JPWO2018180588A1 - Face image matching system and face image search system - Google Patents

Face image matching system and face image search system Download PDF

Info

Publication number
JPWO2018180588A1
JPWO2018180588A1 JP2018010442A JP2019509281A JPWO2018180588A1 JP WO2018180588 A1 JPWO2018180588 A1 JP WO2018180588A1 JP 2018010442 A JP2018010442 A JP 2018010442A JP 2019509281 A JP2019509281 A JP 2019509281A JP WO2018180588 A1 JPWO2018180588 A1 JP WO2018180588A1
Authority
JP
Japan
Prior art keywords
image
person
attribute
matching
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018010442A
Other languages
Japanese (ja)
Inventor
武田 隆史
隆史 武田
崇 三戸
崇 三戸
小倉 慎矢
慎矢 小倉
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017060932 priority Critical
Priority to JP2017060932 priority
Priority to JP2018018832 priority
Priority to JP2018018832 priority
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2018/010442 priority patent/WO2018180588A1/en
Publication of JPWO2018180588A1 publication Critical patent/JPWO2018180588A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Abstract

施設内での来場者の行動の分析に適した顔画像照合システムを提供する。入場口に設置された顔検知用の撮像装置100(1)と、施設内の各店舗及び出場口に設置された顔照合用の撮像装置100(2)〜100(N)と、顔検知用の撮像装置による撮影画像に基づく同一人物判定処理によって同一の人物であると判定された複数の顔画像の中から、当該人物を代表する顔画像である代表顔画像を選定する代表顔選定部203と、代表顔選定部203により選定された代表顔画像を顔データベース208に登録する登録処理部207と、顔照合用の撮像装置による撮影画像に含まれる顔画像を顔データベース208に登録された代表顔画像と照合する顔照合部210とを備える。Provided is a face image collation system suitable for analyzing the behavior of visitors in a facility. An imaging device 100 (1) for face detection installed at the entrance, imaging devices 100 (2) to 100 (N) for face matching installed at each store and entrance in the facility, and a face detection device A representative face selecting unit 203 that selects a representative face image that is a representative face image from a plurality of face images determined to be the same person by the same person determination process based on an image captured by the imaging device A registration processing unit 207 for registering the representative face image selected by the representative face selecting unit 203 in the face database 208; and a representative image registered in the face database 208 for a face image included in an image captured by the image capturing device for face matching. A face matching unit 210 for matching with a face image is provided.

Description

本発明は、入場口及び出場口を有する施設で撮影された顔画像を照合する顔画像照合システム、および指定された検索条件に基づいて顔画像を検索する顔画像検索システムに関する。   The present invention relates to a face image collating system for collating face images photographed at a facility having an entrance and an entrance, and a face image retrieval system for retrieving a face image based on designated retrieval conditions.

従来から、ホテル、ビル、コンビニエンスストア、金融機関、ダムや道路といった不特定多数の人が訪れる施設には、犯罪防止や事故防止等の目的で、映像監視システムが設置されている。これは、監視対象の人物等をカメラ等の撮像装置で撮影し、その映像を、管理事務所や警備室等の監視センタに伝送し、常駐する監視者がそれを監視し、目的や必要に応じて注意する、あるいは映像を記録するものである。   2. Description of the Related Art Conventionally, video surveillance systems have been installed in facilities such as hotels, buildings, convenience stores, financial institutions, dams and roads that are visited by an unspecified number of people, for the purpose of crime prevention and accident prevention. In this method, a person or the like to be monitored is photographed by an imaging device such as a camera, and the image is transmitted to a monitoring center such as a management office or a security room. Attention should be paid or video should be recorded accordingly.

映像監視システムにおいて、映像を記録するための記録媒体には、従来のビデオテープ媒体から、ハードディスクドライブ(HDD)に代表されるランダムアクセス媒体が用いられる事例が増えている。さらに近年ではこのような記録媒体の大容量化が進んでいる。
記録媒体の大容量化は、記録できる映像の量を飛躍的に増大させ、より多地点や長時間の記録を可能にしつつある反面、記録画像を目視でチェックする負担の増加が問題として顕在化しつつある。
In a video surveillance system, as a recording medium for recording a video, a random access medium represented by a hard disk drive (HDD) has been increasingly used from a conventional video tape medium. In recent years, the capacity of such recording media has been increasing.
Increasing the capacity of recording media has dramatically increased the amount of images that can be recorded, and has enabled recording at multiple points and for long periods of time.On the other hand, the increase in the burden of visually checking recorded images has become a problem. It is getting.

このような背景から、所望の映像をより簡単に見つけ出すための検索機能を備える映像監視システムが普及しつつある。特に、近年では、映像中の特定の事象(イベント)の発生を画像認識技術を用いてリアルタイムに自動検知して映像とともに記録し、事後にそれらのイベントを検索可能とする、より高度な検索機能を備えたシステムが登場しつつある。その中の代表的な一つに人物検索機能がある。
人物検索機能とは、映像中への人物の登場を自動検知の対象とし、リアルタイムに記録し、事後に録画画像中から人物登場画像を探し出せる機能である。機能面から人物検索機能は、以下の2種類に大別される。
From such a background, a video surveillance system having a search function for finding out a desired video more easily is becoming widespread. In particular, in recent years, a more advanced search function that automatically detects the occurrence of a specific event (event) in a video in real time using image recognition technology and records it together with the video, making it possible to search for those events after the fact A system with is emerging. One of the representatives is a person search function.
The person search function is a function in which the appearance of a person in a video is automatically detected, recorded in real time, and a person appearance image can be searched for from a recorded image after the fact. In terms of functions, the person search function is roughly classified into the following two types.

一つ目は、登場イベント検索機能である。登場イベント検索機能は、映像中への人物の登場(イベント)の有無を、単純に探し出す機能である。検索結果としては、イベントの有無に加え、イベント有と判定された場合には、そのイベント数と各イベントの発生時刻やイベントを撮影した撮像装置番号、撮影した画像(人物登場画像)等が提示される。なお、この検索条件(検索クエリ)には、イベント発生時刻や撮像装置番号等の検索対象範囲を絞り込むための情報として与える場合が多い。この検索対象範囲を絞り込むための情報は、絞り込みパラメータと称される。   The first is an appearance event search function. The appearance event search function is a function that simply searches for the presence or absence of a person (event) in a video. As a search result, in addition to the presence or absence of an event, when it is determined that an event is present, the number of events, the time of occurrence of each event, the number of the imaging device that captured the event, the captured image (person appearance image), and the like are presented. Is done. Note that the search condition (search query) is often given as information for narrowing a search target range such as an event occurrence time and an imaging device number. Information for narrowing the search target range is called a narrowing parameter.

二つ目は、類似人物検索機能である。上述の登場イベント検索機能が、登場人物を特定しない検索であるのに対し、こちらはユーザが指定する特定人物が、他の時間、あるいは他の地点の撮像装置で撮影されていないかどうかを、録画画像中から探し出す機能である。検索結果としては、特定人物が映った他の画像の有無に加え、有の場合には、その数と撮影時刻、撮像装置番号、撮影した画像(人物登場画像)、類似度等が提示される。   The second is a similar person search function. While the above-mentioned appearance event search function is a search that does not specify the characters, here is whether the specific person specified by the user has been photographed at another time, or at an imaging device at another point, This is a function to search from recorded images. As a search result, in addition to the presence or absence of another image in which a specific person is shown, if there is, the number, shooting time, imaging device number, captured image (person appearance image), similarity, and the like are presented. .

特定人物の指定は、探したい人物が映った画像(以降、検索キー画像)をユーザが1つ指定することで実施される。検索キー画像は、録画画像や外部装置にある任意の画像から指定される。検索は、この検索キー画像中の人物の画像特徴量を画像認識技術により抽出し、録画画像中の人物の画像特徴量と照合し、その類似性(類似度)を求め、同一人物判定を実施することにより実現される。録画画像中の人物特徴量の抽出と記録は、映像録画時等の別タイミングにて予め実施しておく。この検索条件においても、絞り込みパラメータを与えることが可能である場合が多い。   The specification of the specific person is performed by the user specifying one image (hereinafter, a search key image) in which the person to be searched is shown. The search key image is specified from a recorded image or an arbitrary image in an external device. In the search, the image feature amount of a person in the search key image is extracted by an image recognition technique, collated with the image feature amount of the person in the recorded image, the similarity (similarity) is obtained, and the same person determination is performed. It is realized by doing. The extraction and recording of the person feature in the recorded image are performed in advance at another timing such as when recording a video. Even in this search condition, it is often possible to provide a narrowing-down parameter.

このような映像監視システムに関し、従来より種々の発明が提案されている。
特許文献1には、時刻と類似度のような2元の情報について、その大小関係や前後関係を視覚的に同時に把握できるようにする発明が開示されている。
特許文献2には、複数の画像を検索条件として登録することで、対象の向きや撮影角度の違いによる検索見逃しを少なくし、対象検索人物の映った画像をより多く得ることができるようにする発明が開示されている。
特許文献3には、類似画像検索の結果から、多数の画像を選択して、一度にキーワードを付与できるようにする発明が開示されている。
Various inventions have been proposed for such a video monitoring system.
Patent Literature 1 discloses an invention that enables a user to visually grasp simultaneously the magnitude relationship and the anteroposterior relationship of binary information such as time and similarity.
In Patent Document 2, by registering a plurality of images as search conditions, it is possible to reduce missed searches due to differences in the direction of the target and the shooting angle, and to obtain more images showing the target search person. The invention has been disclosed.
Patent Literature 3 discloses an invention in which a large number of images can be selected from a result of similar image search and a keyword can be assigned at a time.

特開2009−301501号公報JP 2009-301501 A 特開2011−048668号公報JP 2011-048668 A 特開2012−242878号公報JP 2012-242878 A

従来、ショッピングセンターやアミューズメントパークなどの各種の施設に訪れた来場者が施設内をどのように行動しているかを分析して、マーケティングに活かす試みが行われている。これまでは、施設の各所に配した人員が来場者をカウントするような、人力に頼った手法が主に用いられており、その改善が求められていた。
本発明は、上記のような従来の事情に鑑みて為されたものであり、施設内での来場者の行動の分析に適した顔画像照合システムを提供することを第1の目的とする。
2. Description of the Related Art Conventionally, attempts have been made to analyze how visitors who visit various facilities such as shopping centers and amusement parks behave in the facilities and utilize them in marketing. Until now, methods that rely on human power, such as personnel assigned to various places in the facility to count visitors, have been mainly used, and improvements have been required.
The present invention has been made in view of the above-described conventional circumstances, and a first object of the present invention is to provide a face image collating system suitable for analyzing the behavior of a visitor in a facility.

