JPWO2019088264A1 - 管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車 - Google Patents

管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車 Download PDF

Info

Publication number
JPWO2019088264A1
JPWO2019088264A1 JP2019550503A JP2019550503A JPWO2019088264A1 JP WO2019088264 A1 JPWO2019088264 A1 JP WO2019088264A1 JP 2019550503 A JP2019550503 A JP 2019550503A JP 2019550503 A JP2019550503 A JP 2019550503A JP WO2019088264 A1 JPWO2019088264 A1 JP WO2019088264A1
Authority
JP
Japan
Prior art keywords
power storage
voltage
storage element
cause
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019550503A
Other languages
English (en)
Other versions
JP6977779B2 (ja
Inventor
和田 直也
直也 和田
林 英司
英司 林
将司 中村
将司 中村
祐樹 松田
祐樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Publication of JPWO2019088264A1 publication Critical patent/JPWO2019088264A1/ja
Application granted granted Critical
Publication of JP6977779B2 publication Critical patent/JP6977779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

蓄電素子の管理装置50であって、前記蓄電素子B1〜B4への電力供給が停止した後、前記蓄電素子B1〜B4が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後に計測された前記蓄電素子B1〜B4の計測データに基づいて、前記蓄電素子B1〜B4の電圧が低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する原因解析部51と、を備える。

