉지형 강유전체 장치가 제공된다. 폴리이미드 전구체의 가열경화온도를 230℃∼300℃로 하므로써 강유전체막의 분극특성의 열화를 작게 억제할 수가 있다. 또 표면보호막을 구성하는 폴리이미드의 유리전이온도를 240℃ 이상으로 하고, 영율을 2600MPa 이상으로 함으로써 수지봉지후의 솔더링리플로우 내성이 우수한, 솔더링리플로우시에 폴리이미드와 봉지수지 계면에서의 박리가 일어나지 않는 반도체 장치가 얻어진다. 또 폴리이미드 전구체의 가열경화 온도가 300℃ 보다 고온이라도 350℃ 이하로 하여 가열시간을 4분간 이하로 하고, 경화후에 얻어지는 폴리이미드의 유리전이온도가 260℃ 이상, 영율이 3500MPa 이상인 폴리이미드 전구체 조성물을 사용함으로써 강유전체막의 분극특성의 열화를 작게 억제할 수가 있으며, 더욱 수지봉지후의 솔더링리플로우시에 폴리이미드와 봉지수지 계면에서의 박리가 일어나지 않는 솔더링리플로우 내성이 우수한 반도체장치를 얻을 수가 있다. 따라서 본 발명에 의하면 신뢰성이 높은 반도체 장치가 얻어진다.As described in detail above, the present invention provides a resin-encapsulated ferroelectric device having a surface protective film of polyimide. By setting the heat curing temperature of the polyimide precursor to 230 ° C. to 300 ° C., the deterioration of the polarization characteristics of the ferroelectric film can be suppressed small. In addition, the glass transition temperature of the polyimide constituting the surface protective film is 240 ° C. or higher and the Young's modulus is 2600 MPa or more, so that peeling at the interface between the polyimide and the encapsulating resin during soldering reflow is excellent in soldering reflow resistance after resin sealing. A semiconductor device that does not occur is obtained. Moreover, even if the heat hardening temperature of a polyimide precursor is higher than 300 degreeC, it may be 350 degreeC or less, heating time shall be 4 minutes or less, and the polyimide precursor composition whose glass transition temperature of the polyimide obtained after hardening is 260 degreeC or more and Young's modulus is 3500 MPa or more By using this, the deterioration of the polarization characteristic of the ferroelectric film can be suppressed to be small, and the semiconductor device excellent in the soldering reflow resistance which does not generate | occur | produce at the interface of polyimide and the sealing resin at the time of soldering reflow after resin sealing can be obtained. Therefore, according to this invention, a highly reliable semiconductor device is obtained.

실시예Example

이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

또 이하의 실시예에 사용한 폴리이미드막에 대하여 영율 및 유리전이온도는 별도 조제한 폴리이미드막을 사용하여 측정하였다. 즉, 먼저 핫플레이트를 사용하여 각 실시예와 같은 조건에서 실리콘웨이퍼상에 폴리이미드막을 형성한 후 폴리이미드막을 웨이퍼에서 박리하여 수세 건조하여 막두께 9∼10㎛의 폴리이미드막을 얻었다. 이 폴리이미드막을 세로 25㎜×가로 5㎜로 재단하여 시험편으로 하여 『AUTOGRAPH AG-100E』 인장시험기((주)시마즈제작소)를 사용하여 인장속도 1㎜/분의 조건에서 막에 대한 인장가중과 신율을 측정하여 영율을 구하였다. 또 폴리이미드막을 길이 15㎜×폭 5㎜로 재단하여 시험편으로 하여 신장방향에의 하중을 2gf(약 4×10-2N/㎡)로 하고 승온속도를 5℃/분으로 하여 『TA-1500』(신쿠우리고오 ULVAC제)를 사용하여 열기계측정에서 얻어지는 열팽창곡선을 구하여 이것으로 유리전이온도를 구하였다.Moreover, the Young's modulus and glass transition temperature were measured about the polyimide membrane used for the following example using the polyimide membrane separately prepared. That is, first, a polyimide film was formed on a silicon wafer using the hot plate under the same conditions as in each example, and then the polyimide film was peeled off from the wafer and washed with water to obtain a polyimide film having a film thickness of 9 to 10 µm. The polyimide membrane was cut into 25 mm length x 5 mm length pieces and used as a test piece. The tensile weight of the polyimide membrane was measured using a "AUTOGRAPH AG-100E" tensile tester (Shimazu Co., Ltd.) at a tensile speed of 1 mm / min. The elongation was measured to find the Young's modulus In addition, the polyimide membrane was cut into 15 mm in length and 5 mm in width to make a test piece. The load in the extension direction was 2 gf (approximately 4 × 10 -2 N / m 2), and the temperature increase rate was 5 ° C./min. (Shinkuuri Goo ULVAC Co., Ltd.), the thermal expansion curve obtained by thermomechanical measurement was obtained, and the glass transition temperature was calculated from this.

수지봉지된 반도체장치의 솔더링리플로우 내성은 다음과 같이 하여 측정하였다. 우선 반도체장치를 85℃, 85%의 항온, 항습조건하에서 168시간 방치하여 가습하였다. 이 가습한 반도체장치를 적외솔더링 리플로우로를 사용하여 최고 240 ∼ 245℃에서 10초간 가열한 후 실온까지 방냉하는 공정을 3회 반복하였다. 그후 초음파탐상장치를 사용하여 폴리이미드와 봉지수지와의 계면파괴를 비파괴로 관찰하여 폴리이미드 표면보호막의 솔더링리플로우 내성을 조사하였다. 적외 솔더링 리플로우로의 온도 프로파일은 『표면 실장형 LSI 패키지의 실장기술과 그 신뢰성 향상』제451페이지((주)히타치세이사쿠쇼 반도체 사업부편 1988년 발행)에 기재되어 있는 온도 프로파일을 최고온도 240∼245℃로 하여 답습하였다. 폴리이미드 전구체 용액의 점도는 DVR-E형 점도계((주)토기멕크제)에 의해 25℃에서 측정하였다.Soldering reflow resistance of the resin-sealed semiconductor device was measured as follows. First, the semiconductor device was humidified by standing for 168 hours at 85 ° C., 85% constant temperature, and humidity conditions. This humidified semiconductor device was heated at 240-245 ° C. for 10 seconds using an infrared soldering reflow furnace, and then the process of cooling to room temperature was repeated three times. Subsequently, the interfacial failure between the polyimide and the encapsulating resin was observed non-destructively using an ultrasonic flaw detector to investigate the soldering reflow resistance of the polyimide surface protective film. The temperature profile of the infrared soldering reflow is based on the temperature profile described on page 451 of `` Mounting Technology and Reliability Improvement of Surface-Mounted LSI Packages '' (issued in 1988, Hitachi Seisakusho Semiconductor Division). It followed at 240-245 degreeC. The viscosity of the polyimide precursor solution was measured at 25 degreeC with the DVR-E viscometer (made by Earth Mech Co., Ltd.).

실시예 1Example 1

질소기류기하에 4,4'-디아미노디페닐에테르 92.0g(0.46몰), 4-아미노페닐-4-아미노-3-카르본 아미드페닐에테르 9.12g(0.44몰)을 N-메틸-2-피롤리돈 1580.2g에 용해하여 아민용액을 조제하였다. 다음에 이 용액을 약 15℃의 온도로 유지하면서 교반하면서 사전에 피로메리트산 2무수물 54.5g(0.25몰)과 3,3',4,4'-벤조페논테트라카르본산 2무수물 80.5g(0.25몰)을 혼합한 것을 가하였다. 가하고 나서 다시 약 15℃에서 약 5시간 질소분위기하에서 교반반응시켜 점도 약 30포이즈의 폴리이미드 전구체 조성물 용액을 얻었다. 얻어진 폴리이미드 전구체 조성물 용액은 폴리이미드 전구체로서 하기 일반식(Ⅰ)으로 나타내는 폴리아미드산을 함유한다.Under nitrogen stream, 92.0 g (0.46 mol) of 4,4'-diaminodiphenyl ether and 9.12 g (0.44 mol) of 4-aminophenyl-4-amino-3-carbon amidephenyl ether were added to N-methyl-2-. It dissolved in 1580.2 g of pyrrolidone to prepare an amine solution. Next, 54.5 g (0.25 mol) of pyromellitic dianhydride and 80.5 g (0.25) of 3,3 ', 4,4'- benzophenone tetracarboxylic acid dianhydride were previously made, stirring this solution, maintaining at a temperature of about 15 degreeC. Mole) was added. After the addition, the mixture was stirred under nitrogen atmosphere at about 15 ° C. for about 5 hours to obtain a solution of polyimide precursor composition having a viscosity of about 30 poises. The obtained polyimide precursor composition solution contains the polyamic acid represented by following General formula (I) as a polyimide precursor.

다만, 본 실시예의 폴리아미드산은 R1However, the polyamic acid of this embodiment is R 1

이며, R2R 2 is

인 공중합체이다. 또, 식(ⅩⅠ) 및 (ⅩⅡ)에 있어서 [ ]내는 1분자중의 반복단위 수비를 나타낸다.Phosphorus copolymer. In formulas (XI) and (XI), [] shows the repeating unit ratio in 1 molecule.

용량 절연막에 강유전체 재료를 사용하여 최표면에 실리콘 질화막을 형성하여 도통을 취하기 위한 본딩패드부를 가진 반도체소자를 형성한 웨이퍼를 준비하였다. 이 웨이퍼에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 300℃에서 4분간 가열한 후, 다시 상기의 폴리이미드 전구체 조성물 용액을 스핀도포하고 핫플레이트 가열장치를 사용하여 질소분위기중에서 140℃에서 1분간 가열하였다.A wafer in which a semiconductor element having a bonding pad portion for conducting conduction was formed by forming a silicon nitride film on the outermost surface using a ferroelectric material for the capacitor insulating film. The wafer was spin-coated with a PIQ coupler manufactured by Hitachi Chemical Co., Ltd., and heated at 300 ° C. in air using a hot plate heater for 4 minutes, followed by spin-coating the polyimide precursor composition solution. The plate heater was used for 1 minute at 140 degreeC in nitrogen atmosphere.