また、絞り込みパラメータによって、一人で映っているのか、複数人で映っているのかを指定して検索したい場合がある。例えば、ほとんどの人が複数人で利用する遊園地などの施設では、一人で施設を利用しようとする人の手荷物検査を入念に行う運用をして、園内での犯罪の抑止に努めている。これは園内で発生する置き引き等の犯罪が主に一人で実行されるためである。一方で、空港や重要施設で引き起こされる組織的なテロ等は複数人によって実行されることが多いため、複数人で行動する人物に注意を払う必要がある。従来の顔画像検索システムでは撮影映像を目視で判断するしかなかく、監視者の負担となっていた。
本発明は、上記のような従来の事情に鑑みて為されたものであり、一人で映っているのか、複数人で映っているのかを指定して検索することが可能な顔画像検索システムを提供することを第2の目的とする。
Further, there is a case where it is desired to perform a search by designating whether the image is shown by one person or a plurality of people by a narrowing-down parameter. For example, in an amusement park or the like where most people use the facility, a person who tries to use the facility by himself or herself carefully examines the baggage and tries to prevent crime in the park. This is because crimes such as arrest that occur in the park are mainly executed by themselves. On the other hand, organized terrorism and the like caused at airports and important facilities are often performed by multiple people, so it is necessary to pay attention to persons acting by multiple people. In the conventional face image search system, the photographed video has to be visually judged, which imposes a burden on the observer.
The present invention has been made in view of the above-described conventional circumstances, and provides a face image search system capable of performing a search by designating whether a single person or a plurality of persons is shown. The second purpose is to provide.

本発明では、上記第1の目的を達成するために、顔画像照合システムを以下のように構成した。
すなわち、入場口及び出場口を有する施設で撮影された顔画像を照合する顔画像照合システムにおいて、前記入場口に設置された第1の撮像装置と、前記施設内及び前記出場口に設置された第2の撮像装置と、前記第1の撮像装置による撮影画像に基づく同一人物判定処理によって同一の人物であると判定された複数の顔画像の中から、前記人物を代表する顔画像である代表顔画像を選定する選定手段と、前記選定手段により選定された代表顔画像をデータベースに登録する登録手段と、前記第2の撮像装置による撮影画像に含まれる顔画像を前記データベースに登録された代表顔画像と照合する照合手段と、を備える。
In the present invention, in order to achieve the first object, the face image collating system is configured as follows.
That is, in a face image collating system for collating a face image photographed at a facility having an entrance and an entrance, a first imaging device installed at the entrance, and a first imaging device installed at the facility and at the entrance. A second image capturing apparatus and a representative face image representing the person from among a plurality of face images determined to be the same person by the same person determination process based on the image captured by the first image capturing apparatus. Selecting means for selecting a face image; registering means for registering the representative face image selected by the selecting means in a database; and a representative image registered in the database for a face image included in an image captured by the second imaging device. Matching means for matching with the face image.

このような構成によれば、施設の入場口に設置された撮像装置で得られた代表顔画像を用いて、施設内及び出場口に設置された撮像装置で得られた顔画像を照合できるので、施設内での来場者の行動を分析するのに有効である。   According to such a configuration, the face images obtained by the imaging devices installed in the facility and at the exit can be compared using the representative face images obtained by the imaging devices installed at the entrance of the facility. It is effective for analyzing the behavior of visitors in the facility.

ここで、一構成例として、前記選定手段は、前記複数の顔画像を予め登録された基準顔と比較し、前記基準顔との類似度に基づいて前記人物の代表顔画像を選定し、前記基準顔として、正面を向いて目を開いた顔画像を用いる構成としてもよい。   Here, as one configuration example, the selection unit compares the plurality of face images with a reference face registered in advance, selects a representative face image of the person based on the similarity with the reference face, As the reference face, a configuration may be used in which a face image with eyes open facing the front is used.

また、一構成例として、前記登録手段は、前記同一人物判定処理に使用された撮影画像に前記人物とは別の人物の顔画像が含まれる場合に、前記別の人物の顔画像を含むグループ属性推定用データを前記人物の代表顔画像に対応付けて前記データベースに登録し、前記顔画像照合システムは、前記第2の撮像装置による撮影画像に複数の人物の顔画像が含まれる場合に、前記データベースに登録されたグループ属性推定用データに基づいて、前記複数の人物はグループで行動しているか否かを示すグループ属性を推定するグループ属性推定手段を更に備える構成としてもよい。   Further, as one configuration example, when the captured image used for the same person determination process includes a face image of a person different from the person, the registration unit includes a group including the face image of the different person. The attribute estimation data is registered in the database in association with the representative face image of the person, and the face image collation system includes a plurality of face images of a person included in an image captured by the second imaging device; The configuration may further include a group attribute estimating unit that estimates a group attribute indicating whether or not the plurality of persons is acting in a group based on the group attribute estimating data registered in the database.

また、前記グループ属性推定手段は、前記複数の人物についてのグループ属性を、各人物の顔画像が同じ撮影画像から検出される頻度、撮影画像における各人物の顔画像間の距離を示す近接度、撮影画像における各人物の視線の関係を示す親密度の少なくともいずれかに基づいて推定し、更に、前記複数の人物の顔画像から推定される各人物の年齢又は性別の少なくともいずれかに基づいて、前記複数の人物の関係性を推定する構成としてもよい。   Further, the group attribute estimating means may include a group attribute for the plurality of persons, a frequency at which a face image of each person is detected from the same photographed image, a proximity indicating a distance between face images of each person in the photographed image, Estimated based on at least one of the intimacy indicating the relationship of the gaze of each person in the captured image, further based on at least one of the age or gender of each person estimated from the face images of the plurality of people, A configuration for estimating the relationship between the plurality of persons may be adopted.

また、前記グループ属性推定手段で得られたデータを、各人物の年齢又は性別、前記施設に対する入場日時又は出場日時、グループ属性の少なくともいずれかに基づいて集計する集計手段を更に備える構成としてもよい。   Further, a configuration may be further provided that includes a counting means for counting the data obtained by the group attribute estimating means based on at least one of the age or gender of each person, the date and time of entry or exit from the facility, and the group attribute. .

本発明では、上記第2の目的を達成するために、顔画像検索システムを以下のように構成した。
すなわち、撮像装置による撮影画像に含まれる顔画像を記憶するデータベースから、指定された検索条件に基づいて顔画像を検索する顔画像検索システムにおいて、前記撮影画像に含まれる顔画像の人物が一人で行動しているか否かを判定し、判定結果の情報を該人物の顔画像に対応付けて前記データベースに記憶させる判定手段と、前記検索条件として、一人で行動している人物の検索または複数人で行動している人物の検索が指定された場合に、該指定に合致する判定結果の情報が対応付けられた顔画像を前記データベースから検索する検索手段と、を備えたことを特徴とする。
In the present invention, in order to achieve the second object, the face image search system is configured as follows.
That is, in a face image search system that searches for a face image based on a specified search condition from a database that stores face images included in an image captured by an imaging device, only one person of the face image included in the captured image Determining means for determining whether or not the user is acting, storing information of the determination result in the database in association with the face image of the person, and searching for a person acting alone or a plurality of persons as the search condition. A search means for searching the database for a face image associated with information of a determination result matching the specification when a search for a person acting in the above is specified.

ここで、一構成例として、前記判定手段は、異なる撮像装置による複数の撮像画像に同一の人物が含まれる場合に、前記複数の撮影画像に含まれる他の人物の共通性に基づいて、前記同一の人物が一人で行動しているか否かを判定する構成としてもよい。   Here, as an example of the configuration, when the same person is included in a plurality of images captured by different imaging devices, the determination unit is configured based on the commonality of another person included in the plurality of captured images. It may be configured to determine whether or not the same person is acting alone.

本発明によれば、施設内での来場者の行動の分析に適した顔画像照合システムを提供することができる。また、一人で映っているのか、複数人で映っているのかを指定して検索することが可能な顔画像検索システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the face image collation system suitable for the analysis of the visitor's action in a facility can be provided. Further, it is possible to provide a face image search system capable of performing a search by designating whether the image is reflected by one person or a plurality of persons.

本発明の一実施形態に係る顔画像照合システムの概略構成の例を示す図である。It is a figure showing the example of the schematic structure of the face image collation system concerning one embodiment of the present invention. 図1の顔画像照合システムが適用される施設の概要を示す図である。It is a figure which shows the outline | summary of the facility to which the face image collation system of FIG. 1 is applied. 図1の顔画像照合システムにおける照合サーバの機能ブロックの例を示す図である。FIG. 2 is a diagram illustrating an example of functional blocks of a matching server in the face image matching system in FIG. 1. 図1の顔画像照合システムの運用例を示す図である。FIG. 2 is a diagram illustrating an operation example of the face image collation system in FIG. 1. 図1の顔画像照合システムによる処理結果のデータ例を示す図である。FIG. 2 is a diagram illustrating an example of data of a processing result by the face image matching system in FIG. 1. 本発明の別の実施形態に係る顔画像検索システムにおける近接人物数判定の処理フローを示す図である。It is a figure showing the processing flow of the number juxtaposition of the number of people in the face image search system concerning another embodiment of the present invention. 本発明の別の実施形態に係る顔画像検索システムにおける常時近接者数判定の処理フローを示す図である。It is a figure showing the processing flow of the always approaching person number judgment in the face image search system concerning another embodiment of the present invention.

本発明の一実施形態に係る顔画像照合システムについて、図面を参照して説明する。
図1には、本発明の一実施形態に係る顔画像照合システムの概略構成の例を示してある。また、図2には、図1の顔画像照合システムが適用される施設の概要を示してある。図2の例では、施設内に店A〜店Gの各店舗があり、施設内に入場した人物が店A、店F、店C、店G、店Eを経由して施設から出場する様子を示してある。
A face image matching system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a schematic configuration of a face image matching system according to an embodiment of the present invention. FIG. 2 shows an outline of a facility to which the face image collating system of FIG. 1 is applied. In the example of FIG. 2, there are stores A to G in the facility, and a person who enters the facility enters the facility via the store A, the store F, the store C, the store G, and the store E. Is shown.