Description

本発明は、蓄電素子の電圧又は電圧と相関性のある物理量が低下した原因を解析する技術に関する。
リチウムイオン二次電池等の蓄電素子は、電池の低電圧異常を検出した場合、リレー等の保護装置を用いて電池から流れる電流を遮断することで、電池が過放電になることを防いでいる。保護装置の動作後も長期間、充電が行われなければ、電池の自己放電や管理装置の暗電流により、電池が過放電に至ることがある。下記の特許文献1には、エンジン停止中のバッテリの最小電圧から過放電を判断し、その原因は、走行頻度や走行中のバッテリの平均電圧などから判断する点について、記載がある。
特許5034859号公報
特許文献1では、走行頻度や走行中のバッテリの平均電圧などから、過放電の原因を判断している。特許文献1では、過放電の原因を判断できるケースが、車両走行時のバッテリのデータが取得できている場合に制限され、車両が長期放置されている場合など、車両走行時のデータが取得できていない場合には、過放電の原因を解析することが難しい。
本発明は、車両が長期放置されている場合など、車両走行時の蓄電素子のデータが取得できていない場合でも、蓄電素子が所定電圧まで低下した原因や電圧と相関性のある物理量が所定値まで低下した原因を解析する、ことを課題とする。
蓄電素子の管理装置であって、前記蓄電素子への電力供給が停止した後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後に計測された前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する原因解析部を備える。
これらの技術は、蓄電素子の電圧又は電圧と相関性のある物理量が低下した原因の解析方法に適用することが出来る。蓄電素子と計測部と電流遮断装置と管理装置とを含む蓄電装置、蓄電装置を搭載した車両に適用することが出来る。蓄電素子の電圧又は電圧と相関性のある物理量が低下した原因を解析するプログラム、及びそれらプログラムを記録した記録媒体等の種々の態様で実現することができる。
本構成では、車両走行時の蓄電素子のデータが取得できていない場合でも、蓄電素子の電圧が所定電圧まで低下した原因や、電圧と相関性のある物理量が所定値まで低下した原因を解析できる。
自動車の側面図 バッテリの斜視図 バッテリの分解斜視図 実施形態1におけるバッテリの電気的構成を示すブロック図 エンジン停止後の、リチウムイオン二次電池の電圧の変化を示すグラフ エンジン停止後のバッテリの監視処理の流れを示すフローチャート リチウムイオン二次電池のSOC−OCV特性を示すグラフ 保護動作が実行された原因を解析するためのデータ処理を示す図 保護動作が実行された原因を解析する解析フローの流れを示すフローチャート 実施形態2におけるバッテリの電気的構成を示すブロック図 電圧計測線の詳細図 電圧計測線が断線した時の電流ループを示す図 電圧計測線が断線した時の電流ループを示す図 保護動作が実行された原因を解析する解析フローの流れを示すフローチャート 実施形態3における電気自動車の電気的構成を示すブロック図
蓄電素子の管理装置であって、前記蓄電素子への電力供給が停止した後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後に計測された前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する原因解析部を備える。蓄電素子の計測データは、電圧や電流など蓄電素子の状態の計測値である。状態の計測値は、蓄電素子の温度を含んでいてもよい。蓄電素子の計測データは、状態に計測値に加え、蓄電素子の環境温度など、蓄電素子の環境の計測値を含んでいてもよい。
この構成では、蓄電素子への電力供給が停止し、充電がストップしている期間の計測データを解析することで、蓄電素子が所定電圧まで低下した原因や、電圧と相関性のある物理量が所定値まで低下した原因を解析できる。この構成では、車両走行時の蓄電素子のデータが取得できていない場合でも、蓄電素子の電圧が所定電圧まで放電した原因や、電圧と相関性のある物理量が所定値まで低下した原因を解析できるという効果がある。
前記原因解析部は、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の使われ方か否かを判断してもよい。蓄電素子の使われ方(使用態様)は、蓄電素子の環境温度などの使用環境や、蓄電素子の放置時間、負荷の大小などの負荷状況が含まれる。
この構成では、蓄電素子の使われ方が原因である場合、蓄電装置の供給者は、使われ方の改善を求める等の対応を行うことが出来る。
前記原因解析部は、電力供給停止後に計測された前記蓄電素子の電流が電流閾値より大きい場合、電力供給停止後に計測された前記蓄電素子の環境温度が温度閾値より高い場合、電力供給停止後、前記蓄電素子が前記所定電圧まで低下するまでの経過時間又は電圧と相関性のある物理量が前記所定値まで低下するまでの経過時間が基準時間より長い場合の、いずれかに該当する場合、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因は、前記蓄電素子の使われ方と判定してもよい。
この構成では、蓄電素子の過負荷、高温環境下での使用、放置時間超過などで、蓄電素子が所定電圧まで低下した場合、その原因は、蓄電素子の使われ方に有ると、判定できる。電圧と相関性のある物理量が所定値まで低下した場合も、同様である。
管理装置は、前記蓄電素子への電力供給が停止した後、前記蓄電素子の計測データを記録する記憶部を備えてもよい。
この構成では、記憶部に記憶された計測データを事後解析することで、蓄電素子が所定電圧まで低下した原因を解析することが出来る。電圧と相関性のある物理量が所定値まで低下した場合も、同様である。
電力供給停止後に計測される前記蓄電素子の計測データは、前記蓄電素子の電圧、前記蓄電素子の電流、前記蓄電素子の環境温度、電力供給停止後の経過時間のうち、電圧を含む2以上でもよい。
この構成では、蓄電素子が所定電圧に低下した場合、蓄電素子の電流、蓄電素子の環境温度、経過時間のうち、少なくともいずれか1つと相関性のある原因を特定することが出来る。電圧と相関性のある物理量が所定値まで低下した場合も、同様である。
前記原因解析部は、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子から負荷に対して流れた電流に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、過負荷であるか、否かを判断してもよい。
この構成では、蓄電素子が所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、過負荷であるか、否かを判断できる。そのため、原因が過負荷である場合、蓄電装置の供給者は、負荷を減らすように警告等を行うことで、蓄電素子の交換後、再び電圧が低下して、低電圧異常が生じることを抑制出来る。
前記原因解析部は、前記蓄電素子の電圧のデータに基づいて、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子が放電した第1放電容量を算出し、前記蓄電素子の電流のデータに基づいて、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子が負荷に対して放電した第2放電容量を算出し、算出した前記第1放電容量と前記第2放電容量の差に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の内部短絡であるか、否かを判断してもよい。
蓄電素子が内部短絡している場合は、内部短絡していない場合に比べて、第1放電容量は大きくなり、第2放電容量との差が拡大する。そのため、2つの放電容量差の大きさから、蓄電素子が所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、蓄電素子の内部短絡であるか、否かを判断することが出来る。原因が内部短絡である場合には、蓄電装置の供給者は、蓄電素子の交換を促す警告等を行うことで、原因に応じた対処をユーザに求めることが出来る。
前記蓄電素子は直列に複数接続されており、前記原因解析部は、前記蓄電素子が前記所定電圧まで低下した時点又は電圧と相関性のある前記物理量が前記所定値まで低下した時点の蓄電素子間の電圧差に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の内部短絡であるか、否かを判断してもよい。
この構成では、電圧差を利用しているから、計測誤差が小さく、蓄電素子が所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、蓄電素子の内部短絡であるか、否かを、精度よく判断することが出来る。
時間を計時する計時部を備え、前記原因解析部は、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、長期放置であるか、否かを判断してもよい。
この構成では、蓄電素子が所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、長期放置であるか、否かを判断することが出来る。そのため、原因が長期放置である場合、蓄電装置の供給者は、放置期間を短くするようユーザに警告等行うことで、蓄電素子の交換後、再び電圧が低下して、低電圧異常が生じることを抑制出来る。
前記所定電圧は、電流遮断装置が電流を遮断する電圧に設定してもよい。この構成では、電流遮断装置が電流を遮断した原因を解析できる。
<実施形態1>
1.バッテリの説明
図1は自動車の側面図、図2はバッテリの斜視図、図3はバッテリの分解斜視図、図4はバッテリの電気的構成を示すブロック図である。
