JPWO2018216426A1 - ヘキサフルオロ−1,3−ブタジエンの製造方法 - Google Patents

ヘキサフルオロ−1,3−ブタジエンの製造方法 Download PDF

Info

Publication number
JPWO2018216426A1
JPWO2018216426A1 JP2019519530A JP2019519530A JPWO2018216426A1 JP WO2018216426 A1 JPWO2018216426 A1 JP WO2018216426A1 JP 2019519530 A JP2019519530 A JP 2019519530A JP 2019519530 A JP2019519530 A JP 2019519530A JP WO2018216426 A1 JPWO2018216426 A1 JP WO2018216426A1
Authority
JP
Japan
Prior art keywords
butadiene
hexafluoro
water
reaction
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519530A
Other languages
English (en)
Other versions
JP7085537B2 (ja
Inventor
陽介 福地
陽介 福地
中村 敦
敦 中村
希 井上
希 井上
光宏 日野
光宏 日野
友己 関口
友己 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2018216426A1 publication Critical patent/JPWO2018216426A1/ja
Application granted granted Critical
Publication of JP7085537B2 publication Critical patent/JP7085537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • C07C21/20Halogenated butadienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

産業廃棄物の排出量が少なく工業的に利用可能なヘキサフルオロ−1,3−ブタジエンの製造方法を提供する。ヘキサフルオロ−1,3−ブタジエンの製造方法は、CF2X1−CFX2−CFX3−CF2X4(X1、X2、X3、及びX4は、それぞれ独立して、フッ素原子以外のハロゲン原子を示す)なる化学式で表されるハロゲン化ブタンを、有機溶剤中、亜鉛存在下で反応させ、フッ素原子以外のハロゲン原子X1、X2、X3、X4を脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせ、ヘキサフルオロ−1,3−ブタジエンを含有する反応物を得る反応工程と、反応工程で得られた反応物からヘキサフルオロ−1,3−ブタジエンを分離した後に、その分離後の反応物残分に水を添加し、さらに有機溶剤を除去してハロゲン化亜鉛水溶液を得る後処理工程と、を備える。