다음에 도오쿄오오가고오교오(주)제의 포지티브형 포토레지스트『OFPR 800』을 스핀도포하고 핫플레이트 가열장치에 의해 90℃에서 1분간 가열하여 폴리이미드 전구체 조성물막 표면에 레지스트막을 형성하고, 포토마스크를 개재하여 노광 현상하여 밑의 폴리이미드 전구체막을 노출하는 개구부를 레지스트막에 형성하였다. 이어 핫플레이트 가열장치에 의해 160℃에서 1분간 가열하였다.Next, a positive photoresist "OFPR 800" manufactured by Tokyo Ohkyo Ohio Co., Ltd. was spin-coated and heated at 90 ° C for 1 minute by a hot plate heating device to form a resist film on the surface of the polyimide precursor composition film. Exposure was developed through a photomask to form an opening in the resist film that exposes the underlying polyimide precursor film. Then, it heated at 160 degreeC for 1 minute with the hotplate heater.

다음에 레지스트 현상액인 알카리수용액을 그대로 이용하여 폴리이미드 전구체 조성물막을 에칭하여 레지스트개구부에 대응하는 폴리이미드 전구체 조성물막의 개소에 개구부를 형성하였다. 레지스트 박리액과 전용 린스액으로 레지스트막을 제거하고 폴리이미드 전구체 조성물막을 수세한 후 230℃에서 4분간, 300℃에서 8분간 가열하여 폴리이미드 전구체를 이미드화하여 본딩패드부에 개구부가 있는 폴리이미드 표면보호막을 소자표면에 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 상술한 바대로 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3700MPa 및 약 300℃였다.Next, using the alkali aqueous solution which is a resist developing solution as it is, the polyimide precursor composition film was etched and the opening part was formed in the location of the polyimide precursor composition film corresponding to a resist opening part. The resist film was removed with a resist stripping solution and a dedicated rinse solution, and the polyimide precursor composition film was washed with water, and then heated at 230 ° C. for 4 minutes and at 300 ° C. for 8 minutes to imidize the polyimide precursor, thereby forming a polyimide surface having an opening in the bonding pad portion. A protective film was formed on the surface of the device. The film thickness of the obtained polyimide membrane was 2.3 micrometers. As described above, the Young's modulus and the glass transition temperature of the polyimide film were measured to be about 3700 MPa and about 300 ° C., respectively.

그후 폴리이미드막을 마스크로하여 본딩패드부에 피복되어 있는 실리콘질화막을 CF494%와 O26%의 혼합가스로 드라이 에칭하여 본딩패드부의 알루미늄 전극을 노출시켰다.Thereafter, the silicon nitride film coated on the bonding pad portion was dry-etched with a mixed gas of CF 4 94% and O 2 6% using the polyimide film as a mask to expose the aluminum electrode of the bonding pad portion.

여기서 소자의 전기특성인 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러처리이전의 초기의 강유전체막의 잔류분극율과 비교하여 그값은 5% 저하되어 있을 뿐이었다.When the residual polarization of the ferroelectric film, which is an electrical characteristic of the device, was measured, the value was only 5% lower than that of the initial ferroelectric film before the PIQ coupler treatment.

다음에 이 웨이퍼를 스크라이브영역에서 절단하여 표면보호막을 구비한 반도체소자를 얻었다. 이 반도체소자를 다이본딩 공정에서 리드 프레임으로 고정한 후에 반도체소자의 본딩패드부와 외부단자간을 와이어 본더로 금선을 배선하였다. 또 히타치가세이고오교오(주)의 실리카 함유 비페닐계 에폭시수지를 사용하여 성형온도 180℃, 성형압력 70㎏/㎠으로 봉지함으로써 수지봉지부를 형성하였다. 최후에 외부단자를 소정의 형으로 구부리므로써 도 3에 나타내는 수지봉지형 반도체장치의 완성품을 얻었다. 얻어진 수지봉지형 반도체장치에 대하여 상술과 같이 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있게 되었다.Next, the wafer was cut in the scribe region to obtain a semiconductor device having a surface protective film. After fixing this semiconductor element with a lead frame in a die bonding process, the gold wire was wired between the bonding pad part of the semiconductor element and the external terminal by the wire bonder. Further, a resin encapsulation portion was formed by using a silica-containing biphenyl epoxy resin manufactured by Hitachi Chemical Co., Ltd., at a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2. Finally, the external terminal was bent into a predetermined shape to obtain a finished product of the resin-encapsulated semiconductor device shown in FIG. As a result of the evaluation test of the soldering reflow resistance of the obtained resin-encapsulated semiconductor device as described above, it was possible to obtain a highly reliable semiconductor device without peeling or cracking at the interface between the polyimide surface protective film and the encapsulated epoxy resin.

비교예 1Comparative Example 1

실시예 1과 같은 웨이퍼를 준비하여, 이 웨이퍼에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치에 의해 공기중에서 300℃에서 4분간 가열한 후 히타치가세이고오교오(주)제의 폴리이미드 전구체 용액『PIQ-13』을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 140℃에서 1분간 가열하여 폴리이미드 전구체 조성물막을 형성하였다.A wafer similar to Example 1 was prepared, spin-coated a PIQ coupler manufactured by Hitachi Chemical Co., Ltd., and heated for 4 minutes at 300 ° C in air by a hot plate heating apparatus, followed by Hitachi Chemical Co., Ltd. The polyimide precursor solution "PIQ-13" by the present company was spin-coated, and it heated at 140 degreeC for 1 minute in nitrogen atmosphere by the hotplate heating apparatus, and formed the polyimide precursor composition film.

다음에 실시예 1과 같이 하여 폴리이미드 전구체 조성물막에 개구부를 형성한 후 핫플레이트 가열장치에 의해 질소분위기중 230℃에서 4분간 가열하고, 다시 횡형의 확산로에 의해 질소분위기중 350℃에서 30분간 가열하였다. 이것에 의해 본딩패드부에 개구부가 있는 폴리이미드막(PIQ-13막)이 소자표면에 형성되었다. 얻어진 PIQ-13막의 막두께는 2.3㎛이었다. 또 상술과 같이 하여 PIQ 13막의 영율 및 유리전이온도를 측정하였더니 각각 약 3300MPa 및 약 310℃였다.Next, an opening was formed in the polyimide precursor composition film in the same manner as in Example 1, and then heated at 230 ° C. in a nitrogen atmosphere by a hot plate heating apparatus for 4 minutes, and then at 350 ° C. in a nitrogen atmosphere at 30 ° C. by a horizontal diffusion furnace. Heated for minutes. As a result, a polyimide film (PIQ-13 film) having an opening in the bonding pad portion was formed on the element surface. The film thickness of the obtained PIQ-13 film was 2.3 µm. In addition, the Young's modulus and glass transition temperature of the PIQ 13 film were measured as described above, and were about 3300 MPa and about 310 ° C., respectively.

그후 실시예1과 같이하여 본딩패드부의 알루미늄 전극을 노출시켜 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리이전의 값에서 60% 저하되어 있었다.Then, as in Example 1, the aluminum electrode of the bonding pad portion was exposed to measure the residual polarization rate of the ferroelectric film, which was 60% lower than the value before the PIQ coupler treatment.

다음에 실시예 1과 같이하여 수지봉지형 반도체 장치의 완성품을 제작하여 실시예 1과 같이하여 솔더링리플로우 내성을 평가하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생은 없었다. 그러나 본 비교예에 의해 얻어진 장치는 실시예 1의 장치에 비하여 강유전체막의 특성열화가 현저하고 실용에는 부적합하였다.Next, the finished product of the resin-encapsulated semiconductor device was fabricated as in Example 1, and soldering reflow resistance was evaluated in the same manner as in Example 1, and no peeling or cracking occurred at the interface between the polyimide surface protective film and the encapsulated epoxy resin. . However, the device obtained by this comparative example is remarkably deteriorated in characteristics of the ferroelectric film as compared with the device of Example 1 and unsuitable for practical use.

비교예 2Comparative Example 2

비교예 1과 같이하여 웨이퍼표면에 표면보호막을 형성하였다. 다만 폴리이미드 전구체 조성물막의 가열경화처리에 있어서 350℃에서의 가열시간을 8분간으로 단축하였다. 본비교예의 PIQ-13막의 영율 및 유리전이온도도 비교예 1과 마찬가지로 약 3300MPa 및 약 310℃ 였다. 그러나 본 비교예의 소자에서의 강유전체막의 잔류분극율은 PIQ 커플러 처리이전의 값에서 25% 저하되어 있으며, 실시예 1과 비교하면 특성열화가 현저하여 실용에는 부적합하였다.A surface protective film was formed on the wafer surface in the same manner as in Comparative Example 1. In the heat curing treatment of the polyimide precursor composition film, however, the heating time at 350 ° C. was shortened to 8 minutes. Young's modulus and glass transition temperature of PIQ-13 film of this comparative example were also about 3300 MPa and about 310 degreeC similarly to the comparative example 1. However, the residual polarization rate of the ferroelectric film in the device of this comparative example was reduced by 25% from the value before the PIQ coupler treatment, and compared with Example 1, the deterioration of characteristics was remarkable and unsuitable for practical use.

비교예 3Comparative Example 3

실시예 1과 같은 웨이퍼를 준비하여 이 웨이퍼상에 히타치가세이고오교오(주)제의 폴리이미드 전구체 조성물 『PIX 8803-9L』을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 100℃에서 1분간, 다시 230℃에서 8분간 가열하여 반경화상태의 폴리이미드 전구체 조성물막을 얻었다.A wafer similar to that of Example 1 was prepared, and a polyimide precursor composition "PIX 8803-9L" manufactured by Hitachi Chemical Co., Ltd. was spin-coated on the wafer and subjected to a hot plate heating apparatus at 1O &lt; 0 &gt; C in a nitrogen atmosphere. Then, it heated again at 230 degreeC for 8 minutes, and obtained the semi-cured polyimide precursor composition film | membrane.