本例の顔画像照合システムは、複数であるN台の撮像装置100(1)〜100(N)と、照合サーバ200と、保守PC300と、ネットワークスイッチ400と、集計サーバ500とを備えている。
撮像装置100(1)〜100(N)は、入場口、施設内の各店舗、出場口の各所に設置されている。入場口に設置される撮像装置100(1)は、顔検知用の撮像装置である。また、施設内の各店舗に設置される撮像装置100(2)〜100(N−1)、及び、出場口に設置される撮像装置100(N)は、顔照合用の撮像装置である。各々の撮像装置100は、IPカメラ(ネットワークカメラ)等で構成され、撮像により得られた撮影画像をデジタル変換し、ネットワークスイッチ400を介して照合サーバ200へ送信する。
The face image collation system of this example includes a plurality of N imaging devices 100 (1) to 100 (N), a collation server 200, a maintenance PC 300, a network switch 400, and an aggregation server 500. .
The imaging devices 100 (1) to 100 (N) are installed at entrances, stores in the facility, and entrances. The imaging device 100 (1) installed at the entrance is an imaging device for face detection. In addition, the imaging devices 100 (2) to 100 (N-1) installed at each store in the facility and the imaging device 100 (N) installed at the entrance are imaging devices for face matching. Each imaging device 100 is configured by an IP camera (network camera) or the like, converts a captured image obtained by imaging into digital, and transmits the digitally converted image to the matching server 200 via the network switch 400.

照合サーバ200は、撮像装置100からネットワークスイッチ400を介して受信した撮影画像を蓄積し、顔検知、代表顔選定、人物属性判定、顔照合、グループ属性照合等の各種の処理を行う。
保守PC300は、ネットワークスイッチ400を介して照合サーバ200に接続され、照合サーバ200の保守に用いられる。
集計サーバ500は、ネットワークスイッチ400及びWAN回線を介して照合サーバ200に接続され、照合サーバ200から送信される出力データを受信して集計処理を行う。
The matching server 200 accumulates captured images received from the imaging device 100 via the network switch 400, and performs various processes such as face detection, representative face selection, person attribute determination, face matching, and group attribute matching.
The maintenance PC 300 is connected to the collation server 200 via the network switch 400 and is used for maintaining the collation server 200.
The aggregation server 500 is connected to the collation server 200 via the network switch 400 and the WAN line, receives output data transmitted from the collation server 200, and performs aggregation processing.

図3には、照合サーバ200の機能ブロックの例を示してある。
照合サーバ200は、顔検知部201、同一人物判定部202、代表顔選定部203、フォーマット変換部204、属性判定部205、ID付与人物情報生成部206、登録処理部207、顔データベース208、顔照合部210、グループ属性照合部211、照合履歴データベース212、転送処理部214の各機能部を備えている。
FIG. 3 shows an example of functional blocks of the matching server 200.
The matching server 200 includes a face detection unit 201, a same person determination unit 202, a representative face selection unit 203, a format conversion unit 204, an attribute determination unit 205, an ID assignment person information generation unit 206, a registration processing unit 207, a face database 208, a face Each functional unit includes a matching unit 210, a group attribute matching unit 211, a matching history database 212, and a transfer processing unit 214.

顔検知部201は、入場口にある撮像装置100(1)により得られた撮影画像(以下、「検知用画像」という)から顔画像を検知する。具体的には、例えば、検知用画像を解析して顔が映った領域を検知し、該領域の画像データを顔画像として抽出する。顔画像の検知は、時系列的に連続した画像フレーム毎(又は所定数の画像フレーム毎)に行われる。したがって、入場口を通過する人物毎に複数枚の顔画像が得られることになる。   The face detection unit 201 detects a face image from a captured image (hereinafter, referred to as a “detection image”) obtained by the imaging device 100 (1) at the entrance. Specifically, for example, the detection image is analyzed to detect a region where the face is reflected, and the image data of the region is extracted as a face image. The detection of the face image is performed for each time-series continuous image frame (or for each predetermined number of image frames). Therefore, a plurality of face images can be obtained for each person passing through the entrance.

同一人物判定部202は、顔検知部201で検知された顔画像について、同一人物判定処理を行う。具体的には、例えば、画像フレームにおける顔画像の位置を画像フレーム間で比較しながら撮像エリア内における人物の動きを追跡し、同一であると判定された人物毎に顔画像をグループ化する。   The same person determination unit 202 performs the same person determination process on the face image detected by the face detection unit 201. Specifically, for example, the movement of a person in the imaging area is tracked while comparing the position of the face image in the image frame between the image frames, and the face images are grouped for each person determined to be the same.

代表顔選定部203は、同一人物判定部202で同一の人物であると判定された複数の顔画像の中から、当該人物を代表する顔画像である代表顔画像を選定する。本例では、従来のように顔検知サイズの大きいものを代表顔画像として選定するのではなく、予め登録された基準顔との類似度に基づいて代表顔画像を選定する。具体的には、同一の人物であると判定された複数の顔画像を基準顔と比較して、顔画像毎に基準顔との類似度を算出し、類似度が最も高いものを代表顔画像として選定する。なお、類似度が高い順に所定数を代表顔画像として選定してもよい。   The representative face selecting unit 203 selects a representative face image representing the person from the plurality of face images determined to be the same person by the same person determining unit 202. In this example, a representative face image is selected based on the degree of similarity with a previously registered reference face, instead of selecting a face detection size that is large as a conventional face image. Specifically, a plurality of face images determined to be the same person are compared with the reference face, and the similarity with the reference face is calculated for each face image. To be selected. Note that a predetermined number may be selected as a representative face image in descending order of similarity.

基準顔としては、正面を向いて目を開いた顔画像が用いられる。これにより、後続の顔照合における照合類似度が高い傾向となるような顔画像を代表顔画像に選定することができる。言い換えれば、目を閉じている顔画像や、俯きや横を向いている顔画像など、照合類似度が低くなることを事前に予想できる顔画像が代表顔画像に選定されることを防ぐことができる。本例では、男性(眼鏡着用)、男性(眼鏡非着用)、女性(眼鏡着用)、女性(眼鏡非着用)の4パターンの基準顔を用いているが、年齢層や髪型等を考慮して基準顔のパターン数を増やしてもよい。   As the reference face, a face image whose eyes are open facing the front is used. As a result, a face image in which the matching similarity in the subsequent face matching tends to be high can be selected as the representative face image. In other words, it is possible to prevent a face image that can be predicted in advance that the matching similarity is low from being selected as the representative face image, such as a face image with eyes closed, a face image looking down or facing sideways. it can. In this example, reference patterns of four patterns of men (wearing glasses), men (wearing no glasses), women (wearing glasses), and women (wearing no glasses) are used. The number of patterns of the reference face may be increased.

フォーマット変換部204は、顔検知部201で検知された顔画像を、属性判定部205における人物属性判定処理に適したフォーマットに変換する。   The format conversion unit 204 converts the face image detected by the face detection unit 201 into a format suitable for the personal attribute determination process in the attribute determination unit 205.

属性判定部205は、フォーマット変換部204で変換された顔画像に基づいて、代表顔選定部203で選定された代表顔画像に代表される人物について人物属性を判定する人物属性判定処理を行う。人物属性としては、例えば、人物の年齢や性別が挙げられる。   The attribute determining unit 205 performs a personal attribute determining process of determining a personal attribute of a person represented by the representative face image selected by the representative face selecting unit 203, based on the face image converted by the format converting unit 204. The person attributes include, for example, the age and gender of the person.

ID付与人物情報生成部206は、代表顔選定部203で選定された代表顔画像や属性判定部205で判定された人物属性に対応付ける人物IDを発行する。人物IDは、施設に来場した各人物を一意に識別する情報である。   The ID-assigned person information generation unit 206 issues a person ID that associates the representative face image selected by the representative face selection unit 203 and the person attribute determined by the attribute determination unit 205. The person ID is information for uniquely identifying each person who has visited the facility.

登録処理部207は、ID付与人物情報生成部206で発行された人物IDを対応付けて、当該人物について得られた代表顔画像や人物属性を顔データベース208に登録する。登録処理部207は更に、グループ属性推定に使用されるグループ属性推定用データを生成し、グループIDを対応付けて顔データベース208に登録する。グループIDは、一緒に行動する複数の人物をまとめた各グループを一意に識別する情報であり、人物IDと紐付けられる。   The registration processing unit 207 registers a representative face image and a person attribute obtained for the person in the face database 208 in association with the person ID issued by the ID-assigned person information generation unit 206. The registration processing unit 207 further generates group attribute estimation data used for group attribute estimation, and registers the data in the face database 208 in association with the group ID. The group ID is information for uniquely identifying each group in which a plurality of persons acting together are put together, and is associated with the person ID.

グループ属性推定用データには、登録対象の人物(顔データベース208に代表顔画像等を登録する人物)についての同一人物判定処理に使用された検知用画像に含まれる別の人物の顔画像が含まれる。また、登録対象の人物と前記別の人物とについて検出頻度、近接度、親密度を判定するための情報も、グループ属性推定用データに含まれる。   The group attribute estimation data includes a face image of another person included in the detection image used in the same person determination process for the person to be registered (a person who registers a representative face image or the like in the face database 208). It is. Further, information for determining the detection frequency, proximity, and intimacy of the person to be registered and the another person is also included in the group attribute estimation data.

顔データベース208は、人物IDにより識別される人物毎に、代表顔画像、人物属性(年齢や性別)、グループIDを保持する。また、顔データベース208は、グループIDにより識別されるグループ毎に、グループ属性推定用データを保持する。   The face database 208 holds a representative face image, person attributes (age and gender), and a group ID for each person identified by the person ID. Further, the face database 208 holds group attribute estimation data for each group identified by the group ID.

顔照合部210は、施設内の各店舗及び出場口にある撮像装置100(2)〜100(N)により得られた撮影画像(以下、「照合用画像」という)について、顔データベース208に登録されている代表顔画像と照合する。顔照合は、例えば、LFM(Live Face Matching)等の技術を用いて行うことができる。顔照合部210は、照合用画像に代表顔画像と同じ人物が映っていると判定した場合には、その結果を照合履歴データベース212に登録する。これにより、代表顔画像の人物が、施設内をどのように行動したか(どの店舗に訪れたか)を特定できる。また、照合用画像が撮影された時刻情報も併せて照合履歴データベース212に登録することで、代表顔画像の人物が施設内の各店舗に入店した時刻も特定できるようになる。なお、店舗の入口と出口に撮像装置を設ければ、店舗から出店した時刻や店舗内の滞在時間も特定できるようになる。   The face matching unit 210 registers, in the face database 208, captured images (hereinafter, referred to as “matching images”) obtained by the imaging devices 100 (2) to 100 (N) at the stores and entrances in the facility. Collated with the representative face image that has been set. Face matching can be performed using, for example, a technique such as LFM (Live Face Matching). If the face matching unit 210 determines that the same person as the representative face image appears in the matching image, the result is registered in the matching history database 212. In this way, it is possible to specify how the person of the representative face image has acted in the facility (which store the user has visited). Also, by registering the time information of the time when the image for matching was captured in the matching history database 212, the time when the person of the representative face image entered each store in the facility can be specified. If the imaging devices are provided at the entrance and the exit of the store, the time at which the store is opened from the store and the length of stay in the store can be specified.

グループ属性照合部211は、施設内の各店舗及び出場口にある撮像装置100(2)〜100(N)により得られた照合用画像について、顔データベース208に登録されているグループ属性推定用データを用いてグループ属性推定を行う。すなわち、照合用画像に複数の人物が映っている場合(複数の顔画像が含まれる場合)に、これらの人物がグループで行動しているか否かを示すグループ属性を推定し、その結果を照合履歴データベース212に登録する。グループ属性推定には、Enra−Enra等の類似判定技術が使用される。   The group attribute collating unit 211 performs group attribute estimating data registered in the face database 208 with respect to the collation images obtained by the imaging devices 100 (2) to 100 (N) at the stores and entrances in the facility. Is used to perform group attribute estimation. That is, when a plurality of persons are included in the verification image (when a plurality of face images are included), a group attribute indicating whether or not these persons are acting in a group is estimated, and the result is compared. Register it in the history database 212. Similarity determination technology such as Enra-Enra is used for group attribute estimation.

グループ属性を推定する手法としては、一例として、以下のような手法が挙げられる。(1)各人物の顔画像が同じ元画像から検出される頻度が基準値より高い場合に、グループ属性=“有”(グループで行動している)と判断し、そうでない場合に、グループ属性=“無”(単独で行動している)と判断する。(2)元画像における各人物の顔画像間の距離を示す近接度が基準値より高い場合に、グループ属性=“有”と判断し、そうでない場合に、グループ属性=“無”と判断する。(3)元画像における各人物の視線の関係(どの人物を見ているか)を示す親密度が基準値より高い場合に、グループ属性=“有”と判断し、そうでない場合に、グループ属性=“無”と判断する。
なお、「元画像」は、照合用画像でもよく、検知用画像でもよく、両方でもよい。また、これら(1)〜(3)の手法の組み合わせによりグループ属性の推定を行うこともできる。
As a method of estimating the group attribute, the following method is given as an example. (1) If the frequency at which the face images of each person are detected from the same original image is higher than the reference value, it is determined that the group attribute is “present” (acting in a group). = Judge that there is nothing (acts alone). (2) If the proximity indicating the distance between the face images of each person in the original image is higher than the reference value, it is determined that the group attribute is “present”; otherwise, it is determined that the group attribute is “absent”. . (3) If the intimacy indicating the relationship of the line of sight of each person in the original image (which person is looking at) is higher than the reference value, it is determined that the group attribute is “presence”. Judge as “none”.
The “original image” may be an image for collation, an image for detection, or both. Further, the group attribute can be estimated by a combination of the methods (1) to (3).

グループ属性照合部211は更に、グループで行動していると判定された複数の人物について、各々の人物の顔画像の分析結果に基づいて、これら人物の関係性を推定する。すなわち、各人物の人物属性(年齢や性別)に基づいて、例えば、年齢差が20歳以上であれば親子の関係、年齢差が50歳以上であれば祖父母と孫の関係、年齢差が10歳未満の男女であれば恋人又は夫婦の関係であると推定し、その結果を照合履歴データベース212に登録する。   The group attribute matching unit 211 further estimates, for a plurality of persons determined to be acting in the group, the relationship between the persons based on the analysis result of the face image of each person. That is, based on the personal attributes (age and gender) of each person, for example, if the age difference is 20 years or older, the relationship between parent and child, if the age difference is 50 years or older, the relationship between grandparents and grandchildren, and the age difference is 10 years or older. If the sex is younger than age, it is estimated that the relationship is a lover or a couple, and the result is registered in the collation history database 212.

転送処理部214は、照合履歴データベース212に登録されているデータ(顔照合部210及びグループ属性照合部211による処理結果)を集計し、集計結果のデータを集計サーバ500や保守PC300へ転送する。集計は、例えば、各人物の年齢又は性別毎、施設に対する入場日時又は出場日時毎、グループ属性毎、これらの幾つかの組み合わせ毎など、種々の条件に基づいて行うことができる。   The transfer processing unit 214 counts data registered in the matching history database 212 (processing results by the face matching unit 210 and the group attribute matching unit 211), and transfers the data of the counting result to the counting server 500 and the maintenance PC 300. Aggregation can be performed based on various conditions, such as, for example, for each person's age or gender, for each entry / exit date / time to a facility, for each group attribute, or for some combination thereof.

図4には、本例の顔画像照合システムの運用例を示してある。
照合サーバ200における処理は、店舗開店期間(本例では、9:00〜21:00)に行われるリアルタイム(オンライン)処理と、店舗閉店期間(本例では、21:00〜9:00)に行われるオフライン処理とに大別される。
FIG. 4 shows an operation example of the face image collation system of this example.
The processing in the collation server 200 is performed in real time (online) processing performed during the store opening period (in the present example, 9:00 to 21:00) and during the store closing period (in the present example, 21:00 to 9:00). It is roughly divided into offline processing to be performed.

リアルタイム処理では、主に、以下のようなデータ収集処理が行われる。
施設に人物が入場した際に、入場口にあるカメラで撮影された検知用画像に基づいて、施設に人物が入場したことを検知する。すなわち、検知用画像から得られた複数の顔画像の中から代表顔画像を選定して、顔データベース208に登録する。このとき、検知日時(検知用画像の撮影日時)、人物ID、入場場所(カメラの設置場所の情報)、人物属性1(年齢)、人物属性2(性別)などの情報も併せて登録する。また、検知用画像に基づいて、グループ属性推定用の前処理を行う。この前処理により、検知日時(検知用画像の撮影日時)、グループID(検知用画像に含まれる複数の人物に共通)、入場場所(カメラの設置場所の情報)、グループ属性推定用データなどの情報が顔データベース208に登録される。
In the real-time processing, the following data collection processing is mainly performed.
When a person enters the facility, it detects that the person has entered the facility based on the detection image captured by the camera at the entrance. That is, a representative face image is selected from a plurality of face images obtained from the detection image and registered in the face database 208. At this time, information such as a detection date and time (a date and time of photographing of the image for detection), a person ID, an entrance location (information on a location where the camera is installed), a person attribute 1 (age), and a person attribute 2 (sex) are also registered. In addition, preprocessing for estimating group attributes is performed based on the detection image. By this pre-processing, the detection date and time (the date and time of photographing of the detection image), the group ID (common to a plurality of persons included in the detection image), the entrance location (information on the installation location of the camera), the data for estimating the group attribute, etc. The information is registered in the face database 208.

その後、人物が店舗に訪れる毎に、その店舗にあるカメラで撮影された照合用画像に基づいて、店舗に人物が訪れたことを検知する。また、人物が施設から出場すると、出場口にあるカメラで撮影された照合用画像に基づいて、施設から人物が出場したことを検知する。これらのタイミングで、照合用画像に含まれる顔画像に基づいて、顔データベース208に登録された代表顔画像との照合や、検知頻度・近接度・親密度等に基づくグループ属性推定などを行い、その結果を照合履歴データベース212に記録する。   Thereafter, each time a person visits the store, it is detected that the person has visited the store based on the verification image taken by the camera in the store. Further, when a person enters from the facility, it detects that the person has entered from the facility based on the verification image taken by the camera at the entry port. At these timings, based on the face image included in the matching image, matching with a representative face image registered in the face database 208, group attribute estimation based on detection frequency, proximity, intimacy, and the like are performed. The result is recorded in the collation history database 212.

オフライン処理では、主に、以下のような集計・転送処理及びデータベース更新処理が行われる。これらの処理は、事前にスケジュールされた時刻が到来したことを契機に、自動的に起動される。
集計処理は、照合履歴データベース212に登録されているデータを集計して出力ファイル(例えば、CSV形式のデータ)を生成する。
転送処理は、集計処理で作成した出力ファイルを集計サーバ500へ転送する。
データベース更新処理は、各データベース(顔データベース208や照合履歴データベース212)の内容を更新する。
In the offline processing, the following totaling / transfer processing and database update processing are mainly performed. These processes are automatically activated when the time scheduled in advance arrives.
The aggregation process aggregates the data registered in the collation history database 212 to generate an output file (for example, CSV format data).
The transfer process transfers the output file created in the tallying process to the tallying server 500.
The database update process updates the contents of each database (the face database 208 and the collation history database 212).

図5には、本例の顔画像照合システムによる処理結果のデータ例を示してある。
このデータ例では、人物1(女性)と人物2(男性)がグループである(グループ属性=“有”)と判断されており、互いの年齢差より親子関係にあると判断されている。また、人物3(女性)と人物4(男性)がグループである(グループ属性=“有”)と判断されており、互いの年齢差より友人又は恋人関係にあると判断されている。一方、人物5(女性)は単独で行動している(グループ属性=“無”)と判断されておいる。更に、このデータ例には、各人物(或いはグループ)が、施設に入場した時刻、訪れた店舗及びその時刻、施設から出場した時刻も記録されている。
このように、本例の顔画像照合システムによって、各人物が施設内をどのように行動しているかを分析できるだけでなく、グループで行動しているか否かを判定することができ、グループで行動している場合には、グループとしての行動も分析することができる等の他の観点についても分析できることが分かる。
FIG. 5 shows an example of data of a processing result by the face image collating system of the present example.
In this data example, it is determined that person 1 (female) and person 2 (male) are a group (group attribute = “Yes”), and it is determined that they have a parent-child relationship based on their age differences. In addition, the person 3 (female) and the person 4 (male) are determined to be a group (group attribute = “Yes”), and are determined to be friends or lovers based on their age differences. On the other hand, it is determined that the person 5 (female) is acting alone (group attribute = “absent”). Furthermore, in this data example, the time at which each person (or group) entered the facility, the store visited and the time, and the time at which the person (or group) entered the facility were recorded.
In this way, the face image matching system of this example can analyze not only how each person is acting in the facility, but also whether or not each person is acting in a group, and If it is, it can be understood that the behavior as a group can be analyzed, and other viewpoints can be analyzed.

以上のように、本例の顔画像照合システムは、入場口に設置された顔検知用の撮像装置100(1)と、施設内の各店舗及び出場口に設置された顔照合用の撮像装置100(2)〜100(N)と、顔検知用の撮像装置による撮影画像に基づく同一人物判定処理によって同一の人物であると判定された複数の顔画像の中から、当該人物を代表する顔画像である代表顔画像を選定する代表顔選定部203と、代表顔選定部203により選定された代表顔画像を顔データベース208に登録する登録処理部207と、顔照合用の撮像装置による撮影画像に含まれる顔画像を顔データベース208に登録された代表顔画像と照合する顔照合部210とを備えた構成となっている。
これにより、従来のように施設の各所に配置された人員が来場者をカウントすることを要せずに、来場者が施設内をどのように行動しているかを分析することができ、その結果を活かしたマーケティングを行えるようになる。しかも、来場者の人物属性(年齢や性別)を顔画像から自動的に判別して代表顔画像に対応付けて登録できるので、施設各所の人員が来場者の人物属性を区別しながらカウントする必要がない。
As described above, the face image matching system according to the present embodiment includes the face detection imaging device 100 (1) installed at the entrance and the face matching imaging device installed at each store and exit in the facility. 100 (2) to 100 (N) and a face representing the person from a plurality of face images determined to be the same person by the same person determination process based on the image captured by the face detection imaging device. A representative face selecting unit 203 for selecting a representative face image as an image; a registration processing unit 207 for registering the representative face image selected by the representative face selecting unit 203 in the face database 208; And a face matching unit 210 that matches the face image included in the image data with the representative face image registered in the face database 208.
As a result, it is possible to analyze how visitors behave in the facility without the need for the staff allocated at various places in the facility to count the visitors as in the past, and as a result Will be able to make use of marketing. Moreover, since the visitor's personal attributes (age and gender) can be automatically determined from the face image and registered in association with the representative face image, personnel at various places in the facility need to count while distinguishing the visitor's personal attributes. There is no.

また、本例の顔画像照合システムは、代表顔選定部203が、複数の顔画像を予め登録された基準顔と比較し、基準顔との類似度に基づいて人物の代表顔画像を選定し、このとき、基準顔として、正面を向いて目を開いた顔画像を用いる構成となっている。
これにより、顔照合部210による照合類似度が高い傾向にある顔画像を代表顔画像に選定できるので、顔照合を精度よく行えるようになる。
In the face image matching system of this example, the representative face selecting unit 203 compares a plurality of face images with a reference face registered in advance, and selects a representative face image of a person based on the similarity with the reference face. At this time, a face image in which the eyes are open facing the front is used as the reference face.
Thus, a face image having a high matching similarity by the face matching unit 210 can be selected as a representative face image, so that face matching can be performed with high accuracy.

また、本例の顔画像照合システムは、登録処理部207が、同一人物判定処理に使用された撮影画像に登録対象の人物とは別の人物の顔画像が含まれる場合に、別の人物の顔画像を含むグループ属性推定用データを登録対象の人物の代表顔画像に対応付けて顔データベース208に登録する構成となっており、更に、顔照合用の撮像装置による撮影画像に複数の人物の顔画像が含まれる場合に、顔データベース208に登録されたグループ属性推定用データに基づいて、これら複数の人物はグループで行動しているか否かを示すグループ属性を推定するグループ属性照合部211を更に備えている。
これにより、施設内に一緒に入場した来場者達をグループの可能性があるとして予め登録しておくことができ、また、その後の行動の共通性に基づいて実際にグループでどのように行動しているかを把握できるようになる。その結果、来場者達のグループが施設内をどのように行動しているかを分析することができ、その結果を活かしたマーケティングを行えるようになる。
Further, in the face image matching system of this example, when the registration processing unit 207 includes a face image of a person different from the person to be registered in the captured image used for the same person determination process, Group attribute estimation data including a face image is registered in the face database 208 in association with the representative face image of the person to be registered. When a face image is included, the group attribute matching unit 211 that estimates a group attribute indicating whether or not these multiple persons are acting in a group based on the group attribute estimation data registered in the face database 208 is used. It has more.
As a result, visitors who have entered the facility together can be registered in advance as a possibility of a group, and how the group actually behaves based on the commonality of subsequent activities. Will be able to figure out As a result, it is possible to analyze how the group of visitors behaves in the facility, and to carry out marketing utilizing the results.

また、本例の顔画像照合システムは、グループ属性照合部211が、複数の人物についてのグループ属性を、各人物の顔画像が同じ撮影画像から検出される頻度、撮影画像における各人物の顔画像間の距離を示す近接度、撮影画像における各人物の視線の関係を示す親密度の少なくともいずれかに基づいて推定し、更に、これら複数の人物の顔画像から推定される各人物の年齢又は性別の少なくともいずれかに基づいて、これら複数の人物の関係性を推定する構成となっている。
これにより、施設内を複数人で行動する来場者達のグループを精度よく特定できるようになる。また、各来場者の人物属性から互いの関係性を推定するので、グループの種類(例えば、親子、祖父母と孫、友人、恋人又は夫婦等)に応じた行動の違いも分析できるようになる。
Further, in the face image matching system of this example, the group attribute matching unit 211 determines the group attributes of a plurality of persons, the frequency at which the face images of each person are detected from the same shot image, the face image of each person in the shot image. The distance is estimated based on at least one of the proximity indicating the distance between the photographed images and the intimacy indicating the relationship of the line of sight of each person in the captured image, and further, the age or gender of each person estimated from the face images of the plurality of persons Based on at least one of the above, the relationship between the plurality of persons is estimated.
As a result, it is possible to accurately specify a group of visitors who act in the facility by a plurality of persons. In addition, since the mutual relationship is estimated from the personal attributes of the visitors, it is possible to analyze the difference in behavior according to the type of group (for example, parent and child, grandparent and grandchild, friend, lover or couple).

また、本例の顔画像照合システムは、グループ属性照合部211で得られたデータを、各人物の年齢又は性別、施設に対する入場日時又は出場日時、グループ属性の少なくともいずれかに基づいて集計し、その結果のデータを転送する転送処理部214を更に備えている。
これにより、来場者達の各人物についての分析のみならず、各グループについて得られた各種の情報を、種々の観点から分析できるようになり、どのような人物で構成されたグループが、いつ、どこで、何をしたのかを分析することにより、各人物だけなく、特定の属性グループへ向けたマーケティングに活用することができる。
Further, the face image matching system of the present example aggregates the data obtained by the group attribute matching unit 211 based on at least one of the age or gender of each person, the date and time of entry or exit from the facility, and the group attribute, Further provided is a transfer processing unit 214 for transferring the resulting data.
As a result, not only the analysis of each person of the visitors, but also various information obtained for each group can be analyzed from various viewpoints, and the group composed of what kind of person, By analyzing where and what you did, you can use it for marketing to a specific attribute group as well as each person.

ここで、例えば、来場者の入場日時と出場日時から施設の滞在時間を算出し、来場者(或いはグループ)の滞在時間を加味した行動分析を行って、マーケティングに活用するようにしてもよい。
また、施設内の店舗だけでなく通路や広場にも撮像装置を設置して来場者の顔照合を行うことで、来場者(或いはグループ)の動線を加味した行動分析を行って、マーケティングに活用するようにしてもよい。
Here, for example, the stay time of the facility may be calculated based on the visit date and time of the visitor and the visit date and time, and the behavior analysis may be performed in consideration of the visit time of the visitor (or the group) to be used for marketing.
In addition, by installing imaging devices not only in stores in the facility but also in aisles and open spaces and performing face matching of visitors, it conducts behavior analysis taking into account the flow line of visitors (or groups), and marketing It may be used.

これまでの説明では、施設の入場口及び出場口が1つの場合を例にしているが、入場口及び出場口はそれぞれ複数であってもよいことは言うまでもない。また、入場口と出場口は別々である必要は無く、これらを兼用した入出場口があってもよい。この場合には、施設の外側に向けた撮像装置と、施設の内側に向けた撮像装置とを入出場口に設置しておけばよい。   In the description so far, the case where the facility has one entrance and one entrance is taken as an example, but it goes without saying that there may be a plurality of entrances and exits. Further, the entrance and the exit are not required to be different, and there may be an entrance and exit which also serve as these. In this case, an imaging device facing the outside of the facility and an imaging device facing the inside of the facility may be installed at the entrance.

次に、本発明の別の実施形態に係る顔画像検索システムについて説明する。本実施形態に係る顔画像検索システムは、上述した顔画像照合システムを拡張または変形したものであり、図3に破線で示すように、検索サーバ600および操作端末700を更に備えている。検索サーバ600は、操作端末700の操作者により指定された検索条件に基づいて照合サーバ200内の顔データベース208(または照合履歴データベース212)から顔画像を検索し、検索結果を操作端末700に送信して表示出力させる処理を行う。   Next, a face image search system according to another embodiment of the present invention will be described. The face image search system according to the present embodiment is obtained by expanding or modifying the above-described face image collation system, and further includes a search server 600 and an operation terminal 700 as indicated by broken lines in FIG. The search server 600 searches for a face image from the face database 208 (or the matching history database 212) in the matching server 200 based on the search condition specified by the operator of the operation terminal 700, and transmits the search result to the operation terminal 700. And perform a process of outputting the data.

本実施形態に係る顔画像検索システムでは、グループ属性照合部211に、グループ行動判定機能を持たせている。グループ行動判定機能は、撮像装置100による撮像画像に含まれる顔画像の人物が、グループで行動しているのか、それとも一人で行動しているのかを判定し、判定結果の情報を該人物の顔画像に対応付けて顔データベース208(または照合履歴データベース212)に記憶させるものである。本例では、グループ行動判定機能を、近接人物数判定処理と、常時近接者数判定処理とを行うことで実現している。   In the face image search system according to the present embodiment, the group attribute matching unit 211 has a group action determination function. The group action determination function determines whether the person whose face image is included in the image captured by the imaging apparatus 100 is acting in a group or alone, and determines the information of the determination result as the face of the person. This is stored in the face database 208 (or the collation history database 212) in association with the image. In this example, the group action determination function is realized by performing a process of determining the number of close people and a process of determining the number of always close people.