Description

本発明はヘキサフルオロ−1,3−ブタジエンの製造方法に関する。
ヘキサフルオロ−1,3−ブタジエンは、例えば半導体用エッチングガスとして有用である。ヘキサフルオロ−1,3−ブタジエンの製造方法としては、従来から種々の方法が知られている。例えば、特許文献1には、1,2,3,4−テトラクロロヘキサフルオロブタンを、ジオキサン中、マグネシウム存在下、−78℃で脱塩素化反応させる方法が開示されている。また、特許文献2には、1,2,3,4−テトラクロロヘキサフルオロブタンを、2−プロパノール中、亜鉛存在下で脱塩素化反応させる方法が開示されている。
国際公開第2005/23734号 日本国特許公報 第5005681号
しかしながら、特許文献1、2に開示の方法は、反応後に有機溶剤(ジオキサン、2−プロパノール)、金属塩(塩化マグネシウム、塩化亜鉛)、及び未反応物質の混合物が多量に生成し産業廃棄物となるという問題があった。そのため、特許文献1、2に開示の方法は、ヘキサフルオロ−1,3−ブタジエンの工業的な製造方法としては不向きであった。
本発明は、産業廃棄物の排出量が少なく工業的に利用可能なヘキサフルオロ−1,3−ブタジエンの製造方法を提供することを課題とする。
前記課題を解決するため、本発明の一態様は以下の[1]〜[6]の通りである。
[1] CF−CFX−CFX−CF(X、X、X、及びXは、それぞれ独立して、フッ素原子以外のハロゲン原子を示す)なる化学式で表されるハロゲン化ブタンを、有機溶剤中、亜鉛存在下で反応させ、フッ素原子以外のハロゲン原子X、X、X、Xを脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせ、ヘキサフルオロ−1,3−ブタジエンを含有する反応物を得る反応工程と、
前記反応工程で得られた反応物からヘキサフルオロ−1,3−ブタジエンを分離した後に、その分離後の反応物残分に水を添加し、さらに前記有機溶剤を除去してハロゲン化亜鉛水溶液を得る後処理工程と、
を備えるヘキサフルオロ−1,3−ブタジエンの製造方法。
[2]前記有機溶剤がアルコールである[1]に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
[3] 前記アルコールがメタノール、エタノール、1−プロパノール、及び2−プロパノールのうちの少なくとも1種である[2]に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
[4] 前記反応工程で得られた反応物から分離されたヘキサフルオロ−1,3−ブタジエンにアルカリを接触させる中和工程と、前記中和工程でアルカリを接触させたヘキサフルオロ−1,3−ブタジエンの水分を除去する水分除去工程と、をさらに備える[1]〜[3]のいずれか一項に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
[5] 前記水分除去工程で水分が除去されたヘキサフルオロ−1,3−ブタジエンを、少なくとも2つの蒸留塔を用いて蒸留して、ヘキサフルオロ−1,3−ブタジエンを精製する精製工程をさらに備える[4]に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
[6] 前記後処理工程において、前記反応物残分に水とともにハロゲン化水素を添加する[1]〜[5]のいずれか一項に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
本発明に係るヘキサフルオロ−1,3−ブタジエンの製造方法は、産業廃棄物の排出量が少なく工業的に利用可能である。
本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法は、CF−CFX−CFX−CF(X、X、X、及びXは、それぞれ独立して、フッ素原子以外のハロゲン原子を示す)なる化学式で表されるハロゲン化ブタンを、有機溶剤中、亜鉛存在下で反応させ、フッ素原子以外のハロゲン原子X、X、X、Xを脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせ、ヘキサフルオロ−1,3−ブタジエンを含有する反応物を得る反応工程と、反応工程で得られた反応物からヘキサフルオロ−1,3−ブタジエンを分離した後に、その分離後の反応物残分に水を添加し、さらに有機溶剤を除去してハロゲン化亜鉛水溶液を得る後処理工程と、を備える。
このような本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法は、後処理工程において有機溶剤及びハロゲン化亜鉛を回収することができるので、産業廃棄物の排出量が少なく工業的に利用可能である。また、工業的に利用価値のある高純度なハロゲン化亜鉛水溶液を得ることができる。さらに、ヘキサフルオロ−1,3−ブタジエンを安全且つ安価に製造することができる。なお、本発明においては、「ヘキサフルオロ−1,3−ブタジエン」は、「1,1,2,3,4,4−ヘキサフルオロ−1,3−ブタジエン」を意味する。
以下に、本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法について、さらに詳細に説明する。まず、反応工程について説明する。
<反応工程>
CF−CFX−CFX−CFなる化学式で表されるハロゲン化ブタンの種類は特に限定されるものではなく、X、X、X、及びXはそれぞれ独立してフッ素原子以外のハロゲン原子であり、塩素、臭素、及びヨウ素のいずれであってもよい。X、X、X、及びXは全て同種のハロゲン原子であってもよいし、一部が同種で他部が異種のハロゲン原子であってもよい。例えば、X、X、X、及びXがいずれも塩素である1,2,3,4−テトラクロロヘキサフルオロブタンをハロゲン化ブタンとして用いることができる。なお、本発明においては、「1,2,3,4−テトラクロロヘキサフルオロブタン」は、「1,2,3,4−テトラクロロ−1,1,2,3,4,4−ヘキサフルオロブタン」を意味する。
