KR0170719B1 - Metal wire film forming method - Google Patents

Metal wire film forming method Download PDF

Info

Publication number
KR0170719B1
KR0170719B1 KR1019950062168A KR19950062168A KR0170719B1 KR 0170719 B1 KR0170719 B1 KR 0170719B1 KR 1019950062168 A KR1019950062168 A KR 1019950062168A KR 19950062168 A KR19950062168 A KR 19950062168A KR 0170719 B1 KR0170719 B1 KR 0170719B1
Authority
KR
South Korea
Prior art keywords
tungsten nitride
thin film
forming
gas
tungsten
Prior art date
Application number
KR1019950062168A
Other languages
Korean (ko)
Other versions
KR970053552A (en
Inventor
박병률
이상인
하정민
고대홍
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019950062168A priority Critical patent/KR0170719B1/en
Publication of KR970053552A publication Critical patent/KR970053552A/en
Application granted granted Critical
Publication of KR0170719B1 publication Critical patent/KR0170719B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 금속배선막 형성방법에 관한 것으로, 장벽금속으로서 텅스텐 질화박막을 사용하는 금속배선막 형성방법에 있어서 텅스텐 질화박막의 형성을 위한 반응가스 중에서 질소 공급원으로 (CH3)HNNH2혹은 (CH3)3CH2N 가스를 사용하는 것을 특징으로 한다. 따라서 본 발명은 500℃ 이하의 증착온도에서도 F원자가 적게 함유된 우수한 텅스텐 질화박막을 얻을 수 있었다.The present invention relates to a method for forming a metal wiring film, wherein the method for forming a metal wiring film using a tungsten nitride film as a barrier metal is (CH 3 ) HNNH 2 or (CH) as a nitrogen source in a reaction gas for forming a tungsten nitride film. 3 ) It is characterized by using a 3 CH 2 N gas. Therefore, the present invention was able to obtain an excellent tungsten nitride film containing less F atoms even at the deposition temperature of 500 ℃ or less.

Description

금속배선막 형성방법Metal wiring film formation method

본 발명은 반도체장치의 금속배선(metallization) 형성방법에 관한 것으로, 특히 장벽금속(barrier metal)으로서 사용되는 텅스텐 질화박막의 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming metallization of semiconductor devices, and more particularly to a method of forming a tungsten nitride film used as a barrier metal.

반도체 집적회로의 집적도가 증가함에 따라 금속배선의 폭이 줄어들고 콘택트 홀(contact hole)부에서는 횡방향과 같은 비율로 종방향의 기하학적 사이즈(size)를 축소하기가 어려워져서 어스펙트비(aspect ratio)가 계속 증가하고 있다.As the degree of integration of semiconductor integrated circuits increases, the width of the metal wiring decreases, and it is difficult to reduce the geometrical size in the longitudinal direction at the same ratio as the transverse direction in the contact hole. Continues to increase.

집적회로 소자의 제조시에 사용되고 있는 종래의 금속배선으로는 알루미늄(Al)이나 다결정실리콘 박막이 있는데, 그중 알루미늄의 경우에는 물리적인 증착방법을 통하여 박막을 형성시킴에 따라 스텝 커버리지(step coverage) 및 일렉트로마이그레이션(electromigration) 특성이 나쁘고 실리콘과의 합금시 접합 스파이크(junction spike)가 발생하여 반도체소자의 수율 및 신뢰도를 낮추는 문제점이 있다. 다결정실리콘 박막의 경우에는 알루미늄에서 나타나는 상기 문제점이 발견되지 않아 재현성 및 신뢰도 측면에서는 우수한 특성을 보이지만 비저항이 높아서 신호처리속도 및 집적도의 향상이 어렵다는 단점이 있다.Conventional metal wirings used in the manufacture of integrated circuit devices include aluminum (Al) or polycrystalline silicon thin films. Among them, aluminum has a step coverage and step coverage as the thin film is formed through a physical vapor deposition method. The electromigration characteristics are poor, and a junction spike occurs when alloying with silicon, thereby lowering the yield and reliability of the semiconductor device. In the case of the polysilicon thin film, the above-mentioned problems appearing in aluminum are not found. However, the polysilicon thin film has excellent characteristics in terms of reproducibility and reliability, but has a disadvantage in that it is difficult to improve signal processing speed and integration due to high specific resistance.

