JPWO2016157591A1 - Measuring apparatus and measuring method - Google Patents

Measuring apparatus and measuring method Download PDF

Info

Publication number
JPWO2016157591A1
JPWO2016157591A1 JP2017509151A JP2017509151A JPWO2016157591A1 JP WO2016157591 A1 JPWO2016157591 A1 JP WO2016157591A1 JP 2017509151 A JP2017509151 A JP 2017509151A JP 2017509151 A JP2017509151 A JP 2017509151A JP WO2016157591 A1 JPWO2016157591 A1 JP WO2016157591A1
Authority
JP
Japan
Prior art keywords
light
light detection
detection means
unit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017509151A
Other languages
Japanese (ja)
Inventor
右一 佐藤
右一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2016157591A1 publication Critical patent/JPWO2016157591A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Abstract

測定装置(10)は、筐体(100)、透光部材(102)、発光手段(120)、第1光検出手段(140)、第2光検出手段(142)、および導光部材(160)を備える。筐体(100)には開口(101)が設けられている。透光部材(102)は、開口(101)内に位置し、少なくとも第1波長の光を透過する。発光手段(120)は、筐体(100)の内部に配置され、第1波長の光を含む光を出力する。第1光検出手段(140)および第2光検出手段(142)は、筐体(100)の内部に配置され、第1波長の光を検出する。導光部材(160)は、発光手段(120)と第2光検出手段(142)との間に設けられている。そして、第1光検出手段(140)の光軸および発光手段(120)の光軸は、開口(101)を通り、筐体(100)の外で互いに交わる。The measuring device (10) includes a housing (100), a light transmitting member (102), a light emitting means (120), a first light detecting means (140), a second light detecting means (142), and a light guide member (160). ). The housing (100) is provided with an opening (101). The translucent member (102) is located in the opening (101) and transmits at least light of the first wavelength. The light emitting means (120) is disposed inside the housing (100) and outputs light including light of the first wavelength. The first light detection means (140) and the second light detection means (142) are disposed inside the housing (100) and detect light of the first wavelength. The light guide member (160) is provided between the light emitting means (120) and the second light detection means (142). The optical axis of the first light detection means (140) and the optical axis of the light emission means (120) cross each other outside the casing (100) through the opening (101).

Description

本発明は、光を用いて特定の成分を検出して測定する測定装置および測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method for detecting and measuring a specific component using light.

測定対象に含まれる特定の成分を検出する方法の一つに、その成分によって吸収される波長の光を測定対象に照射し、測定対象におけるその光の吸収量を測定する方法がある。例えば特許文献1には、血液中の血糖値を測定するための装置が開示されている。この装置において、ベース部の上面には光源、受光素子、及び導波路が設けられている。そしてベース部の下面に導波路の一部を露出させ、この一部から光源が生成した光を照射する。またこの一部には、反射光が入射する。入射した反射光は、受光素子に導波される。   One method for detecting a specific component contained in a measurement target is to irradiate the measurement target with light having a wavelength that is absorbed by the component, and measure the amount of light absorbed by the measurement target. For example, Patent Document 1 discloses an apparatus for measuring a blood sugar level in blood. In this apparatus, a light source, a light receiving element, and a waveguide are provided on the upper surface of the base portion. And a part of waveguide is exposed to the lower surface of a base part, and the light which the light source produced | generated from this part is irradiated. In addition, reflected light is incident on this part. The incident reflected light is guided to the light receiving element.

また特許文献2には、皮膚に対して光を斜め方向に照射し、かつ、複数の受光部を斜めかつ間隔をあけて配置することが記載されている。特許文献2に記載の技術は、皮膚や血液に含まれるグルコースを測定することを目的としたものである。   Further, Patent Document 2 describes that light is applied to the skin in an oblique direction, and a plurality of light receiving parts are arranged obliquely and spaced apart. The technique described in Patent Document 2 is intended to measure glucose contained in skin and blood.

特開2011−245069号公報JP 2011-245069 A 特表2005−513491号公報JP 2005-513491 A

光源から放射される光に関して、その光の強度や波長等は、例えば光源が置かれる雰囲気の湿度や光源の温度などの環境の変化や、光源の劣化等によって変動し得る。光源から放射される光が変動すると、光を用いて特定の成分を検出する際に、対象とする成分の測定精度が低下し得る。そのため、このような光源の光の変動による影響を抑え、測定精度を向上させ得る技術が望まれる。   Regarding the light emitted from the light source, the intensity, wavelength, and the like of the light may vary due to environmental changes such as the humidity of the atmosphere in which the light source is placed and the temperature of the light source, and deterioration of the light source. If the light emitted from the light source fluctuates, the measurement accuracy of the target component may be reduced when a specific component is detected using the light. Therefore, there is a demand for a technology that can suppress the influence of such light source fluctuations and improve the measurement accuracy.

本発明の目的は、光を用いて特定の成分を検出して測定する際、光源の光の変動による影響を抑え、測定精度を向上させ得る技術を提供することにある。   An object of the present invention is to provide a technique capable of suppressing the influence of fluctuation of light from a light source and improving measurement accuracy when detecting and measuring a specific component using light.

本発明によれば、
開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置
が提供される。
According to the present invention,
A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
A measuring device is provided.

開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置を用いる測定方法
が提供される。
A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
A measuring method using a measuring device is provided.

本発明によれば、光を用いて特定の成分を検出して測定する際、光源の光の変動による影響を抑え、測定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, when detecting and measuring a specific component using light, the influence by the fluctuation | variation of the light of a light source can be suppressed, and a measurement precision can be improved.

上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。   The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.

第1の実施形態に係る測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the measuring apparatus which concerns on 1st Embodiment. 第1の実施形態に係る測定装置の発光手段の光出力と、第1光検出手段による光検出と、第2光検出手段による光検出とのタイミングの関係を示す図である。It is a figure which shows the relationship of the timing of the light output of the light emission means of the measuring apparatus which concerns on 1st Embodiment, the light detection by a 1st light detection means, and the light detection by a 2nd light detection means. 第2の実施形態に係る測定装置の発光手段の光出力と、第1光検出手段による光検出と、第2光検出手段による光検出とのタイミングの関係を示す図である。It is a figure which shows the relationship of the timing of the light output of the light emission means of the measuring apparatus which concerns on 2nd Embodiment, the light detection by a 1st light detection means, and the light detection by a 2nd light detection means.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

なお、以下に示す説明において、測定装置10の制御部300および算出部320は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。測定装置10の制御部300および算出部320は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。   In the following description, the control unit 300 and the calculation unit 320 of the measurement apparatus 10 indicate functional unit blocks, not hardware configuration. The control unit 300 and the calculation unit 320 of the measuring apparatus 10 include a CPU, a memory of any computer, a program that realizes the components shown in the figure loaded in the memory, a storage medium such as a hard disk that stores the program, and a network connection It is realized by any combination of hardware and software centering on the interface. There are various modifications of the implementation method and apparatus.

(第1の実施形態)
図1は、第1の実施形態に係る測定装置10の構成を示すブロック図である。
測定装置10は、筐体100、透光部材102、発光手段120、第1光検出手段140、第2光検出手段142、および導光部材160を備える。筐体100には開口101が設けられている。透光部材102は、開口101内に位置し、少なくとも第1波長の光を透過する。発光手段120は、筐体100の内部に配置され、第1波長の光を含む光を出力する。第1光検出手段140および第2光検出手段142は、筐体100の内部に配置され、第1波長の光を検出する。導光部材160は、発光手段120と第2光検出手段142との間に設けられている。そして、第1光検出手段140の光軸および発光手段120の光軸は、開口101を通り、筐体100の外で互いに交わる。以下に詳細を説明する。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of a measuring apparatus 10 according to the first embodiment.
The measuring apparatus 10 includes a housing 100, a translucent member 102, a light emitting unit 120, a first light detecting unit 140, a second light detecting unit 142, and a light guide member 160. The housing 100 is provided with an opening 101. The translucent member 102 is located in the opening 101 and transmits at least light having the first wavelength. The light emitting means 120 is disposed inside the housing 100 and outputs light including light having the first wavelength. The first light detection means 140 and the second light detection means 142 are disposed inside the housing 100 and detect light having the first wavelength. The light guide member 160 is provided between the light emitting means 120 and the second light detection means 142. The optical axis of the first light detection unit 140 and the optical axis of the light emitting unit 120 cross each other outside the casing 100 through the opening 101. Details will be described below.