이 폴리이미드 전구체 조성물막에 실시예 1과 같이하여 개구부를 형성한 후 핫플레이트 가열장치에 의해 질소분위기중 230℃에서 4분간 가열하여 본딩패드부에 개구부를 구비하는 폴리이미드막(PIX 8803-9L 막)을 얻었다. 얻은 폴리이미드막의 막두께는 2.3㎛이었다. 상술과 같이하여 PIX 8803-9L막의 영율 및 유리전이온도를 측정하였더니 각각 약 2000MPa 및 약 200℃였다.An opening was formed in this polyimide precursor composition film in the same manner as in Example 1, and then heated at 230 ° C. in a nitrogen atmosphere by a hot plate heating apparatus for 4 minutes to form an opening in the bonding pad portion (PIX 8803-9L). Membrane). The film thickness of the obtained polyimide membrane was 2.3 micrometers. The Young's modulus and glass transition temperature of the PIX 8803-9L film were measured as described above, and were about 2000 MPa and about 200 ° C., respectively.

다음에 실시예 1과 같이 폴리이미드막을 마스크로하여 실리콘질화막을 드라이에칭하여 본딩패드부의 알루미늄전극을 노출시켜 강유전체막의 전류분극율을 측정하였더니, 얻은 값과 폴리이미드 전구체 조성물 도포전의 값과의 차이는 1% 이내이며, 특성의 열화는 거의 보이지 않았다.Next, as in Example 1, the silicon nitride film was dry-etched using the polyimide film as a mask, and the aluminum electrode of the bonding pad was exposed to measure the current polarization rate of the ferroelectric film. The difference between the value obtained and the value before coating the polyimide precursor composition was measured. Is within 1%, and deterioration of the characteristics is hardly seen.

다음에 실시예 1과 같이하여 수지봉지형 반도체장치의 완성품을 제작하여 실시예 1과 동일하게 솔더링리플로우 내성을 평가하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면의 전면에 걸쳐 박리가 보여 신뢰성이 현저히 낮은 반도체 장치를 얻을 수 밖에 없었다.Next, the finished product of the resin-encapsulated semiconductor device was fabricated as in Example 1, and the soldering reflow resistance was evaluated in the same manner as in Example 1, and peeling was observed over the entire surface of the polyimide surface protective film and the encapsulated epoxy resin. This remarkably low semiconductor device was inevitably obtained.

실시예 2Example 2

질소기류기하에 4,4'-디아미노디페닐에테르 88.0g(0.44몰), 4-아미노페닐-4-아미노-3-카르본 아미드페닐에테르 13.68g(0.06몰)을 N-메틸-2-피롤리돈 1584g에 용해하여 아민용액을 조제하였다. 다음에 이 용액을 약 15℃의 온도로 유지하면서 교반하면서 사전에 피로메리트산 2무수물 54.5g(0.25몰)과 3,3',4,4'-벤조페논테트라카르본산 2무수물 80.5g(0.25몰)을 혼합한 것을 가하였다. 가하고 나서 다시 약 15℃에서 약 5시간 질소분위기하에서 교반반응시켜 점도 약 30포이즈의 폴리이미드 전구체 조성물 용액을 얻었다. 얻어진 폴리이미드 전구체 조성물 용액은 폴리이미드 전구체로서 R2의 공중합비가 다른 것 이외에는 실시예 1과 같은 폴리아미드산 공중합체를 함유한다.88.0 g (0.44 mol) of 4,4'-diaminodiphenyl ether and 13.68 g (0.06 mol) of 4-aminophenyl-4-amino-3-carbon amide phenyl ether were added to N-methyl-2- under a nitrogen stream. It dissolved in 1584 g of pyrrolidone to prepare an amine solution. Next, 54.5 g (0.25 mol) of pyromellitic dianhydride and 80.5 g (0.25) of 3,3 ', 4,4'- benzophenone tetracarboxylic acid dianhydride were previously made, stirring this solution, maintaining at a temperature of about 15 degreeC. Mole) was added. After the addition, the mixture was stirred under nitrogen atmosphere at about 15 ° C. for about 5 hours to obtain a solution of polyimide precursor composition having a viscosity of about 30 poises. The obtained polyimide precursor composition solution contains the same polyamic acid copolymer as in Example 1 except that the copolymerization ratio of R 2 is different as the polyimide precursor.

본 실시예에 있어서 R2In this embodiment R 2 is

이다. 식(ⅩⅢ)에 있어서 [ ]내는 1분자중의 반복단위 수비를 나타낸다.to be. In formula (XIII), [] shows the repeating unit ratio in 1 molecule.

다음에 실시예 1과 같은 웨이퍼를 준비하여 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 260℃에서 4분간 가열한 후 다시 상기의 폴리이미드 전구체 조성물 용액을 스핀도포하여 핫플레이트 가열장치에 의해 질소분위기중 140℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막이 얻어졌다. 이 조성물막에 실시예 1과 같이 하여 개구부를 마련한 후 230℃에서 4분간, 260℃에서 8분간 가열하여 폴리이미드 전구체를 이미드화하여 본딩패드부에 개구부가 있는 폴리이미드 표면보호막을 소자표면에 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 상술과 같이하여 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3300MPa 및 약 300℃였다.Next, the same wafer as in Example 1 was prepared, spin-coated a PIQ coupler manufactured by Hitachi Chemical Co., Ltd., and heated for 4 minutes at 260 DEG C in air using a hot plate heating apparatus. The polyimide precursor composition solution of was spin-coated and heated at 140 ° C. in a nitrogen atmosphere for 1 minute by a hot plate heater. This obtained the polyimide precursor composition film. An opening was formed in this composition film as in Example 1, and then heated at 230 ° C. for 4 minutes and at 260 ° C. for 8 minutes to imidize the polyimide precursor to form a polyimide surface protective film having an opening at the bonding pad portion on the surface of the device. It was. The film thickness of the obtained polyimide membrane was 2.3 micrometers. In addition, the Young's modulus and glass transition temperature of the polyimide film were measured as described above, and were about 3300 MPa and about 300 ° C., respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값은 약 2% 저하되어 있을 뿐이었다.When the residual polarization rate of the ferroelectric film was measured, the value was only about 2% lower than that of the initial ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 만든 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수 있었다.Next, after the finished product of the resin-encapsulated semiconductor device was made in the same manner as in Example 1, an evaluation test of soldering reflow resistance was performed on the finished product, and there was no peeling or cracking at the interface between the polyimide surface protective film and the encapsulated epoxy resin. A highly reliable semiconductor device was obtained.

실시예 3Example 3

질소기류기하에 4,4'-디아미노디페닐에테르 90.0g(0.45몰), 비스(3-아미노프로필)테트라메틸디실록산 9.6g(0.05몰)을 N-메틸-2-피롤리돈 1584g에 용해하여 아민용액을 조제하였다. 다음에 이 용액을 약 15℃의 온도로 유지하면서 교반하면서 3,3',4,4'-비페닐테트라카르본산 2무수물 147g(0.5몰)을 가하였다. 가하고 나서 다시 약 15℃에서 약 5시간 질소분위기하에서 교반반응시켜 점도 약 30포이즈의 폴리이미드 전구체 조성물 용액을 얻었다. 얻어진 폴리이미드 전구체 조성물 용액은 폴리이미드 전구체로서 하기 일반식(ⅩⅣ)으로 나타내는 제1의 반복단위와 하기 일반식(ⅩⅤ)로 나타내는 제2의 반복단위로 이루어지는 폴리아미드산 공중합체를 함유한다. 다만 폴리아미드산 1분자중의 제1의 반복단위의 수와 제2의 반복단위의 수와의 합계에 대한 제2의 반복단위의 수의 비율은 10% 이다.90.0 g (0.45 mol) of 4,4'-diaminodiphenyl ether and 9.6 g (0.05 mol) of bis (3-aminopropyl) tetramethyldisiloxane were added to 1584 g of N-methyl-2-pyrrolidone under a nitrogen stream. It melt | dissolved and the amine solution was prepared. Next, 147 g (0.5 mol) of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride was added, stirring this solution, maintaining at a temperature of about 15 degreeC. After the addition, the mixture was stirred under nitrogen atmosphere at about 15 ° C. for about 5 hours to obtain a solution of polyimide precursor composition having a viscosity of about 30 poises. The obtained polyimide precursor composition solution contains, as a polyimide precursor, a polyamic acid copolymer comprising a first repeating unit represented by the following general formula (XIV) and a second repeating unit represented by the following general formula (XV). However, the ratio of the number of the second repeating units to the sum of the number of the first repeating units and the number of the second repeating units in one molecule of polyamic acid is 10%.

다음에 실시예 1과 같은 웨이퍼를 준비하여, 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 260℃에서 4분간 가열한 후 다시 상기의 폴리이미드 전구체 조성물 용액을 스핀도포하여 핫플레이트 가열장치에 의해 질소분위기중 140℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막이 얻어졌다. 이 조성물막에 실시예 1과 같이 하여 개구부를 마련한 후 230℃에서 4분간, 260℃에서 8분간 가열하여 폴리이미드 전구체를 이미드화하여 본딩패드부에 개구부가 있는 폴리이미드 표면보호막을 소자표면에 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 상술과 같이하여 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3000MPa 및 약 255℃였다.Next, a wafer similar to Example 1 was prepared, spin-coated a Hitachi Chemical Co., Ltd. PIQ coupler on the wafer surface, and heated in air at 260 ° C. for 4 minutes using a hot plate heating device. The polyimide precursor composition solution was spin-coated and heated at 140 ° C. in a nitrogen atmosphere for 1 minute by a hot plate heater. This obtained the polyimide precursor composition film. An opening was formed in this composition film as in Example 1, and then heated at 230 ° C. for 4 minutes and at 260 ° C. for 8 minutes to imidize the polyimide precursor to form a polyimide surface protective film having an opening at the bonding pad portion on the surface of the device. It was. The film thickness of the obtained polyimide membrane was 2.3 micrometers. In addition, the Young's modulus and glass transition temperature of the polyimide film were measured as described above, and were about 3000 MPa and about 255 ° C, respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값은 약 2% 저하되어 있을 뿐이었다.When the residual polarization rate of the ferroelectric film was measured, the value was only about 2% lower than that of the initial ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 만든 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수 있었다.Next, after the finished product of the resin-encapsulated semiconductor device was made in the same manner as in Example 1, an evaluation test of soldering reflow resistance was performed on the finished product, and there was no peeling or cracking at the interface between the polyimide surface protective film and the encapsulated epoxy resin. A highly reliable semiconductor device was obtained.