近接人物数判定処理は、一つの撮像装置の撮影範囲において、歩行中である人物の顔画像が複数の画像フレーム(撮影画像)にわたって検出された場合に、それぞれの画像フレームについて、同じ画像フレーム中における当該人物の顔画像の検出位置に近接する領域で検出された他の人物の顔画像の数(近接人物数)を算出し、画像フレーム毎に算出した近接人物数の最大値を保存する処理である。近接人物数の最大値を求める理由は、画像処理において顔画像を検出する場合、遮蔽物の影響や光の加減等の撮影条件の変化により、一時的に顔画像の検出ができない場合があるためである。   When the face image of a walking person is detected over a plurality of image frames (captured images) in the imaging range of one imaging device, the number of close persons determination process is performed for each image frame in the same image frame. Calculating the number of face images of other persons (the number of close persons) detected in an area close to the detection position of the face image of the person in the above, and storing the maximum value of the number of close persons calculated for each image frame It is. The reason for finding the maximum value of the number of nearby people is that when detecting a face image in image processing, it may not be possible to temporarily detect the face image due to changes in shooting conditions such as the influence of a shield or the degree of light. It is.

近接人物数判定処理について、図6の処理フローを参照して説明する。
最初に、メモリの確保や最大近接人物数の初期化を行う(ステップS101)。その後、判定対象人物が最初に検出された画像フレームから順に、以下の処理を行う。
まず、画像フレームに含まれる顔画像の検出数や検出位置などを取得する(ステップS102)。
次に、画像フレームにおいて判定対象人物の顔画像の近辺に存在する他の人物の顔画像の数をカウントする(ステップS103)。本例では、画像フレームにおける判定対象人物の顔画像との距離が所定値以下の位置に存在する他の顔画像を特定し、その数を近接人物数としてカウントしているが、他の手法により近接人物数のカウントを行っても構わない。
The proximity person number determination processing will be described with reference to the processing flow of FIG.
First, the memory is secured and the maximum number of close people is initialized (step S101). Thereafter, the following processing is performed sequentially from the image frame in which the person to be determined is first detected.
First, the number of detected face images included in the image frame, the detected position, and the like are acquired (step S102).
Next, the number of face images of other persons existing near the face image of the person to be determined in the image frame is counted (step S103). In this example, other face images whose distance from the face image of the person to be determined in the image frame is less than or equal to a predetermined value are specified and the number is counted as the number of close people. The number of close persons may be counted.

次に、ステップS103でカウントした当該画像フレームでの近接人物数と最大近接人物数とを比較する(ステップS104)。その結果、当該画像フレームでの近接人物数の方が多いと判定された場合は、最大近接人物数更新処理(ステップS105)に遷移し、そうでない場合は、人物領域追跡処理(ステップS106)に遷移する。
最大近接人物数更新処理(ステップS105)では、最大近接人物数の値を当該画像フレームでの近接人物数の値に置き換えて保存し、その後、人物領域追跡処理(ステップS106)に遷移する。
Next, the number of close persons in the image frame counted in step S103 is compared with the maximum number of close persons (step S104). As a result, when it is determined that the number of close people in the image frame is larger, the process proceeds to the maximum number of close people update process (step S105), and otherwise, the process proceeds to the person region tracking process (step S106). Transition.
In the maximum number of close persons update process (step S105), the value of the maximum number of close persons is replaced with the value of the number of close persons in the image frame and stored, and thereafter, the process proceeds to a person area tracking process (step S106).

人物領域追跡処理(ステップS106)では、直前あるいは直近数フレームの検出結果と、現在の画像フレームの検出結果とに基づいて、人物の動きを追跡する。例えば、顔画像の位置や特徴量を画像フレーム間で比較することで、人物の動きの追跡を行う。
その後、追跡が終了しているか否かを判定する(ステップS107)。ここでは、追跡が終了した人物(例えば、撮像エリアから外れた人物)が存在する場合に、追跡が終了していると判定し、追跡が終了した人物が存在しない場合に、追跡が終了していないと判定する。
In the person area tracking processing (step S106), the movement of the person is tracked based on the detection result of the immediately preceding or recent frame and the detection result of the current image frame. For example, the movement of a person is tracked by comparing the positions and feature amounts of face images between image frames.
Thereafter, it is determined whether or not the tracking has been completed (step S107). Here, when there is a person who has finished tracking (for example, a person who has deviated from the imaging area), it is determined that tracking has been completed, and when there is no person who has finished tracking, tracking has been completed. It is determined that there is not.

ステップS107の人物追跡判定で、追跡が終了していないと判定された場合は、ステップS102に戻り、次の画像フレームについての処理を行う。一方、追跡が終了したと判定された場合は、判定対象人物に関する最大近接人物数を確定し、その値を記録する(ステップS108)。その後、確保したメモリの解放等の処理を行う。   If it is determined in the person tracking determination in step S107 that tracking has not been completed, the process returns to step S102, and processing for the next image frame is performed. On the other hand, when it is determined that the tracking has been completed, the maximum number of close persons related to the determination target person is determined, and the value is recorded (step S108). Thereafter, processing such as releasing the secured memory is performed.

常時近接者数判定処理は、ある人物が複数の撮像装置によって撮影された場合において、近接人物数判定処理(図6)に追加して実施される処理である。常時近接者数判定処理では、判定対象人物とともに撮影された人物が、たまたま判定対象人物の近くにいた人物か、判定対象人物と常に行動を共にしている人物かを判定し、常に行動を共にしている人物の数を常時近接者数として保存する。
以降では、たまたま判定対象人物の近くにいた人物を単に「近接人物」と記載し、判定対象人物と常に行動を共にしている人物を「常時近接人物」と記載する。
The always-on approaching number determination process is a process performed in addition to the approaching person number determination process (FIG. 6) when a certain person is photographed by a plurality of imaging devices. In the always-approaching number determination process, it is determined whether the person photographed together with the determination target person happens to be near the determination target person or is a person who is always acting together with the determination target person. Is always stored as the number of neighbors.
Hereinafter, a person who happened to be close to the determination target person is simply referred to as “close person”, and a person who is always acting together with the determination target person is referred to as “always close person”.

常時近接者数判定処理について、図7の処理フローを参照して説明する。
最初に、メモリの確保などを行う(ステップS201)。
次に、近接人物数判定処理で記録された近接人物数(すなわち、最大近接人物数)を取得する(ステップS202)。
次に、近接人物数が0か1以上かを判定し(ステップS203)、近接人物数が0の場合には、常時近接者数に0を記録する(ステップS209)。
The always-on approach number determination processing will be described with reference to the processing flow of FIG.
First, a memory is secured (step S201).
Next, the number of close persons recorded in the close person determination processing (that is, the maximum number of close persons) is obtained (step S202).
Next, it is determined whether the number of close persons is 0 or 1 or more (step S203). If the number of close persons is 0, 0 is always recorded as the number of close persons (step S209).

一方、近接人物数が1以上の場合には、他の撮像装置による撮影状況の検索を行う(ステップS204)。すなわち、判定対象人物の顔画像の特徴量を用いて、判定対象人物が映っている他の撮像装置による撮像画像を検索する。
その後、他の撮像装置による撮像画像に、判定対象人物が存在し且つ近接人物数が1以上である場合があるかを判定する(ステップS205)。すなわち、他の撮像装置による撮像画像の中に、判定対象人物が他の人物とともに映った撮像画像があるかを判定する。
On the other hand, when the number of close persons is one or more, a search for a shooting situation by another imaging device is performed (step S204). That is, using the feature amount of the face image of the determination target person, an image captured by another imaging device in which the determination target person is shown is searched.
Thereafter, it is determined whether or not there is a case where the determination target person exists in the image captured by another imaging device and the number of nearby people is one or more (step S205). That is, it is determined whether or not there is a captured image in which the determination target person is shown together with another person in images captured by another imaging device.

その結果、判定対象人物が他の人物とともに映った撮像画像が見つからなかった場合には、常時近接者数に0を記録する(ステップS209)。
一方、判定対象人物が他の人物とともに映った撮像画像が見つかった場合には、その撮像画像に含まれる他の人物の顔画像の特徴量を取得する(ステップS206)。
その後、取得した他の人物の顔画像の特徴量を、近接人物数判定処理で検出された近接人物の顔画像の特徴量と比較し、特徴量の類似度が所定値以上の近接人物が存在するか否かを判定する(ステップS207)。
As a result, when a captured image in which the person to be determined is shown together with another person is not found, 0 is always recorded as the number of close neighbors (step S209).
On the other hand, if a captured image in which the determination target person is shown together with another person is found, the feature amount of the face image of another person included in the captured image is acquired (step S206).
Thereafter, the feature amount of the acquired face image of another person is compared with the feature amount of the face image of the nearby person detected in the close person number determination process, and there is a close person whose similarity of the feature amount is equal to or more than a predetermined value. It is determined whether or not to perform (step S207).

ステップS207で類似度の高い近接人物が存在すると判定された場合には、類似度の高い近接人物の組み合わせの数、すなわち、異なる撮像装置による複数の撮像画像に共通して出現した近接人物の数を算出し、常時近接者数として記録する(ステップS208)。ここで、判定対象人物が存在し且つ近接人物数が1以上の撮影画像を撮影した他の撮像装置が、複数ある場合には、それら他の撮像装置のそれぞれについて算出した常時近接者数の合計を記録すればよい。ただし、同じ近接人物が2重にカウントされないように重複を排除する必要があることは言うまでもない。
一方、ステップS207で類似度の高い近接人物が存在しないと判定された場合には、常時近接者数に0を記録する(ステップS209)。
ステップS208,S209における常時近接者数の記録後は、確保したメモリの解放等の処理を行う。
If it is determined in step S207 that there is a close person having a high similarity, the number of combinations of close people having a high similarity, that is, the number of close persons commonly appearing in a plurality of images captured by different imaging devices Is calculated and always recorded as the number of approaching persons (step S208). Here, in the case where there is a plurality of other imaging devices that have captured the captured image in which the determination target person is present and the number of nearby people is one or more, the total number of constantly approaching people calculated for each of the other imaging devices Should be recorded. However, it goes without saying that it is necessary to eliminate duplication so that the same close person is not counted twice.
On the other hand, when it is determined in step S207 that there is no close person having a high degree of similarity, 0 is always recorded as the number of close persons (step S209).
After the recording of the number of constantly approaching persons in steps S208 and S209, processing such as releasing the secured memory is performed.

上記のグループ行動判定機能によって算出された常時近接者数は、判定対象人物の顔画像に対応付けて顔データベース208(または照合履歴データベース212)に記憶される。そして、操作端末700の操作者により単独行動または複数人行動を指定した検索条件が設定された場合に、その指定に合致する常時近接者数が対応付けられた顔画像の検索が検索サーバ600によって行われ、検索結果が操作端末700に表示出力される。すなわち、単独行動が指定された場合には、常時近接者数=0の人物の顔画像が検索され、複数人行動が指定された場合には常時近接者数≧1の人物の顔画像が検索される。   The number of constantly approaching persons calculated by the above group behavior determination function is stored in the face database 208 (or the collation history database 212) in association with the face image of the determination target person. When a search condition specifying a single action or a multi-person action is set by the operator of the operation terminal 700, the search server 600 searches for a face image associated with the number of constantly approaching persons that matches the specification. The search result is displayed and output to the operation terminal 700. That is, when the single action is specified, the face image of the person with the number of close neighbors = 0 is always searched, and when the action of multiple persons is specified, the face image of the person with the constant number of close neighbors ≧ 1 is searched. Is done.

以上のように、本例の顔画像検索システムは、撮像装置による撮影画像に含まれる顔画像を記憶する顔データベース208(または照合履歴データベース212)から、指定された検索条件に基づいて顔画像を検索する顔画像検索システムであり、撮影画像に含まれる顔画像の人物が一人で行動しているか否かを判定し、判定結果の情報を該人物の顔画像に対応付けて上記のデータベースに記憶させるグループ属性照合部211と、検索条件として、一人で行動している人物の検索または複数人で行動している人物の検索が指定された場合に、該指定に合致する判定結果の情報が対応付けられた顔画像を上記データベースから検索する検索サーバ600とを備えた構成となっている。   As described above, the face image search system according to the present embodiment retrieves a face image from the face database 208 (or the collation history database 212) that stores face images included in an image captured by an imaging device based on a specified search condition. A face image search system for searching, which determines whether a person having a face image included in a captured image is acting alone, and stores information of the determination result in the database in association with the face image of the person. If a search for a person acting alone or a search for a person acting by multiple persons is specified as a search condition, information of a determination result matching the specification corresponds to the group attribute matching unit 211 to be performed. A search server 600 for searching for the attached face image from the database is provided.

これにより、一人で映っているのか、複数人で映っているのかを指定して検索することが可能となり、ユーザにとって利便性の高いものとなる。具体例を挙げれば、一人で行われる犯罪や複数で行われる犯罪に絞った調査を行う場合に有効である。すなわち、従来の顔画像検索システムでは撮影映像を目視で判断するしかなかったが、本例の顔画像検索システムでは行動人数を絞り込んで検索できるので、調査の効率を大幅に高めることができる。   As a result, it is possible to specify and perform a search whether the image is reflected by one person or by a plurality of persons, which is highly convenient for the user. As a specific example, it is effective when conducting a survey focusing on crimes committed by one person or crimes committed by a plurality. That is, in the conventional face image search system, the photographed video had to be judged visually, but in the face image search system of the present example, the search can be performed by narrowing down the number of active persons, so that the efficiency of the investigation can be greatly increased.

また、本例の顔画像検索システムは、マーケティングの用途でデジタルサイネージに表示する内容を切り替えるような目的にも利用可能である。例えば、複数人で行動する人物がデジタルサイネージの近くに来た場合に、居酒屋の宴会コースをデジタルサイネージに表示させ、一人で行動する人物がデジタルサイネージの近くに来た場合に、カウンターのみのバーをデジタルサイネージに表示させるようなことも行える。   Further, the face image search system of the present example can also be used for the purpose of switching contents to be displayed on digital signage for marketing purposes. For example, when a person who acts by multiple people comes near the digital signage, the banquet course of the izakaya is displayed on the digital signage, and when the person who acts alone comes near the digital signage, a bar with only a counter is displayed. Can be displayed on a digital signage.

ここで、本例の顔画像検索システムは、異なる撮像装置による複数の撮像画像に同一の人物が含まれる場合に、これら複数の撮影画像に含まれる他の人物の共通性に基づいて、同一の人物が一人で行動しているか否かを判定する構成となっているので、個々の撮像装置による撮影映像だけで行動人数を判定する場合に比べ、精度良く行動人数を判定することができる。   Here, when the same person is included in a plurality of images captured by different imaging devices, the face image search system of the present example uses the same image based on the commonality of other persons included in the plurality of captured images. Since it is configured to determine whether or not a person is acting alone, the number of actors can be determined with higher accuracy than in the case where the number of actors is determined only by video captured by each imaging device.

なお、本例の顔画像検索システムでは、撮影画像に含まれる顔画像の人物が一人で行動しているか否かの判定結果の情報として、常時近接者数を用いているので、行動人数を指定した検索にも対応することができる。すなわち、行動人数を指定した検索の場合には、常時近接者数=(行動人数−1)の人物の顔画像を検索すればよい。また、行動人数を指定した検索を更に拡張し、行動人数を範囲指定できるようにしてもよい。   In the face image search system of the present example, the number of actors is always used as the information of the determination result as to whether or not the person of the face image included in the captured image is acting alone. It can also respond to searches that have been made. In other words, in the case of a search in which the number of actors is specified, a face image of a person whose number of close neighbors = (number of actors-1) may be always searched. Further, the search in which the number of actors is specified may be further extended so that the range of the number of actors can be specified.

また、本例の顔画像検索システムでは、複数人で行動する人達は一緒に入場する傾向が高いことに鑑みて、入場口にある撮像装置100(1)の撮影画像を用いて近接人物数判定処理を行い、施設内及び出場口にある他の撮像装置100(2)〜100(N)を更に用いて常時近接者数判定処理を行っているが、このような構成に限定されない。すなわち、近接人物数判定処理および常時近接者数判定処理は、任意の撮像装置を用いて行うことができる。   In addition, in the face image search system of the present example, in consideration of the fact that people who act as a plurality of people tend to enter together, the number of close persons is determined using the image captured by the imaging device 100 (1) at the entrance. Although the process is performed and the number of approaching people determination process is constantly performed using the other imaging devices 100 (2) to 100 (N) in the facility and the entrance, the present invention is not limited to such a configuration. That is, the process of determining the number of close persons and the process of determining the number of always close persons can be performed using any imaging device.

また、本例の顔画像検索システムは、入場口や出場口がある施設以外にも適用できることは言うまでもない。また、画像フレーム間での人物追跡や、異なる撮像装置間での人物の共通性の判定などを行う際に、顔画像の特徴量だけでなく、服装、持ち物、髪型等の他の特徴量を加味するようにしてもよい。また、顔データベース208や照合履歴データベース212に代えて(又はこれらとともに)、撮像装置による撮像画像を記録する画像データベースを備え、画像データベースに蓄積されている撮影画像を用いてグループ行動判定を行ってもよい。   Further, it goes without saying that the face image search system of this example can be applied to facilities other than those having entrances and exits. In addition, when performing person tracking between image frames or determining the commonality of a person between different imaging devices, not only the feature amount of the face image but also other feature amounts such as clothes, belongings, and hairstyles are used. You may make it add. In addition, instead of (or in addition to) the face database 208 and the collation history database 212, an image database for recording images captured by the imaging device is provided, and group action determination is performed using captured images stored in the image database. Is also good.

なお、本発明に係るシステムや装置などの構成としては、必ずしも以上に示したものに限られず、種々な構成が用いられてもよい。例えば、上記の各実施形態で説明した構成を組み合わせて用いてもよい。
また、本発明は、例えば、本発明に係る処理を実行する方法や方式、そのような方法や方式を実現するためのプログラム、そのプログラムを記憶する記憶媒体などとして提供することも可能である。
The configurations of the system and the apparatus according to the present invention are not necessarily limited to those described above, and various configurations may be used. For example, the configurations described in the above embodiments may be used in combination.
In addition, the present invention can be provided as, for example, a method and a method for executing the processing according to the present invention, a program for realizing such a method and the method, and a storage medium for storing the program.

本発明は、入場口及び出場口を有する施設で撮影された顔画像を照合する顔画像照合システムに利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized for the face image collation system which collates the face image image | photographed in the facility which has an entrance and an entrance.

100(1)〜100(N):撮像装置、 200:照合サーバ、 300:保守PC、 400:ネットワークスイッチ、 500:集計サーバ、 600:検索サーバ、 700:操作端末、
201:顔検知部、 202:同一人物判定部、 203:代表顔選定部、 204:フォーマット変換部、 205:属性判定部、206:ID付与人物情報生成部、 207:登録処理部、 208:顔データベース、 210:顔照合部、 211:グループ属性照合部、 212:照合履歴データベース、 214:転送処理部
100 (1) to 100 (N): imaging device, 200: collation server, 300: maintenance PC, 400: network switch, 500: aggregation server, 600: search server, 700: operation terminal,
201: face detection unit, 202: same person determination unit, 203: representative face selection unit, 204: format conversion unit, 205: attribute determination unit, 206: ID-assigned person information generation unit, 207: registration processing unit, 208: face Database, 210: face matching unit, 211: group attribute matching unit, 212: matching history database, 214: transfer processing unit

Claims (10)