測定装置10は、たとえば透光部材102を生体の皮膚に押し当てた状態で使用される。測定装置10は、第1光検出手段140および第2光検出手段142が検出した第1波長の光の強度に基づいて、皮膚に含まれる糖分(たとえばグルコース)の量を算出する装置であり得る。ただし、測定装置10はこのような装置に限定されない。   The measuring apparatus 10 is used, for example, in a state where the translucent member 102 is pressed against the skin of a living body. The measuring device 10 may be a device that calculates the amount of sugar (for example, glucose) contained in the skin based on the intensity of the first wavelength light detected by the first light detecting means 140 and the second light detecting means 142. . However, the measuring device 10 is not limited to such a device.

第1の波長は、特に限定されないが、皮膚に含まれる糖分の量を算出する場合には近赤外域(例えば1200nm以上3000nm以下)の波長とすることができる。   Although a 1st wavelength is not specifically limited, When calculating the quantity of the sugar content contained in skin, it can be set as the wavelength of a near infrared region (for example, 1200 nm or more and 3000 nm or less).

本実施形態に係る測定装置10は、発光手段120と、第1光検出手段140との間に設けられた遮光板180をさらに備える。   The measuring apparatus 10 according to the present embodiment further includes a light shielding plate 180 provided between the light emitting means 120 and the first light detecting means 140.

測定装置10の筐体100は、例えば樹脂や金属を用いて形成されている。筐体100の一面には開口101が設けられている。筐体100は、複数の部品または複数の部材で構成されていてもよい。   The housing 100 of the measuring apparatus 10 is formed using, for example, resin or metal. An opening 101 is provided on one surface of the housing 100. The housing 100 may be composed of a plurality of components or a plurality of members.

透光部材102は、筐体100の開口101に嵌め込まれている。透光部材102は開口101の全体を塞ぐように設けられていても良いし、開口101の一部に設けられていても良い。透光部材102は、第1の光を透過する素材からなり、たとえば赤外光を透過させるガラスからなる。透光部材102は平板であってもよいし、発光手段120の光軸と第1光検出手段140の光軸とが筐体100の外部で交わるように設計されていれば、少し湾曲していてもよい。なお、以下では、透光部材102の面の内、筐体100の外側に向く面を外面と呼び、筐体100の内側に向く面を内面と呼んで区別する。   The translucent member 102 is fitted into the opening 101 of the housing 100. The translucent member 102 may be provided so as to block the entire opening 101 or may be provided in a part of the opening 101. The translucent member 102 is made of a material that transmits the first light, for example, glass that transmits infrared light. The translucent member 102 may be a flat plate or may be slightly curved as long as the optical axis of the light emitting means 120 and the optical axis of the first light detecting means 140 are designed to intersect outside the housing 100. May be. Hereinafter, of the surfaces of the translucent member 102, a surface facing the outside of the housing 100 is referred to as an outer surface, and a surface facing the inside of the housing 100 is referred to as an inner surface.

発光手段120は、光源としてたとえばLED(Light Emitting Diode)、レーザダイオード等の発光素子を有している。この光源は、第1波長の光を他の波長の光よりも強く発光するのが好ましい。また、発光手段120は必要に応じてコリメーター、集光レンズ、フィルタ等の光学素子をさらに有していても良い。   The light emitting means 120 has a light emitting element such as an LED (Light Emitting Diode) or a laser diode as a light source. This light source preferably emits light of the first wavelength stronger than light of other wavelengths. In addition, the light emitting unit 120 may further include optical elements such as a collimator, a condenser lens, and a filter as necessary.

発光手段120は、その光軸が透光部材102を通る向きに配置されている。本実施形態に係る測定装置10において、発光手段120は、その光軸が透光部材102の外面に対して斜めになる向きに配置されている。この場合、透光部材102にたとえば生体の皮膚を当接させたとき、発光手段120の光軸は皮膚に対して斜めになる。発光手段120から出射した光がミラー等を経ず直接透光部材102を透過するように、発光手段120が配置されることにより、測定装置10の小型化が図れる。なお、この様な構成に限定されず、発光手段120の光軸は、筐体100の内部に配置されたミラー等によって途中で曲げられ、透光部材102を通っていてもよい。   The light emitting means 120 is arranged so that its optical axis passes through the translucent member 102. In the measuring apparatus 10 according to the present embodiment, the light emitting means 120 is disposed in a direction in which the optical axis is inclined with respect to the outer surface of the translucent member 102. In this case, for example, when the living skin is brought into contact with the translucent member 102, the optical axis of the light emitting means 120 is inclined with respect to the skin. By arranging the light emitting means 120 so that the light emitted from the light emitting means 120 passes directly through the light transmitting member 102 without passing through a mirror or the like, the measuring apparatus 10 can be downsized. Note that the present invention is not limited to such a configuration, and the optical axis of the light emitting means 120 may be bent halfway by a mirror or the like disposed inside the housing 100 and pass through the translucent member 102.

第1光検出手段140は、第1波長の光を検出する。本実施形態において、第1光検出手段140はさらに第1波長の光の強度を検出できるものであるが、これに限定されない。第1光検出手段140はたとえばフォトダイオード等の光電変換素子を有している。第1光検出手段140において、第1波長の光に対する感度が他の波長の光の感度よりも高いことが好ましい。第1光検出手段140は、必要に応じてフィルタ等をさらに有していても良い。   The first light detection unit 140 detects light having the first wavelength. In the present embodiment, the first light detection means 140 can further detect the intensity of light of the first wavelength, but is not limited to this. The first light detection means 140 has a photoelectric conversion element such as a photodiode, for example. In the first light detection means 140, it is preferable that the sensitivity to light of the first wavelength is higher than the sensitivity of light of other wavelengths. The first light detection unit 140 may further include a filter or the like as necessary.

第1光検出手段140は、発光手段120から出力された光の一部であって、開口101を透過し、対象物20で反射された光を受光する。第1光検出手段140は、その光軸が透光部材102を通る向きに配置されている。第1光検出手段140の光軸とは、第1光検出手段140の受光部において、第1光検出手段140の受光面の中心を通り、受光面に垂直な線である。第1光検出手段140は、その光軸が透光部材102の外面に対して斜めになる向きに配置されている。対象物20で反射し、透光部材102を透過した光がミラー等を経ず直接第1光検出手段140に入射するように、第1光検出手段140が配置されることにより、測定装置10の小型化が図れる。なお、この様な構成に限定されず、第1光検出手段140の光軸は、筐体100の内部に配置されたミラー等によって途中で曲げられ、透光部材102を通っていてもよい。   The first light detection unit 140 is a part of the light output from the light emitting unit 120, and receives the light transmitted through the opening 101 and reflected by the object 20. The first light detection means 140 is arranged such that its optical axis passes through the light transmissive member 102. The optical axis of the first light detecting means 140 is a line that passes through the center of the light receiving surface of the first light detecting means 140 and is perpendicular to the light receiving surface in the light receiving portion of the first light detecting means 140. The first light detection means 140 is arranged in an orientation in which the optical axis is inclined with respect to the outer surface of the translucent member 102. The first light detection unit 140 is arranged so that the light reflected by the object 20 and transmitted through the light transmitting member 102 is directly incident on the first light detection unit 140 without passing through a mirror or the like. Can be miniaturized. Note that the present invention is not limited to such a configuration, and the optical axis of the first light detection unit 140 may be bent halfway by a mirror or the like disposed inside the housing 100 and pass through the translucent member 102.