また、反応工程において使用する有機溶剤の種類は、ハロゲン化ブタンからフッ素原子以外のハロゲン原子を脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせる脱ハロゲン化反応の進行を阻害するものでなければ特に限定されるものではない。例えば、アルコール、環状エーテル、芳香族炭化水素、アミド溶剤、有機酸又はこれらの混合溶剤を使用することができる。
環状エーテルとしては、例えば、テトラヒドロフラン、ジオキサン等が挙げられる。芳香族炭化水素としては、例えば、ベンゼン、トルエン等が挙げられる。アミド溶剤としては、例えば、N,N−ジメチルホルムアミド等が挙げられる。有機酸としては、例えば、酢酸等が挙げられる。これらの有機溶剤の中でもアルコールは、脱ハロゲン化反応を好適に進行させるとともに、後述するように、後処理工程においても好適である。アルコールの種類は特に限定されるものではないが、例えば、メタノール、エタノール、1−プロパノール、及び2−プロパノールのうちの少なくとも1種を使用することができる。
反応工程における亜鉛の使用量と有機溶剤の使用量の質量比([亜鉛の使用量]/[有機溶剤の使用量])は、0.2以上2.0以下の範囲としてもよい。
亜鉛の形態は、脱ハロゲン化反応が進行するものであれば特に限定されるものではないが、反応性や取り扱い性の点から、粉末状、リボン状が好ましく、粉末状がより好ましい。粉末状の亜鉛の平均粒径は0.04mm以上10.0mm以下が好適である。
反応工程においては、例えば、亜鉛と有機溶剤を混合し、温度を通常は20℃以上150℃以下、好ましくは30℃以上95℃以下、圧力を通常は0.05MPa以上1MPa以下に保ちながら、ハロゲン化ブタンを少量ずつ添加するとよい。これにより、ハロゲン化ブタンからフッ素原子以外のハロゲン原子を脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせる脱ハロゲン化反応を行うことができる。
ハロゲン化ブタンの使用量と亜鉛の使用量の質量比([ハロゲン化ブタンの使用量]/[亜鉛の使用量])は、1以上12以下の範囲としてもよい。
反応工程によって得られたヘキサフルオロ−1,3−ブタジエンを含有する反応物を、例えば蒸留塔に導入して、蒸留塔内でヘキサフルオロ−1,3−ブタジエンをガス化させて、主として有機溶剤を含有する液相と、主としてヘキサフルオロ−1,3−ブタジエンを含有する気相とに分離してもよい。液相には、有機溶剤の他に、未反応の原料と副生成物が含有されている。
<中和工程>
また、本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法においては、反応物から分離されたヘキサフルオロ−1,3−ブタジエン中に含有される副生成物のフッ化水素を除去するために、反応物から分離されたヘキサフルオロ−1,3−ブタジエンにアルカリを接触させて中和してもよい(中和工程)。中和工程は、例えば、反応物を蒸留塔に導入してヘキサフルオロ−1,3−ブタジエンを気相として分離した後に、分離した気相に対してアルカリを接触させて行うことが好ましい。また、中和工程は、−15℃以上60℃以下の温度条件で行うことが好ましい。
アルカリの種類は特に限定されるものではないが、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液が挙げられる。あるいは、固体状のアルカリを用いることができる。固体状のアルカリとしては、例えば、アルカリ金属化合物、アルカリ土類金属化合物等のアルカリ化合物と炭素質固体材料、アルミナ、ゼオライト等の担体とからなる精製剤や、一般に使用されるソーダライム等が挙げられる。分離した気相とアルカリとの接触は、例えば気相部のガスを上記アルカリ水溶液中でバブリングさせる等で行うことができる。
<水分除去工程>
さらに、本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法においては、中和工程でアルカリと接触させたヘキサフルオロ−1,3−ブタジエンに水分除去処理を施してもよい(水分除去工程)。中和工程を経たヘキサフルオロ−1,3−ブタジエン中には水分が含有されているため、中和工程に続いて水分除去工程を行い、ヘキサフルオロ−1,3−ブタジエンの水分除去を行うことが好ましい。なお、中和工程でアルカリを接触させたヘキサフルオロ−1,3−ブタジエンには、水分の他に、脱ハロゲン化反応の中間体が含有されうる。
水分除去の方法は特に限定されるものではないが、ゼオライトに接触させることによる水分除去処理を用いることができる。ゼオライトの具体例としては、モレキュラーシーブス−3A、4A、5A等が挙げられる。水分除去処理は、−15℃以上60℃以下の温度条件で行うことが好ましい。水分除去処理は、気相状態で行っても液相状態で行ってもよいが、液相状態で行うことが好ましい。また、水分除去工程は2系列以上を設け、切り替え方式を採用するのが望ましい。
<精製工程>
さらに、本実施形態のヘキサフルオロ−1,3−ブタジエンの製造方法においては、水分除去工程で水分除去したヘキサフルオロ−1,3−ブタジエンを、少なくとも2つの蒸留塔を用いて蒸留して、ヘキサフルオロ−1,3−ブタジエンを精製する精製工程をさらに備えてもよい。水分除去工程で水分除去したヘキサフルオロ−1,3−ブタジエンには、未反応のハロゲン化ブタンや脱ハロゲン化反応の中間体が含有されうる。
精製工程の一例を示すと、まず、水分除去工程で水分除去したヘキサフルオロ−1,3−ブタジエンを、例えばポンプや圧縮機等を用いて第一蒸留塔に導入する。第一蒸留塔では、塔頂留出分として低沸成分(例えば空気、一酸化炭素、二酸化炭素)が抜き出される。塔底留出分としては、主としてヘキサフルオロ−1,3−ブタジエンが抜き出され、これを第二蒸留塔に導入する。