  1. 入場口及び出場口を有する施設で撮影された顔画像を照合する顔画像照合システムにおいて、
    前記入場口に設置された第1の撮像装置と、
    前記施設内及び前記出場口に設置された第2の撮像装置と、
    前記第1の撮像装置による撮影画像に基づく同一人物判定処理によって同一の人物であると判定された複数の顔画像の中から、前記人物を代表する顔画像である代表顔画像を選定する選定手段と、
    前記選定手段により選定された代表顔画像をデータベースに登録する登録手段と、
    前記第2の撮像装置による撮影画像に含まれる顔画像を前記データベースに登録された代表顔画像と照合する照合手段と、
    を備えたことを特徴とする顔画像照合システム。
    In a face image matching system that matches face images taken at a facility having an entrance and an entrance,
    A first imaging device installed at the entrance,
    A second imaging device installed in the facility and at the entrance,
    Selecting means for selecting, from a plurality of face images determined to be the same person by the same person determination process based on an image captured by the first imaging device, a representative face image representing the person, When,
    Registration means for registering the representative face image selected by the selection means in a database,
    Collation means for collating a face image included in an image captured by the second imaging device with a representative face image registered in the database;
    A face image collating system comprising:
  2. 請求項1に記載の顔画像照合システムにおいて、
    前記選定手段は、前記複数の顔画像を予め登録された基準顔と比較し、前記基準顔との類似度に基づいて前記人物の代表顔画像を選定し、
    前記基準顔として、正面を向いて目を開いた顔画像を用いることを特徴とする顔画像照合システム。
    The face image matching system according to claim 1,
    The selecting means compares the plurality of face images with a reference face registered in advance, and selects a representative face image of the person based on the degree of similarity with the reference face,
    A face image collating system, wherein a face image whose eyes are open facing the front is used as the reference face.
  3. 請求項1に記載の顔画像照合システムにおいて、
    前記登録手段は、前記同一人物判定処理に使用された撮影画像に前記人物とは別の人物の顔画像が含まれる場合に、前記別の人物の顔画像を含むグループ属性推定用データを前記人物の代表顔画像に対応付けて前記データベースに登録し、
    前記顔画像照合システムは、前記第2の撮像装置による撮影画像に複数の人物の顔画像が含まれる場合に、前記データベースに登録されたグループ属性推定用データに基づいて、前記複数の人物はグループで行動しているか否かを示すグループ属性を推定するグループ属性推定手段を更に備えたことを特徴とする顔画像照合システム。
    The face image matching system according to claim 1,
    The registration means, when the captured image used in the same person determination process includes a face image of a person different from the person, sets the group attribute estimation data including the face image of the different person to the person Registered in the database in association with the representative face image of
    The face image collating system, when a face image of a plurality of persons is included in an image captured by the second imaging device, the plurality of persons are grouped based on group attribute estimation data registered in the database. A face image collating system, further comprising a group attribute estimating means for estimating a group attribute indicating whether or not the user is acting.
  4. 請求項3に記載の顔画像照合システムにおいて、
    前記グループ属性推定手段は、前記複数の人物についてのグループ属性を、各人物の顔画像が同じ撮影画像から検出される頻度、撮影画像における各人物の顔画像間の距離を示す近接度、撮影画像における各人物の視線の関係を示す親密度の少なくともいずれかに基づいて推定し、更に、前記複数の人物の顔画像から推定される各人物の年齢又は性別の少なくともいずれかに基づいて、前記複数の人物の関係性を推定することを特徴とする顔画像照合システム。
    The face image matching system according to claim 3,
    The group attribute estimating means may include a group attribute of the plurality of persons, a frequency at which a face image of each person is detected from the same photographed image, a proximity indicating a distance between face images of each person in the photographed image, and a photographed image. Estimated based on at least one of the intimacy indicating the relationship of the line of sight of each person in, further based on at least one of the age or gender of each person estimated from the face images of the plurality of people, A face image collating system characterized by estimating a relationship between persons.
  5. 請求項4に記載の顔画像照合システムにおいて、
    前記グループ属性推定手段で得られたデータを、各人物の年齢又は性別、前記施設に対する入場日時又は出場日時、グループ属性の少なくともいずれかに基づいて集計する集計手段を更に備えたことを特徴とする顔画像照合システム。
    The face image matching system according to claim 4,
    It is further characterized by further comprising a counting means for counting the data obtained by the group attribute estimating means based on at least one of the age or gender of each person, the date and time of entry or exit from the facility, and the group attribute. Face image matching system.
  6. 請求項2に記載の顔画像照合システムにおいて、
    前記登録手段は、前記同一人物判定処理に使用された撮影画像に前記人物とは別の人物の顔画像が含まれる場合に、前記別の人物の顔画像を含むグループ属性推定用データを前記人物の代表顔画像に対応付けて前記データベースに登録し、
    前記顔画像照合システムは、前記第2の撮像装置による撮影画像に複数の人物の顔画像が含まれる場合に、前記データベースに登録されたグループ属性推定用データに基づいて、前記複数の人物はグループで行動しているか否かを示すグループ属性を推定するグループ属性推定手段を更に備えたことを特徴とする顔画像照合システム。
    The face image matching system according to claim 2,
    The registration unit, when the captured image used in the same person determination process includes a face image of a person different from the person, sets the group attribute estimation data including the face image of the different person to the person Registered in the database in association with the representative face image of
    The face image collating system, when a face image of a plurality of persons is included in an image captured by the second imaging device, the plurality of persons are grouped based on group attribute estimation data registered in the database. A face image collating system, further comprising a group attribute estimating means for estimating a group attribute indicating whether or not the user is acting.
  7. 請求項6に記載の顔画像照合システムにおいて、
    前記グループ属性推定手段は、前記複数の人物についてのグループ属性を、各人物の顔画像が同じ撮影画像から検出される頻度、撮影画像における各人物の顔画像間の距離を示す近接度、撮影画像における各人物の視線の関係を示す親密度の少なくともいずれかに基づいて推定し、更に、前記複数の人物の顔画像から推定される各人物の年齢又は性別の少なくともいずれかに基づいて、前記複数の人物の関係性を推定することを特徴とする顔画像照合システム。
    The face image matching system according to claim 6,
    The group attribute estimating means may include a group attribute of the plurality of persons, a frequency with which a face image of each person is detected from the same photographed image, a proximity indicating a distance between the face images of each person in the photographed image, and a photographed image. Estimated based on at least one of the intimacy indicating the relationship of the line of sight of each person in, further based on at least one of the age or gender of each person estimated from the face images of the plurality of people, A face image collating system characterized by estimating a relationship between persons.
  8. 請求項7に記載の顔画像照合システムにおいて、
    前記グループ属性推定手段で得られたデータを、各人物の年齢又は性別、前記施設に対する入場日時又は出場日時、グループ属性の少なくともいずれかに基づいて集計する集計手段を更に備えたことを特徴とする顔画像照合システム。
    The face image matching system according to claim 7,
    It is further characterized by further comprising a counting means for counting the data obtained by the group attribute estimating means based on at least one of the age or gender of each person, the date and time of entry or exit from the facility, and the group attribute. Face image matching system.
  9. 撮像装置による撮影画像に含まれる顔画像を記憶するデータベースから、指定された検索条件に基づいて顔画像を検索する顔画像検索システムにおいて、
    前記撮影画像に含まれる顔画像の人物が一人で行動しているか否かを判定し、判定結果の情報を該人物の顔画像に対応付けて前記データベースに記憶させる判定手段と、
    前記検索条件として、一人で行動している人物の検索または複数人で行動している人物の検索が指定された場合に、該指定に合致する判定結果の情報が対応付けられた顔画像を前記データベースから検索する検索手段と、
    を備えたことを特徴とする顔画像検索システム。
    In a face image search system that searches for a face image based on a specified search condition from a database that stores face images included in an image captured by an imaging device,
    Judgment means for judging whether or not the person of the face image included in the photographed image is acting alone, and storing information of the judgment result in the database in association with the face image of the person,
    When a search for a person acting alone or a search for a person acting by a plurality of persons is specified as the search condition, the face image associated with the information of the determination result matching the specification is used. A search means for searching from a database;
    A face image retrieval system comprising:
  10. 請求項9に記載の顔画像検索システムにおいて、
    前記判定手段は、異なる撮像装置による複数の撮像画像に同一の人物が含まれる場合に、前記複数の撮影画像に含まれる他の人物の共通性に基づいて、前記同一の人物が一人で行動しているか否かを判定することを特徴とする顔画像検索システム。
    The face image search system according to claim 9,
    When the same person is included in a plurality of images captured by different imaging devices, the determination unit may act alone on the basis of the commonality of other people included in the plurality of captured images. A face image search system, which determines whether or not the face image is displayed.
JP2018010442A 2017-03-27 2018-03-16 Face image matching system and face image search system Pending JPWO2018180588A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017060932 2017-03-27
JP2017060932 2017-03-27
JP2018018832 2018-02-06
JP2018018832 2018-02-06
PCT/JP2018/010442 WO2018180588A1 (en) 2017-03-27 2018-03-16 Facial image matching system and facial image search system

Publications (1)

Publication Number Publication Date
JPWO2018180588A1 true JPWO2018180588A1 (en) 2020-01-16

Family

ID=63675871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010442A Pending JPWO2018180588A1 (en) 2017-03-27 2018-03-16 Face image matching system and face image search system

Country Status (2)

Country Link
JP (1) JPWO2018180588A1 (en)
WO (1) WO2018180588A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013768A (en) * 2002-06-11 2004-01-15 Gen Tec:Kk Individual identification method
JP4506381B2 (en) * 2004-09-27 2010-07-21 沖電気工業株式会社 Single actor and group actor detection device
JP2010113692A (en) * 2008-11-10 2010-05-20 Nec Corp Apparatus and method for recording customer behavior, and program
JP2011070275A (en) * 2009-09-24 2011-04-07 Seiko Epson Corp Image processor
JP2011107997A (en) * 2009-11-18 2011-06-02 Sony Corp Apparatus, method and program for processing information

Also Published As

Publication number Publication date
WO2018180588A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US10445563B2 (en) Time-in-store estimation using facial recognition
US9773157B2 (en) System and method for face capture and matching
US9760792B2 (en) Object detection and classification
CA2973866C (en) Video identification and analytical recognition system
US9762865B2 (en) Video identification and analytical recognition system
US20190057250A1 (en) Object tracking and best shot detection system
Xu et al. Video structured description technology based intelligence analysis of surveillance videos for public security applications
JP2018116681A (en) Method and system for tracking object in defined area
US10540876B2 (en) Surveillance system and method for predicting patient falls using motion feature patterns
US8803975B2 (en) Interactive system for recognition analysis of multiple streams of video
JP4702877B2 (en) Display device
US9141184B2 (en) Person detection system
CN106997629B (en) Access control method, apparatus and system
CN106203458B (en) Crowd video analysis method and system
Ko A survey on behavior analysis in video surveillance for homeland security applications
US20190325229A1 (en) Target object identifying device, target object identifying method and target object identifying program
CN101772782B (en) Device for displaying result of similar image search and method for displaying result of similar image search
JP5793353B2 (en) Face image search system and face image search method
CN104881637B (en) Multimodal information system and its fusion method based on heat transfer agent and target tracking
CN102201061B (en) Intelligent safety monitoring system and method based on multilevel filtering face recognition
KR100808316B1 (en) Person searching device, person searching method and access control system
CN105404890A (en) Criminal gang discrimination method considering locus space-time meaning
US8284990B2 (en) Social network construction based on data association
US8116534B2 (en) Face recognition apparatus and face recognition method
Adam et al. Robust real-time unusual event detection using multiple fixed-location monitors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221