第1光検出手段140の光軸は、筐体100の外部で発光手段120の光軸と交わる。発光手段120の光軸と第1光検出手段140の光軸とが交わる点を交点αと呼ぶ。交点αと、透光部材102の外面との間隔は、2mm以下、好ましくは1.5mm以下である。また、当該間隔は、0.5mm以上であるのが好ましい。また、2つの光軸が成す角度θは、例えば60°以上120°以下である。なお、透光部材102の外面に対して発光手段120の光軸が成す角度と、透光部材102の外面に対して第1光検出手段140の光軸が成す角度とは、互いに等しいのが好ましい。   The optical axis of the first light detection unit 140 intersects with the optical axis of the light emitting unit 120 outside the housing 100. A point where the optical axis of the light emitting means 120 and the optical axis of the first light detecting means 140 intersect is called an intersection α. The distance between the intersection α and the outer surface of the translucent member 102 is 2 mm or less, preferably 1.5 mm or less. Moreover, it is preferable that the said space | interval is 0.5 mm or more. Moreover, the angle θ formed by the two optical axes is, for example, 60 ° or more and 120 ° or less. The angle formed by the optical axis of the light emitting unit 120 with respect to the outer surface of the light transmitting member 102 and the angle formed by the optical axis of the first light detecting unit 140 with respect to the outer surface of the light transmitting member 102 are equal to each other. preferable.

発光手段120と第1光検出手段140とをこのような関係で配置すれば、透光部材102に皮膚等を当接させた状態で精度良く測定を行うことができる。   If the light emitting means 120 and the first light detecting means 140 are arranged in such a relationship, measurement can be performed with high accuracy in a state where the skin or the like is in contact with the translucent member 102.

たとえば測定装置10が皮膚に含まれる糖分の量を算出する装置である場合、発光手段120から出力された光のうち、第1波長の光の一部は、第1光検出手段140で検出されるまでの光路において、皮膚内の特定の成分(検出対象物質)によって、例えば間湿液に含まれるグルコースなどの糖分によって吸収される。したがって、第1光検出手段140が検出した光の強度に基づいて、皮膚内の特定の検出対象物質の量を検出することができる。   For example, when the measuring apparatus 10 is an apparatus that calculates the amount of sugar contained in the skin, a part of the light having the first wavelength out of the light output from the light emitting means 120 is detected by the first light detecting means 140. Is absorbed by a specific component (detection target substance) in the skin, for example, by a sugar such as glucose contained in the interstitial fluid. Therefore, the amount of a specific detection target substance in the skin can be detected based on the light intensity detected by the first light detection means 140.

遮光板180は、透光部材102を貫くように配置されている。遮光板180は第1波長の光を透過させない素材からなる。たとえば黒色の板である。遮光板180は、対象物20からの反射光でない光が、発光手段120から直接第1光検出手段140に入射するのを防止する。また、透光部材102の内面、内部、および外面で反射して第1光検出手段140に入射するのを防止する。さらに、発光手段120から出力された光の一部が筐体100の内部で乱反射して第1光検出手段140に入射するのを防止する。このように遮光板180を設けることにより、第1光検出手段140が対象物20からの反射光のみを効率良く検出でき、より精度の高い測定が可能となる。なお、透光部材102は、透光部材102の内面に接するように配置されてもよい。   The light shielding plate 180 is disposed so as to penetrate the translucent member 102. The light shielding plate 180 is made of a material that does not transmit light of the first wavelength. For example, a black plate. The light shielding plate 180 prevents light that is not reflected light from the object 20 from directly entering the first light detecting means 140 from the light emitting means 120. Further, it is prevented that the light is reflected by the inner surface, the inner surface, and the outer surface of the translucent member 102 and enters the first light detection means 140. Further, a part of the light output from the light emitting means 120 is prevented from being diffusely reflected inside the housing 100 and entering the first light detecting means 140. By providing the light shielding plate 180 in this manner, the first light detection means 140 can efficiently detect only the reflected light from the object 20, and measurement with higher accuracy is possible. The translucent member 102 may be disposed so as to contact the inner surface of the translucent member 102.

第2光検出手段142は、第1波長の光を検出する。本実施形態において、第2光検出手段142はさらに第1波長の光の強度を検出できるものであるが、これに限定されない。第2光検出手段142はたとえばフォトダイオード等の光電変換素子を有している。第2光検出手段142において、第1波長の光に対する感度が他の波長の光の感度よりも高いことが好ましい。第2光検出手段142は、必要に応じてフィルタ等をさらに有していても良い。   The second light detection unit 142 detects light having the first wavelength. In the present embodiment, the second light detection means 142 can further detect the intensity of the first wavelength light, but is not limited to this. The second light detection means 142 has a photoelectric conversion element such as a photodiode, for example. In the second light detection means 142, it is preferable that the sensitivity to light of the first wavelength is higher than the sensitivity of light of other wavelengths. The second light detection unit 142 may further include a filter or the like as necessary.

第2光検出手段142は、発光手段120から出力された光の一部であって、開口101を透過せず、対象物20で反射されない光を受光する。第2光検出手段142の受光強度は、対象物20に依存せず、発光手段120の発光強度にのみ依存するため、発光手段120の出力する光の変動を直接的に検出することができる。   The second light detection unit 142 receives a part of the light output from the light emitting unit 120 and does not pass through the opening 101 and is not reflected by the object 20. Since the light reception intensity of the second light detection unit 142 does not depend on the object 20 but depends only on the light emission intensity of the light emission unit 120, the fluctuation of the light output from the light emission unit 120 can be directly detected.

導光部材160は、発光手段120の出力する光の一部を第2光検出手段142に導く。導光部材160はたとえば光ファイバや、光が透過する透明樹脂等であり、また、湾曲可能である。このように湾曲可能な導光部材160を用いることで、導光部材160および第2光検出手段142の位置や向きを自由に設定することができる。その結果、測定装置10の小型化を図ることができる。   The light guide member 160 guides part of the light output from the light emitting means 120 to the second light detection means 142. The light guide member 160 is, for example, an optical fiber, a transparent resin that transmits light, or the like, and can be bent. By using the bendable light guide member 160 in this way, the positions and orientations of the light guide member 160 and the second light detection means 142 can be freely set. As a result, the measurement apparatus 10 can be reduced in size.

導光部材160は、その一端が発光手段120の光出力部分に対向し、出力光の一部を取り込むように配置される。ただし、導光部材160の一端は、発光手段120の出力の全てを遮るようには配置されない。一方、導光部材160の他端は第2光検出手段142の受光面に対向して配置される。一端で取り込まれた光は導光部材160の中を通り、第2光検出手段142の受光面に照射される。   The light guide member 160 is arranged so that one end of the light guide member 160 faces the light output portion of the light emitting means 120 and captures a part of the output light. However, one end of the light guide member 160 is not disposed so as to block all of the output of the light emitting means 120. On the other hand, the other end of the light guide member 160 is disposed to face the light receiving surface of the second light detection unit 142. The light taken in at one end passes through the light guide member 160 and is irradiated on the light receiving surface of the second light detection means 142.

導光部材160は、発光手段120から出力される光のうち、例えば5〜10%の範囲の光を第2光検出手段142に導くように配置される。ここで、第2光検出手段142に導かれる光は、導光部材160の上記一端の位置や形状などによって調整することができる。これにより、発光手段120から開口101に向けて放射された光の大部分を通しつつ、補正に必要な量の光を第2光検出手段142で検出させることができる。   The light guide member 160 is disposed so as to guide, for example, 5 to 10% of light output from the light emitting unit 120 to the second light detection unit 142. Here, the light guided to the second light detection means 142 can be adjusted by the position and shape of the one end of the light guide member 160. Accordingly, the second light detection unit 142 can detect the amount of light necessary for correction while passing most of the light emitted from the light emitting unit 120 toward the opening 101.