한편, 최근 개발된 금속배선 기술로서 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 텅스텐(W) 박막을 금속배선으로서 증착시키는 기술이 알려지고 있는데, 텅스텐 박막은 융점(3370℃)이 매우 높기 때문에 열적 안정도가 높고 비저항이 알루미늄과 비슷하며 일렉트로마이그레이션 특성이 우수할 뿐만 아니라 CVD를 이용하여 증착함으로써 스텝 커버리지 및 처리율(throughput)이 우수하다는 장점이 있따.On the other hand, a technique for depositing a tungsten (W) thin film as a metal wiring using LPCVD (Low Pressure Chemical Vapor Deposition) as a recently developed metal wiring technology is known, and since the tungsten thin film has a very high melting point (3370 ° C.), thermal It has high stability, high resistivity similar to aluminum, excellent electromigration characteristics, and excellent step coverage and throughput by deposition using CVD.

그런데, 이와같이 CVD를 이용하여 텅스텐 박막을 증착시킬 경우 반응기체인 WF6의 환원반응중에 발생하는 불소(F)원자들에 의해서 실리콘기판, 산화막 및 산화막/실리콘 계면에서 침식이 발생함으로써 텅스텐이 산화막/실리콘 계면으로 파고 들어가거나 실리콘기판 내부로 침투하게 되어, 결과적으로 누설전류가 높아지고 접합의 단락현상이 발생하며, 절연파괴 전압이 낮아지게 되는 등의 여러가지 문제점이 생기게 된다.However, in the case of depositing a tungsten thin film using CVD as described above, tungsten oxide / silicon is formed by erosion at the silicon substrate, the oxide film, and the oxide / silicon interface due to the fluorine (F) atoms generated during the reduction reaction of the reactor WF 6 . Digging into the interface or penetrating into the silicon substrate may result in various problems such as high leakage current, short circuit of the junction, and low breakdown voltage.

상기와 같은 F의 침식으로 인한 상기 문제점을 해소하기 위한 방편으로, 1986년에 발표된 공지문헌(Silicon Processing for The VLSI Era, ed., S. Wolf, R. N. Tauber, Lattice Press, Sunbeach, pp.556, 1986)을 참조하면 F원자의 침식을 감소시키는 성질을 갖는 질소를 함유한 텅스텐 박막을 적절히 이용하게 되면 텅스텐 증착시 발생되는 실리콘 및 실리콘산화막의 침식을 방지할 수 있을 것이라는 점에 착안하여 상기 텅스텐 박막의 형성전에 장벽금속으로서 텅스텐 질화박막을 실리콘기판상에 먼저 형성하는 방법이 제안되었다.As a method for solving the above problems due to the erosion of F as described above, published in 1986 (Silicon Processing for The VLSI Era, ed., S. Wolf, RN Tauber, Lattice Press, Sunbeach, pp. 556). , 1986), the tungsten thin film containing nitrogen having the property of reducing the erosion of F atoms can be properly used to prevent the erosion of silicon and silicon oxide film generated during tungsten deposition. A method of first forming a tungsten nitride film as a barrier metal on a silicon substrate before forming a thin film has been proposed.

이러한 텅스텐 질화박막의 형성방법은 다음의 몇가지로 나눌 수 있다.The method of forming such a tungsten nitride thin film can be divided into the followings.

1) Sputtered W-N diffusion barriers(H.P. Kattelus, E. Kolawa, K. Affolter, and M-A. Nicloet, J. Vac. Sci. Technol. A3(6), Nov/Dec 1985, pp.2246∼2254)로 발표된 것으로, 질소(또는 질소와 아르곤) 분위기에서 텅스텐 타켓(target)을 스퍼더링(suttering)하여 텅스텐 질화박막을 형성하는 방법이 있고,1) Sputtered WN diffusion barriers (HP Kattelus, E. Kolawa, K. Affolter, and MA. Nicloet, J. Vac. Sci. Technol.A3 (6), Nov / Dec 1985, pp. 2246-2254). As a method, there is a method of forming a tungsten nitride thin film by sputtering a tungsten target in a nitrogen (or nitrogen and argon) atmosphere,

2) Characterization of low pressure chemically vapor-deposited tungsten nitride films(Steven D. Marcus and R. F. Foster, Thin Solid Films. 236(1993), pp.330∼333)로 발표된 것으로, WF6-NH3(또는 WF6-NH3-H2)의 가스 반응계를 사용하여 증착하는 LPCVD에 의한 방법이 있으며,2) Characterization of low pressure chemically vapor-deposited tungsten nitride films (Steven D. Marcus and RF Foster, Thin Solid Films. 236 (1993), pp. 330-333), WF 6 -NH 3 (or WF 6 -NH 3 -H 2 ) by the LPCVD method using a gas reaction system of the deposition,

3) 실리콘 반도체소자의 금속배선 형성용 텅스텐 질화박막 증착방법(출원번호 제91-12125호)으로 출원된 것으로, WF6-NH3-H2의 가스 반응계를 사용하는 플라즈마 기상화학증착법(PECVD: Plasma Enhanced CVD)이 있다.3) A tungsten nitride thin film deposition method (Application No. 91-12125) for forming metal wirings of a silicon semiconductor device, and a plasma vapor deposition method using a gas reaction system of WF 6 -NH 3 -H 2 (PECVD: Plasma Enhanced CVD).

그러나, 상기 스퍼터링에 의한 방법은 이른바 그림자 효과(shadow effect) 때문에 어스펙트 비가 높은 콘택트 홀에서는 스텝 커버리지가 불량하거나 보이드(void)와 같은 결함이 발생하며,이에 따라 금속배선들간의 단선등이 유발되어 집적회로의 신뢰성이 떨어지게 된다.However, the sputtering method has poor step coverage or defects such as voids in contact holes having a high aspect ratio due to a so-called shadow effect, which causes disconnection between metal wires. The reliability of the integrated circuit is reduced.

또한, 상기 LPCVD에 의한 방법은 스텝 커버리지 면에서는 우수하나 F원자의 함유량(low fluorine content)을 낮추기 위해서는 625℃ 정도 이상의 고온에서 증착해야 하는 문제점이 있다.In addition, the LPCVD method is excellent in step coverage, but has a problem of depositing at a high temperature of about 625 ° C. or more in order to lower the low fluorine content.

또한, 상기 PECVD에 의한 방법은 텅스텐 질화박막의 비저항이 스퍼터링이나 CVD에 의한 방법에 비해 낮고 증착온도도 낮출 수 있는 장점이 있지만 스텝 커버리지 면에서 우수하지 못한 단점이 있다.In addition, the PECVD method has the advantage that the specific resistance of the tungsten nitride thin film is lower than that of the sputtering or CVD method and the deposition temperature can be lowered, but it is not excellent in step coverage.

한편, 상기 실리콘기판상에 먼저 형성되는 텅스텐 질화박막은 후속되는 공정인 텅스텐 박막의 증착시에 이 텅스텐 박막의 본래 기능에 영향을 미치지 않아야 한다. 그러나, 질소를 함유하는 박막의 대부분은 질화박막으로 되기 때문에 단순히 질소를 함유한 박막을 사전에 도포하여서는 저항 텅스텐 금속배선의 형성이 불가능하다는 문제점이 있다.On the other hand, the tungsten nitride thin film first formed on the silicon substrate should not affect the original function of the tungsten thin film in the subsequent deposition of the tungsten thin film. However, since most of the thin film containing nitrogen becomes a nitride film, there is a problem in that resistance tungsten metal wiring cannot be formed by simply applying a thin film containing nitrogen in advance.

따라서 본 발명의 목적은 상기한 바와 같은 종래기술의 문제점을 해결하기 위하여 텅스텐의 공급원인 WF6가스와 질소의 공급원으로 (CH3)HNNH2혹은 (CH3)3CH2N 가스를 사용함으로써 우수한 성질의 텅스텐 질화박막을 형성시킬 수 있는 금속배선 형성용 텅스텐 질화박막의 형성방법을 제공하는데 있다.Therefore, the object of the present invention is excellent by using (CH 3 ) HNNH 2 or (CH 3 ) 3 CH 2 N gas as the source of WF 6 gas and nitrogen as a source of tungsten to solve the problems of the prior art as described above. The present invention provides a method of forming a tungsten nitride thin film for forming a metal wiring capable of forming a tungsten nitride thin film of a nature.

상기한 목적을 달성하기 위하여 본 발명은, 장벽금속으로서 텅스텐 질화박막을 사용하는 금속배선막 형성방법에 있어서 상기 텅스텐 질화박막의 형성을 위한 반응가스 중에서 질소 공급원으로 (CH3)HNNH2혹은 (CH3)3CH2N 가스를 사용하는 것을 특징으로 한다.In order to achieve the above object, the present invention, in the method for forming a metal wiring film using a tungsten nitride film as a barrier metal (CH 3 ) HNNH 2 or (CH) as a nitrogen source in the reaction gas for the formation of the tungsten nitride film 3 ) It is characterized by using a 3 CH 2 N gas.

이하, 본 발명에 대해서 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 의한 텅스텐 질화박막의 형성방법은, 먼저 반응기체인 WF6와 메틸히드라진(Methyl-Hydrazine(MH):(CH3)HNNH2) 가스를 유량계를 경유하여 CVD 장치의 반응기 내부로 주입시킨다. 이때, 환원가스로 암모니아(NH3)와 수소(H2)를 넣을 수도 있으며 반응기내의 증착압력은 0.05∼1.0Torr의 범위내에서 일정하게 유지하게 하는 한편, 증착온도는 200℃∼700℃ 범위로 유지하여 100Å 이상의 두께를 갖는 텅스텐 질화박막을 형성시켰다. 이때, 텅스텐 공급원인 상기 WF6가스 대신에 텅스텐 화합물 예컨대 WCl6, W(CO)6등을 반응가스로 사용하거나, 질소 공급원인 상기 (CH3)HNNH2가스 대신에 털트부틸아민(Tert-Butyl-Amine(TBA):(CH3)3CH2N) 가스를 사용할 수 있다.In the method for forming a tungsten nitride thin film according to the present invention, first, a reactor body, WF 6 and methyl hydrazine (MH) :( CH 3 ) HNNH 2 , are injected into a reactor of a CVD apparatus via a flowmeter. At this time, ammonia (NH 3 ) and hydrogen (H 2 ) may be added as the reducing gas, and the deposition pressure in the reactor may be kept constant within the range of 0.05 to 1.0 Torr, while the deposition temperature is in the range of 200 ° C to 700 ° C. It was held to form a tungsten nitride film having a thickness of 100 GPa or more. At this time, a tungsten compound such as WCl 6 , W (CO) 6 , or the like is used as a reaction gas instead of the WF 6 gas, which is a tungsten source, or tert-butyl instead of the (CH 3 ) HNNH 2 gas, which is a nitrogen source. -Amine (TBA) :( CH 3 ) 3 CH 2 N) gas can be used.

여기서, 상술한 바와 같은 WF6-MH 반응계를 이용하는 경우에는 MH/WF6의 분압조성비를 0.1∼100 범위에서, 환원가스로 NH3를 함께 사용하는 WF6-NH3-MH 반응계 경우는 NH3및 WF6총분압비에 대해 MH를 0∼100배 범위에서, 환원가스로 NH3와 H2를 함께 사용하는 WF6-NH3-MH-H2반응계 경우는 WF6-NH3-MH 반응계의 총분압비에 대해 H2를 0∼100배 범위에서 상술한 증착조건으로 텅스텐 질화박막을 형성할 수 있다.Here, in the case of using the WF 6 -MH reaction system as described above, in the case of the WF 6 -NH 3 -MH reaction system using NH 3 as the reducing gas in the partial pressure composition ratio of MH / WF 6 in the range of 0.1 to 100, NH 3 WF 6 and the total partial pressure of the MH to the 0 to 100-fold in the ratio range, WF 6 -NH 3 if -MH-H 2 reaction system using the NH 3 and H 2 with the reducing gas is WF 6 -NH 3 -MH reaction system of the H 2 partial pressure ratio relative to the total in the above-described vapor deposition conditions in the range 0 to 100 times to form the tungsten nitride film.

일반적으로 불소나 염소가 많이 함유된 박막이 게이트 라인(gate line)으로 사용되는 경우에는 트랜지스터의 특성이 저하되며, 배선구조에서 사용되는 경우에는 실리콘과의 오믹 콘택(ohmic contact) 특성에 악영향을 미치는 문제점이 발생되는데, 본 발명에 의해 (CH3)HNNH2혹은 (CH3)3CH2N를 이용하여 형성된 텅스텐 질화박막을 이용함으로써 상기 문제가 해결 가능하며, 또한 우수한 스텝 커버리지를 가지기 때문에 어스펙트 비가 큰 고집적회로에서도 유리한 장벽금속으로서의 장점을 갖고 있다.In general, when the fluorine or chlorine-containing thin film is used as a gate line, the characteristics of the transistor are degraded, and when used in a wiring structure, it adversely affects ohmic contact properties with silicon. Problems arise, but the above problems can be solved by using a tungsten nitride thin film formed by using (CH 3 ) HNNH 2 or (CH 3 ) 3 CH 2 N according to the present invention. Even in high-integrated circuits with large ratios, they have advantages as an advantageous barrier metal.

이상에서 설명한 바와 같이 본 발명에 의한 텅스텐 질화박막의 형성방법은, 질소의 공급원으로 종래 NH3가스만을 사용하지 않고 (CH3)HNNH2혹은 (CH3)3CH2N을 사용하는 방법이다. 종래 텅스텐 질화박막 증착공정에서 텅스텐의 공급원으로 사용된 WF6가스의 미반응된 다량의 F원자가 박막내에 잔류하고, 질소의 공급원으로 NH3가스만을 사용(WF6-NH3반응계)하는 또 다른 종래의 방법의 경우에는 검출 한계(detection limit) 이하의 적은 F의 함유량을 갖는 텅스텐 질화박막을 얻기 위해서 적어도 625℃ 이상의 증착온도가 필요하였는데 반해, (CH3)HNNH2혹은 (CH3)3CH2N를 사용하는 본 발명의 경우에는 500℃ 이하의 증착온도에서도 F원자가 적게 함유된 우수한 텅스텐 질화박막을 얻을 수 있었다.As described above, the method of forming the tungsten nitride film according to the present invention is a method of using (CH 3 ) HNNH 2 or (CH 3 ) 3 CH 2 N without using conventional NH 3 gas as a source of nitrogen. In the conventional tungsten nitride thin film deposition process, a large amount of unreacted F atoms of WF 6 gas used as a source of tungsten remain in the thin film, and another conventional method using only NH 3 gas as a source of nitrogen (WF 6 -NH 3 reaction system) In the case of the method of (CH 3 ) HNNH 2 or (CH 3 ) 3 CH 2 , a deposition temperature of at least 625 ° C. was required to obtain a tungsten nitride film having a small F content below the detection limit. In the case of the present invention using N, an excellent tungsten nitride thin film containing less F atoms was obtained even at a deposition temperature of 500 ° C. or lower.

본 발명은 상기 실시예에 한정되지 않으며, 많은 변형이 본 발명의 기술적 사상내에서 당분야에서 통상의 지식을 가진 자에 의하여 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by one of ordinary skill in the art within the technical idea of the present invention.

Claims (4)

장벽금속으로서 텅스텐 질화박막을 사용하는 금속배선막 형성방법에 있어서,상기 텅스텐 질화박막의 형성을 위한 반응가스 중에서 질소 공급원으로 (CH3)HNNH2혹은 (CH3)3CH2N 가스를 사용하는 것을 특징으로 하는 금속배선막 형성방법.In the metal wiring film forming method using a tungsten nitride thin film as a barrier metal, using (CH 3 ) HNNH 2 or (CH 3 ) 3 CH 2 N gas as a nitrogen source in the reaction gas for forming the tungsten nitride thin film Metal wiring film forming method, characterized in that. 제1항에 있어서, 상기 텅스텐 질화박막은 CVD법 혹은 PECVD법으로 이루어지는 것을 특징으로 하는 금속배선막 형성방법.The method of claim 1, wherein the tungsten nitride film is formed by a CVD method or a PECVD method. (CH3)HNNH2/WF6의 압력 분압조성비를 0.1∼100범위로 하고, 증착온도는 200℃∼700℃ 범위로 하며, 반응기내의 증착압력은 0.05∼1.0 Torr 범위내에서 CVD법을 이용하여 텅스텐 질화박막을 형성시키는 것을 특징으로 하는 금속배선막 형성방법.The pressure partial pressure composition ratio of (CH 3 ) HNNH 2 / WF 6 is in the range of 0.1 to 100, the deposition temperature is in the range of 200 ° C to 700 ° C, and the deposition pressure in the reactor is in the range of 0.05 to 1.0 Torr by using the CVD method. A metal wiring film forming method, comprising forming a tungsten nitride thin film. 제3항에 있어서, 상기 반응기 내부에 환원가스로 NH3와 H2를 넣는 것을 특징으로 하는 금속배선막 형성방법.The method of claim 3, wherein NH 3 and H 2 are introduced into the reactor as a reducing gas.
KR1019950062168A 1995-12-28 1995-12-28 Metal wire film forming method KR0170719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950062168A KR0170719B1 (en) 1995-12-28 1995-12-28 Metal wire film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950062168A KR0170719B1 (en) 1995-12-28 1995-12-28 Metal wire film forming method

Publications (2)

Publication Number Publication Date
KR970053552A KR970053552A (en) 1997-07-31
KR0170719B1 true KR0170719B1 (en) 1999-03-30

Family

ID=19446135

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950062168A KR0170719B1 (en) 1995-12-28 1995-12-28 Metal wire film forming method

Country Status (1)

Country Link
KR (1) KR0170719B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588865B2 (en) 2004-12-02 2009-09-15 Hynix Semiconductor Inc. Photo mask and method for manufacturing patterns using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588865B2 (en) 2004-12-02 2009-09-15 Hynix Semiconductor Inc. Photo mask and method for manufacturing patterns using the same

Also Published As

Publication number Publication date
KR970053552A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
KR930011538B1 (en) Depositing method of wn film for metalization of semiconductor device
US6284316B1 (en) Chemical vapor deposition of titanium
US5998870A (en) Wiring structure of semiconductor device and method for manufacturing the same
US5242860A (en) Method for the formation of tin barrier layer with preferential (111) crystallographic orientation
US6962873B1 (en) Nitridation of electrolessly deposited cobalt
KR100274603B1 (en) Method and apparatus for fabricating semiconductor device
KR102036245B1 (en) Doped tantalum nitride for copper barrier applications
US7084504B2 (en) Boron incorporated diffusion barrier material
US7560816B2 (en) Small grain size, conformal aluminum interconnects and method for their formation
EP0898308A2 (en) A method for forming a metal interconnection in a semiconductor device
JPH0773102B2 (en) Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers.
JP3221381B2 (en) Method for manufacturing semiconductor device
KR0170719B1 (en) Metal wire film forming method
US6433434B1 (en) Apparatus having a titanium alloy layer
US20090200672A1 (en) Method for manufacturing semiconductor device
KR100477813B1 (en) Tungsten Metal Wiring Formation Method of Semiconductor Device
KR100215540B1 (en) Method for forming metal film in semiconductor device
KR940008374B1 (en) Metal wiring method of semiconductor device
US6562708B1 (en) Method for incorporating silicon into CVD metal films
KR0175016B1 (en) Selective tungsten nitride thin film formation method and metallization method using the same
KR940011729B1 (en) Forming mehtod of cvd tungsten film
KR20030059489A (en) Method of manufacturing semiconductor device having diffusion barrier layer in metal interconnection
KR100321738B1 (en) A method for forming metal wire in semicondutor device
KR0141966B1 (en) Method of forming in metal thin film fransistor
KR100617048B1 (en) method for forming contact of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060928

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee