KR0185822B1 - Method for fabricating mis semiconductor device - Google Patents

Method for fabricating mis semiconductor device Download PDF

Info

Publication number
KR0185822B1
KR0185822B1 KR1019980001816A KR19980001816A KR0185822B1 KR 0185822 B1 KR0185822 B1 KR 0185822B1 KR 1019980001816 A KR1019980001816 A KR 1019980001816A KR 19980001816 A KR19980001816 A KR 19980001816A KR 0185822 B1 KR0185822 B1 KR 0185822B1
Authority
KR
South Korea
Prior art keywords
region
semiconductor device
substrate
thin film
channel
Prior art date
Application number
KR1019980001816A
Other languages
Korean (ko)
Inventor
순페이 야마자끼
야스히코 다케무라
Original Assignee
순페이 야마자끼
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP32311793A external-priority patent/JP3437863B2/en
Application filed by 순페이 야마자끼, 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 순페이 야마자끼
Application granted granted Critical
Publication of KR0185822B1 publication Critical patent/KR0185822B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Abstract

신뢰성이 높은 MIS형 반도체장치를 저온 공정에 의해 제작하는 것을 목적으로 한다. 본 발명은 MIS형 반도체장치에 관한 것으로, 반도체 기판 또는 반도체 박막에 선택적으로 불순물영역을 형성하고, 그 불순물영역 뿐만 아니라, 그 불순물 영역과 그에 인접한 활성영역과의 경계에도 레이저광 또는 그것과 동등한 강광이 조사되도록 하여, 그 광 조사에 의해 활성화를 행하는 것을 특징으로 한다.An object of the present invention is to manufacture a highly reliable MIS semiconductor device by a low temperature process. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MIS type semiconductor device, wherein an impurity region is selectively formed on a semiconductor substrate or a semiconductor thin film, and not only the impurity region but also the laser light or the equivalent intensity thereof at the boundary between the impurity region and an active region adjacent thereto. It is made to irradiate, and it activates by the light irradiation. It is characterized by the above-mentioned.

Description

반도체장치Semiconductor device

본 발명은 MIS(Metal Insulator Semiconductor)형 반도체장치(절연게이트형 반도체장치라고도 함)에 관한 것이다. MIS형 반도체장치에는, 예를 들어 MOS 트랜지스터, 박막트랜지스터 등이 포함된다.The present invention relates to a metal insulator semiconductor (MIS) type semiconductor device (also referred to as an insulated gate type semiconductor device). MIS semiconductor devices include, for example, MOS transistors, thin film transistors, and the like.

종래, MIS형 반도체장치는 자기정합(셀프얼라인)법을 이용하여 제작되어 왔다. 이 방법에 따르면, 게이트 절연막을 사이에 두고 반도체 기판 또는 반도체 피막상에 게이트 배선(전극)을 형성하고, 이 게이트 배선을 마스크로 하여 반도체 기판 또는 반도체 피막에 불순물을 도입한다. 불순물을 도입하기 위한 수단으로서는, 열확산법, 이온주입법, 플라즈마 도핑법, 레이저 도핑법 등의 방법이 사용된다. 그러한 수단에 의해, 게이트 전극의 엣지(edge)와 불순물영역(소스 및 드레인)의 엣지가 거의 일치하여, 게이트 전극과 불순물영역이 겹치는 오버랩 상태(기생용량 발생의 원인)와 게이트 전극과 불순물영역이 떨어져 있는 오프셋 상태(실효이동도 저하의 원인)를 제거할 수 있다.Conventionally, MIS semiconductor devices have been fabricated using a self-aligning (self-aligned) method. According to this method, a gate wiring (electrode) is formed on a semiconductor substrate or a semiconductor film with a gate insulating film interposed therebetween, and impurities are introduced into the semiconductor substrate or the semiconductor film using the gate wiring as a mask. As means for introducing impurities, methods such as thermal diffusion method, ion implantation method, plasma doping method and laser doping method are used. By such means, the edges of the gate electrodes and the edges of the impurity regions (source and drain) are almost coincident with each other, so that the overlap state (cause of parasitic capacitance generation) where the gate electrode and the impurity region overlap, and the gate electrode and the impurity region It is possible to eliminate the offset state (causing the decrease in effective mobility) that is apart.

그러나, 종래의 공정에서는, 불순물영역과, 그 불순물영역에 인접하고 게이트 전극의 하부에 있는 활성영역(채널형성영역)내의 캐리어 농도의 공간적 변화가 너무 커서, 현저하게 큰 전계가 생기고, 특히 게이트 전극에 역바이어스 전압을 인가한 경우의 리크 전류(오프 전류)가 증대한다는 문제가 있었다.However, in the conventional process, the spatial variation of the impurity region and the carrier concentration in the active region (channel formation region) adjacent to the impurity region and below the gate electrode is so large that a remarkably large electric field is generated, in particular, the gate electrode. There is a problem that the leakage current (off current) increases when a reverse bias voltage is applied to the circuit.

본 발명의 발명자들은, 게이트 전극과 불순물영역을 약간 오프셋시키는 것에 의해 이 문제가 개선될 수 있다는 것을 발견하였다. 그래서, 이 오프셋 상태를 실현하기 위해, 게이트 전극을 양극산화가능한 재료로 형성하고, 양극산화의 결과, 생성된 양극산화막을 마스크로 하여 불순물을 도입함으로써, 일정한 크기의 오프셋 상태를 재현성 좋게 얻을 수 있다는 것을 발견하였다.The inventors of the present invention have found that this problem can be improved by slightly offsetting the gate electrode and the impurity region. Therefore, in order to realize this offset state, the gate electrode is formed of an anodizable material and impurities are introduced using the resulting anodization film as a mask as a result of the anodization, so that an offset state of a constant size can be obtained with good reproducibility. I found that.

또한, 고속 이온을 반도체 기판 또는 반도체 피막에 조사하는 것에 의해 불순물을 도입하는 이온주입법, 플라즈마 도핑법 등의 방법에 있어서는, 이온이 침입한 부분의 반도체 기판 또는 반도체 피막의 결정성이 손상되기 때문에, 결정성의 개선(활성화)이 요구된다. 현재까지는 주로 600℃ 이상의 온도에서 열적으로 결정성의 개선을 행하였지만, 최근에는 공정의 저온화가 요구되는 경향이 명백하게 되었다. 그래서, 본 발명자들은 레이저광 또는 그것과 동등한 강광(强光)을 조사하는 것에 의해서도 활성화를 행할 수 있다는 것과 그의 양산성이 우수하다는 것을 보였다.In addition, in a method such as an ion implantation method or a plasma doping method in which impurities are introduced by irradiating high-speed ions to a semiconductor substrate or a semiconductor film, the crystallinity of the semiconductor substrate or the semiconductor film in a portion where ions have penetrated is impaired. Improvement (activation) of crystallinity is required. Up to now, thermal crystallinity has been mainly improved at a temperature of 600 ° C or higher, but in recent years, a tendency for the process to be lowered has become evident. Therefore, the present inventors have shown that activation can also be performed by irradiating laser light or a strong light equivalent thereto and that its mass productivity is excellent.

도2는 상기한 개념에 의거한 박막트랜지스터 제작공정을 나타낸다. 먼저, 기판(201)상에 기초 절연층(202)을 퇴적한 다음, 섬형상의 결정성 반도체영역(203)을 형성하고, 그 위에 게이트 절연막으로 기능하는 절연막(204)을 형성한다. 그 다음, 양극산화가능한 재료를 이용하여 게이트 배선(205)을 형성한다.(도 2(a))2 shows a thin film transistor fabrication process based on the above concept. First, a base insulating layer 202 is deposited on the substrate 201, and then an island-shaped crystalline semiconductor region 203 is formed, and an insulating film 204 serving as a gate insulating film is formed thereon. The gate wiring 205 is then formed using an anodizable material (FIG. 2 (a)).

다음에, 게이트 배선을 양극산화시켜, 게이트 배선의 표면에, 예를 들어 300nm 이하, 바람직하게는 250nm 이하의 적당한 두께를 갖는 양극산화물(206)을 형성한다. 그 다음, 그 양극산화물을 마스크로 하여, 이온주입법 또는 이온도핑법에 의해 자기정합적으로 불순물(예를 들어, 인(P))을 조사하여 불순물영역(207)을 형성한다.(도(b))Next, the gate wiring is anodized to form an anode oxide 206 having an appropriate thickness of, for example, 300 nm or less, preferably 250 nm or less, on the surface of the gate wiring. Then, using the anode oxide as a mask, impurities (for example, phosphorus (P)) are irradiated self-aligned by an ion implantation method or an ion doping method to form an impurity region 207 (Fig. (B). ))

그후, 위로부터 레이저광 또는 그것과 동등한 강광을 조사(照射)함으로써, 불순물이 도입된 영역을 활성화시킨다.(도 2(c))Thereafter, a laser beam or a strong light equivalent thereto is irradiated from above to activate a region into which impurities are introduced (Fig. 2 (c)).

마지막으로, 층간절연물(208)을 퇴적하고, 불순물영역에 콘택트 홀을 형성하여, 불순물영역에 접속되는 전극(209)을 형성함으로써, 박막트랜지스터가 완성된다.(도 (d))Finally, the interlayer insulator 208 is deposited, contact holes are formed in the impurity region, and the electrode 209 connected to the impurity region is formed, thereby completing the thin film transistor (FIG. (D)).

그러나, 상기한 방법에서는, 불순물영역과 활성영역(게이트 전극 바로 아래에서 불순물영역들 사이에 배치된 반도체영역)사이의 경계(도 2(c))에서 X로 나타냄)에서의 물리적 성질이 불안정하다는 것과, 장시간의 사용에 있어서의 리크 전류의 증가 및 신뢰성의 저하와 같은 문제가 일어날 수 있다는 것이 밝혀졌다. 즉, 공정으로부터 명백한 바와 같이, 활성영역의 결정성은 초기부터 실질적으로 변하지 않는다. 한편, 활성영역에 인접한 불순물영역은 초기에는 활성영역과 같은 결정성을 갖지만, 다량의 불순물(105-2까지)을 도입하는 과정에서 결정성이 파괴된다. 또한, 불순물영역이 나중의 레어저광 조사공정에서 회복되지만, 원래의 것과 같은 결정성 상태를 재현하는 것은 어렵고, 특히 불순물영역중에서도 활성영역에 접하는 부분은 레이저광 조사시에 그늘지는 경향이 있어 충분히 활성화되지 못한다는 것이 밝혀졌다.However, in the above method, the physical properties at the boundary between the impurity region and the active region (a semiconductor region disposed between the impurity regions immediately below the gate electrode) (indicated by X in Fig. 2 (c)) are unstable. It has been found that problems such as an increase in leakage current and a decrease in reliability in long time use may occur. That is, as is apparent from the process, the crystallinity of the active region does not substantially change from the beginning. On the other hand, the impurity region adjacent to the active region initially has the same crystallinity as the active region, but crystallinity is destroyed in the process of introducing a large amount of impurities (up to 10 5 cm −2 ). In addition, although the impurity region recovers in a later laser light irradiation process, it is difficult to reproduce the same crystalline state as the original, and in particular, the portion of the impurity region in contact with the active region tends to be shaded when irradiated with laser light, so that it is sufficiently activated. It turned out that

즉, 불순물영역과 활성영역의 결정성이 불연속적이고, 이 때문에, 트랩 준위 등이 발생하기 쉽다. 특히, 불순물 도입방법으로서 고속 이온을 조사하는 방법을 채용한 경우에는, 불순물 이온이 산란에 의해 게이트 전극부의 아래로 돌아들어가, 그 부분의 결정성을 파괴한다. 그래서, 게이트 전극부 아래의 영역이 게이트 전극부에 의해 그늘져 그 영역을 레이저광 등에 의해 활성화시키는 것이 불가능하다.That is, the crystallinity of the impurity region and the active region is discontinuous, and therefore, the trap level is likely to occur. In particular, when a method of irradiating high-speed ions as the impurity introduction method is employed, impurity ions return to the bottom of the gate electrode part by scattering, and destroy the crystallinity of the portion. Therefore, the area under the gate electrode part is shaded by the gate electrode part, and it is impossible to activate the area by laser light or the like.

이러한 문제를 해결하는 한가지 방법은 뒷면으로부터 레이저광과 같은 광을 조사하여 그 부분을 활성화시키는 것이다. 이 방법에서는, 활성영역과 불순물영역 사이의 경계가 게이트 배선에 의해 그늘지지 않기 때문에 그 경계도 충분히 활성화된다. 그러나, 이 경우에는 기판재료가 광을 투과하는 것이 필요하며, 당연한 것이지만, 실리콘 웨이퍼 등이 사용되는 경우에는 이 방법을 이용할 수 없다. 또한, 많은 유리기판은 300nm 이하의 자외광을 투과하지 않기 때문에, 예를 들어, 양산성이 우수한 KrF 엑시머 레이저(파장 248nm)는 이용될 수 없다.One way to solve this problem is to irradiate light, such as laser light, from the back side to activate the portion. In this method, since the boundary between the active region and the impurity region is not shaded by the gate wiring, the boundary is also sufficiently activated. In this case, however, it is necessary for the substrate material to transmit light, and of course, this method cannot be used when a silicon wafer or the like is used. In addition, since many glass substrates do not transmit ultraviolet light of 300 nm or less, for example, KrF excimer laser (wavelength 248 nm) having excellent mass productivity cannot be used.

따라서, 본 발명의 목적은, 이러한 문제들을 해결하고, 활성영역과 불순물영역의 결정성의 연속성을 달성함으로써 MOS 트랜지스터 및 박막트랜지스터와 같은 고신뢰성의 MIS형 반도체장치를 얻는데 있다.Accordingly, it is an object of the present invention to solve such problems and to obtain a highly reliable MIS type semiconductor device such as a MOS transistor and a thin film transistor by achieving continuity of crystallinity between an active region and an impurity region.