導光部材160の入光部分の断面積はたとえば300μm〜16000μmとすることができる。なお、入光部分の断面積とは、たとえば導光部材160が光ファイバである場合、入光端のコア部の断面積である。当該コア部の断面の直径はたとえば20〜140μmである。Sectional area of the light input portion of the light guide member 160 may be, for example, 300μm 2 ~16000μm 2. Note that the cross-sectional area of the light incident portion is, for example, the cross-sectional area of the core portion at the light incident end when the light guide member 160 is an optical fiber. The diameter of the cross section of the core part is, for example, 20 to 140 μm.

また、測定装置10は、制御部300、算出部320、操作部340、および表示部360をさらに備える。制御部300は、発光手段120、第1光検出手段140、および第2光検出手段142を制御する。算出部320は、第1光検出手段140および第2光検出手段142の受光強度に基づいて検出対象物の量を算出する。   The measuring apparatus 10 further includes a control unit 300, a calculation unit 320, an operation unit 340, and a display unit 360. The control unit 300 controls the light emitting unit 120, the first light detection unit 140, and the second light detection unit 142. The calculation unit 320 calculates the amount of the detection target based on the received light intensity of the first light detection unit 140 and the second light detection unit 142.

操作部340は、測定装置10のユーザによって操作される。操作部340は例えば押下型又は接触型のスイッチであり、筐体100の外面に位置している。制御部300は、操作部340にされた操作内容に基づき、発光手段120等を制御する。   The operation unit 340 is operated by a user of the measurement apparatus 10. The operation unit 340 is, for example, a push type or contact type switch, and is located on the outer surface of the housing 100. The control unit 300 controls the light emitting unit 120 and the like based on the content of the operation performed on the operation unit 340.

制御部300は、発光手段120の点灯および消灯、第1光検出手段140および第2光検出手段142の光の検出タイミング等を制御する。発光手段120、第1光検出手段140、および第2光検出手段142の動作タイミングについては後に詳しく説明する。   The controller 300 controls lighting and extinguishing of the light emitting means 120, light detection timing of the first light detecting means 140 and the second light detecting means 142, and the like. The operation timing of the light emitting means 120, the first light detecting means 140, and the second light detecting means 142 will be described in detail later.

算出部320は、第1光検出手段140および第2光検出手段142のそれぞれから、受光した光の検出結果を取得する。そして、算出部320は第1光検出手段140および第2光検出手段142の受光強度に基づいて検出対象物の量を算出する。またこのとき、算出部320は第1光検出手段140の受光強度を第2光検出手段142の受光強度で補正する。   The calculation unit 320 acquires the detection result of the received light from each of the first light detection unit 140 and the second light detection unit 142. Then, the calculation unit 320 calculates the amount of the detection object based on the received light intensity of the first light detection unit 140 and the second light detection unit 142. At this time, the calculation unit 320 corrects the light reception intensity of the first light detection unit 140 with the light reception intensity of the second light detection unit 142.

発光手段120から導光部材160を経由して直接的に第2光検出手段142で検出された光の強度をDとし、対象物20で反射したのち第1光検出手段140で検出された光の強度をDとする。その場合、D/Dを補正された受光強度として用いれば、発光手段120の変動分に基づいて第1光検出手段140の受光強度を補正する事ができる。たとえば補正された受光強度であるD/Dを、あらかじめ定められた数式に代入することにより、測定対象内における検出量を精度良く算出することができる。もしくは、図示しない記憶部にあらかじめ保存された、反射光の受光強度と検出量との関係を示すテーブル等を用いて、補正された受光強度から検出量を求めても良い。上記数式やテーブルは、検出対象物の種類毎に用意することができる。なお、検出量とは、たとえば検出対象物質の含有量や濃度等である。The light intensity directly detected by the second light detection means 142 from the light emitting means 120 via the light guide member 160 is D 0 , reflected by the object 20 and then detected by the first light detection means 140. Let D 1 be the intensity of light. In that case, if D 1 / D 0 is used as the corrected received light intensity, the received light intensity of the first light detecting means 140 can be corrected based on the variation of the light emitting means 120. For example, by substituting D 1 / D 0 that is the corrected received light intensity into a predetermined mathematical formula, the detection amount in the measurement target can be calculated with high accuracy. Alternatively, the detected amount may be obtained from the corrected received light intensity using a table or the like that is stored in advance in a storage unit (not shown) and that shows the relationship between the received light intensity of the reflected light and the detected amount. The above formulas and tables can be prepared for each type of detection object. The detected amount is, for example, the content or concentration of the detection target substance.

なお、上記では、受光強度を補正した後に検出量を算出する例を説明したがそのような手順に限定されない。たとえば、第1光検出手段140および第2光検出手段142の各受光強度に基づいて検出量を算出し、その後、第1光検出手段140の受光強度から求めた検出量を第2光検出手段142の受光強度から求めた検出量で補正してもよい。   In the above description, the example in which the detection amount is calculated after correcting the received light intensity has been described. However, the present invention is not limited to such a procedure. For example, the detection amount is calculated based on the light reception intensity of the first light detection means 140 and the second light detection means 142, and then the detection amount obtained from the light reception intensity of the first light detection means 140 is calculated as the second light detection means. You may correct | amend with the detection amount calculated | required from the received light intensity of 142. FIG.

発光手段120では、経年劣化や、湿度、温度等の周囲の環境に依存して、発光強度が変化したり、波長のシフトが生じたりすることがある。ここで、上記の様な補正が行われることにより、検出結果の精度の低下を防ぐことができる。   In the light emitting means 120, the light emission intensity may change or the wavelength may shift depending on the surrounding environment such as aging deterioration, humidity, temperature and the like. Here, by performing the correction as described above, it is possible to prevent a decrease in accuracy of the detection result.

なお、算出部320は必ずしも常に上記補正を行う必要は無く、必要に応じて補正の有無が切り替えられても良い。   Note that the calculation unit 320 does not always need to perform the above correction, and the presence or absence of correction may be switched as necessary.

算出された検出量は、測定結果として表示部360に表示される。   The calculated detection amount is displayed on the display unit 360 as a measurement result.

制御部300が制御する発光手段120、第1光検出手段140および第2光検出手段142の動作について以下に説明する。   The operations of the light emitting means 120, the first light detecting means 140, and the second light detecting means 142 controlled by the control unit 300 will be described below.

図2は、本実施形態に係る測定装置の発光手段120の光出力と、第1光検出手段140による光検出と、第2光検出手段142による光検出とのタイミングの関係を示す図である。以下、発光手段の光出力と、第1光検出手段による光検出と、第2光検出手段による光検出とのタイミングの関係を示す図において、「ON」は光出力または光検出をしている時間を示し、「OFF」は光出力または光検出をしていない時間を示す。   FIG. 2 is a diagram illustrating a timing relationship between the light output of the light emitting unit 120 of the measurement apparatus according to the present embodiment, the light detection by the first light detection unit 140, and the light detection by the second light detection unit 142. . Hereinafter, in the figure showing the timing relationship between the light output of the light emitting means, the light detection by the first light detection means, and the light detection by the second light detection means, “ON” indicates light output or light detection. “OFF” indicates a time when light output or light detection is not performed.