次に、第二蒸留塔では、塔頂留出分として目的物である精製されたヘキサフルオロ−1,3−ブタジエンが抜き出され、製品として回収される。一方、第二蒸留塔の塔底留出分としては、高沸成分(例えば、少量の有機溶剤や脱ハロゲン化反応の中間体)が抜き出される。この高沸成分の少なくとも一部は、反応工程に戻してもよい。
また、精製工程の他の例を示すと、まず、水分除去工程で水分除去したヘキサフルオロ−1,3−ブタジエンを第一蒸留塔に導入する。第一蒸留塔では、塔頂留出分として低沸成分とヘキサフルオロ−1,3−ブタジエンが抜き出される。塔底留出分としては、前述した高沸成分が抜き出される。この高沸成分の少なくとも一部は、反応工程に戻してもよい。
次に、第一蒸留塔の塔頂より抜き出された低沸成分とヘキサフルオロ−1,3−ブタジエンとの混合物を第二蒸留塔に導入する。第二蒸留塔では、塔頂留出分として低沸成分(例えば空気、一酸化炭素、二酸化炭素)が抜き出される。一方、第二蒸留塔の塔底留出分としては、目的物である精製されたヘキサフルオロ−1,3−ブタジエンが抜き出され、製品として回収される。
<後処理工程>
次に、後処理工程について説明する。後処理工程は、反応工程で得られた反応物からヘキサフルオロ−1,3−ブタジエンを分離した後に、その分離後の反応物残分に水を添加し、さらに有機溶剤を除去してハロゲン化亜鉛水溶液を得る工程である。ヘキサフルオロ−1,3−ブタジエンを分離した反応物残分を、例えばテフロン(登録商標)でライニングされた金属製反応容器に導入し、水を添加してもよい。
反応物残分と水の質量比([反応物残分の量]/[水の量])は、0.5以上2.0以下の範囲としてもよい。水としては、水道水、イオン交換水、蒸留水、純水、超純水等を用いることができるが、純水又は超純水が好ましい。
後処理工程においては、必要に応じて、ハロゲン化水素等の無機酸を水とともに添加してもよい。ハロゲン化水素は未反応の亜鉛と反応し、亜鉛を亜鉛イオンに変換するため、ハロゲン化亜鉛の収率を向上させる。ハロゲン化水素としては、フッ化水素、塩化水素、臭化水素、ヨウ化水素等があげられる。例えば、後処理工程において塩化亜鉛水溶液を得る場合には、無機酸として塩酸が好適に添加される。塩酸の濃度は特に限定されるものではないが、1.0質量%以上37.0質量%以下が好ましい。
後処理工程において反応物残分に水を添加して得られた溶液に固形物が含まれる場合は、固液分離を行ってもよい。固液分離の方法は特に限定されるものではなく、沈降・浮上法、濾過法、遠心分離法などから任意の方法を選択することができる。上記の方法の中では、濾過法が簡便なため好適に用いられる。
次に、固液分離を行った溶液から有機溶剤の除去を行う。有機溶剤を除去する方法は特に限定されるものではないが、蒸留法が好ましい。蒸留法の種類は特に限定されるものではなく、常圧蒸留法、減圧蒸留法、分子蒸留法などの任意の蒸留方法から選択することができる。常圧蒸留法としては、単蒸留に加え、オルダーショウなど棚段を設けた蒸留塔を用いた蒸留など、公知の方法を用いることができる。また、減圧蒸留法としては、一般的な減圧蒸留法に加え、ロータリーエバポレーターなどによる減圧蒸留法も用いることができる。
後処理工程において反応物残分に水を添加して得られた溶液から有機溶剤の除去を効率良く行うためには、有機溶剤はアルコールであることが好ましく、メタノール、エタノール、1−プロパノール、及び2−プロパノールのうちの少なくとも1種であることがより好ましく、2−プロパノールであることがさらに好ましい。これらのアルコールは、後処理工程において反応物残分に水を添加して得られた溶液から蒸留によって簡便に除去することができる。
有機溶剤を除去した後の残渣を回収することにより、ハロゲン化亜鉛水溶液が製品として回収される。このハロゲン化亜鉛水溶液は高純度であり、工業的に利用価値がある。得られたハロゲン化亜鉛水溶液に着色があった場合には、ハロゲン化亜鉛水溶液を精製剤に接触させて脱色を行ってもよい。精製剤としては、活性炭に代表される炭素質固体材料、ゼオライト、活性アルミナ、シリカゲル等があげられるが、活性炭が好ましい。
以下に実施例及び比較例を示して、本発明をより詳細に説明する。
〔実施例1〕
<反応工程>
内容積500mLのSUS316製オートクレーブに、有機溶剤として2−プロパノール119gと、顆粒状の金属亜鉛82.4gを仕込んだ。このオートクレーブは、冷却構造を有するジャケットと攪拌機を上部に備えており、加熱方式はジャケット加熱方式である。
オートクレーブの内容物を攪拌しながら、温度を70℃に昇温した。そして、常圧下でオートクレーブの内容物の温度を70℃に保持しながら、1,2,3,4−テトラクロロヘキサフルオロブタン149gを1時間当たり9.31gの滴下速度で滴下した後、5時間反応を行った。5時間の反応が終了したら、反応物の温度をさらに上昇させて有機溶剤(2−プロパノール)の一部と生成物を気化させ、これらの蒸気を冷却し液化させて捕集した。そして、得られた液体を単蒸留し(第1蒸留系)、主として生成物を含有する気相と主として有機溶剤を含有する液相とを分離した。分離した生成物をガスクロマトグラフィーで分析した結果、ヘキサフルオロ−1,3−ブタジエンが94.5体積%で、その他の成分が5.5体積%であった。
<水分除去工程、精製工程>