도 1(a)~(e)는 본 발명의 제1실시예를 나타내는 단면도.1 (a) to 1 (e) are sectional views showing the first embodiment of the present invention.

도2(a)~(d)는 종래기술의 예를 나타내는 단면도.2 (a) to 2 (d) are cross-sectional views showing examples of the prior art.

도3(a)~(f)는 본 발명의 제2실시예를 나타내는 단면도.3 (a) to 3 (f) are cross-sectional views showing a second embodiment of the present invention.

도4(a)~(c)는 본 발명의 제2실시예를 나타내는 평면도.4A to 4C are plan views showing a second embodiment of the present invention.

도5(a)~(f)는 본 발명의 제3실시예를 나타내는 단면도.5 (a) to 5 (f) are sectional views showing the third embodiment of the present invention.

도6(a)~(e)는 본 발명의 제4실시예를 나타내는 단면도.6 (a) to 6 (e) are sectional views showing the fourth embodiment of the present invention.

도7(a)~(f)는 본 발명의 제5실시예를 나타내는 단면도.7 (a) to 7 (f) are sectional views showing the fifth embodiment of the present invention.

도8(a)~(f)는 본 발명의 제6실시예를 나타내는 단면도.8 (a) to 8 (f) are sectional views showing the sixth embodiment of the present invention.

도9는 제6실시예를 이용한 집적회로의 블록도.Fig. 9 is a block diagram of an integrated circuit using the sixth embodiment.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

101 : 기판 102 : 산화규소막101 substrate 102 silicon oxide film

103 : 비정질 규소막 104 : 게이트절연막103: amorphous silicon film 104: gate insulating film

105 : 게이트 전극 106 : 제1양극산화물105: gate electrode 106: first anode oxide

107 : 불순물영역 108 : 제2양극산화물107 impurity region 108 second anode oxide

109 : 층간절연물 110 : 전극109: interlayer insulation 110: electrode

311 : 폴리이미드 피막 706 : 포토레지스트 마스크311 polyimide film 706 photoresist mask

707 : 다공질 양근산화물 708 : 배리어형 양극산화물707: porous anode oxide 708: barrier type anode oxide

본 발명에 따르면, 레이저 또는 플래시 램프 등의 강력한 광원으로부터 발생된 광에너지를 위로부터 불순물영역에 조사하여 그 불순물영역을 활성화시킬 때, 불순물영역 뿐만 아니라 그에 인접한 활성영역의 일부, 특히 불순물영역과 활성영역 사이의 경계부분에도 광에너지가 조사된다. 그러한 목적을 달성하기 위해, 불순물 도입전 또는 후에, 게이트 전극부를 구성하는 재료의 일부를 제거하여, 그 경계부를 조사되는 광에 대하여 실질적으로 투명한 상태로 하는 것을 특징으로 한다.According to the present invention, when irradiating light energy generated from a powerful light source such as a laser or a flash lamp to an impurity region from above to activate the impurity region, not only the impurity region but also a portion of the active region adjacent thereto, especially an impurity region and an active region Light energy is also irradiated to the boundary between the regions. In order to achieve such an object, a part of the material constituting the gate electrode portion is removed before or after the impurity is introduced, so that the boundary portion thereof is substantially transparent to the irradiated light.

본 발명에 따른 반도체장치 제작방법은, 게이트 절연막으로 기능하는 절연피막을 결정성 반도체 기판 또는 반도체 피막상에 형성한 후에, 양극산화가능한 재료로 게이트 배선(게이트 전극)을 형성하는 공정과, 상기 게이트 배선을 양극산화하여, 그의 표면에 양극산화물(제1양극산화물)을 형성하는 공정과, 양극산화가능한 재료와 그의 양극산화물로 이루어진 게이트 전극부 또는 게이트 전극부에 의해 획정(劃定)된 부분을 마스크로 하여 자기정합적으로 반도체 기판 또는 반도체 피막에 불순물을 도입하는 공정과, 불순물 도입공정전 또는 후에 제1양극산화물의 일부 또는 전부를 제거하여, 불순물영역과 활성영역 사이의 경계 또는 그의 부근에 광에너지가 조사될 수 있는 상태로 하고, 이 상태에서 광에너지를 조사하여 불순물영역을 활성화시키는 공정을 포함한다.A method of fabricating a semiconductor device according to the present invention includes the steps of forming a gate wiring (gate electrode) of an anodized material after forming an insulating film serving as a gate insulating film on a crystalline semiconductor substrate or a semiconductor film, and the gate Anodizing the wiring to form an anode oxide (first anode oxide) on its surface, and a portion defined by a gate electrode portion or a gate electrode portion made of an anodizable material and an anode oxide thereof. A process of introducing impurities into the semiconductor substrate or the semiconductor film in a self-aligning manner as a mask, and removing part or all of the first anode oxide before or after the impurity introduction process, and at or near the boundary between the impurity region and the active region The light energy can be irradiated, and the light energy is irradiated in this state to activate the impurity region. It includes forward.

또한, 필요하다면, 게이트 전극을 다시 양극산화하여 그의 표면을 절연성이 높은 양극산화물(제2양극산화물)로 피복하고, 또한, 층간절연물 등을 설치하여 상부 배선과의 용량결합을 저하시키는 구조로 하여도 좋다는 것은 말할 나위도 없다. 양극산화에서는 보통 전해 용액을 이용하는 습식 방법을 사용하지만, 그밖에 공지의 감압 플라즈마 방법(건식 방법)이 사용될 수도 있음은 물론이다. 또한, 습식 방법에 의해 얻어진 양극산화물은, 치밀하고 높은 내압(耐壓)을 갖는 배리어형이나, 또는 다공질이고 낮은 내압을 갖는 다공질형일 수 있고, 이들을 적당히 조합하여도 좋다.If necessary, the gate electrode is again anodized to cover the surface with a highly insulating anode oxide (second anode oxide), and an interlayer insulator or the like is provided to reduce the capacitive coupling with the upper wiring. Not to mention that it is good. In the anodic oxidation, a wet method usually using an electrolytic solution is used, but other known reduced pressure plasma method (dry method) may be used. In addition, the anode oxide obtained by the wet method may be a dense barrier type having a high internal pressure, or a porous type having a porous and low internal pressure, and these may be appropriately combined.

본 발명에서 바람직하게 사용되는 양극산화가능한 재료로서는, 알루미늄, 티탄, 탄탈, 규소, 텅스텐 및 몰리브덴이 있다. 이들 재료의 단체(單體) 또는 합금을 단층 또는 다층 구조로 하여 게이트 전극으로 하면 좋다. 이들 재료에 미량의 다른 원소를 첨가하여도 좋다는 것은 말할 나위도 없다. 또한, 양극산화 이외의 다른 적절한 산화방법을 사용하여 배선을 산화시켜도 좋다는 것은 말할 필요도 없다.Preferred anodizable materials used in the present invention include aluminum, titanium, tantalum, silicon, tungsten and molybdenum. A single electrode or an alloy of these materials may be a single layer or a multilayer structure to form a gate electrode. It goes without saying that a small amount of other elements may be added to these materials. It goes without saying that the wiring may be oxidized by any suitable oxidation method other than anodization.

본 발명에서 사용되는 광에너지의 원천으로서는, KrF 레이저(파장 248nm), XeCl, 레이저(파장 308nm), ArF 레이저(파장 193nm), XeF 레이저(파장 353nm)와 같은 엑시머 레이저; Nd:YAG 레이저(파장 1064nm) 및 그의 제2, 제3, 제4 고조파, 탄산가스 레이저, 아르곤 이온 레이저, 구리 증기 레이저와 같은 간섭성 광원; 및 크세논 플래시 램프, 크립톤 아크 램프, 할로겐 램프와 같은 비간섭성 광원이 적합하다.As a source of light energy used in the present invention, excimer lasers such as KrF laser (wavelength 248 nm), XeCl, laser (wavelength 308 nm), ArF laser (wavelength 193 nm), XeF laser (wavelength 353 nm); Coherent light sources such as Nd: YAG laser (wavelength 1064 nm) and its second, third and fourth harmonics, carbon dioxide lasers, argon ion lasers and copper vapor lasers; And incoherent light sources such as xenon flash lamps, krypton arc lamps, halogen lamps are suitable.

이러한 공정을 통해 얻어진 MIS형 반도체장치는, 상방에서 보았을 때, 불순물영역(소스, 드레인)의 접합과 게이트 전극부(게이트 전극과 그것에 부수하여 있는 양극산화물을 포함한다)가 실질적으로 동일한 형상(유사한 형태)이다는 것과, 게이트 전극(전도성 면에 의해 결합됨, 양극산화물과 같은 부수물은 포함하지 않음)과 불순물영역이 오프셋 상태로 되어 있다는 것을 특징으로 한다.The MIS semiconductor device obtained through this process has a substantially identical shape (similar to that of the junction of the impurity regions (source and drain) and the gate electrode portion (including the gate electrode and the anode oxide accompanying it) when viewed from above. Form), and the gate electrode (combined by the conductive surface, not including ancillary materials such as anodized oxide) and the impurity region are offset.

또한, 제2양극산화물과 같은 산화물을 갖지 않는 경우에는 게이트 전극 주위에는 양극산화물이 없고, 불순물영역과 게이트 전극이 오프셋 상태로 되어 있다.In the case where the oxide does not have the same oxide as the second anode oxide, there is no anode oxide around the gate electrode, and the impurity region and the gate electrode are offset.

오프셋의 폭은 0.1~0.5㎛가 바람직하다.As for the width of an offset, 0.1-0.5 micrometer is preferable.

본 발명에서는, 제1양극산화물을 형성한 후 그의 일부를 남겨두고, 그 남은 부분을 사이에 두고 상부 배선을 형성하여, 제1양극산화물을 절연재료로 하는 커패시터를 구성할 수도 있다. 이 경우에는, MIS형 반도체장치의 게이트 전극으로 기능하는 부분의 게이트 전극부의 양극산화물의 두께와 커패시터 부분의 산화물의 두께가 다를 수 있고, 각각의 두께는 각각의 목적에 따라 결정될 수 있다.In the present invention, after forming the first anode oxide, a portion thereof is left, and the upper wiring is formed with the remaining portion interposed therebetween, so that a capacitor having the first anode oxide as an insulating material may be formed. In this case, the thickness of the anode oxide of the gate electrode portion and the oxide of the capacitor portion of the portion serving as the gate electrode of the MIS type semiconductor device may be different, and each thickness may be determined according to the respective purpose.

마찬가지로 제2양극산화물과 같은 산화물을 형성하는 공정에서, 에를 들어, 각 배선당 인가전압을 조정하는 것에 의해, 동일 기판상에서도 양극산화물의 두께를 변경할 수 있다. 이 경우에도, 게이트 전극부의 양극산화물과 같은 산화물의 두께와 커패시터(또는 배선이 교차하는 부분)의 산화물의 두께도 다르게 하여도 좋다.Similarly, in the process of forming an oxide like the second anode oxide, the thickness of the anode oxide can be changed even on the same substrate by, for example, adjusting the applied voltage per wiring. Also in this case, the thickness of the oxide such as the anode oxide of the gate electrode portion may be different from the thickness of the oxide of the capacitor (or the portion where the wiring intersects).

이하, 실시예를 나타내고, 본 발명을 더 상세히 설명한다.Hereinafter, an Example is shown and this invention is demonstrated in detail.

제1실시예First embodiment

도1은 본 발명의 바람직한 제1실시예를 나타낸다. 본 실시예는 절연기판상에 박막트랜지스터를 형성하는 것이다. 기판(101)은 유리기판으로 예를 들어, 코닝 7059와 같은 무(無)알칼리 유리기판 또는 실리카 기판이 사용될 수 있다. 비용을 고려하여, 여기서는 코닝 7059 기판이 사용되었다. 이 기판상에 하지(下地) 산화막으로서 산화규소막(102)을 퇴적하였다. 산화규소막의 퇴적방법으로는, 스퍼터법이나 화학적 기상성장법(CVD법)이 사용될 수 있다. 여기서는, TEOS(테트라에톡시실란)와 산소를 원료가스로서 이용하여 플라즈마 CVD법에 의해 성막을 행하였다. 기판 온도는 200~400℃이었다. 하지 산화규소막의 두께는 500~2000Å이었다.1 shows a first preferred embodiment of the present invention. In this embodiment, a thin film transistor is formed on an insulating substrate. The substrate 101 may be a glass substrate, for example, an alkali free glass substrate or a silica substrate such as Corning 7059. In view of the cost, a Corning 7059 substrate was used here. A silicon oxide film 102 was deposited on the substrate as a base oxide film. As the deposition method of the silicon oxide film, a sputtering method or a chemical vapor deposition method (CVD method) can be used. Here, film formation was performed by plasma CVD method using TEOS (tetraethoxysilane) and oxygen as the source gas. Substrate temperature was 200-400 degreeC. The thickness of the underlying silicon oxide film was 500 to 2000 mm 3.

다음에, 비정질 규소막(103)을 퇴적하고, 이것을 섬형상으로 패터닝하였다.Next, an amorphous silicon film 103 was deposited and patterned into islands.