실시예 4Example 4

질소기류기하에 3,3'-디메틸벤지딘 103.0g(0.5몰)을 N-메틸-2-피롤리돈 1474.5g에 용해하고 4,4'-옥시프탈산 2무수물 155.0g(0.5몰)를 가하였다. 가하고 나서 다시 약 15℃에서 약 5시간 질소분위기하에서 교반반응시켜 점도 약 30포이즈의 폴리이미드 전구체 조성물 용액을 얻었다. 얻어진 폴리이미드 전구체 조성물 용액은 폴리이미드 전구체로서 하기 일반식(ⅩⅥ)로 나타내는 반복단위로 이루어지는 폴리아미드산을 함유한다.Under nitrogen stream, 103.0 g (0.5 mol) of 3,3'-dimethylbenzidine was dissolved in 1474.5 g of N-methyl-2-pyrrolidone and 155.0 g (0.5 mol) of 4,4'-oxyphthalic dianhydride was added thereto. . After the addition, the mixture was stirred under nitrogen atmosphere at about 15 ° C. for about 5 hours to obtain a solution of polyimide precursor composition having a viscosity of about 30 poises. The obtained polyimide precursor composition solution contains the polyamic acid which consists of a repeating unit represented by following General formula (XVI) as a polyimide precursor.

다음에 실시예 1과 같은 웨이퍼를 준비하여, 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 240℃에서 4분간 가열한 후 다시 상기의 폴리이미드 전구체 조성물 용액을 스핀도포하여 핫플레이트 가열장치에 의해 질소분위기중 140℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막이 얻어졌다. 이 조성물막에 실시예 1과 같이 하여 개구부를 마련한 후 230℃에서 4분간, 240℃에서 10분간 가열하여 폴리이미드 전구체를 이미드화하여 본딩패드부에 개구부가 있는 폴리이미드 표면보호막을 소자표면에 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 상술과 같이하여 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 4000MPa 및 약 250℃였다.Next, a wafer similar to that of Example 1 was prepared, spin-coated a PIQ coupler manufactured by Hitachi Chemical Co., Ltd., was heated on the surface of the wafer at 240 ° C for 4 minutes using a hot plate heater, and then again. The polyimide precursor composition solution was spin-coated and heated at 140 ° C. in a nitrogen atmosphere for 1 minute by a hot plate heater. This obtained the polyimide precursor composition film. An opening was formed in this composition film as in Example 1, followed by heating at 230 ° C. for 4 minutes and 240 ° C. for 10 minutes to imidize the polyimide precursor to form a polyimide surface protective film having an opening at the bonding pad portion on the surface of the device. It was. The film thickness of the obtained polyimide membrane was 2.3 micrometers. In addition, the Young's modulus and glass transition temperature of the polyimide film were measured as described above, and were about 4000 MPa and about 250 ° C., respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 약 1% 이내였다.Here, the residual polarization rate of the ferroelectric film was measured, and the drop was less than about 1% compared to the residual polarization rate of the ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 만든 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수 있었다.Next, after the finished product of the resin-encapsulated semiconductor device was made in the same manner as in Example 1, an evaluation test of soldering reflow resistance was performed on the finished product, and there was no peeling or cracking at the interface between the polyimide surface protective film and the encapsulated epoxy resin. A highly reliable semiconductor device was obtained.

실시예 5Example 5

실시예 1에서 합성한 폴리이미드 전구체 조성물 용액에 폴리이미드 전구체 폴리머 100중량부에 대하여 메타크릴산 3-(N,N-디메틸아미노)프로필 20.0중량부와 2,6-디(p-아지드벤잘)-4-카르복시시클로헥사논 5.0중량부를 가하여 용해하여 감광성 조성물 용액을 얻었다.20.0 parts by weight of 3- (N, N-dimethylamino) propyl and 2,6-di (p-azidebenzal) with respect to 100 parts by weight of the polyimide precursor polymer in the polyimide precursor composition solution synthesized in Example 1 5.0 parts by weight of 4-carboxycyclohexanone was added and dissolved to obtain a photosensitive composition solution.

다음에 실시예 1과 같은 웨이퍼를 준비하여, 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 250℃에서 4분간 가열한 후, 다시 상기의 감광성 조성물용액을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 85℃에서 1분간, 계속하여 95℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막을 얻었다.Next, a wafer similar to that of Example 1 was prepared, spin-coated a Hitachi Chemical Co., Ltd. PIQ coupler on this wafer surface, and heated in air at 250 ° C. for 4 minutes using a hot plate heating device. The photosensitive composition solution was spin-coated again, and heated at 85 ° C. for 1 minute in a nitrogen atmosphere by a hot plate heating apparatus, followed by heating at 95 ° C. for 1 minute. This obtained the polyimide precursor composition film.

이 조성물막을 포토마스크를 개재하여 노광시켜 N-메틸-2-피롤리돈 4용적과 에탄올 1용적으로 이루어지는 혼합액으로 현상한 후 에탄올로 린스하여 본딩패드부에 개구부를 형성하였다. 다음에 핫플레이트 가열장치에 의해 130℃에서 4분간, 170℃에서 4분간, 220℃에서 4분간, 250℃에서 8분간 순차가열하여 폴리이미드 전구체를 경화시켜 본딩패드부에 개구부가 있는 폴리이미드막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3300MPa 및 약 300℃였다.The composition film was exposed through a photomask, developed with a mixture of four volumes of N-methyl-2-pyrrolidone and one volume of ethanol, followed by rinsing with ethanol to form an opening in the bonding pad portion. Subsequently, a hot plate heating apparatus was used to sequentially heat the polyimide precursor for 4 minutes at 130 ° C, 4 minutes at 170 ° C, 4 minutes at 220 ° C, and 8 minutes at 250 ° C to harden the polyimide precursor to form a polyimide film having an opening in the bonding pad portion. Formed. The film thickness of the obtained polyimide membrane was 2.3 micrometers. The Young's modulus and glass transition temperature of the polyimide film were measured to be about 3300 MPa and about 300 ° C., respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 약 1% 이내였다.Here, the residual polarization rate of the ferroelectric film was measured, and the drop was less than about 1% compared to the residual polarization rate of the ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 얻은 후, 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있었다.Next, after obtaining the finished product of the resin-encapsulated semiconductor device in the same manner as in Example 1, an evaluation test for soldering reflow resistance was conducted on the obtained finished product. At the interface between the polyimide surface protective film and the encapsulated epoxy resin, peeling or cracking occurred. A highly reliable semiconductor device could be obtained.

실시예 6Example 6

실시예 2에서 합성한 폴리이미드 전구체 조성물 용액에 폴리이미드 전구체 폴리머 100중량부에 대하여 메타크릴산 3-(N,N-디메틸아미노)프로필 20.0중량부와 미클러의 케톤 3.0중량부와 비스-4,4'-디에틸아미노벤조페논 3.0중량부를 가하여 용해하여 감광성 조성물 용액을 얻었다.To the polyimide precursor composition solution synthesized in Example 2, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylic acid, 3.0 parts by weight of Micler, and Bis-4 based on 100 parts by weight of the polyimide precursor polymer 3.0 weight part of and 4'-diethylamino benzophenone were added and dissolved, and the photosensitive composition solution was obtained.

다음에 실시예 1과 같은 웨이퍼를 준비하여 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 270℃에서 4분간 가열한 후, 다시 상기의 감광성 조성물 용액을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 85℃에서 1분간, 계속하여 95℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막을 얻었다.Next, the same wafer as in Example 1 was prepared, spin-coated a Hitachi Chemical Co., Ltd. PIQ coupler was heated on the surface of the wafer, and heated in air at 270 ° C. for 4 minutes using a hot plate heating device. The photosensitive composition solution was spin-coated and heated for 1 minute at 85 ° C. in a nitrogen atmosphere by a hot plate heating apparatus, followed by heating at 95 ° C. for 1 minute. This obtained the polyimide precursor composition film.

이 조성물막에 실시예 5와 같이하여 개구부를 형성한 후 핫플레이트 가열장치에 의해 130℃에서 4분간, 170℃에서 4분간, 220℃에서 4분간, 270℃에서 8분간 순차가열하여 폴리이미드 전구체를 경화시켜 본딩패드부에 개구부가 있는 폴리이미드막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3300MPa 및 약 300℃였다.After the openings were formed in the composition film as in Example 5, the polyimide precursor was sequentially heated by a hot plate heating apparatus for 4 minutes at 130 ° C, 4 minutes at 170 ° C, 4 minutes at 220 ° C and 8 minutes at 270 ° C. Was cured to form a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide membrane was 2.3 micrometers. The Young's modulus and glass transition temperature of the polyimide film were measured to be about 3300 MPa and about 300 ° C., respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 약 1% 이내였다.Here, the residual polarization rate of the ferroelectric film was measured, and the drop was less than about 1% compared to the residual polarization rate of the ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 얻은 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있었다.Next, the evaluation of soldering reflow resistance was conducted on the finished product obtained after obtaining the finished product of the resin-encapsulated semiconductor device as in Example 1, and no peeling or cracking occurred at the interface between the polyimide surface protective film and the encapsulated epoxy resin. It was possible to obtain a highly reliable semiconductor device.

실시예 7Example 7

실시예 3에서 합성한 폴리이미드 전구체 조성물 용액에 폴리이미드 전구체 폴리머 100중량부에 대하여 메타크릴산 3-(N,N-디메틸아미노)프로필 20.0중량부와 2,6-디(p-아지드벤잘)-4-카르복시시클로헥사논 5.0중량부를 가하여 용해하여 감광성 조성물 용액을 얻었다.To the polyimide precursor composition solution synthesized in Example 3, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 2,6-di (p-azidebenzal) based on 100 parts by weight of the polyimide precursor polymer 5.0 parts by weight of 4-carboxycyclohexanone was added and dissolved to obtain a photosensitive composition solution.

다음에 실시예 1과 같은 웨이퍼를 준비하여 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 260℃에서 4분간 가열한 후, 다시 상기의 감광성 조성물 용액을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 85℃에서 1분간, 계속하여 95℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막을 얻었다.Next, the same wafer as in Example 1 was prepared, spin coating a PIQ coupler manufactured by Hitachi Chemical Co., Ltd., and heated in air at 260 ° C. for 4 minutes using a hot plate heating device. The photosensitive composition solution was spin-coated and heated for 1 minute at 85 ° C. in a nitrogen atmosphere by a hot plate heating apparatus, followed by heating at 95 ° C. for 1 minute. This obtained the polyimide precursor composition film.