水酸化カリウム水溶液にバブリングする条件での中和工程を経て、生成物をモレキュラーシーブスによって0℃の温度条件下で水分除去処理した後、蒸留塔2本(第2蒸留系)を用いて高沸成分及び低沸成分を除去し、精製したヘキサフルオロ−1,3−ブタジエン(以下「精製品1」と記す)を得た。ガスクロマトグラフィーで精製品1の分析を行ったところ、ヘキサフルオロ−1,3−ブタジエンの純度は99.995体積%以上であった。さらに、もう1本の蒸留塔(第3蒸留系)を用いて低沸成分をさらに除去し、精製したヘキサフルオロ−1,3−ブタジエン(以下「精製品2」と記す)を得た。ガスクロマトグラフィーで精製品2の分析を行ったところ、ヘキサフルオロ−1,3−ブタジエンの純度は99.999体積%以上であった。
<後処理工程(添加)>
反応工程で得られた反応物残分(温度をさらに上昇させて有機溶剤の一部と生成物を気化させて分離した後の反応物残分)150gに、水150g及び35質量%塩酸2.5gを加え撹拌した後に、定量分析用5種Bの濾紙を用いて濾過し、不溶物をろ別して濾液を得た。
<後処理工程(塩化亜鉛水溶液の生成)>
後処理工程(添加)により得られた濾液を単蒸留(第4蒸留系)することにより、有機溶剤(2−プロパノール)を留去した。2−プロパノールを含む蒸留留分が合計150gになるまで蒸留を行った後に、蒸留残渣を回収したところ、塩化亜鉛濃度51質量%の塩化亜鉛水溶液を得た。この塩化亜鉛水溶液は、下記純度測定結果から明らかなように、十分に工業的価値のある純度を有していた。
<純度の測定>
塩化亜鉛水溶液の純度は、以下の2つの方法により測定した。
[測定1]
エチレンジアミン四酢酸(EDTA)を用いたキレート滴定にて塩化亜鉛水溶液中の亜鉛を定量し、塩化亜鉛量に換算した。ここで、塩化亜鉛水溶液中の亜鉛は全て塩化亜鉛として存在していると仮定した。
次に、塩化亜鉛水溶液中の水をカールフィッシャー法にて定量分析した。そして、塩化亜鉛水溶液の全体量から、塩化亜鉛の量及び水の量を差し引いた残分を塩化亜鉛水溶液中の不純物量とした。その結果、塩化亜鉛水溶液の不純物量は、検出限界未満であった。
[測定2]
塩化亜鉛水溶液をガスクロマトグラフィーによって分析した。塩化亜鉛及び水以外の成分として定量検出できたものは、2−プロパノール832質量ppmのみであった。その他の不純物としては、ジイソプロピルエーテル及びフロン類が検出されたが、微量であるため定量できなかった。
〔実施例2〕
<反応工程>
実施例1と同様である。
<後処理工程(添加)>
実施例1と同様である。
<後処理工程(塩化亜鉛水溶液の生成)>
後処理工程(添加)により得られた濾液をロータリーエバポレーターにて蒸留することにより、有機溶剤(2−プロパノール)を留去した。2−プロパノールを含む蒸留留分が合計150gになるまで蒸留を行った後に、蒸留残渣を回収したところ、塩化亜鉛濃度48質量%の塩化亜鉛水溶液を得た。この塩化亜鉛水溶液は、下記純度測定結果から明らかなように、十分に工業的価値のある純度を有していた。
<純度の測定>
実施例1と同様にして、塩化亜鉛水溶液の純度を測定した。
[測定1]
塩化亜鉛水溶液の不純物量は、検出限界未満であった。
[測定2]
塩化亜鉛及び水以外の成分として定量検出できたものは、2−プロパノール1002質量ppmのみであった。その他の不純物としては、ジイソプロピルエーテル及びフロン類が検出されたが、微量であるため定量できなかった。
〔実施例3〕
<反応工程>
実施例1と同様である。
<後処理工程(添加)>
反応工程で得られた反応物残分(温度をさらに上昇させて有機溶剤の一部と生成物を気化させて分離した後の反応物残分)500gに、水500g及び35質量%塩酸7.0gを加え撹拌した後に、定量分析用5種Bの濾紙を用いて濾過し、不溶物をろ別して濾液を得た。
<後処理工程(塩化亜鉛水溶液の生成)>
後処理工程(添加)により得られた濾液を、段数5段のオルダーショウ式蒸留装置を用いて還流比5:1で蒸留し、有機溶剤(2−プロパノール)を留去した。2−プロパノールを含む蒸留留分が合計500gになるまで蒸留を行った後に、蒸留残渣を回収したところ、塩化亜鉛濃度49%の塩化亜鉛水溶液を得た。この塩化亜鉛水溶液は、下記純度測定結果から明らかなように、十分に工業的価値のある純度を有していた。
<純度の測定>
実施例1と同様にして、塩化亜鉛水溶液の純度を測定した。
[測定1]
塩化亜鉛水溶液の不純物量は、検出限界未満であった。
[測定2]
塩化亜鉛及び水以外の成分として定量検出できたものは、2−プロパノール488質量ppmのみであった。その他の不純物としては、ジイソプロピルエーテル及びフロン類が検出されたが、微量であるため定量できなかった。
〔比較例1〕
<反応工程>
実施例1と同様である。
<後処理工程(添加なし)>
反応工程で得られた反応物残分(温度をさらに上昇させて有機溶剤の一部と生成物を気化させて分離した後の反応物残分)150gを、定量分析用5種Bの濾紙を用いて濾過し、不溶物をろ別して、濾液を得た。
<後処理工程(塩化亜鉛水溶液の生成)>
後処理工程(添加なし)で得られた濾液を加熱して有機溶剤(2−プロパノール)を蒸発させ、固形物を除去した後に水75gを加え、塩化亜鉛濃度45質量%の塩化亜鉛水溶液を得た。得られた塩化亜鉛水溶液は、下記純度測定結果から明らかなように、不純物を多く含有し、工業的には価値の低いものであった。
<純度の測定>
実施例1と同様にして、塩化亜鉛水溶液の純度を測定した。
[測定1]
塩化亜鉛水溶液の不純物量は、5質量%であった。
〔比較例2〕
<反応工程>
実施例1と同様である。
<後処理工程(添加及びろ過ともに無しで塩化亜鉛水溶液を生成)>
反応工程で得られた反応物残分(温度をさらに上昇させて有機溶剤の一部と生成物を気化させて分離した後の反応物残分)150gを加熱して有機溶剤(2−プロパノール)を蒸発させ、固形物を除去した後に水75gを加え、塩化亜鉛濃度45質量%の塩化亜鉛水溶液を得た。得られた塩化亜鉛水溶液は、下記純度測定結果から明らかなように、不純物を多く含有し、工業的には価値の低いものであった。
<純度の測定>
実施例1と同様にして、塩化亜鉛水溶液の純度を測定した。
[測定1]
塩化亜鉛水溶液の不純物量は、5質量%であった。

Claims (6)

  1. CF−CFX−CFX−CF(X、X、X、及びXは、それぞれ独立して、フッ素原子以外のハロゲン原子を示す)なる化学式で表されるハロゲン化ブタンを、有機溶剤中、亜鉛存在下で反応させ、フッ素原子以外のハロゲン原子X、X、X、Xを脱離させてヘキサフルオロ−1,3−ブタジエンを生じさせ、ヘキサフルオロ−1,3−ブタジエンを含有する反応物を得る反応工程と、
    前記反応工程で得られた反応物からヘキサフルオロ−1,3−ブタジエンを分離した後に、その分離後の反応物残分に水を添加し、さらに前記有機溶剤を除去してハロゲン化亜鉛水溶液を得る後処理工程と、
    を備えるヘキサフルオロ−1,3−ブタジエンの製造方法。
  2. 前記有機溶剤がアルコールである請求項1に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
  3. 前記アルコールがメタノール、エタノール、1−プロパノール、及び2−プロパノールのうちの少なくとも1種である請求項2に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
  4. 前記反応工程で得られた反応物から分離されたヘキサフルオロ−1,3−ブタジエンにアルカリを接触させる中和工程と、前記中和工程でアルカリを接触させたヘキサフルオロ−1,3−ブタジエンの水分を除去する水分除去工程と、をさらに備える請求項1〜3のいずれか一項に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
  5. 前記水分除去工程で水分が除去されたヘキサフルオロ−1,3−ブタジエンを、少なくとも2つの蒸留塔を用いて蒸留して、ヘキサフルオロ−1,3−ブタジエンを精製する精製工程をさらに備える請求項4に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
  6. 前記後処理工程において、前記反応物残分に水とともにハロゲン化水素を添加する請求項1〜5のいずれか一項に記載のヘキサフルオロ−1,3−ブタジエンの製造方法。
JP2019519530A 2017-05-22 2018-04-25 ヘキサフルオロ-1,3-ブタジエンの製造方法 Active JP7085537B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017101063 2017-05-22
JP2017101063 2017-05-22
PCT/JP2018/016881 WO2018216426A1 (ja) 2017-05-22 2018-04-25 ヘキサフルオロ-1,3-ブタジエンの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018216426A1 true JPWO2018216426A1 (ja) 2020-03-26
JP7085537B2 JP7085537B2 (ja) 2022-06-16

Family

ID=64396771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519530A Active JP7085537B2 (ja) 2017-05-22 2018-04-25 ヘキサフルオロ-1,3-ブタジエンの製造方法

Country Status (7)

Country Link
US (1) US11192838B2 (ja)
EP (1) EP3632883B1 (ja)
JP (1) JP7085537B2 (ja)
KR (1) KR102312153B1 (ja)
CN (1) CN110637002B (ja)
TW (1) TWI679186B (ja)
WO (1) WO2018216426A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117850B2 (en) 2018-06-22 2021-09-14 Showa Denko K.K. Method for producing hexafluoro-1,3-butadiene
WO2022069434A1 (en) * 2020-10-02 2022-04-07 Solvay Sa A process for the purification of fluorinated olefins in gas phase
WO2022069435A1 (en) * 2020-10-02 2022-04-07 Solvay Sa A process for the purification of fluorinated olefins
CN113735683B (zh) * 2021-09-27 2023-05-02 中船(邯郸)派瑞特种气体股份有限公司 一种电子级二氟甲烷的纯化装置及其纯化方法
CN113816827B (zh) * 2021-09-27 2023-05-19 中船(邯郸)派瑞特种气体股份有限公司 一种电子级三氟甲烷的纯化方法
EP4414349A1 (en) * 2021-10-04 2024-08-14 Resonac Corporation Method for producing hexafluoro-1,3-butadiene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115698A (en) * 1978-02-28 1979-09-08 Central Glass Co Ltd Treating method for solution of zinc halide in lower alcohol
JP2006312637A (ja) * 2005-05-05 2006-11-16 Solvay Solexis Spa 脱ハロゲン化方法
WO2007125972A1 (ja) * 2006-04-28 2007-11-08 Showa Denko K.K. ヘキサフルオロ-1,3-ブタジエンの製造方法
JP2007332050A (ja) * 2006-06-13 2007-12-27 Mitsubishi Gas Chem Co Inc 光学活性N−tert−ブチルカルバモイル−L−tert−ロイシンの製造方法
RU2359951C1 (ru) * 2007-11-06 2009-06-27 Общество с ограниченной ответственностью Научно-внедренческая фирма "Окта" Способ получения гексафторбутадиена

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB798407A (en) 1956-11-27 1958-07-23 Dow Chemical Co Preparation of hexafluorobutadiene
JPS505681B1 (ja) 1970-07-28 1975-03-06
JPS505681A (ja) 1973-05-23 1975-01-21
JP2006342059A (ja) 2003-09-02 2006-12-21 Asahi Glass Co Ltd クロロフルオロブタンの製造方法
JP5547089B2 (ja) 2008-01-08 2014-07-09 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア パーフルオロブタジエンの合成方法
CN103373896B (zh) 2012-04-13 2015-03-18 中化蓝天集团有限公司 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN104529696A (zh) 2014-12-08 2015-04-22 中昊晨光化工研究院有限公司 一种全氟1,3-丁二烯的合成及纯化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115698A (en) * 1978-02-28 1979-09-08 Central Glass Co Ltd Treating method for solution of zinc halide in lower alcohol
JP2006312637A (ja) * 2005-05-05 2006-11-16 Solvay Solexis Spa 脱ハロゲン化方法
WO2007125972A1 (ja) * 2006-04-28 2007-11-08 Showa Denko K.K. ヘキサフルオロ-1,3-ブタジエンの製造方法
JP2007332050A (ja) * 2006-06-13 2007-12-27 Mitsubishi Gas Chem Co Inc 光学活性N−tert−ブチルカルバモイル−L−tert−ロイシンの製造方法
RU2359951C1 (ru) * 2007-11-06 2009-06-27 Общество с ограниченной ответственностью Научно-внедренческая фирма "Окта" Способ получения гексафторбутадиена

Also Published As

Publication number Publication date
US11192838B2 (en) 2021-12-07
TWI679186B (zh) 2019-12-11
KR20200006097A (ko) 2020-01-17
TW201904921A (zh) 2019-02-01
KR102312153B1 (ko) 2021-10-12
CN110637002A (zh) 2019-12-31
EP3632883B1 (en) 2023-06-21
EP3632883A4 (en) 2020-07-01
WO2018216426A1 (ja) 2018-11-29
CN110637002B (zh) 2022-03-15
US20210163382A1 (en) 2021-06-03
EP3632883A1 (en) 2020-04-08
JP7085537B2 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7085537B2 (ja) ヘキサフルオロ-1,3-ブタジエンの製造方法
US20090068081A1 (en) Method for purifying chlorosilanes
EP1644285A1 (en) Methods of purifying hydrogen fluoride
JP5274449B2 (ja) 1,2,3,4−テトラクロロヘキサフルオロブタンの製造方法および精製方法
JP7359141B2 (ja) ヘキサフルオロ-1,3-ブタジエンの製造方法
JP6998371B2 (ja) ハロゲン化亜鉛水溶液の製造方法
WO2010001774A1 (ja) 1,2,3,4-テトラクロロヘキサフルオロブタンの製造方法
US9079819B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JPH0651646B2 (ja) 塩素含有量の低いベンジルトルエンとジベンジルトルエンの合成方法
JP2002226411A (ja) 1,1,1,3,3−ペンタフルオロプロパンの精製方法
JP2016135803A (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JP2001226298A (ja) 1,2−ジクロルエタンの精製方法
JP4691771B2 (ja) 高純度1,2−ジクロルエタンの回収方法
JP2001354610A (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトンの精製方法
JP2003171338A (ja) 1,3−ジフルオロアセトンの精製方法
JP2000297054A (ja) 塩素化芳香族化合物の回収方法
JP2002241330A (ja) ビストリフルオロメチルヒドロキシブテン−1の精製方法
JPH0820569A (ja) シアノ酢酸t−ブチルの精製法
JPH01308257A (ja) ピリジン塩素化物の蒸留方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7085537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350