発光手段120は、連続して長時間光出力を続けると、温度が上昇し、出力強度が低下する。そのため、連続出力時間Tは、数十msec(たとえば10msec〜100msec)とすることが好ましい。連続出力時間Tを、数十msec程度とすることで、発光手段120の温度上昇を最小限に抑え、その結果電流量を増加させて、より発光強度を高めることができる。そして、第1光検出手段140および第2光検出手段142は、発光手段120の1回の連続出力の中で光検出を行う。制御部300は、第1光検出手段140および第2光検出手段142が同時に動作し、同時刻における受光強度を検出するよう、第1光検出手段140および第2光検出手段142を制御する。ここで、第1光検出手段140および第2光検出手段142による1回の光検出の時間は、Tより短い時間とする。第1光検出手段140と第2光検出手段142は同時に光検出を行い、同時刻におけるDおよびDに基づいて補正を行うことで、より精度の良い測定が可能である。When the light emitting means 120 continues to output light continuously for a long time, the temperature rises and the output intensity decreases. Therefore, the continuous output time Tr is preferably set to several tens of msec (for example, 10 msec to 100 msec). By setting the continuous output time Tr to about several tens of msec, the temperature rise of the light emitting means 120 can be minimized, and as a result, the amount of current can be increased to further increase the light emission intensity. The first light detection means 140 and the second light detection means 142 perform light detection in one continuous output of the light emitting means 120. The controller 300 controls the first light detection means 140 and the second light detection means 142 so that the first light detection means 140 and the second light detection means 142 operate simultaneously and detect the received light intensity at the same time. Here, the time of one light detection by the first light detection means 140 and the second light detection means 142 is shorter than Tr . The first light detection means 140 and the second light detection means 142 perform light detection at the same time, and perform correction based on D 0 and D 1 at the same time, thereby enabling more accurate measurement.

また、制御部300は、発光手段120から光を出力させ始めてから特定の待ち時間T経過後に、第1光検出手段140および第2光検出手段142が検出を行うよう、発光手段120、第1光検出手段140、および第2光検出手段142を制御する。発光手段120が発光を始めた直後は、出力強度が安定しない。そのため、第1光検出手段140および第2光検出手段142は、発光手段120の発光開始時点から、待ち時間Tを経過するまでは光検出を行わず、待ち時間Tを経過した時点で検出を開始することにより、安定した光を精度良く検出することができる。待ち時間Tは、たとえば1msec以上100msec以下とすることができる。Further, the control unit 300 causes the first light detection unit 140 and the second light detection unit 142 to perform detection after a specific waiting time Tw has elapsed since the light output from the light emission unit 120 is started. The first light detection means 140 and the second light detection means 142 are controlled. Immediately after the light emitting means 120 starts emitting light, the output intensity is not stable. Therefore, the first light detecting means 140 and the second light detecting means 142, from the start of light emission of the light emitting unit 120, without performing the light detection until passage of the waiting time T w, at the time of the lapse of the waiting time T w By starting detection, stable light can be detected with high accuracy. Waiting time T w can be, for example, 1msec more than 100msec or less.

また、制御部300は、発光手段120の1回の発光の間に、第1光検出手段140および第2光検出手段142が複数回の検出を行うよう、発光手段120、第1光検出手段140、および第2光検出手段142を制御する。本図は、連続して4回の光検出を行う例を示している。たとえば、第1光検出手段140および第2光検出手段142の受光面に光が入射すると、光電変換素子において光電流が流れ、図示しない増幅回路により検出可能な電圧に変換される。ここで、光電変換素子に流れる光電流は微少であるが、複数回の検出を行い、たとえばそれらの検出値を平均化することによって、測定精度を向上させることができる。また、発光手段120の連続出力を、間に消灯時間を挟みつつ複数回繰り返しても良い。   In addition, the control unit 300 is configured so that the first light detection unit 140 and the second light detection unit 142 perform detection a plurality of times during one light emission of the light emission unit 120. 140 and the second light detection means 142 are controlled. This figure shows an example in which light detection is performed four times in succession. For example, when light is incident on the light receiving surfaces of the first light detection means 140 and the second light detection means 142, a photocurrent flows in the photoelectric conversion element and is converted into a voltage that can be detected by an amplifier circuit (not shown). Here, although the photocurrent flowing through the photoelectric conversion element is very small, the measurement accuracy can be improved by performing detection a plurality of times, for example, by averaging the detected values. Further, the continuous output of the light emitting means 120 may be repeated a plurality of times with a turn-off time interposed therebetween.

本実施形態では、発光手段120が光出力する度に毎回、第1光検出手段140および第2光検出手段142による同時光検出を行う。そのことで、常に、補正を経た精度のよい検出値を得ることができる。   In this embodiment, every time the light emitting means 120 outputs light, simultaneous light detection by the first light detecting means 140 and the second light detecting means 142 is performed. Accordingly, it is possible to always obtain a detection value with high accuracy after correction.

次に、本実施形態の作用および効果について説明する。本実施形態に係る測定装置10によれば、劣化や環境の変化により発光手段120から発せられる光量等が変化した場合でも、その変化を把握して安定した検出が可能である。   Next, the operation and effect of this embodiment will be described. According to the measurement apparatus 10 according to the present embodiment, even when the amount of light emitted from the light emitting unit 120 changes due to deterioration or environmental change, the change can be grasped and stable detection can be performed.

また、本実施形態に係る測定装置10は、導光部材160を備えることにより、簡易な構造で測定精度を向上させることができる。たとえば、発光手段120の近傍に駆動可能な反射板を設け、反射板を移動させることにより発光手段120の出力光を第1光検出手段140に導いたり第2光検出手段142に導いたりする方法があるが、その場合、機構が複雑化して信頼性が低下する恐れがある。さらに、第1光検出手段140と第2光検出手段142による同時検出は不可能である。さらに、精度良く毎回同じように反射板を配置する必要があるため、反射板の位置決めに高い精度が要求され、低価格化が困難になる。導光部材160を用いることにより、このような問題を回避できる。   In addition, the measurement apparatus 10 according to the present embodiment can improve the measurement accuracy with a simple structure by including the light guide member 160. For example, a method of providing a drivable reflecting plate in the vicinity of the light emitting means 120 and guiding the output light of the light emitting means 120 to the first light detecting means 140 or the second light detecting means 142 by moving the reflecting plate. However, in that case, there is a possibility that the mechanism becomes complicated and the reliability is lowered. Furthermore, simultaneous detection by the first light detection means 140 and the second light detection means 142 is impossible. Furthermore, since it is necessary to arrange the reflecting plate in the same manner with high accuracy every time, high accuracy is required for positioning the reflecting plate, and it is difficult to reduce the price. By using the light guide member 160, such a problem can be avoided.

また、本実施形態に係る測定装置10は、導光部材160を備えることにより、小型化が可能である。たとえば、筐体100の内部に固定の反射板を設け、透光部材102を透過しない光を反射させて第2光検出手段142で受光する方法があるが、その場合、第2光検出手段142の配置に制限が生じるため、設計の自由度が低くなり、装置としての小型化が困難となる。導光部材160を用いることにより、そのような問題を回避できる。   Moreover, the measuring apparatus 10 according to the present embodiment can be reduced in size by including the light guide member 160. For example, there is a method in which a fixed reflecting plate is provided inside the housing 100 and light that does not pass through the translucent member 102 is reflected and received by the second light detection means 142. In this case, the second light detection means 142 is provided. Therefore, the degree of freedom in design is reduced, and it is difficult to reduce the size of the apparatus. By using the light guide member 160, such a problem can be avoided.

(第2の実施形態)
図3は、第2の実施形態に係る測定装置の発光手段120の光出力と、第1光検出手段140による光検出と、第2光検出手段142による光検出とのタイミングの関係を示す図である。本実施形態に係る測定装置10は、同時刻における受光強度を検出するよう、制御部300が第1光検出手段140および第2光検出手段142を制御しない点を除いて、第1の実施形態に係る測定装置10と同様の構成である。
(Second Embodiment)
FIG. 3 is a diagram illustrating a timing relationship between the light output of the light emitting unit 120 of the measurement apparatus according to the second embodiment, the light detection by the first light detection unit 140, and the light detection by the second light detection unit 142. It is. The measurement apparatus 10 according to the present embodiment is the first embodiment except that the control unit 300 does not control the first light detection means 140 and the second light detection means 142 so as to detect the received light intensity at the same time. It is the structure similar to the measuring apparatus 10 concerning.

本実施形態に係る制御部300は、制御部300は、発光手段120の1回の発光中に、第2光検出手段142が少なくとも2回の光検出(第1の光検出と第2の光検出)を行い、第1の光検出と第2の光検出との間に第1光検出手段140が少なくとも1回の検出を行うよう、第1光検出手段140、および第2光検出手段142を制御する。第1光検出手段140と第2光検出手段142とは、同時には光検出を行わない。   In the control unit 300 according to the present embodiment, the control unit 300 causes the second light detection unit 142 to perform light detection (first light detection and second light) during one light emission of the light emitting unit 120. Detection), and the first light detection means 140 and the second light detection means 142 so that the first light detection means 140 performs at least one detection between the first light detection and the second light detection. To control. The first light detection means 140 and the second light detection means 142 do not perform light detection at the same time.

本図に示す例では、発光手段120の1回の連続出力中に、第2光検出手段142による光検出、第1光検出手段140による光検出、第2光検出手段142による光検出をこの順に行う。ここで、発光手段120の発光開始から、1度目の第2光検出手段142による光検出の開始までの間には、第1の実施形態と同様、待ち時間Tの時間差を設ける。In the example shown in this figure, during one continuous output of the light emitting means 120, the light detection by the second light detection means 142, the light detection by the first light detection means 140, and the light detection by the second light detection means 142 are performed. Do in order. Here, the emission start of the light emitting means 120, between the start of the detected light first time of the second light detecting means 142, as in the first embodiment, providing the time difference between latency T w.

そして、算出部320では、2回の第2光検出手段142による2回の光検出の受光強度の平均値をD'とし第1光検出手段140による受光強度をD'とし、D'/D'を補正された受光強度として得る。そして、D'/D'を用いて、第1の実施形態と同様に検出量が算出される。In the calculation unit 320, the average value of the received light intensity of the two times of light detection by the second second light detection means 142 is D 0 ′, the received light intensity by the first light detection means 140 is D 1 ′, and D 1 '/ D 0 ' is obtained as the corrected received light intensity. Then, using D 1 ′ / D 0 ′, the detection amount is calculated as in the first embodiment.

なお、発光手段120の1回の連続出力中、初めと終わりに少なくとも1回ずつ第2光検出手段142による光検出を行えばよく、両光検出の間に第1光検出手段140による光検出を複数回行っても良い。その場合、上記において、第1光検出手段140による複数の光検出の結果の平均値をD'とみなせばよい。Note that light detection by the second light detection means 142 may be performed at least once at the beginning and end during one continuous output of the light emitting means 120, and light detection by the first light detection means 140 is performed between both light detections. May be performed multiple times. In that case, in the above, the average value of the results of the plurality of light detections by the first light detection means 140 may be regarded as D 1 ′.

第1光検出手段140による検出の前後で第2光検出手段142による検出を行い、第1光検出手段140の受光強度の補正を行うことで、測定精度を向上させることができる。   Measurement accuracy can be improved by performing detection by the second light detection unit 142 before and after detection by the first light detection unit 140 and correcting the light reception intensity of the first light detection unit 140.

次に、本実施形態の作用および効果について説明する。本実施形態においては第1の実施形態と同様の作用および効果が得られる。加えて、本実施形態に係る測定装置10によれば、第1光検出手段140と第2光検出手段142とを同時に動作させたり、第1光検出手段140および第2光検出手段142での受光強度を同時に検出したりする必要が無く、制御部300や算出部320の構成を簡略化できる。   Next, the operation and effect of this embodiment will be described. In this embodiment, the same operation and effect as in the first embodiment can be obtained. In addition, according to the measurement apparatus 10 according to the present embodiment, the first light detection means 140 and the second light detection means 142 are operated simultaneously, or the first light detection means 140 and the second light detection means 142 are operated. It is not necessary to detect the received light intensity at the same time, and the configuration of the control unit 300 and the calculation unit 320 can be simplified.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以下、参考形態の例を付記する。
1.開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置。
2.1に記載の測定装置において、
前記発光手段と、前記第1光検出手段との間に設けられた遮光板をさらに備える、
測定装置。
3.1または2に記載の測定装置において、
前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する制御部と、
前記第1光検出手段および前記第2光検出手段の受光強度に基づいて検出対象物の量を算出する算出部とをさらに備える、
測定装置。
4.3に記載の測定装置において、
前記算出部は、前記第1光検出手段の受光強度を前記第2光検出手段の受光強度で補正する、
測定装置。
5.3または4に記載の測定装置において、
前記制御部は、前記第1光検出手段および前記第2光検出手段が同時に動作し、同時刻における受光強度を検出するよう、前記第1光検出手段および前記第2光検出手段を制御する、
測定装置。
6.5に記載の測定装置において、
前記制御部は、前記発光手段の1回の発光中に、前記第1光検出手段および前記第2光検出手段が複数回の検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
7.3または4に記載の測定装置において、
前記制御部は、前記発光手段の1回の発光中に、前記第2光検出手段が少なくとも第1の光検出と、第2の光検出を行い、前記第1の光検出と前記第2の光検出との間に前記第1光検出手段が検出を行うよう、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
8.3から7のいずれか一つに記載の測定装置において、
前記制御部は、前記発光手段から光を出力させ始めてから特定の待ち時間経過後に、前記第1光検出手段および前記第2光検出手段の少なくとも一方が検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
9.1から8のいずれか一つに記載の測定装置において、
前記測定装置は、前記透光部材を生体の皮膚に押し当てた状態で使用され、
前記第1波長は近赤外域の波長であり、
さらに、
前記第1光検出手段および前記第2光検出手段が検出した前記第1波長の光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する、
測定装置。
10.開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置を用いる測定方法。
10−2.10に記載の測定方法において、
前記測定装置が、前記発光手段と、前記第1光検出手段との間に設けられた遮光板をさらに備える、
測定方法。
10−3.10または10−2に記載の測定方法において、
前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する工程と、
前記第1光検出手段および前記第2光検出手段の受光強度に基づいて検出対象物の量を算出する算出工程とを備える、
測定方法。
10−4.10−3に記載の測定方法において、
前記算出工程では、前記第1光検出手段の受光強度を前記第2光検出手段の受光強度で補正する、
測定方法。
10−5.10−3または10−4に記載の測定方法において、
前記制御する工程では、前記第1光検出手段および前記第2光検出手段が同時に動作し、同時刻における受光強度を検出するよう、前記第1光検出手段および前記第2光検出手段を制御する、
測定方法。
10−6.10−5に記載の測定方法において、
前記制御する工程では、前記発光手段の1回の発光中に、前記第1光検出手段および前記第2光検出手段が複数回の検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定方法。
10−7.10−3または10−4に記載の測定装置において、
前記制御する工程は、前記発光手段の1回の発光中に、前記第2光検出手段が少なくとも第1の光検出と、第2の光検出を行い、前記第1の光検出と前記第2の光検出との間に前記第1光検出手段が検出を行うよう、前記第1光検出手段、および前記第2光検出手段を制御する、
測定方法。
10−8.10−3から7のいずれか一つに記載の測定方法において、
前記制御する工程では、前記発光手段から光を出力させ始めてから特定の待ち時間経過後に、前記第1光検出手段および前記第2光検出手段が検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定方法。
10−9.10から10−8のいずれか一つに記載の測定方法において、
前記測定装置は、前記透光部材を生体の皮膚に押し当てた状態で使用され、
前記第1波長は近赤外域の波長であり、
さらに、
前記第1光検出手段および前記第2光検出手段が検出した前記第1波長の光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する、
測定方法。
11.開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置のコンピュータを、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する制御手段、および、
前記第1光検出手段および前記第2光検出手段の受光強度に基づいて検出対象物の量を算出する算出手段として機能させるためのコンピュータプログラム。
11−2.11に記載のコンピュータプログラムにおいて、
前記測定装置は前記発光手段と、前記第1光検出手段との間に設けられた遮光板をさらに備える、
コンピュータプログラム。
11−3.11または11−2に記載のコンピュータプログラムにおいて、
前記算出手段は、前記第1光検出手段の受光強度を前記第2光検出手段の受光強度で補正する、
コンピュータプログラム。
11−4.11から11−3のいずれか一つに記載のコンピュータプログラムにおいて、
前記制御手段は、前記第1光検出手段および前記第2光検出手段が同時に動作し、同時刻における受光強度を検出するよう、前記第1光検出手段および前記第2光検出手段を制御する、
コンピュータプログラム。
11−5.11−4に記載のコンピュータプログラムにおいて、
前記制御手段は、前記発光手段の1回の発光中に、前記第1光検出手段および前記第2光検出手段が複数回の検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
コンピュータプログラム。
11−6.11から11−3のいずれか一つに記載のコンピュータプログラムにおいて、
前記制御手段は、前記発光手段の1回の発光中に、前記第2光検出手段が少なくとも第1の光検出と、第2の光検出を行い、前記第1の光検出と前記第2の光検出との間に前記第1光検出手段が検出を行うよう、前記第1光検出手段、および前記第2光検出手段を制御する、
コンピュータプログラム。
11−7.11から11−6のいずれか一つに記載のコンピュータプログラムにおいて、
前記制御手段は、前記発光手段から光を出力させ始めてから特定の待ち時間経過後に、前記第1光検出手段および前記第2光検出手段が検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
コンピュータプログラム。
11−8.11から11−7のいずれか一つに記載のコンピュータプログラムにおいて、
前記測定装置は、前記透光部材を生体の皮膚に押し当てた状態で使用され、
前記第1波長は近赤外域の波長であり、
さらに、
前記算出手段は、前記第1光検出手段および前記第2光検出手段が検出した前記第1波長の光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する、
コンピュータプログラム。
Hereinafter, examples of the reference form will be added.
1. A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
measuring device.
In the measuring apparatus according to 2.1,
A light-shielding plate provided between the light emitting unit and the first light detecting unit;
measuring device.
3.1 In the measuring apparatus according to 1 or 2,
A controller for controlling the light emitting means, the first light detecting means, and the second light detecting means;
A calculation unit that calculates the amount of the detection object based on the received light intensity of the first light detection unit and the second light detection unit;
measuring device.
In the measuring apparatus according to 4.3,
The calculating unit corrects the light reception intensity of the first light detection unit with the light reception intensity of the second light detection unit;
measuring device.
5.3 In the measuring apparatus according to 4 or 3,
The control unit controls the first light detection means and the second light detection means so that the first light detection means and the second light detection means operate simultaneously and detect the received light intensity at the same time.
measuring device.
In the measuring apparatus according to 6.5,
The control unit includes the light emitting unit, the first light detecting unit, and the first light detecting unit, so that the first light detecting unit and the second light detecting unit perform detection a plurality of times during one light emission of the light emitting unit. Controlling the second light detection means;
measuring device.
7.3 In the measuring apparatus according to 4 or 4,
In the control unit, during one light emission of the light emitting means, the second light detecting means performs at least first light detection and second light detection, and the first light detection and the second light detection are performed. Controlling the first light detection means and the second light detection means so that the first light detection means performs detection during light detection;
measuring device.
In the measuring device according to any one of 8.3 to 7,
The control unit is configured so that at least one of the first light detection means and the second light detection means performs detection after the elapse of a specific waiting time after starting to output light from the light emission means. Controlling one light detection means and the second light detection means;
measuring device.
In the measuring device according to any one of 9.1 to 8,
The measuring device is used in a state where the translucent member is pressed against the skin of a living body,
The first wavelength is a wavelength in the near infrared region,
further,
Calculating the amount of sugar contained in the skin based on the intensity of the light of the first wavelength detected by the first light detection means and the second light detection means;
measuring device.
10. A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
Measuring method using a measuring device.
In the measuring method described in 10-2.10.
The measuring device further includes a light shielding plate provided between the light emitting means and the first light detecting means,
Measuring method.
In the measurement method according to 10-3.10 or 10-2,
Controlling the light emitting means, the first light detecting means, and the second light detecting means;
A calculation step of calculating the amount of the detection object based on the received light intensity of the first light detection means and the second light detection means,
Measuring method.
In the measurement method described in 10-4.10-3,
In the calculating step, the light reception intensity of the first light detection means is corrected with the light reception intensity of the second light detection means,
Measuring method.
In the measurement method according to 10-5.10-3 or 10-4,
In the controlling step, the first light detecting means and the second light detecting means operate simultaneously, and the first light detecting means and the second light detecting means are controlled so as to detect the received light intensity at the same time. ,
Measuring method.
In the measuring method according to 10-6.10-5,
In the controlling step, the light emitting means, the first light detecting means, and the first light detecting means and the second light detecting means perform detection a plurality of times during one light emission of the light emitting means. And controlling the second light detection means,
Measuring method.
In the measurement apparatus according to 10-7.10-3 or 10-4,
In the controlling step, the second light detection means performs at least first light detection and second light detection during one light emission of the light emitting means, and the first light detection and the second light detection are performed. Controlling the first light detection means and the second light detection means so that the first light detection means performs detection during the light detection of
Measuring method.
In the measurement method according to any one of 10-8.10-3 to 7,
In the controlling step, the first light detecting unit and the second light detecting unit detect the first light detecting unit and the second light detecting unit so that the first light detecting unit and the second light detecting unit perform detection after the elapse of a specific waiting time after starting to output light from the light emitting unit. Controlling the detection means and the second light detection means;
Measuring method.
In the measurement method according to any one of 10-9.10 to 10-8,
The measuring device is used in a state where the translucent member is pressed against the skin of a living body,
The first wavelength is a wavelength in the near infrared region,
further,
Calculating the amount of sugar contained in the skin based on the intensity of the light of the first wavelength detected by the first light detection means and the second light detection means;
Measuring method.
11. A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
A computer of a measuring device; a control means for controlling the light emitting means, the first light detecting means, and the second light detecting means; and
The computer program for functioning as a calculation means which calculates the quantity of a detection target based on the light reception intensity | strength of a said 1st light detection means and a said 2nd light detection means.
In the computer program according to 11-2.11.
The measuring device further includes a light shielding plate provided between the light emitting means and the first light detecting means,
Computer program.
In the computer program according to 11-3.11 or 11-2,
The calculating means corrects the light receiving intensity of the first light detecting means with the light receiving intensity of the second light detecting means;
Computer program.
In the computer program according to any one of 11-4.11 to 11-3,
The control means controls the first light detection means and the second light detection means so that the first light detection means and the second light detection means operate simultaneously and detect the received light intensity at the same time.
Computer program.
In the computer program according to 11-5.11-4,
The control means includes the light emitting means, the first light detecting means, and the first light detecting means, so that the first light detecting means and the second light detecting means perform detection a plurality of times during one light emission of the light emitting means. Controlling the second light detection means;
Computer program.
In the computer program according to any one of 11-6.11 to 11-3,
In the control unit, the second light detection unit performs at least first light detection and second light detection during one light emission of the light emitting unit, and the first light detection and the second light detection are performed. Controlling the first light detection means and the second light detection means so that the first light detection means performs detection during light detection;
Computer program.
In the computer program according to any one of 11-7.11 to 11-6,
The control unit is configured to detect the first light detection unit and the first light detection unit so that the first light detection unit and the second light detection unit perform detection after a lapse of a specific waiting time after starting to output light from the light emission unit. Controlling the means and the second light detection means;
Computer program.
In the computer program according to any one of 11-8.11 to 11-7,
The measuring device is used in a state where the translucent member is pressed against the skin of a living body,
The first wavelength is a wavelength in the near infrared region,
further,
The calculating means calculates the amount of sugar contained in the skin based on the intensity of the light of the first wavelength detected by the first light detecting means and the second light detecting means;
Computer program.

この出願は、2015年3月31日に出願された日本出願特願2015−071622号を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2015-071622 for which it applied on March 31, 2015, and takes in those the indications of all here.

Claims (10)

開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置。
A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
measuring device.
請求項1に記載の測定装置において、
前記発光手段と、前記第1光検出手段との間に設けられた遮光板をさらに備える、
測定装置。
The measuring apparatus according to claim 1,
A light-shielding plate provided between the light emitting unit and the first light detecting unit;
measuring device.
請求項1または2に記載の測定装置において、
前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する制御部と、
前記第1光検出手段および前記第2光検出手段の受光強度に基づいて検出対象物の量を算出する算出部とをさらに備える、
測定装置。
The measuring apparatus according to claim 1 or 2,
A controller for controlling the light emitting means, the first light detecting means, and the second light detecting means;
A calculation unit that calculates the amount of the detection object based on the received light intensity of the first light detection unit and the second light detection unit;
measuring device.
請求項3に記載の測定装置において、
前記算出部は、前記第1光検出手段の受光強度を前記第2光検出手段の受光強度で補正する、
測定装置。
The measuring device according to claim 3,
The calculating unit corrects the light reception intensity of the first light detection unit with the light reception intensity of the second light detection unit;
measuring device.
請求項3または4に記載の測定装置において、
前記制御部は、前記第1光検出手段および前記第2光検出手段が同時に動作し、同時刻における受光強度を検出するよう、前記第1光検出手段および前記第2光検出手段を制御する、
測定装置。
The measuring apparatus according to claim 3 or 4,
The control unit controls the first light detection means and the second light detection means so that the first light detection means and the second light detection means operate simultaneously and detect the received light intensity at the same time.
measuring device.
請求項5に記載の測定装置において、
前記制御部は、前記発光手段の1回の発光中に、前記第1光検出手段および前記第2光検出手段が複数回の検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
The measuring apparatus according to claim 5, wherein
The control unit includes the light emitting unit, the first light detecting unit, and the first light detecting unit, so that the first light detecting unit and the second light detecting unit perform detection a plurality of times during one light emission of the light emitting unit. Controlling the second light detection means;
measuring device.
請求項3または4に記載の測定装置において、
前記制御部は、前記発光手段の1回の発光中に、前記第2光検出手段が少なくとも第1の光検出と、第2の光検出を行い、前記第1の光検出と前記第2の光検出との間に前記第1光検出手段が検出を行うよう、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
The measuring apparatus according to claim 3 or 4,
In the control unit, during one light emission of the light emitting means, the second light detecting means performs at least first light detection and second light detection, and the first light detection and the second light detection are performed. Controlling the first light detection means and the second light detection means so that the first light detection means performs detection during light detection;
measuring device.
請求項3から7のいずれか一項に記載の測定装置において、
前記制御部は、前記発光手段から光を出力させ始めてから特定の待ち時間経過後に、前記第1光検出手段および前記第2光検出手段の少なくとも一方が検出を行うよう、前記発光手段、前記第1光検出手段、および前記第2光検出手段を制御する、
測定装置。
In the measuring device according to any one of claims 3 to 7,
The control unit is configured so that at least one of the first light detection means and the second light detection means performs detection after the elapse of a specific waiting time after starting to output light from the light emission means. Controlling one light detection means and the second light detection means;
measuring device.
請求項1から8のいずれか一項に記載の測定装置において、
前記測定装置は、前記透光部材を生体の皮膚に押し当てた状態で使用され、
前記第1波長は近赤外域の波長であり、
さらに、
前記第1光検出手段および前記第2光検出手段が検出した前記第1波長の光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する、
測定装置。
In the measuring device according to any one of claims 1 to 8,
The measuring device is used in a state where the translucent member is pressed against the skin of a living body,
The first wavelength is a wavelength in the near infrared region,
further,
Calculating the amount of sugar contained in the skin based on the intensity of the light of the first wavelength detected by the first light detection means and the second light detection means;
measuring device.
開口が設けられた筐体と、
前記開口内に位置し、少なくとも第1波長の光を透過する透光部材と、
前記筐体の内部に配置され、前記第1波長の光を含む光を出力する発光手段と、
前記筐体の内部に配置され、前記第1波長の光を検出する第1光検出手段および第2光検出手段と、
前記発光手段と前記第2光検出手段との間に設けられた導光部材と、
を備え、
前記第1光検出手段の光軸および前記発光手段の光軸は、前記開口を通り、前記筐体の外で互いに交わる、
測定装置を用いる測定方法。
A housing with an opening;
A translucent member located in the opening and transmitting light of at least the first wavelength;
A light emitting means disposed inside the housing and outputting light including light of the first wavelength;
A first light detection means and a second light detection means, which are arranged inside the housing and detect light of the first wavelength;
A light guide member provided between the light emitting means and the second light detecting means;
With
The optical axis of the first light detecting means and the optical axis of the light emitting means cross each other outside the casing through the opening;
Measuring method using a measuring device.
JP2017509151A 2015-03-31 2015-11-02 Measuring apparatus and measuring method Pending JPWO2016157591A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015071622 2015-03-31
JP2015071622 2015-03-31
PCT/JP2015/080880 WO2016157591A1 (en) 2015-03-31 2015-11-02 Measuring device and measuring method

Publications (1)

Publication Number Publication Date
JPWO2016157591A1 true JPWO2016157591A1 (en) 2018-01-25

Family

ID=57004072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509151A Pending JPWO2016157591A1 (en) 2015-03-31 2015-11-02 Measuring apparatus and measuring method

Country Status (2)

Country Link
JP (1) JPWO2016157591A1 (en)
WO (1) WO2016157591A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227832A (en) * 1989-02-06 1990-08-08 Hamamatsu Photonics Kk Optical examination apparatus
DE10163972B4 (en) * 2001-12-22 2005-10-27 Roche Diagnostics Gmbh Method and device for determining a light transport parameter and an analyte in a biological matrix
JP2006153898A (en) * 2006-03-16 2006-06-15 Dainippon Screen Mfg Co Ltd Absorbance meter
JP2008154687A (en) * 2006-12-21 2008-07-10 Sanyo Electric Co Ltd Optical measurement unit and optical measurement method using it

Also Published As

Publication number Publication date
WO2016157591A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US9874474B2 (en) Biometric sensor and biometric analysis system including the same
JP2009168670A (en) Optical measurement unit
TWI464388B (en) Light calibration device, biological detection calibration system and operating method thereof
JP2008154873A (en) Optical measuring instrument
WO2016157591A1 (en) Measuring device and measuring method
US10197386B2 (en) Bend information computation apparatus
JP2008154687A (en) Optical measurement unit and optical measurement method using it
US20210259586A1 (en) Measurement apparatus and biological information measurement apparatus
JPH1151861A (en) Apparatus for measuring concentration of liquid
JP7363368B2 (en) Absorbance measuring device and biological information measuring device
JP2008164414A (en) Liquid detector
JP2010217084A (en) Fluorescence temperature sensor and failure determination method of same
JP6705593B2 (en) measuring device
JP2009068854A (en) Measuring system
JP7354778B2 (en) Measuring device and biological information measuring device
JP7447433B2 (en) Optical members, biological information measuring devices, and measuring devices
KR20190094117A (en) Two detector gas detection system
JP5113024B2 (en) LASER SCAN UNIT, PHOTOSENSITIVITY SENSITIVITY EVALUATION DEVICE FOR PHOTOSENSOR HAVING THE UNIT, AND PROGRAM FOR CONTROLLING THE UNIT
JP7439456B2 (en) Biological information measuring device and biological information measuring method
JP7363369B2 (en) Measuring device, absorbance measuring device, biological information measuring device, and measuring method
KR102265564B1 (en) Scattered light type gas sensing system
JP7363370B2 (en) Absorbance measuring device and biological information measuring device
JP7439455B2 (en) Biological information measuring device and biological information measuring method
JPWO2016002356A1 (en) measuring device
JP6540700B2 (en) Measuring device, measuring method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303