이 조성물막에 실시예 5와 같이하여 개구부를 형성한 후 핫플레이트 가열장치에 의해 130℃에서 4분간, 170℃에서 4분간, 220℃에서 4분간, 260℃에서 8분간 순차가열하여 폴리이미드 전구체를 경화시켜 본딩패드부에 개구부가 있는 폴리이미드막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 3000MPa 및 약 260℃였다.An opening was formed in this composition film as in Example 5, and then heated by a hot plate heating apparatus for 4 minutes at 130 ° C, 4 minutes at 170 ° C, 4 minutes at 220 ° C, and 8 minutes at 260 ° C to form a polyimide precursor. Was cured to form a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide membrane was 2.3 micrometers. The Young's modulus and glass transition temperature of the polyimide membrane were measured to be about 3000 MPa and about 260 ° C, respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 약 2% 이내였다.Here, the residual polarization rate of the ferroelectric film was measured, and the drop was less than about 2% compared to the residual polarization rate of the ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 얻은 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있었다.Next, the evaluation of soldering reflow resistance was conducted on the finished product obtained after obtaining the finished product of the resin-encapsulated semiconductor device as in Example 1, and no peeling or cracking occurred at the interface between the polyimide surface protective film and the encapsulated epoxy resin. It was possible to obtain a highly reliable semiconductor device.

실시예 8Example 8

실시예 4에서 합성한 폴리이미드 전구체 조성물 용액에 폴리이미드 전구체 폴리머 100중량부에 대하여 메타크릴산 3-(N,N-디메틸아미노)프로필 20.0중량부와 미클러의 케톤 3.0중량부와 비스-4,4'-디에틸아미노벤조페논 3.0중량부를 가하여 용해하여 감광성 조성물 용액을 얻었다.To the polyimide precursor composition solution synthesized in Example 4, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylic acid and 3.0 parts by weight of mica and 3.0 parts by weight of bis-4, based on 100 parts by weight of the polyimide precursor polymer 3.0 weight part of and 4'-diethylamino benzophenone were added and dissolved, and the photosensitive composition solution was obtained.

다음에, 실시예 1과 같은 웨이퍼를 준비하여 실시예 5와 같이하여 웨이퍼 표면을 『PIQ 커플러』에 의해 처리한 후 다시 실시예 5와 같이하여 상기의 감광성 조성물 용액을 도포, 가열하여 폴리이미드 전구체 조성물막을 형성하였다.Next, the same wafer as in Example 1 was prepared, the surface of the wafer was treated with a "PIQ coupler" in the same manner as in Example 5, and then the photosensitive composition solution was applied and heated in the same manner as in Example 5 to form a polyimide precursor. A composition film was formed.

이 조성물막을 실시예 5와 같이 개구처리한 후 실시예 5와 같이하여 가열경화시켜 폴리이미드막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛ 였다.The composition film was subjected to an opening treatment in the same manner as in Example 5, and then heat-cured in the same manner as in Example 5 to form a polyimide membrane. The film thickness of the obtained polyimide membrane was 2.3 micrometers.

또 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 4000MPa 및 약 250℃였다.The Young's modulus and glass transition temperature of the polyimide film were measured to be about 4000 MPa and about 250 ° C, respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 PIQ 커플러 처리 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 약 1% 이내였다.Here, the residual polarization rate of the ferroelectric film was measured, and the drop was less than about 1% compared to the residual polarization rate of the ferroelectric film before the PIQ coupler treatment.

다음에 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 얻은 후 얻어진 완성품에 대하여 솔더링리플로우 내성의 평가시험을 하였더니 폴리이미드 표면보호막과 봉지에폭시수지의 계면에서는 박리나 크랙의 발생이 없고 신뢰성이 높은 반도체장치를 얻을 수가 있었다.Next, the evaluation of soldering reflow resistance was conducted on the finished product obtained after obtaining the finished product of the resin-encapsulated semiconductor device as in Example 1, and no peeling or cracking occurred at the interface between the polyimide surface protective film and the encapsulated epoxy resin. It was possible to obtain a highly reliable semiconductor device.

실시예 9Example 9

실시예 1과 같은 웨이퍼를 준비하여 이 웨이퍼표면에 히타치가세이고오교오(주)제의 PIQ 커플러를 스핀도포하고 핫플레이트 가열장치를 사용하여 공기중에서 230℃에서 4분간 가열한 후, 다시 실시예 4에서 합성한 폴리이미드 전구체 조성물 용액을 스핀도포하고 핫플레이트 가열장치에 의해 질소분위기중에서 140℃에서 1분간 가열하였다. 이것에 의해 폴리이미드 전구체 조성물막을 얻었다.After preparing the same wafer as in Example 1, spin coating a PIQ coupler manufactured by Hitachi Chemical Co., Ltd. on the surface of the wafer, and using a hot plate heating apparatus, heated in air at 230 ° C. for 4 minutes, and then again. The polyimide precursor composition solution synthesized in 4 was spin-coated and heated for 1 minute at 140 ° C. in a nitrogen atmosphere by a hot plate heating apparatus. This obtained the polyimide precursor composition film.

이 조성물막에 실시예 4와 같이하여 개구부를 형성한 후 핫플레이트 가열장치에 의해 200℃에서 4분간, 이어 230℃에서 10분간 가열하여 폴리이미드 전구체를 경화시켜 본딩패드부에 개구부가 있는 폴리이미드 표면보호막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛이었다. 또 상술과 같이 하여 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 4000MPa 및 약 250℃였다.An opening was formed in this composition film as in Example 4, and then heated at 200 ° C. for 4 minutes and then at 230 ° C. for 10 minutes with a hot plate heating device to cure the polyimide precursor to thereby form a polyimide having an opening in the bonding pad portion. A surface protective film was formed. The film thickness of the obtained polyimide membrane was 2.3 micrometers. In addition, the Young's modulus and glass transition temperature of the polyimide film were measured as described above, and were about 4000 MPa and about 250 ° C., respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 실시예 4와 같이 열처리에 의한 열화는 약 1% 이내였다. 또 실시예 1과 같이하여 수지봉지형 반도체 장치의 완성품을 얻었다. 얻어진 완성품의 솔더링리플로우 내성은 실시예 4와 같이 양호하였다.Here, when the residual polarization rate of the ferroelectric film was measured, deterioration due to heat treatment was within about 1% as in Example 4. In the same manner as in Example 1, the finished product of the resin-sealed semiconductor device was obtained. Soldering reflow resistance of the obtained finished product was good as in Example 4.

실시예 10Example 10

실시예 4에서 합성한 폴리이미드 전구체 조성물 용액에 폴리이미드 전구체 폴리머 100중량부에 대하여 메타크릴산 3-(N,N-디메틸아미노)프로필 20.0중량부와 미클러의 케톤 6.0 중량부를 가하여 용해하여 감광성 조성물 용액을 얻었다.To the polyimide precursor composition solution synthesized in Example 4, 20.0 parts by weight of 3- (N, N-dimethylamino) propyl methacrylate and 6.0 parts by weight of Micler's ketone were added to 100 parts by weight of the polyimide precursor polymer to dissolve the photosensitive. A composition solution was obtained.

다음에 실시예 1과 같은 웨이퍼를 준비하여 실시예 9와 같이하여 웨이퍼 표면을 『PIQ 커플러』에 의해 처리한 후 다시 상기의 감광성 조성물 용액을 스핀도포하여 핫플레이트 가열장치에 의해 질소분위기중에서 85℃에서 1분간, 계속하여 95℃에서 1분간 가열하여 폴리이미드 전구체 조성물막을 형성하였다.Next, the same wafer as in Example 1 was prepared, the surface of the wafer was treated with a "PIQ coupler" as in Example 9, and the above photosensitive composition solution was spin-coated again in a nitrogen atmosphere by a hot plate heating apparatus. 1 minute then, it heated at 95 degreeC for 1 minute, and formed the polyimide precursor composition film | membrane.

이 조성물막에 실시예 5와 같이하여 개구부를 형성한 후 핫플레이트 가열장치에 의해 130℃에서 4분간, 170℃에서 4분간, 200℃에서 4분간, 230℃에서 10분간 순차가열하여 폴리이미드 전구체를 경화시켜 본딩패드부에 개구부가 있는 폴리이미드막을 형성하였다. 얻어진 폴리이미드막의 막두께는 2.3㎛였다.An opening was formed in this composition film as in Example 5, and then heated sequentially at 130 ° C. for 4 minutes, at 170 ° C. for 4 minutes, at 200 ° C. for 4 minutes, and at 230 ° C. for 10 minutes by means of a hot plate heating apparatus to form a polyimide precursor. Was cured to form a polyimide film having an opening in the bonding pad portion. The film thickness of the obtained polyimide membrane was 2.3 micrometers.

또 폴리이미드막의 영율 및 유리전이온도를 측정하였더니 각각 약 4000MPa 및 약 250℃였다.The Young's modulus and glass transition temperature of the polyimide film were measured to be about 4000 MPa and about 250 ° C, respectively.

여기서 강유전체막의 잔류분극율을 측정하였더니 실시예 4와 같이 열처리에 의한 열화는 약 1% 이내였다. 또 실시예 1과 같이 하여 수지봉지형 반도체장치의 완성품을 얻은 후 얻어진 완성품의 솔더링리플로우 내성은 실시예 4와 같이 양호하였다.Here, when the residual polarization rate of the ferroelectric film was measured, deterioration due to heat treatment was within about 1% as in Example 4. In addition, the soldering reflow resistance of the finished product obtained after obtaining the finished product of the resin-sealed semiconductor device in the same manner as in Example 1 was good as in Example 4.

실시예 11Example 11

질소기류기하에 3,3'-디메틸벤지딘 95.4g(0.45몰)과 비스(3-아미노프로필)테트라메틸디실록산 9.6g(0.05몰)을 N-메틸-2-피롤리돈 1040g에 용해하여 아민용액을 조제하였다. 다음에 이 용액을 약 15℃로 유지하면서 교반하면서 4,4'-옥시프탈산 2무수물 155.0g(0.5몰)을 가한 후 다시 약 15℃에서 약 8시간 질소분위기에서 교반하여 점도 약 30포이즈의 폴리이미드 전구체 용액을 얻었다. 얻어진 폴리이미드 전구체 용액은 폴리이미드 전구체로서 상기 일반식(ⅩⅥ)으로 나타내는 제1의 반복단위와 하기 일반식(ⅩⅨ)로 나타내는 제2의 반복단위로 이루어지는 폴리아미드산 공중합체를 함유한다. 다만, 폴리아미드산 1분자중의 제2의 반복단위수는 전체의 약 10% 였다. 얻어진 폴리이미드 전구체 용액을 사용하여 실시예 5와 같이하여 감광성 조성물 용액을 조제하였다.95.4 g (0.45 mol) of 3,3'-dimethylbenzidine and 9.6 g (0.05 mol) of bis (3-aminopropyl) tetramethyldisiloxane were dissolved in 1040 g of N-methyl-2-pyrrolidone under a nitrogen stream. The solution was prepared. Next, 155.0 g (0.5 mol) of 4,4'-oxyphthalic anhydride was added with stirring while maintaining this solution at about 15 DEG C, followed by stirring in a nitrogen atmosphere at about 15 DEG C for about 8 hours to obtain a polyporous resin having a viscosity of about 30 poises. The mid precursor solution was obtained. The obtained polyimide precursor solution contains the polyamic-acid copolymer which consists of a 1st repeating unit represented by the said General formula (XVI) and a 2nd repeating unit represented by the following General formula (VIII) as a polyimide precursor. However, the number of second repeating units in one molecule of polyamic acid was about 10% of the total. The photosensitive composition solution was prepared like Example 5 using the obtained polyimide precursor solution.

다음에 실시예 1과 같은 웨이퍼를 준비하여 웨이퍼 표면에 상기에서 얻은 감광성 조성물 용액을 스핀도포하고 핫플레이트 가열장치를 사용하여 질소분위기중에서 85℃에서 1분간, 계속하여 95℃에서 1분간 가열한 후 포토마스크를 개재하여 노광시켜 N-메틸-2-피롤리돈 4용적 및 에탄올 1용적으로 이루어지는 혼합액으로 현상하고 에탄올로 린스하여 본딩패드부를 노출시키는 개구부를 형성하였다. 계속하여 핫플레이트 장치를 사용하여 질소분위기중에서 130℃에서 3분간, 170℃에서 3분간, 220℃에서 3분간, 300℃에서 6분간 순차가열하여 폴리이미드를 경화시켰다. 얻어진 폴리이미드막의 막두께는 2.3㎛ 였다. 이 폴리이미드의 영율은 약 4000MPa, 유리전이온도는 260℃였다.Next, the same wafer as in Example 1 was prepared, spin-coated the photosensitive composition solution obtained above on the wafer surface, and heated at 85 ° C. for 1 minute in a nitrogen atmosphere using a hot plate heating apparatus, followed by heating at 95 ° C. for 1 minute. It exposed through a photomask, it developed with the mixture liquid which consists of 4 volumes of N-methyl- 2-pyrrolidone, and 1 volume of ethanol, and rinsed with ethanol to form the opening part which exposes the bonding pad part. Subsequently, a polyimide was cured by sequentially heating in a nitrogen atmosphere for 3 minutes at 130 ° C, 3 minutes at 170 ° C, 3 minutes at 220 ° C, and 6 minutes at 300 ° C in a nitrogen plate. The film thickness of the obtained polyimide membrane was 2.3 micrometers. The Young's modulus of this polyimide was about 4000 MPa, and the glass transition temperature was 260 degreeC.

여기서 강유전체막의 잔류분극율을 측정하였더니 폴리이미드 전구체 용액 도포 이전의 초기의 강유전체막의 잔류분극율과 비교하여 그값의 저하는 1% 이내였다.When the residual polarization rate of the ferroelectric film was measured here, the drop of the value was less than 1% as compared with the residual polarization rate of the initial ferroelectric film before application of the polyimide precursor solution.

다음에 실시예 1과 같이하여 수지봉지형 반도체장치의 완성품을 얻은 후 실시예 1과 같이하여 솔더링리플로우 내성의 평가시험을 하였더니 실시예 1과 같이 신뢰성이 높은 것이었다.Next, after obtaining the finished product of the resin encapsulated semiconductor device in the same manner as in Example 1, the evaluation test for soldering reflow resistance was carried out in the same manner as in Example 1, the reliability was high as in Example 1.

실시예 12Example 12

본 실시예에서는 개구부 형성후의 가열을 130℃에서 3분간, 170℃에서 3분간, 220℃에서 3분간, 350℃에서 2분간으로 한 것외에는 실시예 11과 같이하여 수지봉지형 반도체장치를 제작하였더니, 얻어진 폴리이미드막의 폴리이미드의 영율 및 유리전이온도는 실시예 11과 같았다.In this embodiment, a resin-encapsulated semiconductor device was fabricated in the same manner as in Example 11 except that heating after the opening was formed for 3 minutes at 130 ° C, 3 minutes at 170 ° C, 3 minutes at 220 ° C, and 2 minutes at 350 ° C. Moreover, the Young's modulus and glass transition temperature of the polyimide of the obtained polyimide membrane were the same as in Example 11.

여기서 강유전체막의 잔류분극율을 측정하였더니 폴리이미드 전구체 용액 도포이전의 초기의 강유전체막의 잔류분극율과 비교하여 그 값의 저하는 5% 이내였다.When the residual polarization rate of the ferroelectric film was measured here, the decrease in the value was within 5% as compared with the residual polarization rate of the initial ferroelectric film before polyimide precursor solution application.

다음에 실시예 1과 같이하여 수지봉지형 반도체 장치의 완성품을 얻은 후 실시예 1과 같이하여 솔더링리플로우 내성의 평가시험을 하였더니 실시예 1과 같이 신뢰성이 높은 것이었다.Next, after obtaining the finished product of the resin encapsulated semiconductor device in the same manner as in Example 1, the soldering reflow resistance evaluation test was carried out in the same manner as in Example 1, and the reliability was high as in Example 1.

Claims (13)

강유전성막 및 표면보호막을 가진 반도체소자와 수지로 이루어지는 봉지부재를 구비하며, 상기 표면보호막은 폴리이미드로 이루어지는 수지봉지형 반도체장치.And a sealing member made of a resin and a semiconductor element having a ferroelectric film and a surface protection film, wherein the surface protection film is made of polyimide. 제 1 항에 있어서, 상기 폴리이미드는 유리전이온도가 240℃∼400℃이고, 영율이 2600MPa∼6GPa인 수지봉지형 반도체장치.The resin-encapsulated semiconductor device according to claim 1, wherein the polyimide has a glass transition temperature of 240 DEG C to 400 DEG C and a Young's modulus of 2600 MPa to 6 GPa. 제 1 항에 있어서, 상기 강유전체막은 캐패시터의 용량절연막인 수지봉지형 반도체장치.The resin encapsulated semiconductor device according to claim 1, wherein the ferroelectric film is a capacitor insulating film of a capacitor. 제 1 항에 있어서, 상기 폴리이미드는 폴리이미드 전구체 조성물을 230℃ 이상, 300℃ 이하로 가열함으로써 경화시켜 얻어진 것인 수지봉지형 반도체장치.The resin-encapsulated semiconductor device according to claim 1, wherein the polyimide is obtained by curing the polyimide precursor composition by heating at 230 ° C or higher and 300 ° C or lower. 제 1 항에 있어서, 상기 폴리이미드는 폴리이미드 전구체 조성물을 300℃ 보다 높게 350℃ 이하의 온도에서 4분 이하의 시간 동안 가열함으로써 경화시켜 얻어진 것이며, 영율이 3500MPa 이상, 유리전이온도가 260℃ 이상인 수지봉지형 반도체장치.The method of claim 1, wherein the polyimide is obtained by curing the polyimide precursor composition at a temperature of 350 ° C. or less for more than 4 ° C. for 4 minutes or less, and has a Young's modulus of 3500 MPa or more and a glass transition temperature of 260 ° C. or more. Resin-sealed semiconductor device. 강유전체박막을 가진 반도체소자의 표면에 폴리이미드 전구체 조성물막을 성막하는 성막공정과,A film forming step of forming a polyimide precursor composition film on the surface of the semiconductor device having a ferroelectric thin film; 상기 폴리이미드 전구체 조성물막을 가열하여 경화시켜 폴리이미드로 이루어지는 표면보호막으로 만드는 가열경화공정과,A heat curing step of heating and curing the polyimide precursor composition film to form a surface protective film made of polyimide, 상기 표면보호막이 형성된 상기 반도체소자를 봉지수지에 의해 봉지하는 봉지공정을 구비하는 수지봉지형 반도체장치의 제조방법.And a sealing step of sealing the semiconductor element on which the surface protection film is formed by a sealing resin. 제 6 항에 있어서, 상기 폴리이미드는 유리전이온도가 240℃∼400℃이고, 영율이 2600MPa∼6GPa인 수지봉지형 반도체장치의 제조방법.7. The method of manufacturing a resin-encapsulated semiconductor device according to claim 6, wherein the polyimide has a glass transition temperature of 240 DEG C to 400 DEG C and a Young's modulus of 2600 MPa to 6 GPa. 제 6 항에 있어서, 상기 가열경화공정은 상기 폴리이미드 전구체 조성물막을 230℃ 이상, 300℃ 이하의 온도에서 가열하여 경화시키는 공정을 포함하는 수지봉지형 반도체 장치의 제조방법.7. The method of manufacturing a resin-encapsulated semiconductor device according to claim 6, wherein the heat curing step includes a step of heating and curing the polyimide precursor composition film at a temperature of 230 ° C or higher and 300 ° C or lower. 제 6 항에 있어서, 상기 가열경화공정은 300℃ 보다 높게 350℃ 이하의 온도에서 가열하는 공정을 포함하며, 그 온도에서의 가열시간은 4분간 이하이며, 상기 폴리이미드는 영율이 3500MPa 이상, 유리전이온도가 260℃ 이상인 수지봉지형 반도체장치의 제조방법.The method of claim 6, wherein the heat curing step includes heating at a temperature of 350 ° C. or higher than 300 ° C., wherein a heating time at the temperature is 4 minutes or less, and the polyimide has a Young's modulus of 3500 MPa or more. A method for manufacturing a resin-encapsulated semiconductor device having a transition temperature of 260 占 폚 or higher. 제 6 항에 있어서, 상기 폴리이미드 전구체 조성물은 폴리이미드 전구체로서 하기 일반식(Ⅰ)로 나타내는 반복단위로 이루어지는 폴리아미드산을 함유하는 수지봉지형 반도체장치의 제조방법.The method for manufacturing a resin-encapsulated semiconductor device according to claim 6, wherein said polyimide precursor composition contains a polyamic acid comprising a repeating unit represented by the following general formula (I) as a polyimide precursor. (여기서, R1은 하기 화학식 그룹(Ⅱ)로 나타내는 4가의 방향족 유기기의 적어도 어느 하나이며, R2는 하기 화학식 그룹(Ⅲ) 및 (Ⅳ)로 나타내는 2가의 방향족 유기기의 적어도 어느 하나이다.)(Wherein R 1 is at least one of the tetravalent aromatic organic groups represented by the following general formula group (II), and R 2 is at least one of the divalent aromatic organic groups represented by the following general formula groups (III) and (IV). ) 제 6 항에 있어서, 상기 폴리이미드 전구체 조성물은 폴리이미드 전구체로서 하기 일반식(Ⅰ)로 나타내는 제1의 반복단위와 하기 일반식(Ⅴ)로 나타내는 제2의 반복단위로 이루어지는 폴리아미드산을 함유하며, 상기 폴리아미드산 1분자중의 상기 제1의 반복단위의 수와 상기 제2의 반복단위의 수의 합계에 대한 상기 제2의 반복단위의 수의 비율은 10% 이하인 수지봉지형 반도체장치의 제조방법.The polyimide precursor composition according to claim 6, wherein the polyimide precursor composition contains a polyamic acid comprising a first repeating unit represented by the following general formula (I) and a second repeating unit represented by the following general formula (V) as a polyimide precursor. And a ratio of the number of the second repeating units to the sum of the number of the first repeating units and the number of the second repeating units in one molecule of the polyamic acid is 10% or less. Manufacturing method. (여기서, R1은 하기 화학식 그룹(Ⅱ)로 나타내는 4가의 방향족 유기기의 적어도 어느 하나이고,(Wherein R 1 is at least one of a tetravalent aromatic organic group represented by the following general formula group (II), R2는 하기 화학식 그룹(Ⅲ) 및 (Ⅳ)로 나타내는 2가의 방향족 유기기의 적어도 어느 하나이며,R 2 is at least one of the divalent aromatic organic groups represented by the following formula groups (III) and (IV), R3는 하기 화학식 그룹(Ⅵ)로 나타내는 2가의 규소 함유 유기기의 적어도 어느 하나이다.)R 3 is at least one of divalent silicon-containing organic groups represented by the following general formula group (VI).) 제 6 항에 있어서, 상기 가열공정에서의 가열은 핫플레이트에 의해 행하여지는 수지봉지형 반도체장치의 제조방법.7. The method of manufacturing a resin-sealed semiconductor device according to claim 6, wherein the heating in said heating step is performed by a hot plate. 강유전체박막을 가진 적층체의 표면에 폴리이미드 전구체 조성물막을 성막하는 성막공정과,A film forming step of forming a polyimide precursor composition film on the surface of the laminate having a ferroelectric thin film, 상기 폴리이미드 전구체 조성물막을 가열하여 경화시켜 유리전이온도가 240℃∼400℃이고 영율이 2600MPa∼6GPa인 폴리이미드막을 만드는 가열경화공정과,A heat curing step of heating and curing the polyimide precursor composition film to produce a polyimide film having a glass transition temperature of 240 ° C. to 400 ° C. and a Young's modulus of 2600 MPa to 6 GPa; 상기 폴리이미드막이 형성된 상기 적층체를 봉지수지에 의해 봉지하는 봉지공정을 구비하는 것을 특징으로 하는 수지봉지형 적층체 장치의 제조방법.And a sealing step of sealing the laminated body having the polyimide film formed therein with a sealing resin.
KR1019980001579A 1997-01-22 1998-01-20 Resin-sealed type semiconductor device and its production method KR100266128B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP97-009276 1997-01-22
JP927697 1997-01-22

Publications (2)

Publication Number Publication Date
KR19980070643A KR19980070643A (en) 1998-10-26
KR100266128B1 true KR100266128B1 (en) 2000-09-15

Family

ID=11715952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980001579A KR100266128B1 (en) 1997-01-22 1998-01-20 Resin-sealed type semiconductor device and its production method

Country Status (3)

Country Link
US (9) US6147374A (en)
KR (1) KR100266128B1 (en)
TW (1) TW378345B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW378345B (en) * 1997-01-22 2000-01-01 Hitachi Ltd Resin package type semiconductor device and manufacturing method thereof
KR100751826B1 (en) * 1998-03-20 2007-08-23 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device and method of manufacturing the same
US7592205B2 (en) * 1998-12-21 2009-09-22 Megica Corporation Over-passivation process of forming polymer layer over IC chip
KR100335663B1 (en) * 1999-10-19 2002-05-06 윤종용 Poly(Imide-Siloxane) Resin for Tapeless LOC Packaging
US6577018B1 (en) * 2000-08-25 2003-06-10 Micron Technology, Inc. Integrated circuit device having reduced bow and method for making same
US6787388B1 (en) * 2000-09-07 2004-09-07 Stmicroelectronics, Inc. Surface mount package with integral electro-static charge dissipating ring using lead frame as ESD device
US6624501B2 (en) * 2001-01-26 2003-09-23 Fujitsu Limited Capacitor and semiconductor device
JP3977997B2 (en) * 2001-05-11 2007-09-19 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
SG102637A1 (en) * 2001-09-10 2004-03-26 Micron Technology Inc Bow control in an electronic package
EP1448669B1 (en) * 2001-09-27 2010-04-07 LG Chem Ltd. Adhesive composition comprising a polyimide copolymer and method for preparing the same
WO2003044858A2 (en) * 2001-11-23 2003-05-30 Koninklijke Philips Electronics N.V. Semiconductor device and method of enveloping an integrated circuit
US6803653B1 (en) * 2001-12-07 2004-10-12 Advanced Micro Devices, Inc. Apparatus for suppressing packaged semiconductor chip curvature while minimizing thermal impedance and maximizing speed/reliability
TWI278962B (en) 2002-04-12 2007-04-11 Hitachi Ltd Semiconductor device
JP3996802B2 (en) * 2002-05-15 2007-10-24 太陽インキ製造株式会社 Low radiation photocurable / thermosetting resin composition and cured film thereof
US6720195B2 (en) * 2002-05-15 2004-04-13 Micron Technology, Inc. Methods employing elevated temperatures to enhance quality control in microelectronic component manufacture
US7358618B2 (en) * 2002-07-15 2008-04-15 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof
TW578271B (en) * 2002-12-18 2004-03-01 Ememory Technology Inc Fabrication method for flash memory having single poly and two same channel type transistors
JP3560161B1 (en) * 2003-01-30 2004-09-02 日立化成工業株式会社 Method for producing epoxy resin composition for semiconductor encapsulation
DE10323007B4 (en) * 2003-05-21 2005-10-20 Infineon Technologies Ag A semiconductor device
JP3977796B2 (en) * 2003-10-29 2007-09-19 株式会社東芝 Semiconductor device
JP2006032490A (en) * 2004-07-13 2006-02-02 Hitachi Ltd Engine controlling circuit device
TWI283443B (en) * 2004-07-16 2007-07-01 Megica Corp Post-passivation process and process of forming a polymer layer on the chip
JP4642436B2 (en) * 2004-11-12 2011-03-02 リンテック株式会社 Marking method and protective film forming and dicing sheet
DE102004058305B3 (en) * 2004-12-02 2006-05-18 Infineon Technologies Ag Semiconductor component with polymer cover layer over electrical linkages leaving contacts exposed
TWM269568U (en) * 2004-12-16 2005-07-01 Domintech Co Ltd Chip package capable of reducing characteristic resistance
DE102005005750B4 (en) * 2005-02-07 2009-06-04 Infineon Technologies Ag A method of bonding a thermoplastic material to a thermoset material and thermoplastic thermoset composite
JPWO2006098005A1 (en) * 2005-03-15 2008-08-21 富士通株式会社 Semiconductor device and manufacturing method thereof
JP4711058B2 (en) * 2005-06-28 2011-06-29 信越化学工業株式会社 Resin solution composition, polyimide resin, and semiconductor device
JP2007163726A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Projector and optical component
US7828854B2 (en) * 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
JP4957220B2 (en) * 2006-12-04 2012-06-20 株式会社デンソー Electronic package
KR20170088448A (en) * 2009-11-19 2017-08-01 스미토모 베이클리트 컴퍼니 리미티드 Semiconductor device
EP2390909A1 (en) * 2010-05-24 2011-11-30 Jerry Hu Miniature packaging for discrete circuit components
JP5655206B2 (en) 2010-09-21 2015-01-21 株式会社ピーアイ技術研究所 Polyimide resin composition for forming back surface reflective layer of solar cell and method for forming back surface reflective layer of solar cell using the same
KR101415748B1 (en) * 2011-06-09 2014-08-06 연세대학교 산학협력단 A composition for oxide semiconductor, preparation methods thereof, methods of forming the oxide semiconductor thin film, methods of fomring an electrical device and an electrical device formed thereby
KR20130015885A (en) * 2011-08-05 2013-02-14 삼성전자주식회사 Semiconductor package and method thereof
MY169839A (en) * 2011-12-29 2019-05-16 Semiconductor Components Ind Llc Chip-on-lead package and method of forming
US8654468B2 (en) * 2012-04-30 2014-02-18 Hewlett-Packard Development Company, L.P. Multi-rate oversampling of analog signals in storage devices
JP5720647B2 (en) * 2012-09-03 2015-05-20 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
US10224258B2 (en) * 2013-03-22 2019-03-05 Applied Materials, Inc. Method of curing thermoplastics with microwave energy
CN106031316B (en) * 2014-02-21 2019-06-28 三井金属矿业株式会社 Built-in capacitor layer forms the manufacturing method with copper clad laminate, multilayer printed circuit board and multilayer printed circuit board
US9679940B2 (en) * 2014-07-03 2017-06-13 Omnivision Technologies, Inc. Fractal-edge thin film and method of manufacture
CN108461519A (en) * 2017-02-21 2018-08-28 京东方科技集团股份有限公司 Flexible display panels and preparation method thereof, display device
WO2019152536A1 (en) * 2018-01-30 2019-08-08 The Regents Of The University Of California Inhibitors of the wnt/beta-catenin pathway
CN115028836B (en) * 2022-07-13 2023-04-28 同济大学 Nanometer multistage structured 3D direct-writing forming ink base material with controllable ink components and preparation method thereof