自動車1は、車軸の駆動用にエンジン3を有するエンジン駆動車である。自動車1は、図1に示すように、蓄電装置であるバッテリ20を備えている。バッテリ20は、図2に示すように、ブロック状の電池ケース21を有しており、電池ケース21内には、複数の二次電池B1〜B4からなる組電池30や制御基板28が収容されている。
電池ケース21は、図3に示すように、上方に開口する箱型のケース本体23と、複数の二次電池B1〜B4を位置決めする位置決め部材24と、ケース本体23の上部に装着される中蓋25と、上蓋26とを備えて構成されている。ケース本体23内には、図3に示すように、各二次電池B1〜B4が個別に収容される複数のセル室23AがX方向に並んで設けられている。
位置決め部材24は、図3に示すように、複数のバスバー27が上面に配置されており、位置決め部材24がケース本体23内に配置された複数の二次電池B1〜B4の上部に配置されることで、複数の二次電池B1〜B4が、位置決めされると共に複数のバスバー27によって直列に接続されるようになっている。
中蓋25は、図2に示すように、平面視略矩形状をなしている。中蓋25のX方向両端部には、図示しないハーネス端子が接続される一対の端子部22P、22Nが設けられている。一対の端子部22P、22Nは、例えば鉛合金等の金属からなり、22Pが正極側端子部、22Nが負極側端子部である。
中蓋25の上面には、収容部25Aが設けられている。制御基板28は、中蓋25の収容部25Aの内部に収容されており、中蓋25がケース本体23に装着されることで、二次電池Bと制御基板28とが接続されるようになっている。上蓋26は、中蓋25の上部に装着され、制御基板28を収容した収容部25Aの上面を閉じるようになっている。
図4を参照して、バッテリ20の電気的構成を説明する。バッテリ20は、エンジン始動用であり、組電池30と、電流遮断装置37と、電流センサ41と、電圧検出部45と、組電池30を管理する管理装置50とを有する。
組電池30は、直列接続された4つのリチウムイオン二次電池B1〜B4から構成されている。リチウムイオン二次電池B1〜B4は、本発明の「蓄電素子」の一例である。
組電池30、電流センサ41、電流遮断装置37は、通電路35P、35Nを介して、直列に接続されている。電流センサ41を負極の通電路35N、電流遮断装置37を正極の通電路35Pに配置しており、電流センサ41は負極側端子部22N、電流遮断装置37は、正極側端子部22Pにそれぞれ接続されている。
電流センサ41は、電池ケース21の内部に設けられており、組電池30に流れる電流Iを検出する。電流センサ41は、信号線によって管理装置50に電気的に接続されており、電流センサ41の出力は、管理装置50に取り込まれる。
電圧検出部45は、電池ケース21の内部に設けられており、各リチウムイオン二次電池B1〜B4の電池電圧V1〜V4及び組電池30の総電圧Evを検出する。電圧検出部45は、信号線によって管理装置50に電気的に接続されており、電圧検出部45の出力は、管理装置50に取り込まれる。電流センサ41、電圧検出部45は、本発明の「計測部」の一例である。
電流遮断装置37は、リレーなどの有接点スイッチ(機械式)やFETやトランジスタなどの半導体スイッチにより構成することが出来る。電流遮断装置37は、正極の通電路35Pをオープンすることで、電流を遮断することが出来る。
管理装置50は、演算機能を有するCPU51、ROM52、時間を計時する計時部53、第1メモリ54、第2メモリ55、通信部56など備えており、制御基板28上に設けられている。図4に示す符号58は、管理装置50の電源線であり、管理装置50は組電池を電源としている。第1メモリ54は、本発明の「記憶部」に相当する。
ROM52には、図9に示す原因解析フロー(S10〜S60)を実行するためのプログラムが記憶されている。原因解析フローを実行するための各種のデータ、例えば、閾値X1〜X5が記憶されている。プログラムはCD−ROM等の記録媒体に記憶して譲渡等することが出来る。第1メモリ54は揮発性のメモリである。第2メモリ55は不揮発性のメモリで、データのバックアップ用である。
CPU51は、電流センサ41の出力に基づいて、組電池30に流れる電流Iを監視する。電圧検出部45の出力に基づいて、各リチウムイオン二次電池B1〜B4の電圧V1〜V4及び組電池30の総電圧Evを監視する。
CPU51は、エンジン停止後に電流遮断装置37による保護動作が実行された場合、図9に示す原因解析フローを実行して保護動作が実行された原因を解析する。CPU51は、本発明の「原因解析部」に相当する。
通信部56は、自動車1に搭載された車両ECU(Electronic Control Unit:電子制御ユニット)100との通信用として設けられている。車両への搭載後、通信部56は、信号線により、車両ECU100と接続され、管理装置50は、エンジン3の動作状態(停止や駆動)など車両に関する情報を、車両ECU100から受信できる。
図4に示すように、バッテリ20には、エンジン始動用のセルモータ130や、自動車1に搭載された各電装品等の車両負荷150、オルタネータ160が接続されている。オルタネータ160は、エンジン3の動力により発電する車両発電機である。エンジン駆動中、オルタネータ160の発電量が車両負荷150の電力消費より大きい場合、バッテリ20はオルタネータ160による充電される。
オルタネータ160の発電量が車両負荷150の電力消費より小さい場合、バッテリ20は、その不足分を補うため、放電する。エンジン停止中は、オルタネータ160は発電を停止する。そのため、バッテリ20は電力供給が停止した状態(充電されない状態)であり、車両負荷150に対して放電のみ行う状態となる。
バッテリ20は、車載のオルタネータ160以外に、外部充電器170を接続することにより、充電することが出来る。
バッテリ20は、リチウムイオン二次電池B1〜B4と、電流遮断装置37、電流センサ41、電圧計測部45、管理装置50と、を備えていることから、本発明の「蓄電装置」に相当する。
2.電流遮断装置による保護動作
リチウムイオン二次電池B1〜B4は、放電終止電圧Vcよりも電圧が低下する過放電に至ると、負極の銅が電解液中に溶出し、次の充電の際に、セル内部で析出した銅がセパレータを突き破り内部短絡が生じる場合がある。
図5は、横軸を時間、縦軸を電圧として、エンジン停止後のリチウムイオン二次電池B1〜B4の最小電圧Vminの時間的変化を示したグラフである。エンジン停止後、バッテリ20は車両(オルタネータ160)からの電力供給が停止して、放電のみ行う状態になる。具体的には、車両負荷150への放電に加えて、管理装置50による消費電流分の放電、自己放電を行う状態となる。従って、図5に示すように、リチウムイオン二次電池B1〜B4の最小電圧Vminは、エンジン停止した時刻ta以降、時間の経過と共に低下する。
管理装置50のCPU51は、エンジン停止後、リチウムイオン二次電池B1〜B4の電圧V1〜V4を監視する処理を行う(図6のS10)。そして、CPU51は、リチウムイオン二次電池B1〜B4の最小電圧Vminを保護電圧Vbと比較し、最小電圧Vminが保護電圧Vbまで低下したか判断する。具体的には、最小電圧Vminが保護電圧Vbより小さいか判断する(S20)。保護電圧Vbは、本発明の「所定電圧」の一例である。
リチウムイオン二次電池B1〜B4の最小電圧Vminが保護電圧Vbよりも小さくなった場合(S20:YES)、CPU51は保護動作を直に実行する(S30)。具体的には、電流遮断装置37に指令を与えて、通電路35Pをオープンすることで、リチウムイオン二次電池B1〜B4に流れる電流を遮断する。これにより、リチウムイオン二次電池B1〜B4が過放電になること、すなわち放電終止電圧Vcを下回ることを防いでいる。ただし、保護電圧Vb>放電終止電圧Vcである。
保護動作の実行後(時刻tb以降)、図5に示すように、電圧の低下は緩やかになるが、管理装置50に対する放電とリチウムイオン二次電池B1〜B4の自己放電は続くことから、リチウムイオン二次電池B1〜B4の最小電圧Vminは、保護動作の実行後(時刻tb以降)も、時間の経過と共に低下する。
そのため、管理装置50のCPU51は、保護動作の実行後も、リチウムイオン二次電池B1〜B4の電圧V1〜V4や電流Iの監視を継続し、リチウムイオン二次電池B1〜B4の最小電圧Vminが放電終止電圧Vcになると(S40:YES)、バッテリ20は過放電であると判断する(S50)。
3.保護動作が実行された原因の解析
上記のように、リチウムイオン二次電池B1〜B4の最小電圧Vminが保護電圧Vbに至ると、管理装置50のCPU51は、電流を遮断する保護動作を直に行う。こうした保護動作が行われた原因(最小電圧Vminが保護電圧Vbまで低下した原因)は、バッテリ20の内部短絡、車両1の過負荷、長期放置などが考えられる。
内部短絡とは、バッテリ内部で正極と負極が短絡することである。過負荷とは、負荷の大きさが設定よりも大きいことである。例えば、車両負荷150が増設されて、負荷が当初(設定)よりも大きくなった場合である。長期放置とは、電力供給が停止した状態で、バッテリ20が長い時間放置されていることである。本例では、エンジン停止後、外部充電器170による充電がされない状態で、車両1が長期間放置された場合である。
管理装置50のCPU51は、エンジン停止後のリチウムイオン二次電池B1〜B4の電圧V1〜V4、電流I、及び第1期間Tab、第2期間Tbcのデータに基づいて、保護動作が行われた原因が、バッテリ20の内部短絡、車両1の過負荷、長期放置のいずれであるかを特定する。
<バッテリ20の内部短絡の判断>
管理装置50のCPU51は、以下の判定式1A、判定式1Bにより、保護動作が行われた原因が、バッテリ20の内部短絡であるか、否かを判断する。
Q1ab−Q2ab≧X1‥‥‥(1A)
Q1abはエンジン停止から保護動作が実行されるまでの第1期間Tabに、バッテリ20が放電した第1放電容量である。第1放電容量Q1abは、エンジン停止時点taのリチウムイオン二次電池BのSOC1と、保護動作が実行された時点tbのリチウムイオン二次電池BのSOC2の差を、容量換算することで得られる。第1期間Tabが、本発明の「電力供給停止から前記蓄電素子が所定電圧まで低下までの期間」に相当する。
Q1ab=(SOC1−SOC2)×Cbo/100
Cboは、バッテリ20の満充電容量である。
SOCは、リチウムイオン二次電池Bの満充電容量Coに対する残存容量Csの比率である。
SOC=100×Cs/Co
Csはリチウムイオン二次電池Bの残存容量、Coは満充電容量である。
SOCは、リチウムイオン二次電池Bの開放電圧とSOCの相関性(図7参照)を利用して推定できる。すなわち、エンジン停止時点taのリチウムイオン二次電池Bの開放電圧VaからSOC1を推定することが出来、保護動作が実行された時点tbのリチウムイオン二次電池Bの開放電圧VbからSOC2を推定することが出来る。開放電圧Va、Vbは、リチウムイオン二次電池B1〜B4の開放電圧V1〜V4の最低電圧を用いるとよい。
開放電圧(OCV:open circuit voltage)は、無電流状態での電圧Vであることが好ましいが、電流閾値以下の電流が流れている状態(無電流とみなせるレベルの電流しか流れていない状態)での電圧であってもよい。エンジン停止時点taの電流が大きい場合は、電流閾値を下回るのを待って、リチウムイオン二次電池B1〜B4の開放電圧V1〜V4を計測するとよい。
Q2abは、エンジン停止から保護動作が実行されるまでの第1期間Tabに、バッテリ20が、負荷である車両1へ放電した第2放電容量である。第2放電容量Q2abは、電流センサ41の検出する電流値を、エンジン停止から保護動作が実行されるまでの第1期間Tabについて、積分することで得られる。
バッテリ20が内部短絡している場合、放電容量Q1abが大きくなり、内部短絡していない場合に比べて、放電容量Q2abとの差が拡大する。そのため、上記の判定式1Aより、保護動作が実行された原因が、バッテリ20の内部短絡であるか、否かを判断することができる。X1は、バッテリ20が内部短絡しているか否かを判断するための容量差閾値であり、単位はアンペアアワーである。
Vmax_tb−Vmin_tb≧X2‥‥‥(1B)
「Vmax_tb」は、保護動作の実行時点tbにおける、リチウムイオン二次電池B1〜B4の最大電圧である。「Vmin_tb」は、保護動作の実行時点tbにおける、リチウムイオン二次電池B1〜B4の最小電圧である。
内部短絡しているリチウムイオン二次電池B1〜B4は、電圧が低下するため、内部短絡していない場合に比べて、最大電圧Vmaxと最小電圧Vminの差が拡大する。そのため、上記の判定式1Bより、保護動作が実行された原因が、バッテリ20の内部短絡であるか、否かを判断することができる。X2は、バッテリ20が内部短絡しているか否かを判断するための電圧差閾値であり、単位はボルトである。
判定式1Bは、電圧差を利用しているから、計測誤差が小さく、保護動作が実行された原因が、バッテリ20の内部短絡である否かを、精度よく判定することが出来る。
<車両の過負荷の判断>
管理装置50のCPU51は、以下の判定式2により、保護動作が行われた原因が、車両1の過負荷であるか、否かを判断する。
Iav≧X3‥‥‥(2)
Iavは、エンジン停止から保護動作が実行されるまでの第1期間Tabにおけるバッテリ20の平均電流値(バッテリ20から車両1に流れた電流の平均値)である。バッテリ20の平均電流値Iavは、車両への放電容量Q2abを、第1期間Tabで除算することにより求めることが出来る。
過負荷の場合、バッテリ20から車両1に流れる電流が想定値よりも多くなる。そのため、上記の判定式2より、保護動作が実行された原因が、車両が過負荷であるか、否かを判断することができる。X3は、車両が過負荷であるか否かを判定するための電流閾値であり、例えば、負荷が標準装備された車両において、エンジン停止中にバッテリ20から車両1に流れる電流Iの大きさである。
<長期放置の判断>
管理装置50のCPU51は、以下の判定式3Aにより、保護動作が行われた原因が、車両1の長期放置であるか、否かを判断する。以下の判定式3Bにより、過放電に至った原因が車両の長期放置であるか、否かを判断する。
Tab≧X4‥‥‥(3A)
Tbc≧X5‥‥‥(3B)
Tabは、エンジン停止から保護動作が実行されるまでの第1期間の実測値である。X4は、エンジン停止後の車両放置期間が妥当か判定するための時間閾値である。X4は、例えば、バッテリ20の放電容量Q1abを、想定放電電流Iabで除算することにより求めることが出来る(X4=Q1ab/Iab)。
放電容量Q1abは、エンジン停止時taと保護動作が実行された時点tbの、バッテリ20の容量差である。想定放電電流Iabは、エンジン停止から保護動作が実行されるまでの期間に、バッテリ20が放電する電流の想定値であり、一例として、車両負荷150の暗電流、管理装置50の暗電流、バッテリ20の自己放電電流の合計値(予想値)である。暗電流は、バッテリ20が、車両負荷150や管理装置50に対して、駐車中に、放電する電流である。
エンジン停止から保護動作が実行されるまでの第1期間Tabが閾値X4以上である場合、保護動作が行われた原因は、車両の長期放置であると、判断することが出来る。
Tbcは、保護動作の実行から過放電に至るまでの第2期間の実測値である。X5は、保護動作実行後の車両放置期間が妥当か判定するための時間閾値である。X5は、例えば、バッテリ20の放電容量Q1bcを、想定放電電流Ibcで除算することにより求めることが出来る(X5=Q1bc/Ibc)。
バッテリ20の放電容量Q1bcは、保護動作の実行時点tbと過放電に至った時点tcのバッテリ20の容量差である。想定放電電流Ibcは、保護動作の実行から過放電に至るまでの期間Tbcに、バッテリ20が放電する電流の想定値であり、一例として、管理装置50の暗電流、バッテリ30の自己放電電流の合計値(予想値)である。
保護動作の実行から過放電に至るまでの第2期間Tbcが閾値X5以上である場合、バッテリ20が過放電に至った原因は、車両の長期放置であると、判断することが出来る。
<原因の解析フロー>
図8は、保護動作が実行された原因(最小電圧Vminが保護電圧Vbまで低下した原因)を解析するため、エンジン停止後に、管理装置50のCPU51が行うデータ処理の内容である。具体的には、エンジン停止後、CPU51は、計時部53を用いてエンジン停止からの経過時間Tの計測を開始する。電流センサ41を用いて、バッテリ20から車両1に流れる電流Iの計測を開始する。エンジン停止時点taのリチウムイオン二次電池B1〜B4の電圧V1〜V4を、電圧検出部45を用いて検出する。検出した電圧V1〜V4より、リチウムイオン二次電池BのSOC1を推定し、その結果を、第1メモリ54に記憶する。
保護動作の実行後、CPU51は、エンジン停止から保護動作が実行されるまでの第1期間Tabを第1メモリ54に記憶する。バッテリ20から車両1に流れる電流Iを、第1期間Tabについて、積算した結果を第1メモリ54に記憶する。保護動作が実行された時点tbのリチウムイオン二次電池B1〜B4の電圧V1〜V4を、電圧検出部45を用いて検出し、その最大電圧Vmax_tbと最小電圧Vmin_tbを第1メモリ54に記憶する。保護動作が実行された時点tbのリチウムイオン二次電池B1〜B4の電圧V1〜V4からリチウムイオン二次電池BのSOC2を推定し、その結果を、第1メモリ54に記憶する。
過放電の検出後、CPU51は、保護動作の実行から過放電を検出するまでの第2期間Tbcを、第1メモリ54に記憶する。
上記した一例のデータ処理は、管理装置50が、オルタネータ160や外部充電器170による充電開始を検出した場合には、リセットされる。充電終了後に、車両1のエンジン3が停止すると、始めからデータ処理が開始される。
図9は、保護動作が実行された原因を解析するためのフローチャート図である。原因の解析フローは、図9に示すように、S10〜S150から構成され、例えば、エンジン停止後、リチウムイオン二次電池B1〜B4の最小電圧Vminが放電終止電圧Vcを下回り、過放電を検出した時点tcで、管理装置50のCPU51にて実行される。
原因の解析フローは、上記したデータ処理(図8参照)により得られた各種のデータに基づいて、以下の判定を行うものである。
具体的には、管理装置50のCPU51は、S100では、第1期間Tabにおけるバッテリ20の第1放電容量Q1abと、車両1への第2放電容量Q2abの差を求め、求めた放電容量差(Q1ab−Q2ab)を、閾値X1と比較する(判定式1A)。
CPU51は、S110では、保護動作の実行時点tbにおける、リチウムイオン二次電池B1〜B4の最大電圧Vmax_tbと最小電圧Vmin_tbの差を求め、求めた電圧差Vmax_tb−Vmin_tbを、閾値X2と比較する(判定式1B)。
放電容量差(Q1ab−Q2ab)が閾値X1以上の場合(S100:YES)、又は電圧差(Vmax_tb−Vmin_tb)が閾値X2以上の場合(S110:YES)、CPU51は、保護動作が実行された原因は、バッテリ20の内部短絡であると判断する。
放電容量差(Q1ab−Q2ab)が閾値X1より小であり、かつ電圧差(Vmax_tb−Vmin_tb)が閾値X2より小である場合(S100、S110ともNO)、CPU51は、S30で、エンジン停止から保護動作が実行されるまでの第1期間Tabに、バッテリ20から車両1に流れる平均電流値Iavを閾値X3と比較する(判定式2)。
平均電流値Iavが閾値X3以上の場合(S120:YES)、CPU51は、保護動作が実行された原因は、過負荷であると判断する。
平均電流値Iavが閾値X3より小である場合(S120:NO)、CPU51は、S130にて、第1期間Tabを閾値X4と比較する(判定式3A)。
第1期間Tabが閾値X4以上の場合(S130:YES)、CPU51は、保護動作が実行された原因は長期放置であると判断する。
第1期間Tabが閾値X4未満の場合(S130:NO)、CPU51は、S140にて、過放電を検出したか否かを判定する。
この例では、過放電の検出後に、原因の解析フローを実行しているため、S140ではYESとなり、CPU51は、S150にて、第2期間Tbcを閾値X5と比較する(判定式3B)。
第2期間Tbcが閾値X5以上の場合(S150:YES)、CPU51は、過放電の原因は、長期放置であると判断する。第2期間Tbcが閾値X5未満の場合(S150:NO)、原因は未定であると判断される。
以上により、エンジン停止後、電流遮断装置37による保護動作が実行された原因が、車両1の過負荷、バッテリ20の内部短絡、長期放置、原因未定のいずれであるか、特定することが出来る。原因を特定すると、CPU51は、特定した原因と共に、原因の解析のため計測したデータ、演算したデータを不揮発性の第2メモリ55に記憶(バックアップ)する。このようにすることで、管理装置50が電源を喪失しても、第2メモリ55のデータを取り出すことで、エンジン停止後、電流遮断装置37による保護動作が実行された原因が、車両1の過負荷、バッテリ20の内部短絡、長期放置、原因未定のいずれであるか、特定することが出来る。
原因を特定した時点で、通信部56を通じて、車両ECU100と通信できる場合には、バッテリ20が過放電であること、及びエンジン停止後に保護動作が実行された原因を、車両に通知するとよい。
原因の解析フローの実行は、過放電の検出後に限らず、エンジン停止後、保護動作の実行後であれば、過放電の検出前でも、行うことが出来る。
例えば、保護動作の実行後の時刻tdにて、外部充電器170がバッテリ20に接続されると、CPU51は、端子部22P、22Nの電圧変化から、外部充電器170の接続を検出して、電流遮断装置37をオープンからクローズに復帰させる。これにより、バッテリ20は外部充電器170の充電を受けることが出来る。
CPU51は、外部充電器170の接続を検出した場合、エンジン停止から保護動作が実行されるまで第1期間Tabに計測されたデータに基づいて、原因の解析フローの実行することが出来る。
第1期間Tabに計測されたデータに基づいて、原因の解析を行う場合、S140はNO判定されることから、S100〜S130の4つの判定のみ、実行されることになる。
管理装置50のCPU51は、外部充電器170による充電後、通信部56を通じて、車両ECU100と通信できる場合、エンジン停止後に保護動作が実行された原因を、車両1に通知する。通知できない場合は、特定した原因(解析結果)と共に、原因の解析のため計測したデータを不揮発性の第2メモリ55に記憶する。
4.効果説明
本構成では、エンジン停止後に保護動作が実行された原因(リチウムイオン二次電池Bの最小電圧Vminが保護電圧Vbまで低下した原因)を解析することができる。そのため、原因に応じた対処をユーザに促すことができる。
過負荷が原因である場合には、バッテリ20の供給者は、車両負荷150を減らすこと、内部短絡が原因の場合には、バッテリ20の交換など、原因に応じた適切な対処をユーザに促すことが出来る。長期放置が原因である場合には、放置期間を短くするように警告出来る。
管理装置50は、保護動作が実行された原因を、エンジン停止後に計測したデータに基づいて解析する。そのため、リチウムイオン二次電池B1〜B4の電流や電圧について、走行時のデータが取得できていなくても、エンジン停止後に保護動作が実行された原因を解析できる。更に、エンジン停止前のデータは記憶しておく必要がないため、第1メモリ54、第2メモリ55のデータ容量を小さくできる等のメリットがある。
<実施形態2>
図10は、バッテリ200の電気的構成を示すブロック図である。バッテリ200は、実施形態1にて説明したバッテリ20と同様に、エンジン始動用であり、組電池30と、電流遮断装置37と、電流センサ41と、電圧検出部45と、組電池30を管理する管理装置50とを有する。
バッテリ200は、温度センサ43を有している。温度センサ43は、バッテリ200の設置個所の環境温度を検出する。バッテリ200は、自動車1のトランクルーム(図略)に設置されている。温度センサ43は、バッテリ200の環境温度として、トランクルームの温度を検出する。
図11は、各リチウムイオン二次電池B1〜B4の電圧計測線の詳細図である。各リチウムイオン二次電池B1〜B4は、電圧計測線L1〜L5により、それぞれ電圧検出部45に接続されている。各計測線間には、ツェナーダイオードD1〜D4とスイッチSW1〜SW4が、リチウムイオン二次電池B1〜B4と並列に接続されている。
管理装置50のCPU51は、スイッチSW1〜SW4を、予め定められた順序で、オフからオンに切り換え、対応するスイッチSWがオフ、次のスイッチSWがオンしている時に、各リチウムイオン二次電池Bの電圧を計測する。
SW3⇒SW2⇒SW1⇒SW4の順番で、スイッチSWをオフからオンに切り換える場合、図11に示すように、SW4がオフ、SW3がオンしている時に、2つの電圧計測線L4、L5の線間電圧を検出することで、リチウムイオン二次電池B4の電圧V4を計測する。
次に、SW3がオフ、SW2がオンしている時に、2つの計測線L3、L4の線間電圧を検出することで、リチウムイオン二次電池B3の電圧V3を計測する。同様の手順で、リチウムイオン二次電池B2の電圧V2、リチウムイオン二次電池B1の電圧V1も計測することが出来る。
上記の電圧計測方法は、いずれかの電圧計測線Lが断線している場合、異常値が計測されるため、電圧計測線Lの断線を検出できる。
リチウムイオン二次電池B4の電圧V4の計測時、SW4はオフ、SW3はオンである。図12に示すように、電圧計測線L4が断線している場合、2つの計測線L4、L5の線間電圧は、2つのリチウムイオン二次電池B3とB4の合計電圧V3+V4となり、正常値の2倍程度の異常値(約7V)が計測される。
リチウムイオン二次電池B3の電圧V3の計測時、SW3はオフ、SW2はオンである。図13に示すように、電圧計測線L4が断線している場合、2つの計測線L2、L3の線間電圧は、ツェナーダイオードD2の順方向電圧(約0.7V)となり、正常値よりも低い異常値が計測される。図12、図13において、破線Fは、断線時の電流ループを示す。
CPU51は、電圧検出部45により計測される各リチウムイオン二次電池B1〜B4の電圧計測値を、電圧許容範囲(2〜6V)として比較して異常値が含まれているか否かを判定することにより、電圧計測線L1〜L5の断線を検出する。
<原因の解析フロー>
CPU51は、エンジン停止後、リチウムイオン二次電池B1〜B4の電圧、電流などの監視に加えて、温度センサ43を用いて環境温度の計測を行い、そのデータを第1メモリ54に記憶する。管理装置50のCPU51は、エンジン停止後の電圧計測時に、断線を検出した場合、そのデータを第1メモリ54に記憶する。
図14は保護動作が実行された原因を解析するためのフローチャートである。原因の解析フローは、実施形態1の原因の解析フロー(図9)に対して、S115、S125が追加されている。
S115は、エンジン停止後に、電圧計測線Lの断線が検出されていたか、判定する処理である。管理装置50のCPU51は、第1メモリ54にアクセスすることで、断線の有無を判定できる。電圧計測線Lが断線している場合、電圧検出部45の計測値は正常値よりも低い電圧となる場合があるため、保護動作が実行された原因は、断線であると判定できる。
CPU51は、エンジン停止後に保護動作が実行された場合、S100、S110、S115の判定を行い、いずれかでYES判定された場合、保護動作が実行された原因は、内部短絡や断線など、バッテリ200の欠陥であると判定する。
S125は、エンジン停止から保護動作が実行されるまでの第1期間Tabについて、バッテリ200の環境温度の平均値がX6以上か判定する処理である。X6はバッテリの環境温度が妥当か否かを判定するための温度閾値である。環境温度が高い場合、電池内部の反応速度が速くなることから、リチウムイオン二次電池の自己放電量が増加する。環境温度の平均値が閾値X6以上の場合、保護動作が実行された原因は、高温環境下での使用であると判定できる。
CPU51は、保護動作が実行された原因が、バッテリ200の欠陥でない場合、S120、S125、S130の処理を行い、いずれかでYES判定された場合、保護動作が実行された原因は、過負荷、高温環境下使用、長期放置など、バッテリ50の使われ方(使用態様)であると判定する。
実施形態2では、エンジン停止後に保護動作が実行された原因が、バッテリ200の欠陥か、バッテリ200の使われ方なのか、判断することが可能である。
<実施形態3>
図15は、電気自動車300のブロック図である。電気自動車300は、駆動モータ310と、商用電源より充電可能な車載充電器330と、駆動用バッテリ350と、インバータ360と、DC/DCコンバータ370と、補機用バッテリ380と、を備えている。
駆動用バッテリ350は、定格100V〜400Vであり、車載充電器200により充電することが出来る。駆動用バッテリ350は、インバータ360を介して、主負荷である駆動モータ310に接続されている。インバータ360は、駆動用バッテリ350の電力を直流から交流に変換して駆動モータ3100に供給する。駆動モータ310は、電気自動車300の駆動用であり、車輪325を取り付けた車軸320を駆動する。
補機用バッテリ380は、定格12Vであり、DC/DCコンバータ370を介して、車載充電器330に接続されている。DC/DCコンバータ3700は、車載充電器200の出力電圧を降圧して補機用バッテリ380に電力供給することで、補機用バッテリ380を充電する。
電気自動車300は、電源用接続部400を有している。電源用接続部400はインバータ360と駆動モータ310を接続する電力線365に分岐接続されている。電源用接続部400にプラグ(図略)を差すことで、駆動用バッテリ350を、災害時などの非常用電源として、使用することが出来る。
駆動用バッテリ350は、非常用電源など過負荷の状態で使用されることがあり、主負荷である駆動モータ310が停止している非走行中でも、駆動用バッテリ350の電圧が低下する場合がある。
駆動用バッテリ350は、電気自動車300に搭載された車両ECUとの通信により、主負荷である駆動モータ310の動作状態を判断することができる。駆動用バッテリ350は、内蔵する電流センサの計測値より、充電の有無を判断できる。駆動用バッテリ350に本発明を適用して、充電停止後において、主負荷である駆動モータ310の停止期間を対象に、駆動用バッテリ350の電圧、電流、経過時間、環境温度のデータを計測し、駆動モータ310の停止期間に保護装置が動作した場合、計測したデータを事後解析して、その原因を判断する。
駆動用バッテリ350に、本発明を適用することで、保護装置が動作した原因が、過負荷など駆動用バッテリ350の使われ方によるものであるか、否かを判断することが出来る。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)実施形態1〜3では、蓄電素子の一例に、リチウムイオン二次電池Bを例示した。蓄電素子は、リチウムイオン二次電池Bに限らず、他の二次電池でもよい。キャパシタ等でもよい。実施形態1では、リチウムイオン二次電池Bを複数直列に接続した形態を例示したが、単セルの構成であってもよい。
(2)実施形態1、2では、バッテリ20の用途は、エンジン始動用としたが、補機用など、他の用途でもよい。バッテリ20に対する電力供給が停止した状態(充電停止状態)で電源として使用される用途であれば、例えば、電動工具やコンピュータの電源など、車両用以外の用途に適用することも出来る。電動工具やコンピュータの電源用として使用する場合、低電圧異常の原因を解析するための計測データは、充電停止後であれば、電動工具やコンピュータは稼働していてもよい。
(3)実施形態1、2は、電流遮断装置37と管理装置50を、バッテリ20の内部に設けた構成を例示した。電流遮断装置37と管理装置50は、必ずしも、バッテリ20の内部に設置されている必要はなく、車載されていれば、バッテリ20の外部に設けられていてもよい。すなわち、バッテリ20は、蓄電素子と、電圧や電流を計測するセンサ類だけの構成とし、バッテリ外に設けた電流遮断装置37が保護動作を行ってもよい。バッテリ外に設けた管理装置50が、センサからの出力をモニタにて、保護動作が実行された原因を解析する処理を実行するようにしてもよい。また、保護動作を行うか否かの判断は、蓄電素子B1〜B4の最小電圧Vminに基づくものに限らず、組電池30の総電圧Evに基づいて、判断してもよい。過放電の判断も、同様である。
(4)実施形態1、2は、エンジン停止後、蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下した場合に、エンジン停止後に計測された蓄電素子B1〜B4の計測データに基づいて、その原因を解析するようにした。これ以外にも、電圧と相関性の高い物理量(例えば、蓄電素子のSOCや、残存容量)が所定値(保護電圧Vbに対応するSOC値や残存容量値)まで低下した場合に、エンジン停止後に計測された蓄電素子B1〜B4の計測データに基づいて、その原因を、解析してもよい。SOCは、蓄電素子の充放電電流を積算する電流積算法や、OCV−SOCの相関性を利用したOCV法で算出することが出来る。残存容量は、蓄電素子のSOCと、蓄電素子の満充電容量から算出することが出来る。
(5)蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下した場合には、最小電圧Vminが保護電圧Vbよりも小さくなった場合に限らず、保護電圧Vbと等しくなった場合や、ほぼ等しくなった場合が含まれる。電圧と相関性のある物理量が所定値まで低下した場合も、同様である。
(6)実施形態1、2は、蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下したか否かの判断を、管理装置50のCPU51にて行った。判断の主体は管理装置50に限らない。車両ECU100など、バッテリ50より上位の制御装置にて、上記の判断を行い、その結果を、管理装置50に入力して、管理装置50にて、電圧が低下した原因又は電圧と相関性のある物理量が低下した原因を、解析してもよい。
例えば、蓄電素子B1〜B4の電圧Vや電流Iの監視は、バッテリ20の内部に設けられたセンサ類からの出力に基づいて、車両ECU100が行っており、エンジン停止後、車両ECU100が、蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下したか否かを判断する。管理装置50は、車両ECU100と同じく、車載されており、バッテリ外に配置されている。車両ECU100は、蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下した判断した場合、管理装置50に対して、前記判断を伝える入力を行う。前記判断を伝える入力があった場合、管理装置50にて、エンジン停止後に計測された蓄電素子B1〜B4の計測データに基づいて、その原因を解析する処理を行う。
(7)実施形態1、2は、電流遮断装置37による保護動作が実行された原因、すなわち蓄電素子B1〜B4の最小電圧Vminが保護電圧Vbまで低下した原因を解析したが、エンジン停止後、蓄電素子が所定電圧まで低下した原因を解析するものであれば、広く適用することが出来る。例えば、蓄電素子が、使用範囲の下限電圧や放電終止電圧まで低下した原因を解析するものであってもよい。
(8)実施形態1では、保護動作が実行された原因として、内部短絡(S100、S110)、過負荷(S120)、長期放置(S130、S140)を判定した。実施形態2では、内部短絡(S100、S110)、過負荷(S120)、長期放置(S130、S140)に加えて、断線(S115)、環境温度(S125)を判定した。保護動作が実行された原因として、内部短絡、過負荷、長期放置、断線、環境温度の5項目を、全て判定する必要はなく、一部のみ、判定してもよい。エンジン停止後に計測する計測データは、蓄電素子の電圧以外に、蓄電素子の電流、蓄電素子の環境温度、経過時間のうち、少なくとも1つを含んでいればよい。
(9)実施形態1は、電流遮断装置による保護動作が実行された原因が、バッテリの内部短絡であるか、否かを判断するのに、2つの判定式1A、判定式1Bを用いたが、いずれか一方の判定式だけを用いて判定してもよい。
(10)実施形態2において、CPU51は、エンジン停止後に保護動作が実行された場合、S100、S110、S115の判定結果から保護動作が実行された原因が、バッテリ200の欠陥である否かを判定し、S120、125、130の判定結果からバッテリ200の使われ方であるか否かを判断した。S100、S110、S115は省略してもよく、CPU51は、エンジン停止後に保護動作が実行された場合、S120、S125、S130の判定のみ行い、いずれかでYESとなった場合、保護動作が実行された原因は、バッテリ200の使われ方と判定し、全てNO判定である場合は、保護動作が実行された原因は、バッテリ200の使われ方ではないと判定してもよい。S120、S125、S130は省略してもよく、CPU51は、エンジン停止後に保護動作が実行された場合、S100、S110、S115の判定のみ行い、いずれかでYESとなった場合、保護動作が実行された原因は、バッテリ200の欠陥と判定し、全てNO判定である場合は、保護動作が実行された原因は、バッテリ200の欠陥ではないと判定してもよい。
(11)実施形態1〜3で開示した技術は、蓄電素子の電圧が低下した原因を解析する解析プログラム、及びそれらプログラムを記録した記録媒体等の種々の態様で実現することができる。
蓄電素子の電圧が低下した原因又は電圧と相関性のある物理量が低下した原因の解析プログラムであって、前記蓄電素子への電力供給が停止した後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後に計測された前記蓄電素子の計測データに基づいて、前記蓄電素子の電圧が低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する原因解析処理(S100〜S150又はS100〜S130)をコンピュータに実行させる、原因解析プログラム。
20‥バッテリ(本発明の「蓄電システム」に相当する)
30‥組電池
37‥電流遮断装置
41‥電流センサ(本発明の「計測部」に相当する)
43‥温度センサ(本発明の「計測部」に相当する)
45‥電圧検出部(本発明の「計測部」に相当する)
50‥管理装置
51‥CPU(本発明の「原因解析部」に相当する)
100‥車両ECU
Va‥エンジン停止時の電圧
Vb‥保護電圧(本発明の「所定電圧」の一例)
Vc‥放電終止電圧
Tab‥第1期間
Tbc‥第2期間
ROM52には、図9に示す原因解析フロー(S10〜S150)を実行するためのプログラムが記憶されている。原因解析フローを実行するための各種のデータ、例えば、閾値X1〜X5が記憶されている。プログラムはCD−ROM等の記録媒体に記憶して譲渡等することが出来る。第1メモリ54は揮発性のメモリである。第2メモリ55は不揮発性のメモリで、データのバックアップ用である。

Claims (16)

  1. 蓄電素子の管理装置であって、
    前記蓄電素子への電力供給が停止した後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後に計測された前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する原因解析部を備える、管理装置。
  2. 請求項1に記載の管理装置であって、
    前記原因解析部は、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の使われ方に原因があるか否かを判断する、管理装置。
  3. 請求項2に記載の管理装置であって、
    前記原因解析部は、
    電力供給停止後に計測された前記蓄電素子の電流が電流閾値より大きい場合、
    電力供給停止後に計測された前記蓄電素子の環境温度が温度閾値より高い場合、
    電力供給停止後、前記蓄電素子が前記所定電圧まで低下するまでの経過時間又は電圧と相関性のある物理量が前記所定値まで低下するまでの経過時間が時間閾値より長い場合の、いずれかに該当する場合、
    前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因は、前記蓄電素子の使われ方と判断する、管理装置。
  4. 請求項1〜請求項3のいずれか一項に記載の管理装置であって、
    前記蓄電素子への電力供給が停止した後、前記蓄電素子の計測データを記録する記憶部を備える管理装置。
  5. 請求項1〜請求項4のいずれか一項に記載の管理装置であって、
    電力供給停止後に計測される前記蓄電素子の計測データは、前記蓄電素子の電圧、前記蓄電素子の電流、前記蓄電素子の環境温度、電力供給停止後の経過時間のうち、電圧を含む2以上である、管理装置。
  6. 請求項1〜請求項5に記載の管理装置であって、
    前記原因解析部は、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子から負荷に対して流れた電流に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、過負荷であるか、否かを判断する、管理装置。
  7. 請求項1〜請求項6に記載の管理装置であって、
    前記原因解析部は、
    前記蓄電素子の電圧のデータに基づいて、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子が放電した第1放電容量を算出し、
    前記蓄電素子の電流のデータに基づいて、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に、前記蓄電素子が負荷に対して放電した第2放電容量を算出し、
    算出した前記第1放電容量と前記第2放電容量の差に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の内部短絡であるか、否かを判断する、管理装置。
  8. 請求項1〜請求項7のいずれか一項に記載の管理装置であって、
    前記蓄電素子は直列に複数接続されており、
    前記原因解析部は、前記蓄電素子が前記所定電圧まで低下した時点又は電圧と相関性のある前記物理量が前記所定値まで低下した時点の蓄電素子間の電圧差に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、前記蓄電素子の内部短絡であるか、否かを判断する、管理装置。
  9. 請求項1〜請求項8のいずれか一項に記載の管理装置であって、
    時間を計時する計時部を備え、
    前記原因解析部は、電力供給停止から前記蓄電素子が前記所定電圧まで低下するまでの期間又は電圧と相関性のある前記物理量が前記所定値まで低下するまでの期間に基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因が、長期放置であるか、否かを判断する、管理装置。
  10. 請求項1〜請求項9のいずれか一項に記載の管理装置であって、
    前記所定電圧は、電流遮断装置が電流を遮断する電圧である、管理装置。
  11. 原因の解析方法であって、
    蓄電素子への電力供給が停止した後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合に、電力供給停止後の前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する、原因の解析方法。
  12. 蓄電装置であって、
    蓄電素子と、
    前記蓄電素子の状態を計測する計測部と、
    前記蓄電素子の電流を遮断する電流遮断装置と、
    請求項1〜請求項10のいずれか一項に記載の管理装置と、を備えた蓄電装置。
  13. 請求項12に記載の蓄電装置であって、
    駆動用にエンジンを備えたエンジン駆動車に搭載され、
    前記原因解析部は、前記エンジンの停止後、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合、前記エンジンの停止後に計測された前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する、蓄電装置。
  14. 請求項13に記載の蓄電装置であって、
    駆動用に駆動モータを備えた電気自動車に搭載され、
    前記蓄電装置は、前記駆動モータに電力を供給する駆動用バッテリであり、
    前記原因解析部は、前記蓄電装置の充電停止後、前記駆動モータが停止している期間に、前記蓄電素子が所定電圧まで低下した場合又は電圧と相関性のある物理量が所定値まで低下した場合、前記蓄電装置の充電停止後、前記駆動モータが停止している期間に、計測された前記蓄電素子の計測データに基づいて、前記蓄電素子が前記所定電圧まで低下した原因又は電圧と相関性のある前記物理量が前記所定値まで低下した原因を解析する、蓄電装置。
  15. 請求項13に記載の蓄電装置を備えたエンジン駆動車。
  16. 請求項14に記載の蓄電装置を備えた電気自動車。
JP2019550503A 2017-11-02 2018-11-02 管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車 Active JP6977779B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017212664 2017-11-02
JP2017212664 2017-11-02
PCT/JP2018/040888 WO2019088264A1 (ja) 2017-11-02 2018-11-02 管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車

Publications (2)

Publication Number Publication Date
JPWO2019088264A1 true JPWO2019088264A1 (ja) 2020-11-26
JP6977779B2 JP6977779B2 (ja) 2021-12-08

Family

ID=66333266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550503A Active JP6977779B2 (ja) 2017-11-02 2018-11-02 管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車

Country Status (5)

Country Link
US (1) US11581589B2 (ja)
JP (1) JP6977779B2 (ja)
CN (1) CN111263999A (ja)
DE (1) DE112018005187T5 (ja)
WO (1) WO2019088264A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174333B2 (ja) * 2019-03-27 2022-11-17 株式会社Gsユアサ 蓄電装置、蓄電素子の容量推定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028690A (ja) * 1998-07-13 2000-01-28 Mitsubishi Chemicals Corp 二次電池の短絡検査方法および当該検査方法を包含する二次電池の製造方法
JP2009096417A (ja) * 2007-10-19 2009-05-07 Panasonic Corp バッテリ状態表示システム
JP2009170397A (ja) * 2007-12-18 2009-07-30 Mitsumi Electric Co Ltd 電池パック、電池パックを用いる携帯機器、電池パックにおける内部ショート検出方法、内部ショート検出プログラム
JP2010181262A (ja) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd 二次電池の異常検出装置および二次電池装置
JP2011112453A (ja) * 2009-11-25 2011-06-09 Furukawa Electric Co Ltd:The 蓄電池のセル短絡検知方法及び検知装置
JP2013074708A (ja) * 2011-09-27 2013-04-22 Sanyo Electric Co Ltd 車両用の電源装置とこの電源装置を備える車両
JP2013219984A (ja) * 2012-04-11 2013-10-24 Toyota Motor Corp バッテリ充電制御装置
JP2016090399A (ja) * 2014-11-05 2016-05-23 日本電信電話株式会社 短絡検出方法、短絡検出システムおよび短絡電流値算出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142036A (ja) 2010-01-08 2011-07-21 Sanyo Electric Co Ltd 電池管理方法および電子機器
JP5662105B2 (ja) 2010-10-26 2015-01-28 株式会社マキタ 二次電池パック
JP2013242324A (ja) 2013-07-11 2013-12-05 Mitsubishi Motors Corp 電池監視装置
JP6090093B2 (ja) 2013-10-02 2017-03-08 トヨタ自動車株式会社 二次電池の検査方法及び検査装置
JP6316397B1 (ja) * 2016-12-26 2018-04-25 三菱電機株式会社 電力変換システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028690A (ja) * 1998-07-13 2000-01-28 Mitsubishi Chemicals Corp 二次電池の短絡検査方法および当該検査方法を包含する二次電池の製造方法
JP2009096417A (ja) * 2007-10-19 2009-05-07 Panasonic Corp バッテリ状態表示システム
JP2009170397A (ja) * 2007-12-18 2009-07-30 Mitsumi Electric Co Ltd 電池パック、電池パックを用いる携帯機器、電池パックにおける内部ショート検出方法、内部ショート検出プログラム
JP2010181262A (ja) * 2009-02-05 2010-08-19 Sanyo Electric Co Ltd 二次電池の異常検出装置および二次電池装置
JP2011112453A (ja) * 2009-11-25 2011-06-09 Furukawa Electric Co Ltd:The 蓄電池のセル短絡検知方法及び検知装置
JP2013074708A (ja) * 2011-09-27 2013-04-22 Sanyo Electric Co Ltd 車両用の電源装置とこの電源装置を備える車両
JP2013219984A (ja) * 2012-04-11 2013-10-24 Toyota Motor Corp バッテリ充電制御装置
JP2016090399A (ja) * 2014-11-05 2016-05-23 日本電信電話株式会社 短絡検出方法、短絡検出システムおよび短絡電流値算出方法

Also Published As

Publication number Publication date
JP6977779B2 (ja) 2021-12-08
US20200343598A1 (en) 2020-10-29
DE112018005187T5 (de) 2020-07-23
WO2019088264A1 (ja) 2019-05-09
CN111263999A (zh) 2020-06-09
US11581589B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
US10305299B2 (en) Battery apparatus, vehicle, battery management program, and management method of battery apparatus
EP2846395A2 (en) Battery pack, apparatus including battery pack, and method of managing battery pack
EP1801947A2 (en) Method for compensating state of charge of battery and battery management system using the same
US10921374B2 (en) Diagnosis device, energy storage apparatus, and diagnosis method
CN110832725B (zh) 蓄电装置、车辆、自动二轮车
US20140084867A1 (en) Secondary battery device and battery capacity estimation system
US20140021923A1 (en) Electrical storage system, and control method for electrical storage system
US20200381784A1 (en) Power supplying device, power storage system, and charging method
CN107276140B (zh) 蓄电元件管理装置、蓄电装置以及蓄电系统
KR20130126918A (ko) 저전압 영역 및 고전압 영역을 구비한 파워 서플라이 시스템용 배터리 관리 시스템
JP6735360B2 (ja) 蓄電池放電のための制御装置および蓄電池を放電する方法
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
JP2018136131A (ja) 状態推定装置
JP6735359B2 (ja) 蓄電池充電のための制御装置および蓄電池を充電する方法
CN110679052B (zh) 蓄电元件的保护装置
WO2019208410A1 (ja) 故障診断方法、及び、蓄電素子の管理装置
US10615616B2 (en) Energy storage apparatus for vehicle and vehicle
JP6977779B2 (ja) 管理装置、蓄電装置、原因の解析方法、エンジン駆動車、電気自動車
US10333182B2 (en) Estimation of cell voltage excursion in the presence of battery pack sensing faults
WO2020085097A1 (ja) 電池制御装置
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
JP2013127440A (ja) 蓄電システム
KR20230016530A (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6977779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150