비정질 규소막(103)의 퇴적방법으로서는, 플라즈마 CVD법이나 감압 CVD법이 사용될 수 있다. 여기서는, 모노실란(SiH4)을 원료가스로 하여 플라즈마 CVD법에 의해 비정질 규소막을 퇴적하였다. 비정질 규소막(103)의 두께는 200~700Å이었다. 이어서, 이것에 레이저광(KrF 레이저: 파장 248nm, 펄스폭 20nsec)을 조사하였다. 레이저광 조사전에, 기판을 진공중에서 1~3시간 300~550℃로 가열하여, 비정질 규소막에 함유되어 있는 수소를 방출시켰다. 레이저광의 에너지밀도는 250~450mJ/㎠이었다. 레이저광 조사시에는, 기판을 250~550℃로 가열하였다. 그 결과, 비정질 규소막이 결정화하여, 결정성 규소막이 되었다.As the deposition method of the amorphous silicon film 103, a plasma CVD method or a reduced pressure CVD method can be used. Here, an amorphous silicon film was deposited by plasma CVD using monosilane (SiH 4 ) as a source gas. The thickness of the amorphous silicon film 103 was 200-700 GPa. Subsequently, laser light (KrF laser: wavelength 248 nm, pulse width 20 nsec) was irradiated to this. Before laser light irradiation, the board | substrate was heated at 300-550 degreeC for 1-3 hours in vacuum, and the hydrogen contained in the amorphous silicon film was discharge | released. The energy density of the laser light was 250-450 mJ / cm 2. At the time of laser beam irradiation, the board | substrate was heated at 250-550 degreeC. As a result, the amorphous silicon film crystallized into a crystalline silicon film.

다음에, 게이트 절연막(104)으로서 기능하는 산화규소막을 800~1200Å의 두께로 형성하였다. 여기서, 그 산화규소막의 형성방법으로는, 상기한 하지 산화규소막(102)을 형성하는 것과 같은 방법을 채용하였다. 다음, 양극산화가능한 재료, 즉, 알루미늄, 탄탈, 티탄과 같은 금속, 규소와 같은 반도체 또는 질화탄탈 및 질화티탄과 같은 전도성 금속질화물을 사용하여 게이트 전극(105)을 형성하였다. 여기서는, 탄탈이 사용되었고, 그의 두께는 2000~10000Å이었다.(도 1(a))Next, a silicon oxide film serving as the gate insulating film 104 was formed to a thickness of 800 to 1200 kPa. As the method for forming the silicon oxide film, the same method as that for forming the underlying silicon oxide film 102 was adopted. Next, the gate electrode 105 was formed using an anodizable material, that is, a metal such as aluminum, tantalum, titanium, a semiconductor such as silicon, or a conductive metal nitride such as tantalum nitride and titanium nitride. Here, tantalum was used, and its thickness was 2000-10000 mm (FIG. 1 (a)).

그후, 게이트 전극을 양극산화하여, 그의 표면에 두께 1500~2500Å의 양극산화물(제1양극산화물)(106)을 형성하였다. 양극산화는, 1~5% 구연산을 가진 에틸렌 글리콜 용액중에 기판을 침지하고, 모든 게이트 배선을 통합하여 이것을 양극으로 하고 백금을 음극으로 하여, 인가전압을 1~5V/분으로 증가시키는 것에 의해 수행되었다. 그 다음, 플라즈마 도핑법에 의해 붕소(B) 또는 인(P) 이온을 조사하여 불순물영역(107)을 형성하였다. 이온의 가속 에너지는 게이트 절연막(104)의 두께에 따라 변경되지만, 일반적으로는 게이트 절연막의 두께가 1000Å인 경우, 붕소에서는 50~65keV, 인에서는 60~80keV의 가속 에너지가 적당하였다. 또한, 도즈량은 2×1014~6×1015cm-2이 적당하였지만, 도즈량이 낮을수록 신뢰성이 높은 소자가 얻어진다는 것이 밝혀졌다. 이와 같이 양극산화물이 존재하는 상태에서 불순물 도입을 행한 결과, 게이트 전극(탄탈)과 불순물영역은 오프셋 상태로 되었다. 또한, 도면에 나타낸 불순물영역의 범위는 명목적인 것이고, 실제로는 이온이 산란등에 의해 돌아들어간다는 것은 당연하다.(도 1(b))Thereafter, the gate electrode was anodized to form an anode oxide (first anode oxide) 106 having a thickness of 1500 to 2500 GPa on the surface thereof. Anodization is carried out by immersing the substrate in an ethylene glycol solution with 1-5% citric acid, integrating all the gate wirings as anodes and platinum as cathodes, increasing the applied voltage to 1-5V / min. It became. Next, boron (B) or phosphorus (P) ions were irradiated by plasma doping to form an impurity region 107. The acceleration energy of the ions is changed depending on the thickness of the gate insulating film 104, but in general, when the thickness of the gate insulating film is 1000 mW, the acceleration energy of 50 to 65 keV in boron and 60 to 80 keV in phosphorus is appropriate. Further, the dose amount is 2 × 10 14 ~ 6 × 10 15 cm -2 but are suitable, it has been found that lower the dose that is highly reliable device produced amount. As a result of impurity introduction in the state where the anodic oxide is present, the gate electrode (tantalum) and the impurity region are offset. In addition, the range of the impurity region shown in the figure is nominal, and it is natural that the ions actually return by scattering or the like (Fig. 1 (b)).

불순물 도핑의 종료후, 제1양극산화물(106)만을 에칭하였다. 에칭은, 4불화탄소(CF4)와 산소의 플라즈마 분위기중에서 수행되었다. 4불화탄소(CF4) 대 산소의 비율(유량비)은 CF4/O2=3 대 10이었다. 이러한 조건에서는, 탄탈의 양극산화물인 오산화이탄탈은 에칭되지만, 산화규소는 에칭되지 않는다. 이에 의해, 게이트 전극(105) 및 게이트 절연막(104)인 산화규소막을 에칭하지 않고 제1양극산화물(106)만을 에칭할 수 있다. 그 결과 도1(c)에 나타낸 바와 같이, 불순물영역(107)과, 불순물영역들 사이의 활성영역과의 경계(X로 표시됨)가 나타난다. 그 다음, 이러한 상태에서 레이저광 조사에 의해 불순물영역을 활성화하였다. 사용된 레이저는 KrF 엑시머 레이저(파장 248nm, 펄스폭 20 nsec)이었고, 그 레이저의 에너지밀도는 250~450mJ/㎠이었다. 또한, 레이저광 조사시에 기판을 250~550℃로 가열하면, 불순물영역이 보다 효과적으로 활성화될 수 있다. 전형적으로는, 인이 도프된 불순물영역에서, 도즈량이 1×1015cm-2이고, 기판온도가 250℃이며, 레이저 에너지가 300 mJ/㎠인 때 500~1000 Ω/□의 시트저항이 얻어졌다.After the completion of the impurity doping, only the first anode oxide 106 was etched. Etching was performed in a plasma atmosphere of carbon tetrafluoride (CF 4 ) and oxygen. The ratio of carbon tetrafluorocarbon (CF 4 ) to oxygen (flow rate) was CF 4 / O 2 = 3 to 10. Under these conditions, tantalum pentoxide, which is an anode oxide of tantalum, is etched, but silicon oxide is not etched. As a result, only the first anode oxide 106 can be etched without etching the silicon oxide film serving as the gate electrode 105 and the gate insulating film 104. As a result, as shown in Fig. 1C, a boundary (denoted by X) between the impurity region 107 and the active region between the impurity regions appears. Then, in this state, the impurity region was activated by laser light irradiation. The laser used was a KrF excimer laser (wavelength 248 nm, pulse width 20 nsec), and the energy density of the laser was 250-450 mJ / cm 2. In addition, when the substrate is heated to 250 to 550 ° C. during laser light irradiation, the impurity region may be activated more effectively. Typically, in the phosphorus doped impurity region, a sheet resistance of 500 to 1000 Ω / □ is obtained when the dose is 1 × 10 15 cm −2 , the substrate temperature is 250 ° C., and the laser energy is 300 mJ / cm 2. lost.

또한, 본 실시예에서는 불순물영역과 활성영역의 경계(X로 표시됨)도 레이저 광에 의해 조사되기 때문에, 종래의 제작공정에서 문제가 되었던 경계부분의 열화(劣化)에 의한 신뢰성의 저하가 현저히 감소되었다. 또한, 본 공정에서는 노출된 게이트 배선(게이트 전극)에 레이저광이 조사되기 때문에, 배선의 표면이 충분히 레이저광을 반사하거나, 또는 배선 자체가 충분한 내열성을 가지는 것이 바람직하다. 탄탈은 융점이 3000℃ 이상이기 때문에 어떤 문제도 없지만, 알루미늄과 같은 저융점 재료를 사용할 때는 주의가 필요하여, 예를 들어 상부 표면에 내열성 재료를 제공하는 것이 요망된다.(도1(c))In addition, in this embodiment, since the boundary between the impurity region and the active region (indicated by X) is also irradiated with laser light, the decrease in reliability due to deterioration of the boundary portion, which is a problem in the conventional manufacturing process, is significantly reduced. It became. In addition, in this process, since the laser beam is irradiated to the exposed gate wiring (gate electrode), it is preferable that the surface of the wiring sufficiently reflects the laser beam or the wiring itself has sufficient heat resistance. Tantalum has no problem because its melting point is 3000 ° C. or higher, but care must be taken when using a low melting point material such as aluminum, for example, it is desired to provide a heat resistant material on the upper surface (FIG. 1 (c)).

그후, 게이트 배선에 다시 전류를 인가하여 양극산화를 행하여, 두께 1000~2500Å의 양극산화물(제2양극산화물)(108)을 형성하였다. 이 제2양극산화물(108)은 전도성 면이 후퇴하는 것에 의해 박막트랜지스터의 오프셋의 크기를 결정하고 상부 배선과의 단락을 방지하기 때문에, 그 목적에 적절한 두께가 선택될 필요가 있다. 물론, 경우에 따라서는 그러한 양극산화물을 형성하지 않아도 좋다.(도 1(d))Thereafter, an electric current was applied to the gate wiring again to perform anodization to form an anode oxide (second anode oxide) 108 having a thickness of 1000 to 2500 mW. Since the second anode oxide 108 determines the size of the offset of the thin film transistor by preventing the conductive surface from retreating and short-circuit with the upper wiring, a thickness appropriate for the purpose needs to be selected. Of course, in some cases, such an anode oxide may not be formed (Fig. 1 (d)).

최종적으로, 예를 들어 TEOS를 원료가스로 사용하는 플라즈마 CVD법에 의해, 층간절연물(109)로서 산화규소막을 2000~10000Å의 두께로 형성하고, 이것에 콘택트 홀을 형성하고, 200Å의 질화티탄 및 500Å의 알루미늄의 다층막으로 된 전극(110)을 불순물영역에 접속하여, 박막트랜지스터가 완성되었다.(도 1(e))Finally, a plasma oxide CVD method using TEOS as the source gas, for example, forms a silicon oxide film with a thickness of 2000 to 10000 GPa as the interlayer insulator 109, forms a contact hole therein, and a titanium nitride of 200 GPa and A thin film transistor was completed by connecting the electrode 110, which is a multilayer film of 500 Å aluminum, to an impurity region (Fig. 1 (e)).

제2실시예Second embodiment

도3 및 도4는 제2실시예를 나타낸다. 도3은 도4(평면도)의 일점쇄선에 따른 단면도이다. 먼저, 기판(코닝 7059)(301)상에 하지 산화규소막을 형성하고, 비정질 규소막을 1000~1500Å의 두께 형성하였다. 그 다음, 질소 또는 아르곤 분위기에서 600℃로 24~48시간 어닐하는 것에 의해 비정질 규소막을 결정화시켰다. 그리하여, 섬형상의 결정질 규소영역(302)이 형성되었다. 그 다음, 게이트절연막(303)으로 기능하는 산화규소막을 1000Å의 두께로 퇴적하고, 탄탈 배선(두께 5000Å)(304, 305, 306)을 형성하였다.(도 3(a))3 and 4 show a second embodiment. 3 is a cross-sectional view taken along the dashed-dotted line in FIG. 4 (plan view). First, a base silicon oxide film was formed on a substrate (Corning 7059) 301, and an amorphous silicon film was formed to a thickness of 1000 to 1500 kPa. Then, the amorphous silicon film was crystallized by annealing at 600 ° C. for 24 to 48 hours in nitrogen or argon atmosphere. Thus, island-like crystalline silicon regions 302 were formed. Then, a silicon oxide film serving as the gate insulating film 303 was deposited to a thickness of 1000 mW to form tantalum wiring (thickness 5000 m) (304, 305 and 306) (Fig. 3 (a)).

이어서, 이들 배선(304~306)에 전류를 인가하여, 그의 표면에 2000~2500Å 두께의 제1양극산화물(307, 308, 309)을 형성하였다. 이렇게 처리된 배선을 마스크로 사용하여, 플라즈마 도핑법에 의해 섬형상의 규소영역(302)에 불순물을 도입하여 불순물영역(310)을 형성하였다.(도 3(b) 및 도 4(a))Subsequently, a current was applied to these wirings 304 to 306 to form first anode oxides 307, 308, and 309 having a thickness of 2000 to 2500 Å on their surfaces. Using the wiring thus treated as a mask, impurities were introduced into the island-like silicon regions 302 by plasma doping to form the impurity regions 310 (Figs. 3 (b) and 4 (a)).

그 다음, 제1양극산화물(307~309)만을 에칭하여 배선의 표면을 노출시키고, 그 상태에서 KrF 엑시머 레이저광을 조사하여 불순물영역을 활성화시켰다.(도 3(c))Then, only the first anode oxides 307 to 309 were etched to expose the surface of the wiring, and in that state, the KrF excimer laser light was irradiated to activate the impurity region (Fig. 3 (c)).

그후, 배선들중 콘택트 홀을 형성할 배선(306) 부분에만 두께 1~5㎛의 폴리이미드 피막(311)을 제공하였다. 폴리이미드로서는, 패터닝의 용이함 때문에 감광성 폴리이미드가 쉽게 사용될 수 있다.(도 3(d) 도 4(b))After that, the polyimide film 311 having a thickness of 1 to 5 탆 was provided only in the portion of the wiring 306 to form the contact hole among the wirings. As the polyimide, the photosensitive polyimide can be easily used due to the ease of patterning (Fig. 3 (d) and Fig. 4 (b)).

이어서, 이 상태에서 배선(304~306)에 전류를 인가하여, 두께 2000~2500Å의 제2양극산화물(312, 313,314)을 형성하였다. 폴리아미드가 이미 제공되어 있는 부분은 양극산화되지 않고, 콘택트 홀(315)이 남는다.(도 3(e))Subsequently, a current was applied to the wirings 304 to 306 in this state to form second anode oxides 312, 313, 314 having a thickness of 2000 to 2500 Å. The portion where the polyamide has already been provided is not anodized and the contact hole 315 remains (Fig. 3 (e)).

마지막으로, 층간절연물(316)로서 두께 2000~5000Å의 산화규소막을 퇴적하고, 콘택트 홀을 형성하였다. 또한, 배선(305)의 일부(도 4(c))에서 점선으로 둘러싸여진 부분(319)에서는 층간절연물을 모두 제거하여 제2양극산화물(313)을 노출시켰다. 그 다음, 질화탄탈(두께 500Å)과 알루미늄(두께 3500Å)의 다층막을 이용한 배선·전극(317, 318)을 형성하여, 회로를 완성시켰다. 이때, 배선(318)은 부분(319)에서 배선(305)과 함께 커패시터를 구성하고, 콘택트(320)에서 배선(306)에 접속된다.(도 3(f) 및 도 4(c))Finally, as the interlayer insulator 316, a silicon oxide film having a thickness of 2000 to 5000 kPa was deposited to form a contact hole. In the portion 319 enclosed by a dotted line in a part of the wiring 305 (FIG. 4C), all of the interlayer insulators were removed to expose the second anode oxide 313. Next, wirings and electrodes 317 and 318 using a multilayer film of tantalum nitride (thickness 500 mW) and aluminum (thickness 3500 mW) were formed to complete the circuit. At this time, the wiring 318 forms a capacitor together with the wiring 305 at the portion 319 and is connected to the wiring 306 at the contact 320 (FIGS. 3F and 4C).

제3실시예Third embodiment

도5는 제3실시예를 나타낸다. 기판(코닝 7059)(501)상에 하지 산화규소막을 형성한 다음, 비정질 규소막을 1000~5000Å의 두께로 형성하였다. 그리고, 질소 또는 아르곤 분위기에서 600℃로 24~48시간 어닐하는 것에 의해 비정질 규소막을 결정화시켰다. 이렇게 하여 섬형상의 결정성 규소영역(502)이 형성되었다. 또한, 게이트 절연막(503)으로 기능하는 산화규소막을 1000Å의 두께로 퇴적하고, 탄탈 배선(두께 5000Å)(504, 505, 506)을 형성하였다.(도 5(a))5 shows a third embodiment. After the underlying silicon oxide film was formed on the substrate (Corning 7059) 501, an amorphous silicon film was formed to a thickness of 1000 to 5000 GPa. And an amorphous silicon film was crystallized by annealing at 600 degreeC for 24 to 48 hours in nitrogen or argon atmosphere. Thus, island-like crystalline silicon regions 502 were formed. Further, a silicon oxide film functioning as the gate insulating film 503 was deposited to a thickness of 1000 mW to form tantalum wiring (thickness 5000 m) (504, 505, 506) (Fig. 5 (a)).

이어서, 이들 배선에 전류를 흘려보내어, 배선의 측면 및 상면에 500~1500Å 두께의 양극산화물 피막(507, 508, 509)을 형성하였다. 이렇게 처리된 배선들을 마스크로 하여, 플라즈마 도핑에 의해 불순물을 섬형상의 규소영역(502)에 도입하여 불순물영역(510)을 형성하였다.(도 5(b))Subsequently, a current was flowed through these wirings to form anodized oxide films 507, 508, and 509 having a thickness of 500-1500 에 on the side and top surfaces of the wirings. Using the wirings thus treated as masks, impurities were introduced into the island-like silicon regions 502 by plasma doping to form the impurity regions 510. (Fig. 5 (b)).

그 다음, 양극산화물 피막(507, 508, 509)만을 에칭하여, 불순물영역(510)과 불순물영역들 사이의 활성영역과의 경계를 노출시키고, 이 상태에서 KrF 엑시머 레이저광을 조사하여, 불순물영역을 활성화시켰다.(도 5(c))Then, only the anode oxide films 507, 508, and 509 are etched to expose the boundary between the impurity region 510 and the active region between the impurity regions, and irradiated with KrF excimer laser light in this state, thereby producing an impurity region. Was activated (FIG. 5 (c)).

그후, 배선(504)을 덮기 위해 두께 1~5㎛의 폴리이미드 피막(511)을 형성하였다. 폴리이미드로서는, 패터닝의 용이함 때문에 감광성 폴리이미드가 쉽게 이용될 수 있다.(도 5(d))Thereafter, in order to cover the wiring 504, a polyimide film 511 having a thickness of 1 to 5 μm was formed. As the polyimide, the photosensitive polyimide can be easily used due to the ease of patterning (Fig. 5 (d)).

그 다음, 이 상태에서 배선(504~506)에 전류를 흘려보내어, 두께 2000~2500Å의 양극산화물(513, 514)을 형성하였다. 폴리이미드가 이미 제공된 부분은 양극산화되지 않는다.(도 5(e))Then, a current was flowed through the wirings 504 to 506 in this state to form anode oxides 513 and 514 having a thickness of 2000 to 2500 mW. The part where the polyimide has already been provided is not anodized (Fig. 5 (e)).

마지막으로, 층간절연물(515)로서 2000~5000Å 두께의 산화규소막을 퇴적하고, 불순물영역(510)에 콘택트 홀을 형성하였다. 또한, 배선(506)의 일부에서는 층간절연물을 모두 제거하여 양극산화물(514)을 노출시켰다. 그 다음, 질화탄탈(두께 500Å)과 알루미늄(두께 3500Å)의 다층막을 이용한 배선·전극(516, 517)을 형성하여, 회로를 완성하였다. 이때, 배선(517)은 부분(518)에서 배선(506)과 양극산화물(514)을 유전체로 하는 커패시터를 구성한다.(도 5(f))Lastly, as the interlayer insulator 515, a silicon oxide film having a thickness of 2000 to 5000 Å was deposited, and contact holes were formed in the impurity region 510. In addition, part of the wiring 506 was removed to expose the anode oxide 514 by removing all the interlayer insulators. Next, wirings and electrodes 516 and 517 using a multilayer film of tantalum nitride (thickness 500 mW) and aluminum (thickness 3500 mW) were formed to complete the circuit. At this time, the wiring 517 constitutes a capacitor having the wiring 506 and the anode oxide 514 as a dielectric in the portion 518 (Fig. 5 (f)).

제4실시예Fourth embodiment

도6은 제4실시예를 나타낸다. 본 실시예는, 절연기판상에 박막트랜지스터를 형성하는 것이다. 기판(601)상에 하지 산화막으로서 산화규소막(602)을 퇴적하였다. 이어서, 비정질 규소막을 퇴적하고, 이것을 섬형상으로 패터닝하였다. 그리고, 이것에 레이저광(KrF 레이저, 파장 248nm, 펄스폭 20 nsec)을 조사하였다. 레이저광 조사전에 기판을 진공중에서 0.1~3시간 300~550℃로 가열하여, 비정질 규소막에 함유되어 있는 수소를 방출시켰다. 레이저광의 에너지밀도는 250~450mJ/㎠이었다. 또한, 레이저광 조사시에는 기판을 250~550℃로 가열되었다. 그 결과, 비정질 규소막이 결정화되어, 결정성 규소막(603)으로 되었다.6 shows a fourth embodiment. In this embodiment, a thin film transistor is formed on an insulating substrate. A silicon oxide film 602 was deposited on the substrate 601 as a base oxide film. Subsequently, an amorphous silicon film was deposited and this was patterned into islands. And the laser beam (KrF laser, wavelength 248nm, pulse width 20nsec) was irradiated to this. Before the laser light irradiation, the substrate was heated in a vacuum at 300 to 550 ° C. for 0.1 to 3 hours to release hydrogen contained in the amorphous silicon film. The energy density of the laser light was 250-450 mJ / cm 2. In addition, the board | substrate was heated at 250-550 degreeC at the time of laser beam irradiation. As a result, the amorphous silicon film was crystallized to form the crystalline silicon film 603.

다음에, 게이트 절연막(604)으로 기능하는 산화규소막을 800~1200Å의 두께로 형성하였다. 그리고, 알루미늄을 사용하여 게이트 전극(605)을 형성하였다. 그의 두께는 2000~1000Å이었다.(도 6(a))Next, a silicon oxide film serving as the gate insulating film 604 was formed to a thickness of 800 to 1200 kPa. And the gate electrode 605 was formed using aluminum. His thickness was 2000-1000 mm 3 (Fig. 6 (a)).

그후, 게이트 전극을 양극산화하여, 그의 표면에 두께 1500~2500Å의 양극산화물(제1양극산화물)(606)을 형성하였다. 양극산화는, 1~5%의 주석산을 갖는 에틸렌 글리콜 용액에 기판을 침지하고, 모든 게이트 배선을 통합하여 이것을 양극으로 하고, 백금을 음극으로 하여, 인가전압을 1~5 V/분으로 승압시키는 것에 의해 수행되었다. 이어서, 플라즈마 도핑법에 의해 붕소(B) 또는 인(P) 이온을 조사하여, 불순물영역(607)을 형성하였다.(도 6(b))Thereafter, the gate electrode was anodized to form an anode oxide (first anode oxide) 606 having a thickness of 1500 to 2500 GPa on the surface thereof. Anodization is performed by immersing the substrate in an ethylene glycol solution having 1-5% tartaric acid, integrating all the gate wirings as an anode, and using platinum as the cathode to boost the applied voltage to 1 to 5 V / min. Was performed by. Subsequently, boron (B) or phosphorus (P) ions were irradiated by plasma doping to form an impurity region 607. (Fig. 6 (b)).

불순물 도핑이 종료된 후, 제1양극산화물만을 에칭하였다. 에칭은, 4불화탄소(CF4)와 산소의 플라즈마 분위기중에서 수행되었다. 4불화탄소(CF4) 대 산소의 비율은 CF4/O2=3 대 10이었다. 이러한 조건에서는, 알루미늄의 양극산화물은 에칭되지만, 산화규소는 에칭되지 않는다. 이에 의해, 게이트 배선(게이트 전극)(605) 및 게이트 절연막인 산화규소막(604)을 에칭하지 않고 양극산화물(606)만을 에칭할 수 있다. 이 에칭공정에 의해 양극산화물의 두께를 500~1500Å(양극산화물(608))으로 감소시켰다.After the impurity doping was finished, only the first anode oxide was etched. Etching was performed in a plasma atmosphere of carbon tetrafluoride (CF 4 ) and oxygen. The ratio of tetrafluorocarbon (CF 4 ) to oxygen was CF 4 / O 2 = 3 to 10. Under these conditions, the anodic oxide of aluminum is etched, but the silicon oxide is not etched. As a result, only the anode oxide 606 can be etched without etching the gate wiring (gate electrode) 605 and the silicon oxide film 604 as the gate insulating film. By the etching process, the thickness of the anode oxide was reduced to 500-1500 Pa (anode oxide 608).

그 결과, 도6(c)에 나타낸 바와 같이, 불순물영역(607)과 불순물영역들 사이의 활성영역과의 경계(X로 표시됨)가 나타났다. 이어서, 이 상태에서 레이저광 조사에 의해 불순물영역을 활성화시켰다. 사용된 레이저는 KrF 엑시머 레이저(파장 248nm, 펄스폭 20nsec)이었고, 레이저의 에너지밀도는 250~450mJ/㎠이었다. 레이저 조사시에 기판을 250~550℃로 가열하면, 불순물영역이 보다 효과적으로 활성화될 수 있다. 본 실시예에서는 불순물영역과 활성영역과의 경계(X로 표시됨)도 레이저광에 의해 조사되기 때문에, 종래의 제작공정에서 문제가 되었던 경계 부분의 열화에 의한 신뢰성의 저하기 현저히 감소되었다.(도 6(c))As a result, as shown in Fig. 6C, a boundary (marked with X) between the impurity region 607 and the active region between the impurity regions appeared. Subsequently, in this state, the impurity region was activated by laser light irradiation. The laser used was a KrF excimer laser (wavelength 248 nm, pulse width 20 nsec), and the energy density of the laser was 250-450 mJ / cm 2. When the substrate is heated to 250 to 550 캜 during laser irradiation, the impurity region can be activated more effectively. In this embodiment, since the boundary between the impurity region and the active region (indicated by X) is also irradiated with a laser light, the decrease in reliability due to deterioration of the boundary portion, which has been a problem in the conventional manufacturing process, is significantly reduced. 6 (c))

그후, 게이트 배선에 다시 전류를 인가하여 양극산화함으로써 1000~2500Å 두께의 양극산화물(제2양극산화물)(609)을 형성하였다. 이 양극산화물(609)의 두께가 양극산화시의 전도성 면의 후퇴에 의해 박막트랜지스터의 오프셋 크기를 결정하는 동시에, 상부 배선과의 단락을 방지하는 효과를 가지기 때문에, 이 목적에 적절한 두께가 선택될 수 있다. 경우에 따라서는 그러한 양극산화물을 형성하지 않아도 좋다.(도 6(d))Thereafter, anodization was applied again to the gate wiring to form an anode oxide (second anode oxide) 609 having a thickness of 1000 to 2500 mV. Since the thickness of the anodic oxide 609 has the effect of determining the offset size of the thin film transistor by retreating the conductive surface during anodization and preventing a short circuit with the upper wiring, a thickness appropriate for this purpose can be selected. Can be. In some cases, it is not necessary to form such an anode oxide (Fig. 6 (d)).

마지막으로, 층간절연물(610)로서 산화규소막을 2000~10000Å의 두께로 형성하고, 그것에 콘택트 홀을 형성하고, 200Å 두께의 질화티탄과 500Å 두께의 알루미늄의 다층막으로 된 전극(611)을 불순물영역에 접속하여, 박막트랜지스터가 완성되었다.(도 6(e))Finally, as the interlayer insulator 610, a silicon oxide film is formed to a thickness of 2000 to 10000 GPa, a contact hole is formed therein, and an electrode 611 made of a titanium nitride having a thickness of 200 GPa and a aluminum having a thickness of 500 GPa is placed in the impurity region. By connecting, the thin film transistor was completed. (FIG. 6 (e)).

제5실시예Fifth Embodiment

본 실시예는, 양극산화물로서 2종류의 양극산화물, 즉, 다공질 양극산화물과 배리어형 양극산화물을 조합시킨 예를 나타낸다. 즉, 본 실시예에서는, 게이트 전극의 측면에, 비교적 낮은 전압에서 형성되는 다공질 양극산화물을 0.2㎛이상, 바람직하게는 0.5㎛이상 형성하고, 한편, 게이트 전극의 상면에는 절연성이 양호한 배리어형 양극산화물을 형성한다.This embodiment shows an example in which two kinds of anodic oxides, that is, porous anodic oxides and barrier anodes, are combined as an anodic oxide. That is, in this embodiment, a porous anode oxide formed at a relatively low voltage is formed on the side of the gate electrode at a thickness of 0.2 µm or more, preferably 0.5 µm or more, while a barrier type anode oxide having good insulation on the upper surface of the gate electrode. To form.

다공질 양극산화물은, 3~20%의 구연산 또는 수산, 인산, 크롬산, 황산 등의 수용액에서 양극산화를 행함으로써 얻어질 수 있다. 한편, 배리어형 양극산화물은, 3~10% 주석산, 붕산, 질산 등의 에틸렌 글리콜 용액과 같은 유기용매를 사용하여 양극산화함으로써 얻어질 수 있다. 게이트 전극의 상면에 형성되는 배리어형 양극산화물은 가능한 한(상부 배선과의 절연성이 유지되는 한) 얇은 것이 바람직하고, 0.2㎛이하 바람직하게는 0.1㎛이하이다.The porous anodic oxide can be obtained by anodizing in an aqueous solution of 3-20% citric acid or hydroxyl, phosphoric acid, chromic acid, sulfuric acid and the like. On the other hand, the barrier anodization can be obtained by anodizing using an organic solvent such as an ethylene glycol solution such as 3-10% tartaric acid, boric acid, nitric acid, or the like. The barrier type anode oxide formed on the upper surface of the gate electrode is preferably as thin as possible (as long as insulation with the upper wiring is maintained), and preferably 0.2 µm or less, preferably 0.1 µm or less.

이들 2종류의 양극산화물은, 게이트 전극의 상면에 마스크재를 형성하고, 이 상태에서 먼저 다공질 양극산화물을 형성하고, 이어서, 마스크재를 제거하여 게이트 전극의 상면을 중심으로 하여 배리어형 양극산화물을 형성함으로써 형성된다. 이 목적에 사용되는 마스크재는 양극산화의 전압에 견딜 수 있어야 하고, 그 마스크재로서는 예를 들어 폴리이미드가 적당하다. 특히, 포토니스(Photonese)(감광성 폴리이미드) 및 AZ1350과 같은 감광성 재료가 사용되는 경우, 게이트 전극의 패터닝시에 그러한 마스크재를 사용하여 패터닝하면 좋다. 또한, 통상의 포토리소그래피 공정에서 사용되는 포트레지스트(예를 들어, 도쿄 오카 고교 가부시키가이샤에서 제조된 OFPR 800/30 cp)는 절연성이 불충분하기 때문에 다공질 양극산화중에 레지스트가 점차 벗겨지는 결점을 가지고 있지만, 이러한 문제는 레지스트의 도포전에 배리어형 양극산화의 조건에서 두께 50~1000Å의 산화물피막을 형성함으로써 해결될 수 있다.These two kinds of anodic oxides form a mask material on the upper surface of the gate electrode, and in this state, a porous anodic oxide is formed first, and then the mask material is removed to form a barrier type anode oxide around the upper surface of the gate electrode. It is formed by forming. The mask material used for this purpose must be able to withstand the voltage of anodization, and polyimide is suitable as the mask material, for example. In particular, when photosensitive materials such as Photonese (photosensitive polyimide) and AZ1350 are used, patterning may be performed using such a mask material at the time of patterning the gate electrode. In addition, the photoresist used in the conventional photolithography process (for example, OFPR 800/30 cp manufactured by Tokyo Okagyo Co., Ltd.) has a defect in that the resist is gradually peeled off during porous anodization because of insufficient insulation. However, this problem can be solved by forming an oxide film having a thickness of 50 to 1000 GPa under the condition of barrier type anodization before application of the resist.

도7은 본 실시예의 제작공정을 나타내는 단면도이다. 먼저, 기판(코닝 7059)(701)상에 스퍼터법에 의해 두께 2000Å의 하지 산화규소막(702)을 형성하였다. 그 다음, 플라즈마 CVD법에 의해 두께 200~1000Å, 예를 들어, 500Å의 진성(I형) 비정질 규소막을 퇴적하고, 이것을 패터닝 및 에칭하여, 섬형상의 규소영역(703)을 형성하고, 그것에 레이저광(KrF 엑시머 레이저)을 조사하여 섬형상의 규소영역(703)을 결정화시켰다. 그리고, 스퍼터법에 의해 게이트 절연막으로서 두께 1000Å의 산화규소막(704)을 퇴적하였다.Fig. 7 is a sectional view showing the manufacturing process of this embodiment. First, a base silicon oxide film 702 having a thickness of 2000 GPa was formed on a substrate (Corning 7059) 701 by the sputtering method. Subsequently, an intrinsic (I-type) amorphous silicon film having a thickness of 200 to 1000 mW, for example, 500 mW is deposited by plasma CVD, and then patterned and etched to form an island-like silicon region 703, which is then lasered. Light (KrF excimer laser) was irradiated to crystallize the island-like silicon region 703. Then, a silicon oxide film 704 having a thickness of 1000 으로서 was deposited as the gate insulating film by the sputtering method.

이어서, 스퍼터법에 의해 두께 3000~8000Å, 예를 들어, 4000Å의 알루미늄막(0.1~0.3 중량%의 스칸듐을 함유한다)을 퇴적하였다. 그 다음, 3% 주석산을 암모니아로 중화하여 대략 pH 7로 설정한 에틸렌 글리콜 용액에 기판을 침지하고, 10~30 V의 전압을 인가함으로써 알루미늄막상에 두께 100~400Å의 얇은 양극산 화물을 형성하였다. 그리고, 이렇게 처리한 알루미늄막상에, 스핀 코팅법에 의해 대략 1㎛의 두께를 갖는 포토레지스트(예를 들어, 도쿄 오카 고교 가부시키가이샤에서 제조된 OFPR 800/30 cp)를 형성하였다. 그 다음, 공지의 포트리소그래피법에 의해 게이트 전극(705)을 형성하였다. 이 게이트 전극(705)상에는 포토레지스트 마스크(706)가 잔존한다. 포토레지스트 대신에, 예를 들어, 트레이 고교 가부시키가이샤에서 제조된 UR 3800과 같은 감광성 폴리이미드(포토니스)를 사용해도 동일한 효과가 얻어질 수 있다.(도 7(a))Subsequently, an aluminum film (containing 0.1 to 0.3% by weight of scandium) having a thickness of 3000 to 8000 Pa, for example, 4000 Pa was deposited by the sputtering method. Subsequently, a 3% tartaric acid was neutralized with ammonia and the substrate was immersed in an ethylene glycol solution set at approximately pH 7, and a voltage of 10 to 30 V was applied to form a thin anode oxide having a thickness of 100 to 400 kPa on the aluminum film. . On the aluminum film thus treated, a photoresist (eg, OFPR 800/30 cp manufactured by Tokyo Okagyo Kogyo Co., Ltd.) having a thickness of approximately 1 μm was formed by spin coating. Next, the gate electrode 705 was formed by a known photolithography method. The photoresist mask 706 remains on the gate electrode 705. Instead of the photoresist, for example, the same effect can be obtained by using a photosensitive polyimide (photonis) such as UR 3800 manufactured by Tray Kogyo Co., Ltd. (Fig. 7 (a)).

다음에, 10%의 구연산 수용액에 기판을 침지하고, 5~50V, 예를 들어, 8V의 정전압으로 10~500분, 예를 들어, 200분간 양극산화를 행함으로써, 대략 5000Å 두께의 다공질 양극산화물(707)을 ±200Å 이하의 정밀도로 게이트 전극의 측벽에 형성할 수 있었다. 게이트 전극의 상면에는 포토레지스트 마스크(706)가 존재하고 있기 때문에, 그곳에서는 양극사화가 거의 진행하지 않았다.(도 7(b))Subsequently, the substrate is immersed in an aqueous 10% citric acid solution and subjected to anodization at a constant voltage of 5 to 50 V, for example, 8 V for 10 to 500 minutes, for example, 200 minutes, to provide a porous anode oxide having a thickness of approximately 5000 Pa. 707 can be formed on the sidewall of the gate electrode with an accuracy of ± 200 Hz or less. Since the photoresist mask 706 is present on the upper surface of the gate electrode, anodization hardly proceeds there (Fig. 7 (b)).

다음에, 마스크재를 제거하여 게이트 전극의 상면을 노출시키고, 3% 주석산의 에틸렌 글리콜 용액(암모니아에 의해 중성으로 pH가 조성된 것)에 기판을 담그고, 1~5V/분, 예를 들어, 4V/분으로 전압을 100V까지 상승시키면서 전류를 흘려보냄으로써 양극산화를 행하였다. 이때, 게이트 전극의 상면 뿐만 아니라 측벽도 양극산화되어, 치밀한 배리어형 양극산화물(708)이 1000Å의 두께로 형성되었다. 이 양극산화물의 내압(耐壓)은 50V 이상이었다.(도 7(c))Next, the mask material was removed to expose the top surface of the gate electrode, the substrate was immersed in an ethylene glycol solution of 3% tartaric acid (which had been neutrally formed by ammonia), and then subjected to 1-5 V / min, for example, Anodization was performed by flowing a current while raising the voltage to 100V at 4V / min. At this time, not only the top surface of the gate electrode but also the sidewall was anodized to form a dense barrier type anode oxide 708 having a thickness of 1000 占 퐉. The internal pressure of this anode oxide was 50 V or more (Fig. 7 (c)).

다음에, 건식 에칭법에 의해 산화규소막(704)을 에칭하였다. 이 에칭에 있어서는, 등방성 에칭의 플라즈마 모드나, 또는 이방성 에칭의 반응성 이온 에칭 모드가이 이용될 수 있다. 그러나, 규소와 산화규소의 선택비를 충분히 크게 함으로써 규소영역(703)을 깊게 에칭하지 않도록 하는 것이 중요하다. 에칭 가스로서 예를 들어 CF4를 사용하면, 양극산화물(707, 708)은 에칭되지 않고, 산화규소막만이 에칭된다. 또한, 양극산화물 아래의 산화규소막은 에칭되지 않고 게이트 절연막(710)으로서 남는다.Next, the silicon oxide film 704 was etched by the dry etching method. In this etching, a plasma mode of isotropic etching or a reactive ion etching mode of anisotropic etching may be used. However, it is important not to etch the silicon region 703 deeply by sufficiently increasing the selectivity of silicon and silicon oxide. If CF 4 is used as the etching gas, for example, the anode oxides 707 and 708 are not etched, and only the silicon oxide film is etched. Further, the silicon oxide film under the anode oxide is not etched and remains as the gate insulating film 710.

그 다음, 게이트 전극(705)과 측면의 다공질 양극산화물(707)을 마스크로 하여, 플라즈마 도핑법에 의해 규소영역(703)에 불순물(인)을 주입하였다. 이때, 도핑 가스로서 포스핀(PH3)이 사용되었고, 가속전압은 5~30kV, 예를 들어, 10kV이었다. 그리고, 도즈량은 1×1014~8×1015-2, 예를 들어, 2×1015-2이었다. 그 결과, N형 불순물영역(709)이 형성되었다.(도 7(d))Subsequently, impurities (phosphorus) were implanted into the silicon region 703 by the plasma doping method using the gate electrode 705 and the porous anode oxide 707 on the side surface as a mask. At this time, phosphine (PH 3 ) was used as the doping gas, the acceleration voltage was 5 ~ 30kV, for example, 10kV. The dose was 1 × 10 14 to 8 × 10 15 cm -2 , for example, 2 × 10 15 cm -2 . As a result, an N-type impurity region 709 was formed (Fig. 7 (d)).

다음에, 인산, 초산 및 질산의 혼합산을 사용하여 다공질 양극산화물(707)을 에칭하여, 배리어형 양극산화물(708)을 노출시켰다. 그리고, 위로부터 레이저광을 조사하여 레이저 어닐을 행함으로써, 도프된 불순물을 활성화시켰다. 이 레이저광 조사에 있어서는, 도프된 불순물영역과 도프되지 않은 영역과의 경계(711)에도 레이저광이 조사된다.(도 7(e))Next, the porous anodic oxide 707 was etched using a mixed acid of phosphoric acid, acetic acid and nitric acid to expose the barrier type anodic oxide 708. The doped impurities were then activated by irradiating a laser beam from above and performing laser annealing. In this laser light irradiation, the laser light is also irradiated to the boundary 711 between the doped impurity region and the undoped region (Fig. 7 (e)).

레이저광의 에너지밀도는 100~400mJ/㎠, 예를 들어, 150mJ/㎠이었고, 2~10 쇼트(shot), 예를 들어, 2 쇼트 조사되었다. 레이저광 조사시에는, 기판을 200~300℃, 예를 들어 250℃로 가열하여도 좋다. 본 실시예에서는, 레이저광 조사시에 규소영역의 표면이 노출되기 때문에, 레이저광의 에너지밀도는 약간 낮은 것이 바람직하다.The energy density of the laser light was 100 to 400 mJ / cm 2, for example 150 mJ / cm 2, and 2 to 10 shots, for example, 2 shots were irradiated. At the time of laser beam irradiation, you may heat a board | substrate to 200-300 degreeC, for example, 250 degreeC. In this embodiment, since the surface of the silicon region is exposed at the time of laser light irradiation, it is preferable that the energy density of the laser light is slightly low.

그 다음, 층간절연물(712)로서 두께 6000Å의 산화규소막을 플라즈마 CVD법으로 형성하고, 이것에 콘택트 홀을 형성하여, 질화티탄과 알루미늄 등과 같은 금속재료의 다층막으로 TFT의 소스영역 및 드레인영역의 전극·배선(713, 714)을 형성하였다. 마지막으로, 1기압의 수소분위기에서 30분간 350℃로 어닐을 행하였다. 이상의 공정에 의해 박막트랜지스터가 완성되었다. 또한, 본 실시예에서는, 오프셋 폭(X)은 다공질 양극산화물의 폭 5000Å에 배리어형 양극산화막의 두께 1000Å을 더한 대략 6000Å이었다.(도 7(f))Next, a silicon oxide film having a thickness of 6000 Å is formed as the interlayer insulator 712 by the plasma CVD method, and a contact hole is formed therein, and the electrode of the source region and the drain region of the TFT is formed of a multilayer of a metal material such as titanium nitride and aluminum. Wirings 713 and 714 were formed. Finally, annealing was carried out at 350 ° C. for 30 minutes in an atmosphere of hydrogen at 1 atmosphere. Through the above process, the thin film transistor was completed. In the present embodiment, the offset width X was approximately 6000 mm by adding the thickness of the barrier type anodization film to 1000 mW of the porous anodic oxide (1000 m) (Fig. 7 (f)).

본 실시예에서는, 양극산화시에 게이트 절연막에 과도한 전압을 인가하지 않기 때문에, 게이트 절연막의 계면준위 밀도가 낮게 되고, 그 때문에, TFT의 서브스 레시홀드 특성(S값)이 매우 작게 된다. 그 결과, 급준(急峻)한 온/오프 상승 특성이 얻어진다.In this embodiment, since no excessive voltage is applied to the gate insulating film during anodization, the interfacial density of the gate insulating film is low, and therefore, the sub threshold characteristic (S value) of the TFT is very small. As a result, steep on / off rise characteristics are obtained.

제6실시예Sixth embodiment

도8은 본 실시예의 제작공정을 나타내는 단면도이다. 먼저, 기판(코닝 7059)(801)상에 2000Å 두께의 하지 산화규소막(802)을 형성하고, 200~1500Å, 예를 들어, 800Å의 두께를 갖는 섬형상의 진성(I형) 결정성 규소영역(803)을 형성한 다음, 그 섬형상의 규소영역을 덮는 1000Å 두께의 산화규소막(804)을 형성하였다.Fig. 8 is a sectional view showing the manufacturing process of this embodiment. First, a base silicon oxide film 802 having a thickness of 2000 GPa is formed on a substrate (Corning 7059) 801, and island-shaped intrinsic (type I) crystalline silicon having a thickness of 200 to 1500 GPa, for example, 800 GPa. After the region 803 was formed, a silicon oxide film 804 having a thickness of 1000 Å was formed to cover the island-shaped silicon region.

이어서, 스퍼터법에 의해 두께 3000~8000Å, 예를 들어, 4000Å의 알루미늄막(0.1~0.3 중량%의 스칸듐을 함유한다)을 퇴적하였다. 그 다음, 제5실시예와 동일한 방식으로, 알루미늄막의 표면에 두께 100~400Å의 얇은 양극산화물을 형성하였다. 이렇게 처리한 알루미늄막상에, 스핀 코팅법에 의해 대략 1㎛의 두께를 갖는 포토레지스트를 형성한 다음, 공지의 포토리스그래피법에 의해 게이트 전극(805)을 형성하였다. 게이트 전극상에는 포토레지스트 마스크(806)가 잔존한다.(도 8(a))Subsequently, an aluminum film (containing 0.1 to 0.3% by weight of scandium) having a thickness of 3000 to 8000 Pa, for example, 4000 Pa was deposited by the sputtering method. Then, in the same manner as in the fifth embodiment, a thin anodic oxide having a thickness of 100 to 400 Å was formed on the surface of the aluminum film. On the aluminum film thus treated, a photoresist having a thickness of approximately 1 mu m was formed by spin coating, and then a gate electrode 805 was formed by a known photolithography method. The photoresist mask 806 remains on the gate electrode (Fig. 8 (a)).

다음에, 10%의 수산 수용액에 기판을 담그고, 5~50V, 예를 들어, 8V의 정전압으로 10~500분, 예를 들어, 200분간 양극산화를 행함으로써, 게이트 전극의 측벽에 대략 5000Å 두께의 다공질 양극산화물(807)을 형성하였다. 게이트 전극의 상면에는 포토레지스트 마스크(806)기 잔존하여 있기 때문에, 그곳에서는 양극산화가 거의 진행하지 않았다.(도 8(b))Subsequently, the substrate was immersed in a 10% aqueous solution of aquatic acid and subjected to anodization for 10 to 500 minutes, for example, 200 minutes at a constant voltage of 5 to 50 V, for example 8 V, to approximately 5000 kW thickness on the sidewall of the gate electrode. A porous anode of 807 was formed. Since the photoresist mask 806 remains on the upper surface of the gate electrode, anodization hardly proceeded there (Fig. 8 (b)).

다음에, 마스크재를 제거하여 게이트 전극의 상면을 노출시키고, 3% 주석산의 에틸렌 글리콜 용액(암모니아에 의해 중성으로 pH가 조정된 것)에 기판을 참지하고, 1~5V/분, 예를 들어, 4V/분으로 100V까지 전압을 상승시키면서 그것에 전류를 공급함으로써, 양극산화를 행하였다. 이때에는, 게이트 전극의 상면과 측면이 양극산화되어, 치밀한 배리어형 양극산화물(808)이 100Å의 두께로 형성되었다. 이 양극산화물의 내압은 50V 이상이었다.Next, the mask material was removed to expose the top surface of the gate electrode, and the substrate was immersed in an ethylene glycol solution of 3% tartaric acid (which had a pH adjusted to neutral by ammonia), for example, 1 to 5 V / min, for example Anodization was performed by supplying a current thereto while increasing the voltage to 100 V at 4 V / min. At this time, the top and side surfaces of the gate electrode were anodized to form a dense barrier type anode oxide 808 having a thickness of 100 GPa. The internal pressure of this anodic oxide was 50 V or more.

다음에, 건식 에칭법에 의해 산화규소막(804)을 에칭하였다. 이 에칭에 있어서는, 양극산화물(807, 808)은 에칭되지 않고, 산화규소막만이 에칭되었다. 또한, 양극산화물 아래의 산화규소막은 에칭되지 않고 게이트 절연막(809)로서 남았다.(도 8(c))Next, the silicon oxide film 804 was etched by the dry etching method. In this etching, the anode oxides 807 and 808 were not etched, only the silicon oxide film was etched. Further, the silicon oxide film under the anodic oxide was not etched and remained as the gate insulating film 809 (Fig. 8 (c)).

다음에, 인산, 초산 및 질산의 혼합산을 사용하여 다공질 양극산화물(807)을 에칭하여, 배리어형 양극산화물(808)을 노출시켰다. 그리고, 게이트 전극(805)과, 측면의 다공질 양극산화물(807)에 의해 획정(劃定)된 게이트 절연막(809)을 마스크로 하여, 플라즈마 도핑법에 의해 규소영역(803)에 불순물(인)을 주입하였다. 도핑 가스로서 포스핀(PH3)이 사용되었고, 가속전압은 5~30kV, 예를 들어, 10kV이었다. 도즈량은 1×1014~8×1015-2, 예를 들어, 2×1015-2이었다.Next, the porous anodic oxide 807 was etched using a mixed acid of phosphoric acid, acetic acid and nitric acid to expose the barrier type anodic oxide 808. Then, using the gate electrode 805 and the gate insulating film 809 defined by the porous anode oxide 807 on the side as a mask, impurities (phosphorus) are formed in the silicon region 803 by plasma doping. Was injected. Phosphine (PH3) was used as the doping gas, and the acceleration voltage was 5 to 30 kV, for example, 10 kV. The dose was 1 × 10 14 to 8 × 10 15 cm -2 , for example, 2 × 10 15 cm -2 .

이 도핑공정에서는, 게이트 절연막(809)으로 덮혀 있지 않은 영역(810)에는 고농도의 인이 주입되었지만, 게이트 절연막(809)에 의해 표면이 덮혀 있는 영역(811)에는, 게이트 절연막이 장해가 되어, 도핑량이 적고, 본 실시예에서는 영역(810)의 불순물의 0.1~5%만이 주입되었다. 그 결과, N형의 고농도 불순물영역(810) 및 저농도 불순물영역(811)이 형성되었다.(도 8(d))In this doping step, a high concentration of phosphorus is injected into the region 810 not covered with the gate insulating film 809, but the gate insulating film is disturbed in the region 811 whose surface is covered by the gate insulating film 809, The doping amount is small, and in this embodiment, only 0.1 to 5% of the impurities in the region 810 are implanted. As a result, an N-type high concentration impurity region 810 and a low concentration impurity region 811 were formed (Fig. 8 (d)).

그후, 위로부터 레이저광을 조사하여 레이저 어닐을 행함으로써, 도프된 불순물을 활성화시켰다. 그러나, 이 경우에는, 저농도 불순물영역(811)과 활성영역과의 경계에 충분히 레이저광이 조사되지 않을 수 있다. 그러나, 저농도 불순물영역(811)에의 도핑량은 상기한 바와 같이 미량이기 때문에, 규소결정에 대한 손상이 적고, 따라서, 레이저광 조사에 의한 결정성 개선의 필요성은 그렇게 크지 않다.Thereafter, the laser light was irradiated from above to perform laser annealing, thereby activating the doped impurities. In this case, however, the laser light may not be sufficiently irradiated on the boundary between the low concentration impurity region 811 and the active region. However, since the amount of doping in the low concentration impurity region 811 is very small as described above, damage to silicon crystal is small, and therefore, the necessity of improvement of crystallinity by laser light irradiation is not so large.

이에 대하여, 고농도 불순불영역(810)과 저농도 불순물영역(811)과의 경계는 레이저광에 의해 충분히 조사될 필요가 있다. 이것은, 고농도 불순물영역(811)에는 다량의 불순물 이온이 도입되어 있어, 그 영역에서의 결정결함도 크기 때문이다. 본 실시예의 구조를 나타내는 도면에서 보여지는 바와 같이, 경계부분에도 레이저광이 투과한다.(도 8(e))In contrast, the boundary between the high concentration impurity region 810 and the low concentration impurity region 811 needs to be sufficiently irradiated with a laser beam. This is because a large amount of impurity ions are introduced into the high concentration impurity region 811, and crystal defects in the region are also large. As shown in the diagram showing the structure of this embodiment, the laser beam also transmits to the boundary portion (Fig. 8 (e)).

이어서, 층간절연물(812)로서 두께 6000Å의 산화규소막을 플라즈마 CVD법에 의해 형성하고, 이것에 콘택트 홀을 형성하여, 질화티탄과 알루미늄과 같은 금속재의 다층막의 의해 TFT의 소스영역 및 드레인 영역의 배선·전극(813, 814)을 형성하였다. 마지막으로, 1기압의 수소분위기에서 350℃로 30분간 어닐을 행하였다. 이상의 공정에 의해, 박막트랜지스터가 완성되었다.Subsequently, a silicon oxide film having a thickness of 6000 Å is formed as the interlayer insulator 812 by the plasma CVD method, and a contact hole is formed therein, and the wiring of the source region and the drain region of the TFT is made of a multilayer film made of a metal material such as titanium nitride and aluminum. Electrodes 813 and 814 were formed; Finally, annealing was carried out at 350 ° C. for 30 minutes in a hydrogen atmosphere of 1 atm. Through the above steps, the thin film transistor was completed.

본 실시예에서는, 소위 저농도 드레인(LDD) 구조와 동일한 구조를 얻을 수 있었다. LDD 구조는 핫 캐리어(hot carrier)에 의한 열화를 억제하는데 유효한 것으로 나타나 있는데, 본 실시예에 의해 제작된 TFT에서도 동일한 효과가 얻어진다. 그러나, LDD를 얻기 위한 공지의 공정에 비하여, 본 실시예에서는 1회의 도핑공정에 의해 LDD가 얻어질 수 있다는데 특징이 있다. 또한, 본 실시예에서는 다공질 양극산화막(807)에 의해 획정된 게이트 절연막(809)을 이용함으로써 고농도 불순물영역(810)이 획정된다는데 특징이 있다. 즉, 다공질 양극산화물(807)에 의해 간접적으로 불순물영역이 획정되는 것이다. 그리고, 본 실시예에서 분명한 바와 같이, LDD 영역의 폭(X)은 실질적으로 다공질 양극산화물의 폭에 의해 결정된다.In this embodiment, a structure similar to the so-called low concentration drain (LDD) structure can be obtained. The LDD structure is shown to be effective in suppressing deterioration due to hot carriers, but the same effect can be obtained in the TFT fabricated by this embodiment. However, as compared with the known process for obtaining the LDD, the present embodiment is characterized in that the LDD can be obtained by one doping process. In this embodiment, the highly concentrated impurity region 810 is defined by using the gate insulating film 809 defined by the porous anodization film 807. In other words, the impurity region is indirectly defined by the porous anode oxide 807. And as is clear from this embodiment, the width X of the LDD region is substantially determined by the width of the porous anodic oxide.

본 실시예 또는 앞의 실시예의 나타내어진 TFT 제작방법을 사용하여, 보다 높은 집적화를 실행할 수 있다. 그때에는, TFT에 요구되는 특성에 따라 오프셋 영역 또는 LDD 영역의 폭(X)을 변화시키면 보다 편리하다. 도 9는, 1매의 유리기판 상에 디스플레이, CPU, 메모리 등이 설치된 집적회로를 사용하는 전기광학 시스템의 블록도를 나타낸다.Higher integration can be performed by using the TFT fabrication method shown in this embodiment or the previous embodiment. At that time, it is more convenient to change the width X of the offset region or the LDD region in accordance with the characteristics required for the TFT. Fig. 9 shows a block diagram of an electro-optical system using an integrated circuit in which a display, a CPU, a memory, and the like are installed on one glass substrate.

여기서, 입력 포트는 외부로부터 입력된 신호를 읽고 그것을 화상신호로 변환한다. 보정 메모리는 액티브 매트릭스 패널의 특성에 대응하여 입력신호 등을 보정하기 위한 액티브 매트릭스 패널에 고유한 메모리이다. 특히, 이 보정 메모리는 각 화소에 고유한 정보를 불휘발성 메모리내에 보유하고 개별적으로 보정하기 위한 것이다. 즉, 전기광학장치의 화소에 점결함이 있는 경우에는, 보정 메모리가 그 점 주위의 화소에 그것에 대응하여 보정된 신호를 보내어 점결함을 커버하여, 점결함을 눈에 띄지 않게 한다. 또는, 한 화소가 주위의 화소에 비하여 어두운 경우에는, 그 화소에 보다 큰 신호에 보내어, 주위의 화소와 동일한 밝기가 되도록 하는 것이다.Here, the input port reads a signal input from the outside and converts it into an image signal. The correction memory is a memory inherent to an active matrix panel for correcting an input signal or the like corresponding to the characteristics of the active matrix panel. In particular, this correction memory is for retaining information unique to each pixel in the nonvolatile memory and individually correcting it. That is, in the case where there is a point defect in a pixel of the electro-optical device, the correction memory sends a corrected signal corresponding to it to the pixels around the point to cover the point defect, thereby making the point defect inconspicuous. Alternatively, when one pixel is darker than the surrounding pixels, the pixel is sent to a larger signal so as to have the same brightness as the surrounding pixels.

CPU와 메모리는 통상의 컴퓨터의 것과 동일하다. 특히 메모리는 각 화소에 대응한 화상 메모리를 RAM으로서 가지고 있다. 후방으로부터 기판을 조명하기 이한 백라이트를 화상정보에 따라 변화시킬 수 있다.The CPU and memory are the same as those of a normal computer. In particular, the memory has an image memory corresponding to each pixel as a RAM. The backlight for illuminating the substrate from the rear side can be changed according to the image information.

그리고, 이들 회로의 각각에 적합한 오프셋 영역 또는 LDD 영역의 폭을 얻기 위해서는, 3~10 라인의 배선을 형성하여 개별적으로 양극산화 조건을 변경하도록 하면 된다. 일반적으로, 액티브 매트릭스회로의 TFT(91)에서는, 채널길이가 10㎛일 때 LDD 영역의 폭은 0.4~1㎛, 예를 들어 0.6㎛이다. 드라이버에 있어서는, N채널형 TFT에서, 채널길이가 8㎛이고 채널폭이 200㎛일 때, LDD 영역의 폭은 0.2~0.3㎛, 예를 들어, 0.25㎛일 수 있다. 유사하게, P채널형 TFT에서는, 채널길이가 5㎛이고 채널폭이 500㎛일 때, LDD 영역의 폭은 0~0.2㎛, 예를 들어, 0.1㎛일 수 있다. 디코더에 있어서는, N채널형 TFT에서, 채널길이가 8㎛이고 채널폭이 10㎛일 때, LDD 영역의 폭은 0.3~0.4㎛, 예를 들어, 0.35㎛일 수 있다. 유사하게, P채널형 TFT에서는, 채널길이가 5㎛이고 채널폭이 10㎛일 때, LDD 영역의 폭은 0~0.2㎛, 예를 들어, 0.1㎛일 수 있다. 또한, 도9에서의 CPU, 입력 포트, 보정 메모리 및 메모리의 NTFT 및 PTFT는 고주파수 동작, 저소비전력용의 디코더와 마찬가지로 LDD 영역의 폭을 최적화하면 된다. 그래서, 전기광학장치(94)를 절연표면을 가진 동일 기판상에 형성할 수 있다.In order to obtain the width of the offset region or LDD region suitable for each of these circuits, wirings of 3 to 10 lines may be formed so as to change the anodization conditions individually. In general, in the TFT 91 of the active matrix circuit, when the channel length is 10 mu m, the width of the LDD region is 0.4 to 1 mu m, for example, 0.6 mu m. In the driver, in the N-channel TFT, when the channel length is 8 μm and the channel width is 200 μm, the width of the LDD region may be 0.2 to 0.3 μm, for example, 0.25 μm. Similarly, in the P-channel TFT, when the channel length is 5 mu m and the channel width is 500 mu m, the width of the LDD region may be 0 to 0.2 mu m, for example, 0.1 mu m. In the decoder, in the N-channel TFT, when the channel length is 8 μm and the channel width is 10 μm, the width of the LDD region may be 0.3 to 0.4 μm, for example, 0.35 μm. Similarly, in the P-channel TFT, when the channel length is 5 mu m and the channel width is 10 mu m, the width of the LDD region may be 0 to 0.2 mu m, for example, 0.1 mu m. In addition, the CPU, the input port, the correction memory, and the NTFT and PTFT of the memory in FIG. 9 may optimize the width of the LDD region similarly to the decoder for high frequency operation and low power consumption. Thus, the electro-optical device 94 can be formed on the same substrate having an insulating surface.

상기한 바와 같이, 본 발명에 의해, 저온공정으로 제작된 MOS 트랜지스터, 박막트랜지스터 등의 MIS형 반도체장치의 신뢰성을 향상시킬 수 있다. 구체적으로는, 소스를 접지하고, 드레인 또는 게이트중 하나 또는 모두에 +20 이상 또는 -20V 이하의 전위를 인가한 상태에서 10시간 이상 방치한 경우에도 트랜지스터의 특성에는 큰 영향이 없었다.As described above, according to the present invention, the reliability of MIS semiconductor devices such as MOS transistors, thin film transistors, etc. manufactured in a low temperature process can be improved. Specifically, even when the source was grounded and left for 10 hours or more while a potential of +20 or more or -20 V or less was applied to one or both of the drain and the gate, there was no significant effect on the characteristics of the transistor.

상기 실시예들은 박막트랜지스터를 중심으로 하여 설명되었지만, 본 발명의 효과를 단결정 반도체 기판상에 제작된 MIS형 트랜지스터에서도 동일하게 얻어질 수 있음은 물론이다. 또한, 반도체재료에 관해서도, 실시예들에서 기술한 규소 이외에도, 규소-게르마늄 합금, 탄화규소, 게르마늄, 카드뮴 셀렌나이트, 황화카드뮴, 비화(砒化)갈륨 등에 있어서도 같은 효과가 얻어질 수 있다. 이상과 같이, 본 발명은 공업상 유익한 발명이다.Although the above embodiments have been described centering on the thin film transistor, the effects of the present invention can be obtained in the same manner in the MIS transistor fabricated on a single crystal semiconductor substrate. In addition, with respect to the semiconductor material, in addition to the silicon described in the embodiments, the same effect can be obtained also in the silicon-germanium alloy, silicon carbide, germanium, cadmium selenite, cadmium sulfide, gallium arsenide, and the like. As mentioned above, this invention is industrially advantageous invention.

Claims (31)

(정정) 절연표면을 가진 기판과, 상기 절연표면상에 형성된 액티브 매트릭스 회로와, 상기 절연표면상에 형성되고 상기 액티브 매트릭스 회로를 구동하는 적어도 하나의 드라이버, 및 상기 절연표면상에 제공된 상기 적어도 하나의 드라이버와 접속되고, 메모리, CPU, 입력 포트 및 보정 메모리중 적어도 하나를 포함하는 회로를 포함하는 반도체장치로서, 상기 액티브 매트릭스 회로, 상기 드라이버 및 상기 회로중 적어도 하나가, 적어도 하나의 P채널형 박막트랜지스터와 적어도 하나의 N채널형 박막트랜지스터를 포함하는 반도체장치에 있어서; 상기 P채널형 및 N채널형 박막트랜지스터들 각각이, 기판 위에 형성된 반도체막과, 상기 반도체막내에 형성된 채널영역을 포함하는 제1영역과, 상기 반도체막내에 형성되고, 한가지 도전형을 부여하기 위한 불순물이 도핑되어 있으며, 소스영역 및 드레인영역으로 기능하는 한쌍의 제2영역과, 상기 제1영역과 각각의 상기 제2영역 사이에 각각 배치된 한쌍의 제3영역, 및 게이트 절연막을 사이에 두고 상기 제1영역에 인접하여 배치된 게이트 전극을 포함하며, 상기 N채널형 박막트랜지스터의 상기 제3영역의 폭이 상기 P채널형 박막트랜지스터에서의 것보다 큰 것을 특징으로 하는 반도체장치.A substrate having an (correction) insulating surface, an active matrix circuit formed on the insulating surface, at least one driver formed on the insulating surface and driving the active matrix circuit, and the at least one provided on the insulating surface A semiconductor device connected to a driver of the semiconductor device, the semiconductor device including a circuit including at least one of a memory, a CPU, an input port, and a correction memory, wherein at least one of the active matrix circuit, the driver, and the circuit is at least one P-channel type. A semiconductor device comprising a thin film transistor and at least one N-channel thin film transistor; Each of the P-channel and N-channel thin film transistors is formed with a semiconductor film formed on a substrate, a first region including a channel region formed in the semiconductor film, and formed in the semiconductor film, to impart one conductivity type. A pair of second regions doped with impurities and serving as source and drain regions, a pair of third regions respectively disposed between the first region and each of the second regions, and a gate insulating film And a gate electrode disposed adjacent to the first region, wherein the width of the third region of the N-channel thin film transistor is larger than that of the P-channel thin film transistor. 제1항에 있어서, 상기 게이트 전극이 상기 반도체막 위에 제공된 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 1, wherein said gate electrode is provided on said semiconductor film. 제1항에 있어서, 상기 제3영역들중 하나의 한쪽 경계가 상기 게이트 전극의 가장자리와 일치하는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 1, wherein one boundary of one of the third regions coincides with an edge of the gate electrode. 제1항에 있어서, 상기 제3영역들이 LDD 영역과 오프셋영역 또는 그들중 어느 하나를 포함하는 것을 특징으로 하는 반도체장치.The semiconductor device of claim 1, wherein the third regions include an LDD region, an offset region, or any one of them. 제1항에 있어서, 상기 제3영역들이, 상이한 비저항을 가지는 2개 또는 그 이상의 영역을 포함하는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 1, wherein the third regions include two or more regions having different specific resistances. 제1항에 있어서, 상기 기판이 유리 기판, 단결정 반도체 기판, 무(無)알칼리 유리 기판 및 실리카 기판으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 1, wherein the substrate is selected from the group consisting of a glass substrate, a single crystal semiconductor substrate, an alkali free glass substrate, and a silica substrate. 제1항에 있어서, 상기 반도체막의 재료가 규소-게트마늄 합금, 탄화규소, 게르마늄, 카드뮴 셀렌나이트, 황화카드뮴, 비화갈륨 및 규소로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 1, wherein the material of the semiconductor film is selected from the group consisting of silicon-germanium alloy, silicon carbide, germanium, cadmium selenite, cadmium sulfide, gallium arsenide and silicon. 제1항에 있어서, 상기 게이트 전극의 재료가 알루미늄, 탄탈, 티탄, 규소, 질화탄탈, 질화티탄, 텅스텐 및 몰리브덴으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전기광학장치.The electro-optical device according to claim 1, wherein the material of the gate electrode is selected from the group consisting of aluminum, tantalum, titanium, silicon, tantalum nitride, titanium nitride, tungsten and molybdenum. (2회 정정) 절연표면을 가진 기판과, 상기 절연표면상에 형성된 액티브 매트릭스 회로와, 상기 절연표면상에 형성되고 상기 액티브 매트릭스 회로를 구동하는 적어도 하나의 드라이버, 및 상기 절연표면상에 제공된 상기 적어도 하나의 드라이버와 접속되고, 메모리, CPU, 입력 포트 및 보정 메모리중 적어도 하나를 포함하는 회로를 포함하는 반도체장치로서, 상기 액티브 매트릭스 회로, 상기 드라이버 및 상기 회로중 적어도 하나가, 적어도 하나의 P채널형 박막트랜지스터와 적어도 하나의 N채널형 박막트랜지스터를 포함하는 반도체장치에 있어서; 상기 P채널형 및 N채널형 박막트랜지스터들 각각이, 기판 위에 형성된 반도체막과, 상기 반도체막내에 형성된 채널영역을 포함하는 제1영역과, 상기 반도체막내에 형성되고, 한가지 도전형을 부여하기 위한 불순물이 도핑되어 있는 한쌍의 제2영역과, 상기 제1영역과 각각의 상기 제2영역 사이에 각각 배치된 한쌍의 제3영역, 및 게이트 절연막을 사이에 두고 상기 제1영역에 인접하여 배치된 게이트 전극을 포함하며, 상기 N채널형 박막트랜지스터의 채널 길이가 상기 P채널형 박막트랜지스터에서의 것보다 크고, 상기 N채널형 박막트랜지스터의 상기 제3영역의 폭이 상기 P채널형 박막트랜지스터의 상기 제3영역의 폭보다 큰 것을 특징으로 하는 반도체장치.A substrate having an insulating surface, an active matrix circuit formed on the insulating surface, at least one driver formed on the insulating surface and driving the active matrix circuit, and provided on the insulating surface A semiconductor device connected to at least one driver and comprising a circuit including at least one of a memory, a CPU, an input port, and a correction memory, wherein at least one of the active matrix circuit, the driver, and the circuit is at least one P A semiconductor device comprising a channel type thin film transistor and at least one N channel type thin film transistor; Each of the P-channel and N-channel thin film transistors is formed with a semiconductor film formed on a substrate, a first region including a channel region formed in the semiconductor film, and formed in the semiconductor film, to impart one conductivity type. A pair of second regions doped with an impurity, a pair of third regions respectively disposed between the first region and each of the second regions, and a gate insulating film disposed adjacent to the first region And a gate electrode, wherein a channel length of the N-channel thin film transistor is larger than that of the P-channel thin film transistor, and a width of the third region of the N-channel thin film transistor is greater than that of the P-channel thin film transistor. And larger than the width of the third region. 제9항에 있어서, 상기 게이트 전극이 상기 반도체막 위에 제공된 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 9, wherein said gate electrode is provided on said semiconductor film. 제9항에 있어서, 상기 기판이 유리 기판, 단결정 반도체 기판, 무알칼리 유리 기판 및 실리카 기판으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 9, wherein the substrate is selected from the group consisting of a glass substrate, a single crystal semiconductor substrate, an alkali free glass substrate and a silica substrate. 제9항에 있어서, 상기 반도체막의 재료가 규소-게르마늄 합금, 탄화규소, 게르마늄, 카드뮴 셀렌나이트, 황화카드뮴, 비화갈륨 및 규소로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 9, wherein the material of the semiconductor film is selected from the group consisting of silicon-germanium alloy, silicon carbide, germanium, cadmium selenite, cadmium sulfide, gallium arsenide and silicon. 제9항에 있어서, 상기 게이트 전극의 재료가 알루미늄, 탄탈, 티탄, 규소, 질화탄탈, 질화티탄, 텅스텐 및 몰리브덴으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.10. The semiconductor device according to claim 9, wherein the material of the gate electrode is selected from the group consisting of aluminum, tantalum, titanium, silicon, tantalum nitride, titanium nitride, tungsten and molybdenum. (정정) 절연표면을 가진 기판과, 상기 절연표면상에 형성된 액티브 매트릭스회로와, 상기 절연표면상에 형성되고 상기 액티브 매트릭스 회로를 구동하는 적어도 하나의 드라이버, 및 상기 절연표면상에 제공된 상기 적어도 하나의 드라이버와 접속되고, 메모리, CPU, 입력 포트 및 보정 메모리중 적어도 하나를 포함하는 회로를 포함하는 반도체장치로서, 상기 액티브 매트릭스 회로, 상기 드라이버 및 상기 회로중 적어도 하나가, 적어도 하나의 P채널형 박막트랜지스터와 적어도 하나의 N채널형 박막트랜지스터를 포함하는 반도체장치에 있어서; 상기 P채널형 및 N채널형 박막트랜지스터들 각각이, 기판 위에 형성된 반도체막과, 상기 반도체막내에 형성된 채널영역을 포함하는 제1영역과, 상기 반도체막내에 형성되고, 한가지 도전형을 부여하기 위한 불순물이 도핑되어 있는 한쌍의 제2영역과, 상기 제1영역과 각각의 상기 제2영역 사이에 각각 배치되어 있고, 상기 제2영역에서의 것보다 적은 농도로 상기 불순물로 도프된 LDD 영역을 각각 포함하는 한쌍의 제3영역, 및 게이트 절연막을 사이에 두고 상기 제1영역에 인접하여 배치되고, 가장자리들이 상기 제1영역의 가장자리와 정렬되어 있는 게이트 전극을 포함하며, 상기 N채널형 박막트랜지스터의 상기 LDD 영역의 폭이 상기 P채널형 박막트랜지스터의 것보다 큰 것을 특징으로 하는 반도체장치.(Correction) a substrate having an insulating surface, an active matrix circuit formed on the insulating surface, at least one driver formed on the insulating surface and driving the active matrix circuit, and the at least one provided on the insulating surface A semiconductor device connected to a driver of the semiconductor device, the semiconductor device including a circuit including at least one of a memory, a CPU, an input port, and a correction memory, wherein at least one of the active matrix circuit, the driver, and the circuit is at least one P-channel type. A semiconductor device comprising a thin film transistor and at least one N-channel thin film transistor; Each of the P-channel and N-channel thin film transistors is formed with a semiconductor film formed on a substrate, a first region including a channel region formed in the semiconductor film, and formed in the semiconductor film, to impart one conductivity type. A pair of second regions doped with impurities, and LDD regions each disposed between the first region and each of the second regions and doped with the impurities at a concentration less than that in the second region, respectively. A pair of third regions including a gate electrode and a gate electrode disposed adjacent to the first region with a gate insulating layer interposed therebetween, and the edges of which are aligned with the edge of the first region. And the width of the LDD region is larger than that of the P-channel thin film transistor. 제14항에 있어서, 상기 게이트 전극이 상기 반도체막 위에 제공된 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 14, wherein said gate electrode is provided on said semiconductor film. 제14항에 있어서, 상기 기판이 유리 기판, 단결정 반도체 기판, 무알칼리 유리 기판 및 실리카 기판으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.The semiconductor device according to claim 14, wherein said substrate is selected from the group consisting of a glass substrate, a single crystal semiconductor substrate, an alkali free glass substrate and a silica substrate. 제14항에 있어서, 상기 반도체막의 재료가 규소-게르마늄 합금, 탄화규소, 게르마늄, 카드뮴 셀렌나이트, 황화카드뮴, 비화갈륨 및 규소로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.15. The semiconductor device according to claim 14, wherein the material of the semiconductor film is selected from the group consisting of silicon-germanium alloy, silicon carbide, germanium, cadmium selenite, cadmium sulfide, gallium arsenide and silicon. 제14항에 있어서, 상기 게이트 전극의 재료가 알루미늄, 탄탈, 티탄, 규소, 질화탄탈, 질화티탄, 텅스텐 및 몰리브덴으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.15. A semiconductor device according to claim 14, wherein the material of the gate electrode is selected from the group consisting of aluminum, tantalum, titanium, silicon, tantalum nitride, titanium nitride, tungsten and molybdenum. (2회 정정) 절연표면을 가진 기판과, 상기 절연표면상에 형성된 액티브 매트릭스 회로와, 상기 절연표면상에 형성되고 상기 액티브 매트릭스 회로를 구동하는 적어도 하나의 드라이버, 및 상기 절연표면상에 제공된 상기 적어도 하나의 드라이버와 접속되고, 메모리, CPU, 입력 포트 및 보정 메모리중 적어도 하나를 포함하는 회로를 포함하는 반도체장치로서, 상기 액티브 매트릭스 회로, 상기 드라이버 및 상기 회로중 적어도 하나가, 적어도 하나의 P채널형 박막트랜지스터와 적어도 하나의 N채널형 박막트랜지스터를 포함하는 반도체장치에 있어서; 상기 P채널형 및 N채널형 박막트랜지스터들 각각이, 기판 위에 형성된 반도체막과, 상기 반도체막내에 형성된 채널영역을 포함하는 제1영역과, 상기 반도체막내에 형성되고, 한가지 도전형을 부여하기 위한 불순물이 도핑되어 있는 한쌍의 제2영역과, 상기 제1영역과 각각의 상기 제2영역 사이에 각각 배치되어 있고, 상기 제2영역에서의 것보다 적은 농도로 상기 불순물로 도프된 LDD 영역을 각각 포함하는 한쌍의 제3영역, 및 게이트 절연막을 사이에 두고 상기 제1영역에 인접하여 배치된 게이트 전극을 포함하며, 상기 P채널형 박막트랜지스터의 상기 LDD 영역의 폭이 0~0.2㎛이고, 상기 N채널형 박막트랜지스터의 상기 LDD 영역의 폭이 상기 P채널형 박막트랜지스터의 상기 LDD 영역의 상기 폭보다 큰 것을 특징으로 하는 반도체장치.A substrate having an insulating surface, an active matrix circuit formed on the insulating surface, at least one driver formed on the insulating surface and driving the active matrix circuit, and provided on the insulating surface A semiconductor device connected to at least one driver and comprising a circuit including at least one of a memory, a CPU, an input port, and a correction memory, wherein at least one of the active matrix circuit, the driver, and the circuit is at least one P A semiconductor device comprising a channel type thin film transistor and at least one N channel type thin film transistor; Each of the P-channel and N-channel thin film transistors is formed with a semiconductor film formed on a substrate, a first region including a channel region formed in the semiconductor film, and formed in the semiconductor film, to impart one conductivity type. A pair of second regions doped with impurities, and LDD regions each disposed between the first region and each of the second regions and doped with the impurities at a concentration less than that in the second region, respectively. And a pair of third regions including a gate electrode and a gate electrode disposed adjacent to the first region with a gate insulating layer interposed therebetween, wherein the LDD region of the P-channel thin film transistor has a width of 0 to 0.2 μm. And the width of the LDD region of the N-channel thin film transistor is larger than the width of the LDD region of the P-channel thin film transistor. 제19항에 있어서, 상기 게이트 전극이 상기 반도체막 위에 제공된 것을 특징으로 하는 반도체장치.20. The semiconductor device according to claim 19, wherein said gate electrode is provided on said semiconductor film. 제19항에 있어서, 상기 기판이 유리 기판, 단결정 반도체 기판, 무알칼리 유리 기판 및 실리카 기판으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.20. The semiconductor device according to claim 19, wherein the substrate is selected from the group consisting of a glass substrate, a single crystal semiconductor substrate, an alkali free glass substrate and a silica substrate. 제19항에 있어서, 상기 반도체막의 재료가 규소-게르마늄 합금, 탄화규소, 게르마늄, 카드뮴 셀렌나이트, 황화카드뮴, 비화갈륨 및 규소로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.20. The semiconductor device according to claim 19, wherein the material of the semiconductor film is selected from the group consisting of silicon-germanium alloys, silicon carbide, germanium, cadmium selenite, cadmium sulfide, gallium arsenide and silicon. 제19항에 있어서, 상기 게이트 전극의 재료가 알루미늄, 탄탈, 티탄, 규소, 질환탄탈, 질화티탄, 텅스텐 및 몰리브덴으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체장치.20. The semiconductor device according to claim 19, wherein the material of the gate electrode is selected from the group consisting of aluminum, tantalum, titanium, silicon, tantalum nitride, titanium nitride, tungsten, and molybdenum. (삭제)(delete) (삭제)(delete) (삭제)(delete) (삭제)(delete) (삭제)(delete) (삭제)(delete) (삭제)(delete) (삭제)(delete)
KR1019980001816A 1993-01-18 1998-01-22 Method for fabricating mis semiconductor device KR0185822B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP93-23287 1993-01-18
JP2328793 1993-01-18
JP93-323117 1993-11-29
JP32311793A JP3437863B2 (en) 1993-01-18 1993-11-29 Method for manufacturing MIS type semiconductor device
KR1019940001012A KR0145458B1 (en) 1993-01-18 1994-01-18 Fabrication method of mis semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019940001012A Division KR0145458B1 (en) 1993-01-18 1994-01-18 Fabrication method of mis semiconductor device

Publications (1)

Publication Number Publication Date
KR0185822B1 true KR0185822B1 (en) 1999-04-15

Family

ID=27284195

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019980001816A KR0185822B1 (en) 1993-01-18 1998-01-22 Method for fabricating mis semiconductor device
KR1019980001815A KR0185821B1 (en) 1993-01-18 1998-01-22 Method for fabricating mis semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1019980001815A KR0185821B1 (en) 1993-01-18 1998-01-22 Method for fabricating mis semiconductor device

Country Status (1)

Country Link
KR (2) KR0185822B1 (en)

Also Published As

Publication number Publication date
KR0185821B1 (en) 1999-04-15

Similar Documents

Publication Publication Date Title
KR0145458B1 (en) Fabrication method of mis semiconductor device
KR100320789B1 (en) A semiconductor device
US5620905A (en) Method of fabricating thin film semiconductor integrated circuit
US6417057B1 (en) Method of forming a semiconductor device having a TFT utilizing optical annealing before a gate electrode is formed
US7602020B2 (en) Semiconductor device and method for forming the same
US5576231A (en) Process for fabricating an insulated gate field effect transistor with an anodic oxidized gate electrode
JPH07335906A (en) Thin film semiconductor device and fabrication thereof
JP3367618B2 (en) Thin film transistor and manufacturing method thereof
JPH0832081A (en) Thin film semiconductor device
JPH0818055A (en) Semiconductor integrated circuit and its manufacture
JP3695573B2 (en) Method for manufacturing semiconductor device
KR0185822B1 (en) Method for fabricating mis semiconductor device
JP3431653B2 (en) Method for manufacturing MIS type semiconductor device
JP3695572B2 (en) Method for manufacturing semiconductor device
JP3117872B2 (en) Manufacturing method of thin film semiconductor integrated circuit
JP4197270B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0832069A (en) Thin film semiconductor device
JP3963663B2 (en) Semiconductor device
JP2000058858A (en) Mis semiconductor device
JP2000068522A (en) Mis semiconductor device
JP2001203363A (en) Semiconductor device
JP2004235655A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 16

EXPY Expiration of term