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132823A (en) 1977-03-23 1979-01-02 Phillips Petroleum Company Poly(arylene sulfide) resin coatings
JPS6018145B2 (en) * 1980-09-22 1985-05-09 株式会社日立製作所 Resin-encapsulated semiconductor device
US4895755A (en) * 1986-09-15 1990-01-23 The Dow Chemical Company Halogenated advanced epoxy resins
CA1326673C (en) * 1986-12-26 1994-02-01 Yasuhisa Saito Imide compound and composition containing the same
KR0158868B1 (en) * 1988-09-20 1998-12-01 미다 가쓰시게 Semiconductor device
JPH0821579B2 (en) * 1989-04-19 1996-03-04 旭硝子株式会社 Semiconductor element / integrated circuit device
US5231160A (en) * 1990-09-07 1993-07-27 Mitsui Toatsu Chemicals, Incorporated Aromatic diamine compound, preparation process of same and polyimide prepared from same
US5272247A (en) * 1990-10-19 1993-12-21 Hitachi, Ltd. Polyimide precursor, cured product thereof, and processes for producing them
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5287003A (en) * 1991-02-26 1994-02-15 U.S. Philips Corporation Resin-encapsulated semiconductor device having a passivation reinforcement hard polyimide film
JP2690630B2 (en) * 1991-05-17 1997-12-10 株式会社日立製作所 Electrophotographic fixing device and electrophotographic device
JPH05112644A (en) 1991-10-22 1993-05-07 Hitachi Ltd Polyimide precursor, its cured polyimide and its production
US5536584A (en) * 1992-01-31 1996-07-16 Hitachi, Ltd. Polyimide precursor, polyimide and metalization structure using said polyimide
JP3181406B2 (en) * 1992-02-18 2001-07-03 松下電器産業株式会社 Semiconductor storage device
KR970008355B1 (en) * 1992-09-29 1997-05-23 가부시키가이샤 도시바 Resin sealed type semiconductor device
US5310863A (en) 1993-01-08 1994-05-10 International Business Machines Corporation Polyimide materials with improved physico-chemical properties
JPH06305713A (en) * 1993-04-16 1994-11-01 Texas Instr Japan Ltd Formation of ferroelectric film by sol-gel method and production of capacitor, and raw material solution therefor
JP3412051B2 (en) * 1993-05-14 2003-06-03 日本テキサス・インスツルメンツ株式会社 Capacitor
US5439840A (en) * 1993-08-02 1995-08-08 Motorola, Inc. Method of forming a nonvolatile random access memory capacitor cell having a metal-oxide dielectric
JP3388369B2 (en) 1994-01-31 2003-03-17 日本テキサス・インスツルメンツ株式会社 Semiconductor package equipment
JPH07278301A (en) 1994-04-13 1995-10-24 Hitachi Ltd Polyimide precursor, its composition and production of resin sealing type semiconductor using the same
JP2956482B2 (en) * 1994-07-29 1999-10-04 日本電気株式会社 Semiconductor memory device and method of manufacturing the same
JP3208526B2 (en) 1994-08-01 2001-09-17 キヤノン株式会社 Material for forming conductive film, method for forming conductive film using the material, and method for forming liquid crystal alignment film using the method
JP3514884B2 (en) 1994-08-31 2004-03-31 株式会社ルネサステクノロジ Surface protective film, resin-encapsulated semiconductor device and method of manufacturing the same
US5563762A (en) * 1994-11-28 1996-10-08 Northern Telecom Limited Capacitor for an integrated circuit and method of formation thereof, and a method of adding on-chip capacitors to an integrated circuit
US6300688B1 (en) * 1994-12-07 2001-10-09 Quicklogic Corporation Bond pad having vias usable with antifuse process technology
JP3400877B2 (en) 1994-12-14 2003-04-28 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JPH08213422A (en) * 1995-02-07 1996-08-20 Mitsubishi Electric Corp Semiconductor device and bonding pad structure thereof
US5608712A (en) * 1995-03-08 1997-03-04 Optical Disc Corporation Method and means for varying pit duty cycle and changing pit depth on an optical recordable medium
JP3683972B2 (en) * 1995-03-22 2005-08-17 三菱電機株式会社 Semiconductor device
JP3853406B2 (en) * 1995-10-27 2006-12-06 エルピーダメモリ株式会社 Semiconductor integrated circuit device and method for manufacturing the same
US5798903A (en) * 1995-12-26 1998-08-25 Bell Communications Research, Inc. Electrode structure for ferroelectric capacitor integrated on silicon
JPH09266289A (en) * 1996-03-29 1997-10-07 Mitsubishi Electric Corp Semiconductor memory device and manufacturing method thereof
JPH09293837A (en) 1996-04-26 1997-11-11 Hitachi Ltd Semiconductor device
TW378345B (en) * 1997-01-22 2000-01-01 Hitachi Ltd Resin package type semiconductor device and manufacturing method thereof
TW468273B (en) * 1997-04-10 2001-12-11 Hitachi Ltd Semiconductor integrated circuit device and method for manufacturing the same
US5903493A (en) * 1997-09-17 1999-05-11 Lucent Technologies Inc. Metal to metal capacitor apparatus and method for making
JPH11233738A (en) * 1998-02-17 1999-08-27 Hitachi Ltd Ferroelectric memory device
US6248064B1 (en) * 1998-05-26 2001-06-19 Ineedmd.Com,Inc. Tele-diagnostic device
US6163074A (en) * 1998-06-24 2000-12-19 Samsung Electronics Co., Ltd. Integrated circuit bonding pads including intermediate closed conductive layers having spaced apart insulating islands therein
US6552438B2 (en) * 1998-06-24 2003-04-22 Samsung Electronics Co. Integrated circuit bonding pads including conductive layers with arrays of unaligned spaced apart insulating islands therein and methods of forming same
JP2000195896A (en) * 1998-12-25 2000-07-14 Nec Corp Semiconductor device
US6444295B1 (en) * 1998-12-29 2002-09-03 Industrial Technology Research Institute Method for improving integrated circuits bonding firmness
TW430935B (en) * 1999-03-19 2001-04-21 Ind Tech Res Inst Frame type bonding pad structure having a low parasitic capacitance
JP2002016065A (en) * 2000-06-29 2002-01-18 Toshiba Corp Semiconductor device
US6560862B1 (en) * 2001-02-06 2003-05-13 Taiwan Semiconductor Manufacturing Company Modified pad for copper/low-k
US6863678B2 (en) * 2001-09-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
JP2003197878A (en) * 2001-10-15 2003-07-11 Hitachi Ltd Memory semiconductor device and its manufacturing method
TW511246B (en) * 2001-12-28 2002-11-21 Nanya Technology Corp Fuse structure
US6614051B1 (en) * 2002-05-10 2003-09-02 Applied Materials, Inc. Device for monitoring substrate charging and method of fabricating same
US6677228B1 (en) * 2002-11-07 2004-01-13 Taiwan Semiconductor Manufacturing Company Reinforced aluminum copper bonding pad

Also Published As

Publication number Publication date
US20040084785A1 (en) 2004-05-06
TW378345B (en) 2000-01-01
US6147374A (en) 2000-11-14
US6441416B1 (en) 2002-08-27
US7064368B2 (en) 2006-06-20
US20020027268A1 (en) 2002-03-07
US20050248014A1 (en) 2005-11-10
US6847125B2 (en) 2005-01-25
US20050046047A1 (en) 2005-03-03
KR19980070643A (en) 1998-10-26
US20020195725A1 (en) 2002-12-26
US6617630B2 (en) 2003-09-09
US7521744B2 (en) 2009-04-21
US20020195724A1 (en) 2002-12-26
US6525359B2 (en) 2003-02-25
US6657245B2 (en) 2003-12-02
US20020060373A1 (en) 2002-05-23
US6465827B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
KR100266128B1 (en) Resin-sealed type semiconductor device and its production method
JP3427713B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
KR20110122135A (en) Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
EP0393682A2 (en) Semiconductor integrated circuit device
KR900001656B1 (en) Forming method of passivation film
US5287003A (en) Resin-encapsulated semiconductor device having a passivation reinforcement hard polyimide film
JPH08124919A (en) Semiconductor protective film material and semiconductor device employing the same
JP3779579B2 (en) Manufacturing method of resin-encapsulated semiconductor device
Makabe et al. A novel positive working photosensitive polymer for semiconductor surface coating
JP2006140533A (en) Resin-sealed semiconductor device
JP2006191128A (en) Resin-sealed semiconductor device
Satou et al. Polyimides for semiconductor applications
Ahne et al. Applications of polyimides in electronics
JP3514884B2 (en) Surface protective film, resin-encapsulated semiconductor device and method of manufacturing the same
JPH1135915A (en) Resin-sealed semiconductor device
JP3415981B2 (en) Semiconductor device, manufacturing method thereof, and surface protective film
KR0144290B1 (en) Method for applying adhesive to microelectronic chips
JPH05214046A (en) Wiring structure
JPS6210016B2 (en)
JPS60247949A (en) Semiconductor device and manufacture thereof
JPH07278301A (en) Polyimide precursor, its composition and production of resin sealing type semiconductor using the same
JPH04360546A (en) Semiconductor device
JPH0329292B2 (en)
JPS61231758A (en) Solid-state image pickup device
JPS61185932A (en) Semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120611

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee