JPWO2016035187A1 - Abnormality detection apparatus and abnormality detection method - Google Patents

Abnormality detection apparatus and abnormality detection method Download PDF

Info

Publication number
JPWO2016035187A1
JPWO2016035187A1 JP2014073350A JP2016546259A JPWO2016035187A1 JP WO2016035187 A1 JPWO2016035187 A1 JP WO2016035187A1 JP 2014073350 A JP2014073350 A JP 2014073350A JP 2016546259 A JP2016546259 A JP 2016546259A JP WO2016035187 A1 JPWO2016035187 A1 JP WO2016035187A1
Authority
JP
Japan
Prior art keywords
state value
compressor
past
abnormality
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073350A
Other languages
Japanese (ja)
Other versions
JP6320540B2 (en
Inventor
貴玄 中村
貴玄 中村
齊藤 信
信 齊藤
正樹 豊島
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/073350 priority Critical patent/WO2016035187A1/en
Publication of JPWO2016035187A1 publication Critical patent/JPWO2016035187A1/en
Application granted granted Critical
Publication of JP6320540B2 publication Critical patent/JP6320540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plant or systems

Abstract

駆動部を有する機器と、駆動部が停止している時の機器に関する第1状態値を検出する第1物理量検出手段と、駆動部が起動した時の機器に関する第2状態値を検出する第2物理量検出手段と、機器の異常を検出する判定手段と、を有する異常検出装置であって、判定手段は、第1物理量検出手段で検出した第1状態値と、第2物理量検出手段で検出した第2状態値と、に基づいて機器の異常を検出する。A device having a drive unit; a first physical quantity detecting means for detecting a first state value relating to the device when the drive unit is stopped; and a second detecting a second state value relating to the device when the drive unit is activated. An abnormality detection device having a physical quantity detection means and a determination means for detecting an abnormality of the device, wherein the determination means is detected by the first state value detected by the first physical quantity detection means and the second physical quantity detection means A device abnormality is detected based on the second state value.

Description

本発明は、機器の異常検出装置及び異常検出方法に関するものである。   The present invention relates to an apparatus abnormality detection apparatus and abnormality detection method.

近年、偶発的な故障により突発的な設備停止が発生する前に適切な処置を行えるように設備機器の劣化状態、異常発生状態を把握または予知して適切な部品交換、および更新を行い設備停止の防止、もしくは設備停止時間の最短化を行う予防保全サービスが求められている。   In recent years, the equipment has been shut down by grasping or predicting the deterioration status and abnormality occurrence status of the equipment so that appropriate measures can be taken before a sudden shutdown due to an accidental failure. Preventive maintenance services are required to prevent such problems or minimize equipment downtime.

このような背景に対応して、例えば機器の停止時の設備の温度や圧力などの変化を記録し、設備の異常の発生を回避する異常検出装置が知られている(例えば特許文献1を参照)。また、機器の運転時の設備各部の温度や圧力などの変化を記録し、記録した情報と通常運転状態の情報とを比較することで機器の劣化及び異常を検出する異常検出装置がある(例えば特許文献2、特許文献3を参照)。   Corresponding to such a background, for example, an abnormality detection device is known that records changes in equipment temperature, pressure, etc. when equipment is stopped, and avoids the occurrence of equipment abnormality (see, for example, Patent Document 1). ). In addition, there is an abnormality detection device that records changes in the temperature and pressure of each part of the equipment during operation of the equipment, and detects deterioration and abnormality of the equipment by comparing the recorded information with information on the normal operation state (for example, (See Patent Document 2 and Patent Document 3).

特開2013−204979号公報JP 2013-204979 A 特開2002−081809号公報JP 2002-081809 A 特開2003−185232号公報JP 2003-185232 A

このような従来の異常検出装置(例えば特許文献1を参照)では、圧縮機停止時の温度を時系列で記憶した情報を圧縮機加熱装置の制御に用いて圧縮機への冷媒寝込み防止を図り、故障を防止していたが、圧縮機運転時の運転情報を検出していないため、圧縮機内で進行している損傷に対して時系列に沿って把握することが難しく、具体的な異常状態の検出を正確に報知することができないという問題があった。   In such a conventional abnormality detection device (see, for example, Patent Document 1), information stored in a time series of the temperature when the compressor is stopped is used to control the compressor heating device, thereby preventing the refrigerant from stagnation in the compressor. However, it was difficult to grasp the damage progressing in the compressor in chronological order because it did not detect the operation information but detected the operation information during compressor operation. There has been a problem that it is impossible to accurately notify the detection of.

また、従来の異常検出装置(例えば特許文献2を参照)では、空調機に取り付けた複数センサ情報を蓄積し演算処理を行い、通常と異なる変調を判定することを図っていたが、明らかに異常となる値を基準として変調判定を行っているため、通常運転とは異なるが明らかな異常とはいえない異常傾向の状態を検知することができないという問題があった。   Further, in the conventional abnormality detection device (see, for example, Patent Document 2), information on a plurality of sensors attached to the air conditioner is accumulated and calculation processing is performed to determine a modulation different from normal. Therefore, there is a problem in that it is not possible to detect an abnormal tendency state that is different from the normal operation but is not clearly abnormal.

さらに、従来の異常検出装置(例えば特許文献3を参照)では、空調機の運転が安定している状態や、非定常状態における温度や圧力の履歴から安定状態を推定した時系列温度データと、平均化処理された温度データと、温度データを用いて機器の性能低下、異常の検出を図っているが、機器安定状態を基にした比較という方法で劣化、異常を検出しているため、上記特許文献2と同様に異常状態への過渡期に現れる異常傾向の状態を検出することはできないという問題があった。   Furthermore, in the conventional abnormality detection device (see, for example, Patent Document 3), time-series temperature data in which the stable state is estimated from the state where the operation of the air conditioner is stable, or the temperature and pressure history in the unsteady state, The averaged temperature data and temperature data are used to detect the performance degradation and abnormality of the equipment, but the deterioration and abnormality are detected by the method of comparison based on the equipment stability state. Similar to Patent Document 2, there is a problem that it is not possible to detect an abnormal tendency state that appears in a transition period to an abnormal state.

本発明に係る異常検出装置は、このような課題を解決するためになされたものであり、致命的な故障を引き起こす前に、明らかな異常とはいえないが通常運転とは異なる異常傾向を示す情報を検知する異常検出装置及び異常検出方法を提供することを目的とする。   The abnormality detection device according to the present invention is made to solve such a problem, and shows an abnormal tendency different from normal operation, although it is not an obvious abnormality before causing a fatal failure. An object of the present invention is to provide an abnormality detection device and an abnormality detection method for detecting information.

本発明に係る異常検出装置は、駆動部を有する機器と、駆動部が停止している時の機器に関する第1状態値を検出する第1物理量検出手段と、駆動部が起動した時の機器に関する第2状態値を検出する第2物理量検出手段と、機器の異常を検出する判定手段と、を有する異常検出装置であって、判定手段は、第1物理量検出手段で検出した第1状態値と、第2物理量検出手段で検出した第2状態値と、に基づいて機器の異常を検出するものである。   An abnormality detection device according to the present invention relates to a device having a drive unit, a first physical quantity detection means for detecting a first state value related to the device when the drive unit is stopped, and a device when the drive unit is activated. An abnormality detection device having second physical quantity detection means for detecting a second state value and determination means for detecting an abnormality of the device, wherein the determination means includes the first state value detected by the first physical quantity detection means The abnormality of the device is detected based on the second state value detected by the second physical quantity detection means.

また、本発明に係る異常検出方法は、駆動部を有する機器における駆動部が停止している時の機器に関する第1状態値を検出するステップと、第1状態値と対応して計測され駆動部が起動した時の機器に関する第2状態値を検出するステップと、第1状態値と第2状態値とを対応させて記憶するステップと、今回検出した第1状態値と、記憶された複数の過去の第1状態値とを比較して一致度の高い過去の第1状態値を抽出するステップと、一致度の高い過去の第1状態値に対応して記憶された過去の第2状態値と、今回検出した第2状態値とを比較し機器の異常を検出するステップと、を有するものである。   In addition, the abnormality detection method according to the present invention includes a step of detecting a first state value related to a device when the drive unit in the device having the drive unit is stopped, and a drive unit that is measured corresponding to the first state value. Detecting a second state value related to the device at the time of activation, a step of storing the first state value and the second state value in association with each other, the first state value detected this time, and a plurality of stored A step of extracting a past first state value having a high degree of coincidence by comparing with a past first state value, and a past second state value stored corresponding to the past first state value having a high degree of coincidence And detecting the abnormality of the device by comparing the second state value detected this time.

本発明に係る異常検出装置及び異常検出方法によれば、機器停止時の機器に関する状態値と機器起動時の機器に関する状態値との二つのパラメータを用いて機器の異常を検出するため、明らかな異常とはいえないが通常運転とは異なる異常傾向を示す情報を検知することができる。   According to the abnormality detection device and the abnormality detection method according to the present invention, since an abnormality of a device is detected using two parameters, a state value related to the device when the device is stopped and a state value related to the device when the device is activated, it is obvious. Although it is not abnormal, it is possible to detect information indicating an abnormal tendency different from normal operation.

実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の概略図である。It is the schematic of the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置が冬季に停止してから起動するまでの10時間分の温度変化を示した説明図である。It is explanatory drawing which showed the temperature change for 10 hours after the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1 stops in winter and starts. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置が冬季に停止してから起動するまでの54時間分の温度変化を示した説明図である。It is explanatory drawing which showed the temperature change for 54 hours after the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1 stops in winter and starts. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置における圧縮機起動時の総負荷トルクの変化と、総負荷トルクの内訳を示した説明図である。It is explanatory drawing which showed the change of the total load torque at the time of the compressor starting in the refrigeration cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1, and the breakdown of the total load torque. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機が起動した際の起動電流の波形を示した図である。It is the figure which showed the waveform of the starting electric current when the compressor of the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1 started. 実施の形態1に係る異常検出装置が備える判定手段のブロック図である。It is a block diagram of the determination means with which the abnormality detection apparatus which concerns on Embodiment 1 is provided. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機の異常を検出する際のフロー図である。It is a flowchart at the time of detecting the abnormality of the compressor of the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した図である。It is the figure which showed the measured value of the compressor shell temperature after a compressor stops in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1 until it starts next. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において図8に示した圧縮機シェル温度の計測値をプロットした経過グラフである。9 is a progress graph in which measured values of the compressor shell temperature shown in FIG. 8 are plotted in the refrigeration cycle apparatus including the abnormality detection device according to Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において図8に記載した圧縮機シェル温度の変化から波形比較値Xを算出する説明図である。9 is an explanatory diagram for calculating a waveform comparison value X from a change in compressor shell temperature described in FIG. 8 in the refrigeration cycle apparatus including the abnormality detection device according to Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機の起動電流値の時系列を示した図である。It is the figure which showed the time series of the starting electric current value of a compressor in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が起動した際の電流値の波形を示した図である。It is the figure which showed the waveform of the electric current value at the time of a compressor starting in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機の異常を検出する際のフロー図であるIt is a flowchart at the time of detecting the abnormality of the compressor of the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 1. 実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した図である。It is the figure which showed the measured value of the compressor shell temperature after a compressor stops in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 2 until it starts next. 実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において図14に示した圧縮機シェル温度の計測値をプロットした経過グラフである。It is the progress graph which plotted the measured value of the compressor shell temperature shown in FIG. 14 in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した他の例の図である。It is the figure of the other example which showed the measured value of the compressor shell temperature after a compressor stops in the refrigerating-cycle apparatus provided with the abnormality detection apparatus which concerns on Embodiment 2 until it starts next. 実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において図16に示した圧縮機シェル温度の計測値をプロットした経過グラフである。FIG. 17 is a progress graph in which measured values of the compressor shell temperature shown in FIG. 16 are plotted in the refrigeration cycle apparatus including the abnormality detection device according to the second embodiment.

以下、本発明の実施の形態に係る異常検出装置及び異常検出方法を冷凍サイクル装置を例として説明する。
なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, an abnormality detection apparatus and an abnormality detection method according to an embodiment of the present invention will be described using a refrigeration cycle apparatus as an example.
The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.

実施の形態1.
<構成>
図1は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の概略図である。
冷凍サイクル装置は、室外機1と、各室内機2を冷媒配管で接続して構成されている。室外機1内には、圧縮機101と、四方弁102と、室外熱交換器103と、室外送風機104と、アキュームレータ105とが収納されている。また、外気温度検知手段3と、室外熱交換器温度検知手段4、冷凍サイクル内圧力検知手段6a、6b、圧縮機シェル温度検知手段7が設置されている。各室内機2には、室内熱交換器201と、室内送風機202と、室内膨張弁203とが収納されている。そして、室内熱交換器温度検知手段8、室内温度検知手段9が設置されている。
Embodiment 1 FIG.
<Configuration>
FIG. 1 is a schematic diagram of a refrigeration cycle apparatus provided with the abnormality detection apparatus according to the first embodiment.
The refrigeration cycle apparatus is configured by connecting an outdoor unit 1 and each indoor unit 2 with a refrigerant pipe. In the outdoor unit 1, a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor blower 104, and an accumulator 105 are accommodated. In addition, an outside air temperature detection means 3, an outdoor heat exchanger temperature detection means 4, a refrigeration cycle pressure detection means 6a and 6b, and a compressor shell temperature detection means 7 are installed. Each indoor unit 2 houses an indoor heat exchanger 201, an indoor blower 202, and an indoor expansion valve 203. And the indoor heat exchanger temperature detection means 8 and the indoor temperature detection means 9 are installed.

<冷凍サイクル装置内の冷媒の挙動>
上述のように構成された冷凍サイクル装置において、冷媒回路内には冷媒とともに駆動部の潤滑油として機能する冷凍機油が存在する。冷凍機油は、主に圧縮機101内に存在するが、常時圧縮機101に留まっているわけでなく、少量の冷凍機油は常に圧縮機101の運転とともに圧縮機101内から持ち出され、冷媒回路内を冷媒とともに循環する。この冷凍機油が圧縮機101内部から大量に吐出されて圧縮機101の駆動部に冷凍機油が不足した場合には圧縮機の駆動軸が焼きつけを起こし、軸固着によって故障する場合がある。また、冷凍機油は冷媒の混入によって希釈される場合があり、冷媒希釈による冷凍機油の粘度低下が生じた場合、同様に圧縮機101内の冷凍機油が不足状態となり圧縮機101の駆動軸が焼きつけを起こし、軸固着によって故障する場合がある。
<Behavior of refrigerant in refrigeration cycle device>
In the refrigeration cycle apparatus configured as described above, there is refrigeration oil functioning as a lubricating oil for the drive unit together with the refrigerant in the refrigerant circuit. The refrigeration oil is mainly present in the compressor 101, but does not always remain in the compressor 101, and a small amount of the refrigeration oil is always taken out from the compressor 101 together with the operation of the compressor 101, and in the refrigerant circuit. Is circulated with the refrigerant. When a large amount of this refrigeration oil is discharged from the inside of the compressor 101 and the refrigeration oil is insufficient in the drive unit of the compressor 101, the drive shaft of the compressor may be burned and may break down due to shaft fixation. In addition, the refrigeration oil may be diluted by mixing refrigerant, and when the viscosity of the refrigeration oil decreases due to the refrigerant dilution, the refrigeration oil in the compressor 101 becomes insufficient and the drive shaft of the compressor 101 is baked. May cause failure due to shaft sticking.

この冷凍機油の不足状態は、一般に圧縮機101内への冷媒の溜まり込みが大きな原因とされている。冷媒の溜まり込みは、冷凍サイクル装置の停止時に圧縮機101の温度が冷えていくにつれて圧縮機に繋がる冷媒回路から冷媒が流入することで生じる。圧縮機101内に冷媒が多量に存在するようになると、冷媒が冷凍機油に溶け込んでいき(これを冷凍機油への冷媒の寝込みという)、冷凍機油は冷媒により希釈されてしまう。また、圧縮機101の運転開始時には、圧縮機101外への冷凍機油の持ち出し量が増加し、圧縮機101内の潤滑性能が低下する。   This lack of refrigerating machine oil is generally caused by a large amount of refrigerant accumulated in the compressor 101. The accumulation of the refrigerant occurs when the refrigerant flows from the refrigerant circuit connected to the compressor as the temperature of the compressor 101 cools when the refrigeration cycle apparatus is stopped. When a large amount of refrigerant exists in the compressor 101, the refrigerant dissolves in the refrigerating machine oil (this is called stagnation of the refrigerant in the refrigerating machine oil), and the refrigerating machine oil is diluted by the refrigerant. In addition, when the compressor 101 starts operation, the amount of refrigeration oil taken out of the compressor 101 increases, and the lubrication performance in the compressor 101 decreases.

冷媒の圧縮機への溜まり込みの原因は、圧縮機101の低温化があげられる。冷凍サイクル装置が運転を停止した場合、冷媒回路内で生じていた高低圧力差が徐々に均圧へシフトしていく。この時、冷媒はより低温、低圧な部分へと移動するため、圧縮機101が冷媒回路内で他の部位よりも低温、低圧状態となった場合には圧縮機内部へと冷媒は徐々に溜まり込むようになる。そして、圧縮機101の故障の原因となる冷媒の溜まり込み状態となる。
このような状態で圧縮機101を起動させると、冷凍機油は冷媒により希釈されているため潤滑性能が低下したり、また、圧縮機101の運転開始時に圧縮機101外への冷凍機油の持ち出し量が増加することで、圧縮機101の駆動軸を損傷させる可能性が高くなる。
The cause of the accumulation of the refrigerant in the compressor is the low temperature of the compressor 101. When the refrigeration cycle apparatus stops operating, the high and low pressure difference generated in the refrigerant circuit gradually shifts to equal pressure. At this time, since the refrigerant moves to a lower temperature and lower pressure part, when the compressor 101 is in a lower temperature and lower pressure state than other parts in the refrigerant circuit, the refrigerant gradually accumulates in the compressor. It will come in. And it will be in the accumulation state of the refrigerant | coolant which causes the failure of the compressor 101. FIG.
When the compressor 101 is started in such a state, since the refrigerating machine oil is diluted with the refrigerant, the lubrication performance is lowered, or the amount of the refrigerating machine oil taken out of the compressor 101 when the operation of the compressor 101 is started. The increase in the possibility of damaging the drive shaft of the compressor 101 increases.

次に、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置が冬季に停止してから起動するまでの圧縮機101のシェル温度、外気温度、室内温度、の各温度変化について説明する。
図2は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置が冬季に停止してから起動するまでの10時間分の温度変化を示した説明図である。
また、図3は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置が冬季に停止してから起動するまでの54時間分の温度変化を示した説明図である。
Next, temperature changes of the shell temperature, the outside air temperature, and the room temperature of the compressor 101 from when the refrigeration cycle apparatus including the abnormality detection apparatus according to Embodiment 1 stops in winter and starts up will be described.
FIG. 2 is an explanatory diagram illustrating a temperature change for 10 hours from when the refrigeration cycle apparatus including the abnormality detection apparatus according to Embodiment 1 stops in winter and starts up.
FIG. 3 is an explanatory diagram showing a temperature change for 54 hours from when the refrigeration cycle apparatus including the abnormality detection apparatus according to Embodiment 1 stops in winter and starts up.

冷凍サイクル装置の停止時における圧縮機101の相対的な低温化は、圧縮機101の熱容量が大きいために発生する。例えば、室内熱交換器201や室外熱交換器103に対して圧縮機101の温度変化が起こる速度は遅い。
例えば、図2、図3に示すように冬季における圧縮機101の起動を例に説明する。
まず、夜間に圧縮機101の運転を停止すると、圧縮機シェルの温度が外気温度と同じ温度まで低下する。次に、明け方になり外気温度が上昇していくと熱容量の小さい圧縮機101以外の室外熱交換器103や冷媒配管が暖まり出すが、熱容量の大きい圧縮機101の温度が上昇する速度は遅い。このため、冷凍サイクル装置内で圧縮機101が相対的に一番低温の状態となり、冷媒が圧縮機101内に流入し溜まり込む状態となる。冬季を例に説明をしたが夏季においても状況が整えば同様の現象が生じる。
The relative low temperature of the compressor 101 when the refrigeration cycle apparatus is stopped occurs because the heat capacity of the compressor 101 is large. For example, the speed at which the temperature change of the compressor 101 occurs with respect to the indoor heat exchanger 201 and the outdoor heat exchanger 103 is slow.
For example, as shown in FIG. 2 and FIG. 3, the start of the compressor 101 in winter will be described as an example.
First, when the operation of the compressor 101 is stopped at night, the temperature of the compressor shell decreases to the same temperature as the outside air temperature. Next, when the outside air temperature rises at dawn, the outdoor heat exchanger 103 and the refrigerant pipe other than the compressor 101 with a small heat capacity start to warm up, but the speed at which the temperature of the compressor 101 with a large heat capacity rises is slow. For this reason, the compressor 101 is in a relatively coldest state in the refrigeration cycle apparatus, and the refrigerant flows into the compressor 101 and accumulates. Although the explanation is given by taking the winter as an example, the same phenomenon occurs in the summer when the situation is ready.

<圧縮機の軸固着>
圧縮機101の軸固着が起こるメカニズムは、設備の接続条件(熱交換器の内外容積比、アキュームレータ容量、レシーバー容量、接続冷媒配管長、室外機と室内機の高低差、冷媒封入量など)と、環境条件の関係によって冷媒の寝込みが生じ、圧縮機101の起動時に駆動軸の潤滑不足が発生する。潤滑不足の状態で起動すると駆動軸の摺動面が荒れて摺動部に微小な傷が発生し摩擦抵抗が大きくなる。このような微小な損傷を駆動軸に受けても圧縮機101はしばらくの間は正常に動作するが、起動を繰り返す毎に徐々に損傷が進行していく。このように徐々に損傷が拡大していくと機械摩擦が大きくなり、圧縮機を回転させるためのトルクが徐々に大きくなっていく。その結果、起動の失敗を繰り返すようになり駆動軸が固着し機能停止となる。
<Compressor shaft fixing>
The mechanism by which the shaft of the compressor 101 occurs depends on the connection conditions of the equipment (heat exchanger inner / outer volume ratio, accumulator capacity, receiver capacity, connected refrigerant pipe length, height difference between the outdoor unit and indoor unit, refrigerant filling amount, etc.) The stagnation of the refrigerant occurs due to the environmental conditions, and the drive shaft is insufficiently lubricated when the compressor 101 is started. If the system is started in a state of insufficient lubrication, the sliding surface of the drive shaft is roughened and a minute scratch is generated in the sliding portion, increasing the frictional resistance. Even if such a small damage is received by the drive shaft, the compressor 101 operates normally for a while, but the damage gradually progresses every time the start-up is repeated. As the damage gradually increases, the mechanical friction increases, and the torque for rotating the compressor gradually increases. As a result, the starting failure is repeated, and the drive shaft is fixed and the function is stopped.

<起動時の総負荷トルク>
圧縮機101の起動時の総負荷トルクは、起動開始時の冷媒分布の初期状態、圧縮機101の経年劣化、そして圧縮機101の不具合(例えば駆動軸の損傷など)という3つの要素によって決まる関係がある。
図4は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置における圧縮機起動時の総負荷トルクの変化と、総負荷トルクの内訳を示した説明図である。
<Total load torque at startup>
The total load torque at the start of the compressor 101 is determined by three factors: the initial state of the refrigerant distribution at the start of the start, the aging of the compressor 101, and the malfunction of the compressor 101 (for example, damage to the drive shaft, etc.). There is.
FIG. 4 is an explanatory diagram showing a change in total load torque at the time of starting the compressor and a breakdown of the total load torque in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.

総負荷トルクは、摩擦トルク(可動部分が静止摩擦トルクから動摩擦トルクに移行する際のトルク)、加速トルク(一定質量を有する可動部が加速する際に生じるトルク)、ガス吐出トルク(低圧側に存在するガス冷媒を押し出すトルク)、油中溶解冷媒吐出トルク(吸入圧力が下がるとともに油中に溶解していた冷媒が気化するため、このガス冷媒を圧縮するためのトルク)、蒸発ガス吐出トルク(蒸発器が冷えるまでの間発生するガス冷媒を圧縮するためのトルク)の総和によって算出される。   The total load torque includes friction torque (torque when the moving part shifts from static friction torque to dynamic friction torque), acceleration torque (torque generated when a moving part having a constant mass accelerates), gas discharge torque (to the low pressure side) Torque to push out the gas refrigerant present), dissolved refrigerant discharge torque in oil (torque for compressing this gas refrigerant as the suction pressure decreases and the refrigerant dissolved in oil vaporizes), evaporative gas discharge torque ( It is calculated by the sum of torque for compressing the gas refrigerant generated until the evaporator is cooled.

上記3つの要素のうちの圧縮機101の運転開始前の冷媒初期分布によって加速トルクとガス吐出トルクが変化する。
この冷媒初期分布は、直近の停止状態から起動までの例えば、外気温度、室内温度、圧縮機シェル温度の時系列変化によって決まるものである。
つまり、圧縮機101停止時の外気温度、室内温度、圧縮機シェル温度の各温度変化を把握することで起動直前の冷凍サイクル内の冷媒初期分布を把握することができる。
Of the above three elements, the acceleration torque and the gas discharge torque vary depending on the initial refrigerant distribution before the start of the operation of the compressor 101.
This refrigerant initial distribution is determined by, for example, time-series changes in the outside air temperature, the room temperature, and the compressor shell temperature from the latest stop state to start-up.
That is, it is possible to grasp the initial refrigerant distribution in the refrigeration cycle immediately before starting by grasping each temperature change of the outside air temperature, the room temperature, and the compressor shell temperature when the compressor 101 is stopped.

次に、圧縮機101の経年劣化は、通常の使用によって圧縮機101の摺動部が摩耗することにより生じ、摩擦トルクの増大として表れる。
さらに、圧縮機101の不具合として例えば摺動部の潤滑不足により、摺動部が損傷し、摩擦トルクと加速トルクが増加することが考えられる。
すなわち、3つの要素である起動開始時の冷媒分布の初期状態、圧縮機101の経年劣化、そして圧縮機101の不具合の状況により起動時の総負荷トルクが変化する。
Next, the aging of the compressor 101 is caused by wear of the sliding portion of the compressor 101 due to normal use, and appears as an increase in friction torque.
Further, as a problem of the compressor 101, for example, due to insufficient lubrication of the sliding part, the sliding part may be damaged, and the friction torque and the acceleration torque may be increased.
That is, the total load torque at the time of start-up changes depending on the initial state of the refrigerant distribution at the start of start-up, which is three factors, the aging of the compressor 101, and the state of the malfunction of the compressor 101.

<起動電流値>
圧縮機101の起動に必要な総負荷トルクが大きくなると、起動に必要な電流値が大きくなる。すると、起動時の総負荷トルクが増えているかどうかは電流値で検知することができる。よって、圧縮機101の三相モータコイルに加わる起動時の瞬時電流を検出し、この検出値から圧縮機101の内部状態を推定することが可能となる。
ここで、圧縮機101の運転開始前の冷媒初期分布による加速トルクとガス吐出トルクの変化は、冷媒の分布が近似した条件であれば、同一の傾向を示し、また、圧縮機101の経年変化による摩擦トルクの増大は非常に小さな変化であることから、運転開始前の冷媒初期分布が同一条件下での起動電流を検出することで、圧縮機101の不具合(例えば駆動軸の損傷など)を推定することが可能となる。
なお、圧縮機101の三相モータコイルに加わる電流および/または電圧は、モータ駆動回路(例えば、インバータ回路)に備えた物理量検知手段101a(電流検知手段)で検出することができる。
<Starting current value>
When the total load torque required for starting up the compressor 101 increases, the current value required for starting up increases. Then, whether or not the total load torque at the time of startup is increased can be detected by the current value. Therefore, it is possible to detect an instantaneous current at the time of start applied to the three-phase motor coil of the compressor 101 and to estimate the internal state of the compressor 101 from this detected value.
Here, the change in the acceleration torque and the gas discharge torque due to the initial refrigerant distribution before the start of the operation of the compressor 101 shows the same tendency as long as the refrigerant distribution is approximate, and the aging of the compressor 101 changes over time. The increase in the friction torque due to the above is a very small change, so that the malfunction of the compressor 101 (for example, damage to the drive shaft, etc.) can be detected by detecting the starting current when the initial refrigerant distribution before the start of operation is the same. It is possible to estimate.
The current and / or voltage applied to the three-phase motor coil of the compressor 101 can be detected by a physical quantity detection means 101a (current detection means) provided in a motor drive circuit (for example, an inverter circuit).

図5は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機が起動した際の起動電流の波形を示した図である。
図5において圧縮機101の起動開始時の冷媒初期分布が正常範囲の電流値の上限閾値をA1、電流値の下限閾値をA3、寝込み等が発生して圧縮機101内で潤滑不足が発生している状態での電流値をA2、過電流遮断となる電流値をAcutとして示している。
FIG. 5 is a diagram showing a waveform of the starting current when the compressor of the refrigeration cycle apparatus including the abnormality detecting device according to Embodiment 1 is started.
In FIG. 5, the initial refrigerant distribution at the start of the compressor 101 is A1, the upper limit threshold value of the current value in the normal range, the lower limit threshold value of the current value A3, and stagnation occurs, resulting in insufficient lubrication in the compressor 101. The current value in the current state is indicated as A2, and the current value for overcurrent interruption is indicated as Acut.

冷媒初期分布の正常範囲は、使用環境条件、設備の設置、設備の接続条件によって範囲が異なるが、通常、起動時の圧縮機101の回転パターンは空調機器の機種ごとに一定となっているため、起動開始時の冷媒分布の初期条件が正常範囲内で、かつ、冷媒分布が同一条件であれば起動時の電流値の波形はほぼ同一となる。
以上から、冷凍サイクル装置の停止時の外気温度、室内温度、圧縮機シェル温度の温度変化データを記憶して、同一温度変化データの時の正常範囲の起動電流値の波形と比較することで、圧縮機101内の不具合や、圧縮機101の損傷程度の推測が可能となる。
The normal range of the initial refrigerant distribution varies depending on the usage environment conditions, installation of equipment, and connection conditions of the equipment, but usually the rotation pattern of the compressor 101 at startup is constant for each air conditioner model. If the initial condition of the refrigerant distribution at the start of startup is within the normal range and the refrigerant distribution is the same, the waveform of the current value at the time of startup is substantially the same.
From the above, by storing the temperature change data of the outside air temperature, the room temperature, the compressor shell temperature when the refrigeration cycle device is stopped, and comparing it with the waveform of the startup current value in the normal range at the same temperature change data, It is possible to estimate the malfunction in the compressor 101 and the extent of damage to the compressor 101.

<異常判定手段>
実施の形態1に係る異常検出装置は、上記のような圧縮機101の不具合や損傷の程度を判定するための判定手段20を備えている。
図6は、実施の形態1に係る異常検出装置が備える判定手段のブロック図である。
図6に示すように判定手段20は、外部からの温度検知手段(本発明の第1物理量検出手段に相当する)と物理量検知手段(本発明の第2物理量検出手段に相当する)の信号を受信する。温度検知手段は、例えば圧縮機シェル温度検知手段7、外気温度検知手段3、、室外熱交換器温度検知手段4、室内温度検知手段9、室内熱交換器温度検知手段8などがあげられる。また、物理量検知手段101aは、例えば圧縮機101の電流検知手段があげられる。
<Abnormality determination means>
The abnormality detection apparatus according to Embodiment 1 includes a determination unit 20 for determining the degree of malfunction and damage of the compressor 101 as described above.
FIG. 6 is a block diagram of a determination unit included in the abnormality detection device according to the first embodiment.
As shown in FIG. 6, the determination means 20 receives external signals from the temperature detection means (corresponding to the first physical quantity detection means of the present invention) and the physical quantity detection means (corresponding to the second physical quantity detection means of the present invention). Receive. Examples of the temperature detecting means include a compressor shell temperature detecting means 7, an outside air temperature detecting means 3, an outdoor heat exchanger temperature detecting means 4, an indoor temperature detecting means 9, an indoor heat exchanger temperature detecting means 8, and the like. The physical quantity detection unit 101a is, for example, a current detection unit of the compressor 101.

また、判定手段20は、記憶部10内に温度特徴量データベース11と物理量特徴量データベース14とを有している。温度特徴量データベース11は、温度検知手段により測定された圧縮機停止時の過去の温度変化データがデータベース化されたものである。また、物理量特徴量データベース14は、温度特徴量データベース11の過去の温度変化データと対応して測定された圧縮機起動時の物理量測定値をデータベース化したものである。   The determination unit 20 includes a temperature feature quantity database 11 and a physical quantity feature quantity database 14 in the storage unit 10. The temperature feature database 11 is a database of past temperature change data measured by the temperature detection means when the compressor is stopped. The physical quantity feature quantity database 14 is a database of physical quantity measurement values at the time of starting the compressor measured corresponding to the past temperature change data of the temperature feature quantity database 11.

さらに、判定手段20は、温度検知手段が検出した今回の温度変化データと、温度特徴量データベース11の過去の温度変化データとを一致度を判定する一致度判定手段12を備えている。一致度判定手段12は、過去の温度変化データの中から今回の温度変化データと近似した波形のデータを抽出し、その抽出した温度変化データと一対に対応して物理量特徴量データベース14に記憶された過去の物理量測定値を読み出す。
この読み出された過去の物理量測定値を、物理量検知手段101aで検出された今回の物理量と比較手段15にて比較し、例えば圧縮機101の不具合や損傷の程度を判定する。
以下この判定手段20の具体的な動作を詳述する。
Furthermore, the determination unit 20 includes a coincidence degree determination unit 12 that determines the degree of coincidence between the current temperature change data detected by the temperature detection unit and the past temperature change data in the temperature feature amount database 11. The coincidence determination means 12 extracts waveform data approximated to the current temperature change data from the past temperature change data, and stores the data in the physical quantity feature quantity database 14 corresponding to the extracted temperature change data. Read past physical quantity measurement values.
The read past physical quantity measurement value is compared with the current physical quantity detected by the physical quantity detection means 101a by the comparison means 15 to determine, for example, the degree of malfunction or damage of the compressor 101.
Hereinafter, a specific operation of the determination unit 20 will be described in detail.

<異常判定フロー>
図7は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機の異常を検出する際のフロー図である。
はじめに、判定手段20は、ステップ1にて冷凍サイクル装置の圧縮機101の運転停止信号があるか否かを判断する。運転停止の信号がある場合にはステップ2に進む。
次に、ステップ2にて温度検出手段(例えば圧縮機シェル温度検知手段7)は、圧縮機101の運転停止中の温度(例えば圧縮機のシェル温度)を時系列に沿って(例えば30分刻みに)計測し記憶する。
<Abnormality judgment flow>
FIG. 7 is a flowchart for detecting an abnormality of the compressor of the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
First, the determination means 20 determines whether or not there is an operation stop signal of the compressor 101 of the refrigeration cycle apparatus in Step 1. If there is an operation stop signal, the process proceeds to step 2.
Next, in step 2, the temperature detecting means (for example, the compressor shell temperature detecting means 7) sets the temperature during the operation stop of the compressor 101 (for example, the shell temperature of the compressor) in chronological order (for example, every 30 minutes). ) Measure and memorize.

ステップ3では、圧縮機の起動信号があるか否か判断する。起動信号がある場合にはステップ4に進む。
ステップ4では、圧縮機101の停止信号から直近の起動信号までの温度検知手段で測定した時系列の温度変化データを抽出する。
ステップ5にて、ステップ4で測定した時系列の温度変化データを温度特徴量データベース11に保存する。
In step 3, it is determined whether or not there is a start signal for the compressor. If there is an activation signal, go to step 4.
In step 4, time-series temperature change data measured by the temperature detection means from the stop signal of the compressor 101 to the latest start signal is extracted.
In step 5, the time-series temperature change data measured in step 4 is stored in the temperature feature quantity database 11.

ステップ6では、ステップ4で測定した時系列の温度変化データ(圧縮機シェル温度を例とする)と、温度特徴量データベース11のデータの一致度を一致度判定手段12により判定し、圧縮機の起動開始時の冷媒分布を推定する。
ここで、一致度判定手段12の動作を詳述する。
In step 6, the degree of coincidence between the time-series temperature change data (compressor shell temperature as an example) measured in step 4 and the data in the temperature feature quantity database 11 is judged by the coincidence degree judging means 12, and the compressor Estimate the refrigerant distribution at the start of startup.
Here, the operation of the coincidence degree determination means 12 will be described in detail.

図8は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した図である。
図9は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において図8に示した圧縮機シェル温度の計測値をプロットした経過グラフである。
FIG. 8 is a diagram showing measured values of the compressor shell temperature from when the compressor is stopped to when it is next started in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
FIG. 9 is a progress graph in which measured values of the compressor shell temperature shown in FIG. 8 are plotted in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.

図8において、表の縦軸である単位時間(1〜25)は、例えば1単位を30分として設定する。なお、単位時間は、サンプリング温度の頻度により15分や10分など適宜設定することが可能である。横軸のn=1は、今回計測した圧縮機シェル温度の計測値(℃)を示している。この計測値は、縦軸の単位時間毎に時系列に対応して変化している。例えば単位時間を30分とした場合には、圧縮機停止後30分の1単位時間で圧縮機シェル温度が80.0℃であることを示している。また、圧縮機起動前に最後に計測した25単位時間(圧縮機停止後12.5時間経過)に圧縮機シェル温度が23.0℃であることを示している。   In FIG. 8, the unit time (1-25) which is the vertical axis | shaft of a table | surface sets 1 unit as 30 minutes, for example. The unit time can be appropriately set such as 15 minutes or 10 minutes depending on the frequency of the sampling temperature. N = 1 on the horizontal axis indicates the measured value (° C.) of the compressor shell temperature measured this time. This measured value changes corresponding to the time series for each unit time on the vertical axis. For example, when the unit time is 30 minutes, it indicates that the compressor shell temperature is 80.0 ° C. in 1/30 unit time after the compressor stops. Further, it shows that the compressor shell temperature is 23.0 ° C. in 25 unit times (12.5 hours after the compressor is stopped) measured last before starting the compressor.

次に、横軸のn=2〜4は、過去にサンプリングしてステップ5にて温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(℃)を示している。この計測値は、今回計測したn=1と同様に単位時間毎に時系列に対応して変化している。例えばn=2のデータの場合、停止後30分の1単位時間で圧縮機シェル温度が64.0℃であることを示している。また、起動前に最後に計測した25単位時間(圧縮機停止後12.5時間経過)に圧縮機シェル温度が18.4℃であることを示している。   Next, n = 2 to 4 on the horizontal axis indicate measured values (° C.) of the compressor shell temperature sampled in the past and stored in the temperature feature amount database 11 in step 5. This measured value changes corresponding to the time series for each unit time, similarly to n = 1 measured this time. For example, in the case of n = 2 data, it indicates that the compressor shell temperature is 64.0 ° C. in 1/30 unit time after the stop. Further, it shows that the compressor shell temperature is 18.4 ° C. in 25 unit times (12.5 hours after the compressor is stopped) measured last before starting.

このような温度特徴量データベース11は、圧縮機101の停止時間毎(例えば1時間単位)に区分されて記憶部10に記憶されている。一致度判定手段12は、今回計測したn=1における圧縮機101の停止時間が上記一例の12.5時間と同等の停止時間であるn=2〜4の3つのデータを比較対象として読み出している。
したがって、一致度判定手段12は、今回計測したn=1における停止時間が上記一例の12.5時間と異なる場合には、他の温度特徴量データベース11の停止時間のテーブルを比較対象として読み出すこととなる。
Such a temperature feature quantity database 11 is stored in the storage unit 10 after being divided every stop time of the compressor 101 (for example, one hour unit). The degree of coincidence determination means 12 reads out the three data of n = 2 to 4 as the comparison object, which is the stop time of the compressor 101 at n = 1 measured this time, which is the stop time equivalent to 12.5 hours in the above example. Yes.
Therefore, when the stop time at n = 1 measured this time is different from 12.5 hours in the above example, the coincidence determination unit 12 reads out the stop time table of the other temperature feature quantity database 11 as a comparison target. It becomes.

次に、今回計測した圧縮機シェル温度の計測値(n=1)を単位時間tの関数としてf(t)とする。また、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(n=2、3、4)を単位時間tの関数としてそれぞれ、g(t)、g’(t)、g”(t)とする。
ここで、一致度判定手段12は、今回計測した圧縮機シェル温度の計測値(n=1)と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(n=2〜4)との時間変化における波形の相違を、f(t)とg(t)の差分の二乗和(波形比較値:X)として次式にて比較する。
X=(Σ{f(t)-g(t)})/N
X:波形比較値
N:単位時間毎の測定点数
Next, the measured value (n = 1) of the compressor shell temperature measured this time is set as f (t) as a function of the unit time t. In addition, the measured values (n = 2, 3, 4) of the compressor shell temperature sampled in the past and stored in the temperature feature quantity database 11 as functions of the unit time t are g (t) and g ′ ( t) and g ″ (t).
Here, the coincidence degree determination means 12 measures the measured value (n = 1) of the compressor shell temperature measured this time, and the measured value (n = 1) of the compressor shell temperature sampled in the past and stored in the temperature feature amount database 11 ( The difference in waveform with time change from n = 2 to 4) is compared by the following equation as the sum of squares of the difference between f (t) and g (t) (waveform comparison value: X).
X = (Σ {f (t) −g (t)} 2 ) / N
X: Waveform comparison value N: Number of measurement points per unit time

ここで算出した波形比較値Xは、その値が小さいほど今回計測した圧縮機シェル温度の計測値(n=1)と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(n=2〜4)との時間変化における波形形状が近いことを示している。   The smaller the value of the waveform comparison value X calculated here, the measured value (n = 1) of the compressor shell temperature measured this time, and the compressor shell sampled in the past and stored in the temperature feature quantity database 11. It shows that the waveform shape in the time change with the temperature measurement value (n = 2 to 4) is close.

図10は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において図8に記載した圧縮機シェル温度の変化から波形比較値Xを算出する説明図である。
図10は、今回計測した圧縮機シェル温度の計測値(n=1)と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(n=2〜4)との差分{f(t)-g(t)} を単位時間毎に示している。
FIG. 10 is an explanatory diagram for calculating the waveform comparison value X from the change in the compressor shell temperature described in FIG. 8 in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
FIG. 10 shows the measured value (n = 1) of the compressor shell temperature measured this time, and the measured value (n = 2 to 4) of the compressor shell temperature sampled in the past and stored in the temperature feature quantity database 11. The difference {f (t) −g (t)} 2 is shown for each unit time.

そして、一致度判定手段12は、今回計測した圧縮機シェル温度の計測値(n=1)と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値(n=2〜4)とのと差分の二乗和を計算し、波形比較値Xにおいて任意に設定された閾値(例えば3以下)に収まっている温度特徴量データベース11のデータを選択する。
この例の場合にはn=4のデータで波形比較値:X=2.30となり、今回の計測値(n=1)と最も近似した波形形状となっている。
The degree-of-match determination unit 12 then measures the measured value (n = 1) of the compressor shell temperature measured this time and the measured value (n of the compressor shell temperature sampled in the past and stored in the temperature feature amount database 11). = 2-4) is calculated, and the data of the temperature feature quantity database 11 that falls within a threshold value (for example, 3 or less) arbitrarily set in the waveform comparison value X is selected.
In the case of this example, the waveform comparison value: X = 2.30 with the data of n = 4, and the waveform shape is the closest to the current measurement value (n = 1).

次に、ステップ7にて、圧縮機101を起動する。
そして、ステップ8にて、今回の圧縮機起動時(例えば起動後10秒間)の圧縮機101に入力する起動電流の波形を物理量検知手段101a(電流検知手段)にて測定する。
Next, in step 7, the compressor 101 is started.
In step 8, the physical quantity detection means 101a (current detection means) measures the waveform of the startup current input to the compressor 101 when the compressor is started this time (for example, 10 seconds after startup).

ステップ9にて、圧縮機101の起動電流の計測を終了する。
次にステップ10にて、ステップ8で計測した圧縮機101の起動電流の特徴量を抽出する。このとき、例えば図4に示す電流値A2のように計測した時間内で最大の電流値を特徴量とし、ステップ2で記憶した運転停止中の温度変化データ(例えば圧縮機のシェル温度)の時系列に対応付けして記憶する。
ステップ11では、比較手段15により、ステップ10で抽出した今回の起動電流の特徴量と、ステップ6で選択されたn=4の温度変化データに対応して物理量特徴量データベース14に記憶された過去の起動電流の特徴量と、を比較する。
In step 9, the measurement of the starting current of the compressor 101 is terminated.
Next, at step 10, the feature quantity of the starting current of the compressor 101 measured at step 8 is extracted. At this time, for example, when the temperature change data during operation stop (for example, the shell temperature of the compressor) stored in step 2 is used as the feature value, the maximum current value within the time measured as the current value A2 shown in FIG. Store in association with the series.
In step 11, the past value stored in the physical quantity feature quantity database 14 corresponding to the feature quantity of the current starting current extracted in step 10 and the temperature change data of n = 4 selected in step 6 by the comparison means 15. Are compared with the characteristic amount of the starting current.

次に、ステップ12にてステップ11で比較した結果、今回の起動電流の特徴量と、物理量特徴量データベース14に記憶された過去の起動電流の特徴量とが所定の閾値以上乖離している場合には圧縮機101に異常があると判断する。
また、ステップ6にて、波形比較値Xにおける任意に設定された閾値(例えば3以下)に収まっている温度特徴量データベース11の温度変化データが複数存在する場合には、据付け後からの起動回数順に当該温度変化データを並べ、今回の起動電流の特徴値が当該温度変化データに対応する前回までの起動電流の特徴値と異なる傾向があるかどうかを判断する。
Next, as a result of the comparison in step 11 in step 12, the feature value of the current startup current and the feature value of the past startup current stored in the physical quantity feature value database 14 are different from each other by a predetermined threshold or more. Is determined to be abnormal in the compressor 101.
If there are a plurality of temperature change data of the temperature feature quantity database 11 that falls within an arbitrarily set threshold value (for example, 3 or less) in the waveform comparison value X in step 6, the number of activations since installation The temperature change data is arranged in order, and it is determined whether or not the current startup current feature value tends to be different from the previous startup current feature value corresponding to the temperature change data.

図11は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機の起動電流値の時系列を示した図である。
例えば、図11に示すように、起動回数ごとに計測した電流値の特徴値を並べた電流値の傾きに対して、n回目に測定した電流値のnとn−1回目との間での傾きが大きく変化した場合は異常と判断する。
そして、ステップ12にて異常と判断したときには、ステップ13に進んで異常検出の報知を行う。
FIG. 11 is a diagram illustrating a time series of the starting current value of the compressor in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
For example, as shown in FIG. 11, with respect to the slope of the current value in which the characteristic values of the current values measured for each number of activations are arranged, the current value measured between the nth time and the n-1th time If the slope changes greatly, it is judged as abnormal.
If it is determined in step 12 that there is an abnormality, the process proceeds to step 13 to notify abnormality detection.

なお、ステップ12にて異常と判断した場合には、圧縮機起動後の電流値の波形により異常の内容を予測することが可能である。
図12は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が起動した際の電流値の波形を示した図である。
波形(1)は圧縮機が正常なときの電流値であり、波形(2)は、圧縮機内の潤滑油が低濃度状態が原因の異常状態における電流値であり、波形(3)は、圧縮機の駆動軸の軸かじりが原因の異常状態における電流値である。
このように、圧縮機起動後の電流値の波形を分析することで、異常の内容を予測することが可能である。
If it is determined in step 12 that there is an abnormality, it is possible to predict the content of the abnormality from the waveform of the current value after starting the compressor.
FIG. 12 is a diagram illustrating a waveform of a current value when the compressor is started in the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
Waveform (1) is the current value when the compressor is normal, waveform (2) is the current value in the abnormal state due to the low concentration of lubricating oil in the compressor, and waveform (3) is the compression value This is the current value in an abnormal state due to shaft galling of the machine drive shaft.
In this way, it is possible to predict the content of the abnormality by analyzing the waveform of the current value after starting the compressor.

また、ステップ13で異常検出の報知を行う際には、空調機器のリモコンや室外機表示部に表示する方法や、ビルメンテナンス担当者に電子メールで知らせる方法、さらに、空調機器が遠隔監視システムに接続されている場合には集中管理センターに通信するといった方式が考えられる。   In addition, when notifying abnormality detection in step 13, a method of displaying on the remote control of the air conditioner or the outdoor unit display, a method of notifying the building maintenance person by e-mail, and further, the air conditioner is connected to the remote monitoring system. When connected, a method of communicating with a central management center can be considered.

<作用効果>
圧縮機の停止状態での圧縮機シェル温度の温度変化データを、過去の温度変化データと比較して同一傾向の温度変化データをデータベースから抽出することで、圧縮機起動時の冷凍サイクル装置内の冷媒分布を推定することができる。そして、圧縮機起動時の冷凍サイクル装置内の冷媒分布が近似した状態同士で例えば圧縮機の起動電流の特徴量を比較することで軸固着のような致命的な故障を引き起こす前に圧縮機の異常傾向を検出することができる。
また、圧縮機内部の摺動部損傷、特に軸損傷をターゲットとし、圧縮機停止時の温度変化情報と圧縮機起動時の物理量との二つのパラメータを用いて圧縮機の異常を検出するため、明らかな異常とはいえないが通常運転とは異なる異常傾向を示す情報を検知することができる。
<Effect>
Comparing the temperature change data of the compressor shell temperature when the compressor is stopped with the past temperature change data, and extracting the temperature change data with the same tendency from the database, the refrigeration cycle apparatus in the compressor start-up The refrigerant distribution can be estimated. Then, by comparing the characteristics of the starting current of the compressor, for example, in a state where the refrigerant distribution in the refrigeration cycle apparatus at the time of starting the compressor is approximated, before causing a fatal failure such as shaft fixation, Abnormal trends can be detected.
In addition, in order to detect abnormalities in the compressor using the two parameters of temperature change information at the time of compressor stop and physical quantity at the time of compressor start, targeting sliding part damage inside the compressor, especially shaft damage, Although it is not an obvious abnormality, it is possible to detect information indicating an abnormal tendency different from that in normal operation.

<変形例1>
上記実施の形態1では、物理量検出手段で検出するパラメータを圧縮機101の起動電流値とした例を説明したが、物理量検出手段で検知する圧縮機101の物理量は、圧縮機101が発する起動音や起動振動でもよい。この場合、上記ステップ11では、比較手段15により、ステップ10で抽出した今回計測した圧縮機の起動音や起動振動の特徴量と、ステップ6で選択されたn=4の温度変化データに対応して物理量特徴量データベース14に記憶された過去の圧縮機の起動音や起動振動の特徴量と、を比較する。
<Modification 1>
In the first embodiment, the example in which the parameter detected by the physical quantity detection unit is the startup current value of the compressor 101 has been described. However, the physical quantity of the compressor 101 detected by the physical quantity detection unit is the startup sound generated by the compressor 101. Or start-up vibration. In this case, in step 11, the comparison unit 15 corresponds to the compressor start-up sound and start-up vibration feature value extracted in step 10 and the temperature change data of n = 4 selected in step 6. Then, the past compressor startup sound and startup vibration feature quantity stored in the physical quantity feature quantity database 14 are compared.

次に、ステップ12にてステップ11で比較した結果、今回計測した圧縮機の起動音や起動振動の特徴量と、物理量特徴量データベース14に記憶された過去の圧縮機の起動音や起動振動の特徴量とが所定の閾値以上乖離している場合には圧縮機101に異常があると判断する。   Next, as a result of the comparison in step 11 in step 12, the compressor start-up sound and start-up vibration feature amount measured this time and the past compressor start-up sound and start-up vibration stored in the physical quantity feature amount database 14 are recorded. When the feature amount deviates from a predetermined threshold or more, it is determined that the compressor 101 has an abnormality.

また、ステップ6にて、波形比較値Xにおける任意に設定された閾値(例えば3以下)に収まっている温度特徴量データベース11の温度変化データが複数存在する場合には、据付け後からの起動回数順に当該温度変化データを並べ、今回の起動電流の特徴値が当該温度変化データに対応する前回までの起動電流の特徴値と異なる傾向があるかどうかを判断する。
このように、圧縮機の起動音や起動振動の傾向を比較することで、実施の形態1と同様に圧縮機の異常検知を行うことができる。
If there are a plurality of temperature change data of the temperature feature quantity database 11 that falls within an arbitrarily set threshold value (for example, 3 or less) in the waveform comparison value X in step 6, the number of activations since installation The temperature change data is arranged in order, and it is determined whether or not the current startup current feature value tends to be different from the previous startup current feature value corresponding to the temperature change data.
Thus, by comparing the tendency of the startup sound and startup vibration of the compressor, it is possible to detect the abnormality of the compressor as in the first embodiment.

<変形例2>
上記実施の形態1では、温度検出手段で検出するパラメータを圧縮機101の運転停止中の圧縮機シェル温度とした例を説明したが、運転停止中の温度変化データを外気温度、室外熱交換器温度、室内温度、室内熱交換器温度などとし、上記ステップ6にて圧縮機起動時の冷媒初期分布を推測してもよい。また、圧縮機シェル温度、外気温度、室外熱交換器温度、室内温度、室内熱交換器温度のうちの2つ以上のパラメータを用いて演算し複合的に計測してもよい。
このように、温度検出手段で検出するパラメータを圧縮機シェル温度以外の冷凍サイクル装置の温度としても、圧縮機起動時の冷媒初期分布を推測して実施の形態1と同様に圧縮機の異常検知を行うことができる。
<Modification 2>
In the first embodiment, the example in which the parameter detected by the temperature detecting unit is the compressor shell temperature during the operation stop of the compressor 101 has been described. However, the temperature change data during the operation stop is used as the outside air temperature and the outdoor heat exchanger. The initial refrigerant distribution at the time of starting the compressor may be estimated in step 6 using the temperature, the indoor temperature, the indoor heat exchanger temperature, and the like. Further, the calculation may be performed by using two or more parameters of the compressor shell temperature, the outside air temperature, the outdoor heat exchanger temperature, the indoor temperature, and the indoor heat exchanger temperature and may be measured in combination.
Thus, even if the parameter detected by the temperature detecting means is the temperature of the refrigeration cycle apparatus other than the compressor shell temperature, the initial refrigerant distribution at the time of starting the compressor is estimated and the compressor abnormality is detected as in the first embodiment. It can be performed.

<変形例3>
上記実施の形態1では、物理量検出手段で検出するパラメータを圧縮機101の起動電流値とした例を説明したが、物理量検出手段で検知する圧縮機101の物理量は、圧縮機起動後に電流値が最大値を記録した時間や、起動から一定時間の電流値の積分値などを用いて比較することも可能である。
このような圧縮機の起動時の物理量を用いても、実施の形態1と同様に圧縮機の異常検知を行うことができる。
<Modification 3>
In the first embodiment, the example in which the parameter detected by the physical quantity detection unit is the startup current value of the compressor 101 has been described. However, the physical quantity of the compressor 101 detected by the physical quantity detection unit has a current value after the compressor is started. It is also possible to make a comparison by using the time when the maximum value is recorded or the integrated value of the current value for a certain time from the start.
Even when such a physical quantity at the time of starting the compressor is used, it is possible to detect the abnormality of the compressor as in the first embodiment.

<変形例4>
上記実施の形態1では、上記ステップ12にて異常と判断したときには、ステップ13に進んで異常検出の報知を行うことに止まっていたが、記憶部10に過去に圧縮機の異常傾向があった温度変化データの温度波形を登録しておき、上記ステップ6において温度特徴量データベース11の近似する温度変化データを選択した段階で、圧縮機の起動を取りやめる制御、もしくは、起動の危険度を予測し報知を行う制御を採用することができる。 このように、ステップ6の早い段階で過去の温度変化データを基に圧縮機の起動の危険度を判断するため、より確実な異常検知をすることが可能となる。
<Modification 4>
In the first embodiment, when it is determined that there is an abnormality in step 12, the process proceeds to step 13 and the abnormality detection notification is stopped. However, the storage unit 10 has a tendency of abnormality in the compressor in the past. The temperature waveform of the temperature change data is registered, and at the stage where the temperature change data approximated in the temperature feature quantity database 11 is selected in the above step 6, the control for canceling the start of the compressor or the start-up risk is predicted. Control that performs notification can be employed. In this way, since the risk of starting the compressor is determined based on the past temperature change data at an early stage of step 6, it is possible to detect the abnormality more reliably.

実施の形態2.
実施の形態1に係る異常検出装置は、一致度判定手段12が、今回計測した圧縮機停止中の圧縮機シェル温度の計測値と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機停止中の圧縮機シェル温度の計測値との時間変化における波形の一致度を、f(t)とg(t)の差分の二乗和(波形比較値:X)を演算して判断している。
これに対して、実施の形態2に係る異常検出装置は、一致度判定手段12が、今回計測した圧縮機シェル温度の計測値と、過去にサンプリングして温度特徴量データベース11に記憶されている圧縮機シェル温度の計測値との時間変化における波形の一致度を、両計測値の平均二乗偏差(RMS)を比較することで判断している点で相違している。その他の構成及び異常検出ステップは実施の形態1と共通である。
Embodiment 2. FIG.
In the abnormality detection device according to the first embodiment, the coincidence degree determination means 12 stores the measured value of the compressor shell temperature during the stop of the compressor measured this time and the past sampled and stored in the temperature feature quantity database 11. The degree of coincidence of the waveform over time with the measured value of the compressor shell temperature when the compressor is stopped is determined by calculating the sum of squares of the difference between f (t) and g (t) (waveform comparison value: X). ing.
On the other hand, in the abnormality detection apparatus according to the second embodiment, the coincidence determination unit 12 stores the measured value of the compressor shell temperature measured this time and the temperature feature quantity database 11 by sampling in the past. The difference is that the degree of coincidence of the waveform in the time change with the measured value of the compressor shell temperature is determined by comparing the mean square deviation (RMS) of both measured values. Other configurations and abnormality detection steps are the same as those in the first embodiment.

平均二乗偏差(RMS)は次式で表される。
RMS=((Σ{xi(t)})/N)0.5
ここでxi(t)は、圧縮機停止中の圧縮機シェル温度の計測値であり、単位時間tの関数である。また、Nは、単位時間毎の測定点数である。
平均二乗偏差(RMS)は、測定値の二乗を取ることで、その量の大きさの平均値を二乗平均平方根から概算し、時間的に変化する値の大きさを評価することができる。
以下、実施の形態2に係る判定手段20の具体的な動作を詳述する。
The mean square deviation (RMS) is expressed by the following equation.
RMS = ((Σ {xi (t)} 2 ) / N) 0.5
Here, xi (t) is a measured value of the compressor shell temperature when the compressor is stopped, and is a function of the unit time t. N is the number of measurement points per unit time.
The mean square deviation (RMS) can be evaluated by taking the square of the measured value to estimate the mean value of the quantity from the root mean square and evaluating the magnitude of the time-varying value.
Hereinafter, a specific operation of the determination unit 20 according to the second embodiment will be described in detail.

<異常判定フロー>
図13は、実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の圧縮機の異常を検出する際のフロー図である。
はじめに、判定手段20は、ステップ1にて冷凍サイクル装置の圧縮機101の運転停止信号があるか否かを判断する。運転停止の信号がある場合にはステップ2に進む。
次に、ステップ2にて温度検出手段(例えば圧縮機シェル温度検知手段7)は、圧縮機101の運転停止中の温度(例えば圧縮機のシェル温度)を時系列に沿って(例えば30分刻みに)計測し記憶する。
<Abnormality judgment flow>
FIG. 13 is a flowchart for detecting an abnormality of the compressor of the refrigeration cycle apparatus including the abnormality detection device according to the first embodiment.
First, the determination means 20 determines whether or not there is an operation stop signal of the compressor 101 of the refrigeration cycle apparatus in Step 1. If there is an operation stop signal, the process proceeds to step 2.
Next, in step 2, the temperature detecting means (for example, the compressor shell temperature detecting means 7) sets the temperature during the operation stop of the compressor 101 (for example, the shell temperature of the compressor) in chronological order (for example, every 30 minutes). ) Measure and memorize.

ステップ3では、圧縮機の起動信号があるか否か判断する。起動信号がある場合にはステップ4に進む。
ステップ4では、圧縮機101の起動信号から直近の停止信号までの温度検知手段で測定した時系列の温度変化データを抽出する。
ステップ5にて、ステップ4で測定した時系列の温度変化データを温度特徴量データベース11に保存する。
ステップ6では、ステップ4で測定した時系列の温度変化データ(圧縮機シェル温度を例とする)と、温度特徴量データベース11のデータの一致度を一致度判定手段12により判定し、圧縮機の起動開始時の冷媒分布を推定する。
ここで、一致度判定手段12の動作を詳述する。
In step 3, it is determined whether or not there is a start signal for the compressor. If there is an activation signal, go to step 4.
In step 4, time-series temperature change data measured by the temperature detecting means from the start signal of the compressor 101 to the latest stop signal is extracted.
In step 5, the time-series temperature change data measured in step 4 is stored in the temperature feature quantity database 11.
In step 6, the degree of coincidence between the time-series temperature change data (compressor shell temperature as an example) measured in step 4 and the data in the temperature feature quantity database 11 is judged by the coincidence degree judging means 12, and the compressor Estimate the refrigerant distribution at the start of startup.
Here, the operation of the coincidence degree determination means 12 will be described in detail.

図14は、実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した図である。
図15は、実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において図14に示した圧縮機シェル温度の計測値をプロットした経過グラフである。
図16は、実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において圧縮機が停止してから次に起動するまでの圧縮機シェル温度の計測値を示した他の例の図である。
図17は、実施の形態2に係る異常検出装置を備えた冷凍サイクル装置において図16に示した圧縮機シェル温度の計測値をプロットした経過グラフである。
FIG. 14 is a diagram showing measured values of the compressor shell temperature from when the compressor is stopped to when it is next started in the refrigeration cycle apparatus including the abnormality detection device according to the second embodiment.
FIG. 15 is a progress graph in which measured values of the compressor shell temperature shown in FIG. 14 are plotted in the refrigeration cycle apparatus including the abnormality detection device according to the second embodiment.
FIG. 16 is a diagram of another example showing measured values of the compressor shell temperature from when the compressor is stopped until the next start in the refrigeration cycle apparatus including the abnormality detection device according to the second embodiment. .
FIG. 17 is a progress graph in which measured values of the compressor shell temperature shown in FIG. 16 are plotted in the refrigeration cycle apparatus including the abnormality detection device according to the second embodiment.

図14、16において、表の縦軸である単位時間(1〜25)は、例えば1単位を30分として設定する。なお、単位時間は、サンプリング温度の頻度により15分や10分など適宜設定することが可能である。この単位時間に対応し、左から今回計測した圧縮機シェル温度の計測値(℃)、圧縮機シェル温度の二乗値、圧縮機シェル温度の前後単位時間における差分、差分の二乗値、単位時間10区間当たりの圧縮機シェル温度の平均二乗偏差(RMS)、単位時間25区間当たりの圧縮機シェル温度の平均二乗偏差(RMS)、単位時間10区間当たりの圧縮機シェル温度変化の平均二乗偏差(RMS)、単位時間25区間当たりの圧縮機シェル温度変化の平均二乗偏差(RMS)を示している。   14 and 16, the unit time (1 to 25) which is the vertical axis of the table is set, for example, as one unit being 30 minutes. The unit time can be appropriately set such as 15 minutes or 10 minutes depending on the frequency of the sampling temperature. Corresponding to this unit time, the measured value (° C) of the compressor shell temperature measured this time from the left, the square value of the compressor shell temperature, the difference in the unit time before and after the compressor shell temperature, the square value of the difference, the unit time 10 Mean square deviation (RMS) of compressor shell temperature per section, mean square deviation (RMS) of compressor shell temperature per section 25 unit time, mean square deviation (RMS) of compressor shell temperature change per 10 sections per unit time ), The mean square deviation (RMS) of compressor shell temperature change per unit time 25 section.

一致度判定手段12は、例えば単位時間25区間当たりの圧縮機シェル温度の平均二乗偏差(RMS)を複数の閾値間に区分する。例えば閾値を平均二乗偏差(RMS):0〜10を区分A、10〜20を区分B、20〜30を区分C、30〜40を区分Dとして区分けする。図14に示した例の場合、単位時間25区間当たりの圧縮機シェル温度の平均二乗偏差(RMS)=39.42を区分Dとして温度特徴量データベース11に記憶する。また、図16に示した例の場合、単位時間25区間当たりの圧縮機シェル温度の平均二乗偏差(RMS)=27.58を区分Cとして温度特徴量データベース11に記憶する。   The coincidence degree determination unit 12 divides, for example, the mean square deviation (RMS) of the compressor shell temperature per 25 unit time intervals into a plurality of threshold values. For example, the threshold is a mean square deviation (RMS): 0 to 10 are classified as A, 10 to 20 are classified as B, 20 to 30 are classified as C, and 30 to 40 are classified as D. In the case of the example shown in FIG. 14, the mean square deviation (RMS) = 39.42 of the compressor shell temperature per unit time 25 section is stored in the temperature feature quantity database 11 as section D. In the case of the example shown in FIG. 16, the mean square deviation (RMS) = 27.58 of the compressor shell temperature per 25 sections of unit time is stored in the temperature feature quantity database 11 as section C.

そして一致度判定手段12は、今回計測した圧縮機シェル温度の計測値の温度変化データの平均二乗偏差(RMS)を算出し、温度特徴量データベース11に記憶された同一区分の過去の温度変化データの平均二乗偏差(RMS)を抽出する。   Then, the coincidence determination means 12 calculates the mean square deviation (RMS) of the temperature change data of the measured value of the compressor shell temperature measured this time, and the past temperature change data of the same category stored in the temperature feature quantity database 11. Extract the mean square deviation (RMS).

このような温度特徴量データベース11は、上記区分内で実施の形態1と同様に圧縮機101の停止時間毎(例えば1時間単位)にさらに区画されて記憶部10に記憶されている。一致度判定手段12は、今回計測した圧縮機101の停止時間が上記一例の12.5時間(単位時間25区間分)と同等の停止時間であるデータを比較対象として読み出している。
したがって、一致度判定手段12は、今回計測した停止時間が上記一例の12.5時間(単位時間25区間分)と異なる場合には、他の温度特徴量データベース11の停止時間のテーブルを比較対象として読み出すこととなる。
Such a temperature feature quantity database 11 is further partitioned in the above section for each stop time (for example, in units of one hour) of the compressor 101 as in the first embodiment, and stored in the storage unit 10. The degree of coincidence determination means 12 reads out, as a comparison target, data whose stop time of the compressor 101 measured this time is the same stop time as the above example of 12.5 hours (unit time 25 sections).
Therefore, when the stop time measured this time is different from 12.5 hours (for 25 sections of unit time) in the above example, the coincidence degree determination unit 12 compares the stop time table of the other temperature feature quantity database 11 with the comparison target Will be read out.

ここで算出した温度変化データの平均二乗偏差(RMS)は、その値が同一閾値間の区分内のデータ同士であれば時間変化における波形形状が近いことを示している。
なお、上記の例では、温度変化データの平均二乗偏差(RMS)を算出したが、温度変化データの各単位時間における温度変化量の平均二乗偏差(RMS)を基準として区分してもよい。
The mean square deviation (RMS) of the temperature change data calculated here indicates that the waveform shape in the time change is close if the value is data in the segment between the same threshold values.
In the above example, the mean square deviation (RMS) of the temperature change data is calculated, but it may be classified based on the mean square deviation (RMS) of the temperature change amount in each unit time of the temperature change data.

次に、ステップ7にて、圧縮機101を起動する。
そして、ステップ8にて、今回の圧縮機起動時(例えば起動後10秒間)の圧縮機101に入力する起動電流の波形を物理量検知手段101a(電流検知手段)にて測定する。
Next, in step 7, the compressor 101 is started.
In step 8, the physical quantity detection means 101a (current detection means) measures the waveform of the startup current input to the compressor 101 when the compressor is started this time (for example, 10 seconds after startup).

ステップ9にて、圧縮機101の起動電流の計測を終了する。
次にステップ10にて、ステップ8で記憶した圧縮機101の起動電流の特徴量を抽出する。このとき、例えば図4に示す電流値A2のように計測した時間内で最大の電流値を特徴量とし、ステップ2で記憶した運転停止中の温度変化データ(例えば圧縮機のシェル温度)の時系列に対応付けして記憶する。
In step 9, the measurement of the starting current of the compressor 101 is terminated.
Next, in step 10, the feature quantity of the starting current of the compressor 101 stored in step 8 is extracted. At this time, for example, when the temperature change data during operation stop (for example, the shell temperature of the compressor) stored in step 2 is used as the feature value, the maximum current value within the time measured as the current value A2 shown in FIG. Store in association with the series.

ステップ11では、比較手段15により、ステップ10で抽出した今回の起動電流の特徴量と、ステップ6で抽出した平均二乗偏差(RMS)が同一区分の過去の温度変化データに対応して物理量特徴量データベース14に記憶された過去の起動電流の特徴量と、を比較する。   In step 11, the feature quantity of the current starting current extracted in step 10 and the mean square deviation (RMS) extracted in step 6 by the comparison means 15 correspond to the past temperature change data in the same category, and the physical quantity feature quantity. The feature quantity of the past startup current stored in the database 14 is compared.

次に、ステップ12にてステップ11で比較した結果、今回の起動電流の特徴量と、物理量特徴量データベース14に記憶された過去の起動電流の特徴量とが所定の閾値以上乖離している場合には圧縮機101に異常があると判断する。   Next, as a result of the comparison in step 11 in step 12, the feature value of the current startup current and the feature value of the past startup current stored in the physical quantity feature value database 14 are different from each other by a predetermined threshold or more. Is determined to be abnormal in the compressor 101.

また、ステップ6にて、平均二乗偏差(RMS)が同一区分の過去の温度変化データが複数存在する場合には、据付け後からの起動回数順に当該温度変化データを並べ、今回の起動電流の特徴値が当該温度変化データに対応する前回までの起動電流の特徴値と異なる傾向があるかどうかを判断する。
このとき実施の形態1と同様に、例えば図11に示すように、起動回数ごとに計測した電流値の特徴値を並べた電流値の傾きに対して、n回目に測定した電流値のnとn−1回目との間での傾きが大きく変化した場合は異常と判断する。
In Step 6, when there are a plurality of past temperature change data having the same mean square deviation (RMS), the temperature change data are arranged in the order of the number of start-ups after installation, and the characteristics of the current start-up current are as follows. It is determined whether or not the value tends to be different from the characteristic value of the starting current up to the previous time corresponding to the temperature change data.
At this time, as in the first embodiment, for example, as shown in FIG. 11, the current value n measured for the nth time with respect to the slope of the current value in which the characteristic values of the current values measured for each activation count are arranged. When the inclination between the (n-1) th time changes greatly, it is determined as abnormal.

そして、ステップ12にて異常と判断したときには、ステップ13に進んで異常検出の報知を行う。
なお、検出した異常は、空調機器のリモコンや室外機表示部に表示する方法や、ビルメンテナンス担当者に電子メールで知らせる方法、さらに、空調機器が遠隔監視システムに接続されている場合には集中管理センターに通信するといった方式が考えられる。
If it is determined in step 12 that there is an abnormality, the process proceeds to step 13 to notify abnormality detection.
Detected abnormalities are displayed on the remote control and outdoor unit display of the air conditioner, notified to the building maintenance staff via e-mail, and concentrated when the air conditioner is connected to the remote monitoring system. A method of communicating with the management center can be considered.

<作用効果>
圧縮機の停止状態での圧縮機シェル温度の温度変化データを、過去の温度変化データと比較して同一傾向の温度変化データをデータベースから抽出することで、圧縮機起動時の冷凍サイクル装置内の冷媒初期分布を推定することができる。そして、圧縮機起動時の冷凍サイクル装置内の冷媒分布が近似した状態同士で例えば圧縮機の起動電流の特徴量を比較することで軸固着のような致命的な故障を引き起こす前に圧縮機の異常傾向を検出することができる。
<Effect>
Comparing the temperature change data of the compressor shell temperature when the compressor is stopped with the past temperature change data, and extracting the temperature change data with the same tendency from the database, the refrigeration cycle apparatus in the compressor start-up The refrigerant initial distribution can be estimated. Then, by comparing the characteristics of the starting current of the compressor, for example, in a state where the refrigerant distribution in the refrigeration cycle apparatus at the time of starting the compressor is approximated, before causing a fatal failure such as shaft fixation, Abnormal trends can be detected.

また、圧縮機内部の摺動部損傷、特に軸損傷をターゲットとし、圧縮機停止時の温度変化情報と圧縮機起動時の物理量との二つのパラメータを用いて圧縮機の異常を検出するため、市場で実際に据え付けられた設備機器の様々な設置状況、接続形態、運転パターンなど各状況において、明らかな異常ではないが通常運転とは異なり異常傾向を示す情報を検知することができる。   In addition, in order to detect abnormalities in the compressor using the two parameters of temperature change information at the time of compressor stop and physical quantity at the time of compressor start, targeting sliding part damage inside the compressor, especially shaft damage, In various situations, such as various installation situations, connection forms, and operation patterns of equipment actually installed in the market, it is possible to detect information that is not an obvious abnormality but shows an abnormal tendency unlike normal operation.

<変形例1>
実施の形態2では、圧縮機停止時における圧縮機シェル温度の温度変化データの平均二乗偏差(RMS)を複数の区分に分類し、圧縮機起動時の冷媒初期分布を推測したが、変形例1では、圧縮機停止時間中で外気温度が最も低下し下限値となった時間と、圧縮機シェル温度が下限値が発生した時間との時間差により区分し、圧縮機起動時の冷媒初期分布の傾向を推測する。
<Modification 1>
In the second embodiment, the mean square deviation (RMS) of the temperature change data of the compressor shell temperature when the compressor is stopped is classified into a plurality of sections, and the initial refrigerant distribution at the time of starting the compressor is estimated. Is divided by the time difference between the time when the outside air temperature has fallen to the lowest value during the compressor stop time and the time when the compressor shell temperature has fallen to the lower value, and the tendency of the initial refrigerant distribution at the start of the compressor Guess.

これは、圧縮機停止時間中で外気温度が最も低下し下限値となった時間と、圧縮機シェル温度が下限値が発生した時間との時間差が長い程、冷媒が圧縮機内に寝込む傾向になるため、当該時間差で条件を区分し同一傾向の冷媒初期分布同士で圧縮機起動時の例えば起動電力値を比較することを目的としている。このように条件を区分して異常の判定をすることで軸固着のような致命的な故障を引き起こす前に圧縮機の異常傾向を検出することができる。   This is because, as the time difference between the time when the outside air temperature has fallen to the lower limit during the compressor stop time and the time when the compressor shell temperature has occurred is longer, the refrigerant tends to fall into the compressor. Therefore, the purpose is to compare the starting power value at the time of starting the compressor between the refrigerant initial distributions having the same tendency by dividing the condition by the time difference. Thus, the abnormal tendency of the compressor can be detected before causing a fatal failure such as shaft fixation by classifying the conditions and determining the abnormality.

また、圧縮機停止時間中で外気温度が最も低下し下限値となった時間と、圧縮機が起動した時間との時間差により区分し、圧縮機起動時の冷媒初期分布の傾向を推測することも同様に有効である。   It is also possible to estimate the tendency of the initial refrigerant distribution at the start of the compressor by classifying it according to the time difference between the time when the outside air temperature has fallen to the lower limit during the compressor stop time and the time when the compressor is started. It is equally effective.

<変形例2>
実施の形態1及び2に係る異常検知装置及び異常検知方法では、圧縮機の異常検知を例に説明したが、他の機器に当該異常検知装置及び方法を適用することが可能である。例えば、室外熱交換器に外気を供給する室外送風機の異常検知に適用する場合には、室外送風機が停止している間の外気の風速を測定し、実施の形態2に係る記憶部10に風速データを蓄積する。そして、上記ステップ6にて一致度判定手段12により過去の風速データと近似した条件を抽出し、上記ステップ10にて風速データと対応付けされた物理量特徴量データベース14の室外送風機の起動電流値を読み出し、今回測定した起動電流値と比較する。
<Modification 2>
In the abnormality detection apparatus and the abnormality detection method according to the first and second embodiments, the abnormality detection of the compressor has been described as an example. However, the abnormality detection apparatus and method can be applied to other devices. For example, when applied to abnormality detection of an outdoor fan that supplies outdoor air to the outdoor heat exchanger, the wind speed of the outdoor air is measured while the outdoor fan is stopped, and the wind speed is stored in the storage unit 10 according to the second embodiment. Accumulate data. Then, in step 6 above, the degree of coincidence determination means 12 extracts conditions approximate to the past wind speed data, and in step 10 above, the starting current value of the outdoor fan in the physical quantity feature quantity database 14 associated with the wind speed data is obtained. Read out and compare with the measured starting current value.

このように、室外送風機に実施の形態1及び2に係る異常検知装置及び異常検知方法を適用することで、実施の形態1、2に係る圧縮機と同様に室外送風機の異常検知を行うことができる。   As described above, by applying the abnormality detection device and the abnormality detection method according to the first and second embodiments to the outdoor fan, it is possible to detect the abnormality of the outdoor fan similarly to the compressor according to the first and second embodiments. it can.

1 室外機、2 室内機、3 外気温度検知手段、4 室外熱交換器温度検知手段、6a,6b 冷凍サイクル内圧力検知手段、7 圧縮機シェル温度検知手段、8 室内熱交換器温度検知手段、9 室内温度検知手段、10 記憶部、11 温度特徴量データベース、12 一致度判定手段、14 物理量特徴量データベース、15 比較手段、20 判定手段、101 圧縮機、101a 物理量検知手段(電流検知手段)、102 四方弁、103 室外熱交換器、104 室外送風機、105 アキュームレータ、201 室内熱交換器、202 室内送風機、203 室内膨張弁。   1 outdoor unit, 2 indoor unit, 3 outdoor temperature detection means, 4 outdoor heat exchanger temperature detection means, 6a, 6b refrigeration cycle pressure detection means, 7 compressor shell temperature detection means, 8 indoor heat exchanger temperature detection means, 9 indoor temperature detection means, 10 storage unit, 11 temperature feature quantity database, 12 coincidence degree judgment means, 14 physical quantity feature quantity database, 15 comparison means, 20 judgment means, 101 compressor, 101a physical quantity detection means (current detection means), 102 four-way valve, 103 outdoor heat exchanger, 104 outdoor fan, 105 accumulator, 201 indoor heat exchanger, 202 indoor fan, 203 indoor expansion valve.

Claims (15)

  1. 駆動部を有する機器と、前記駆動部が停止している時の前記機器に関する第1状態値を検出する第1物理量検出手段と、前記駆動部が起動した時の前記機器に関する第2状態値を検出する第2物理量検出手段と、前記機器の異常を検出する判定手段と、を有する異常検出装置であって、
    前記判定手段は、前記第1物理量検出手段で検出した第1状態値と、前記第2物理量検出手段で検出した第2状態値と、に基づいて前記機器の異常を検出する異常検出装置。
    A device having a drive unit; a first physical quantity detecting means for detecting a first state value related to the device when the drive unit is stopped; and a second state value related to the device when the drive unit is activated. An abnormality detection device having second physical quantity detection means for detecting and determination means for detecting an abnormality of the device,
    The determination unit is an abnormality detection device that detects an abnormality of the device based on a first state value detected by the first physical quantity detection unit and a second state value detected by the second physical quantity detection unit.
  2. 前記判定手段は、
    前記第1物理量検出手段が検出した過去の第1状態値と、該過去の第1状態値と対応して計測され前記第2物理量検出手段が検出した過去の第2状態値とを記憶する記憶手段と、
    前記第1物理量検出手段が検出した今回の第1状態値と前記過去の第1状態値とを比較して一致度の高い前記過去の第1状態値を抽出する一致度判定手段と、
    前記一致度判定手段が抽出した過去の第1状態値に対応して前記記憶手段に記憶された過去の第2状態値と、前記第2物理量検出手段が検出した今回の第2状態値とを比較する比較手段と、を備え、
    前記比較手段の比較結果に基づいて前記機器の異常を検出する請求項1に記載の異常検出装置。
    The determination means includes
    A memory for storing a past first state value detected by the first physical quantity detection unit and a past second state value measured corresponding to the past first state value and detected by the second physical quantity detection unit Means,
    A degree-of-coincidence determination unit that compares the current first state value detected by the first physical quantity detection unit with the past first state value and extracts the first state value having a high degree of coincidence;
    The past second state value stored in the storage unit corresponding to the past first state value extracted by the coincidence degree determination unit, and the current second state value detected by the second physical quantity detection unit A comparison means for comparing,
    The abnormality detection device according to claim 1, wherein an abnormality of the device is detected based on a comparison result of the comparison unit.
  3. 前記機器は、冷凍サイクル装置であり、
    前記第1状態値は、圧縮機のシェル温度、外気温度、室外熱交換器温度、室内温度、室内熱交換器温度、外気風速のうちの少なくとも1つである請求項1または2に記載の異常検出装置。
    The device is a refrigeration cycle apparatus,
    3. The abnormality according to claim 1, wherein the first state value is at least one of a compressor shell temperature, an outdoor air temperature, an outdoor heat exchanger temperature, an indoor temperature, an indoor heat exchanger temperature, and an outdoor air speed. Detection device.
  4. 前記機器は、冷凍サイクル装置であり、
    前記第2状態値は、圧縮機または室外送風機の起動電流値を含む請求項1〜3のいずれか1項に記載の異常検出装置。
    The device is a refrigeration cycle apparatus,
    The abnormality detection device according to claim 1, wherein the second state value includes a starting current value of a compressor or an outdoor fan.
  5. 前記判定手段は、前記機器の異常を検出した際に異常警報を発報する請求項1〜4のいずれか1項に記載の異常検出装置。   The abnormality detection apparatus according to claim 1, wherein the determination unit issues an abnormality alarm when an abnormality of the device is detected.
  6. 前記一致度判定手段は、前記第1物理量検出手段が検出した前記今回の第1状態値と前記過去の第1状態値とを比較する際に、前記今回の第1状態値及び前記過去の第1状態値の差分の二乗和を算出し、該差分の二乗和が閾値以下の時に前記一致度の高い過去の第1状態値として抽出する請求項2、及び請求項2に従属する請求項3〜5のいずれか1項に記載の異常検出装置。   The coincidence degree determining means compares the current first state value and the past first state value when comparing the current first state value detected by the first physical quantity detecting means with the past first state value. A sum of squares of a difference of one state value is calculated, and when the sum of squares of the difference is equal to or less than a threshold value, the past first state value having a high degree of coincidence is extracted, and claim 3 dependent on claim 2 The abnormality detection apparatus of any one of -5.
  7. 前記一致度判定手段は、前記1物理量検出手段が検出した前記今回の第1状態値と前記過去の第1状態値とを比較する際に、前記今回の第1状態値及び前記過去の第1状態値の平均二乗偏差を算出し、該平均二乗偏差に閾値を設けて算出した前記平均二乗偏差を複数の区分に分類し、前記今回の第1状態値と同一区分に分類された前記過去の第1状態値を前記一致度の高い過去の第1状態値として抽出する請求項2、及び請求項2に従属する請求項3〜5のいずれか1項に記載の異常検出装置。   The degree-of-match determination means compares the current first state value and the previous first state value when the current first state value detected by the one physical quantity detection means is compared with the past first state value. Calculating a mean square deviation of the state value, classifying the mean square deviation calculated by setting a threshold value on the mean square deviation into a plurality of categories, and classifying the past values classified into the same category as the current first state value The abnormality detection device according to claim 2, wherein the first state value is extracted as the past first state value having a high degree of coincidence, and claim 3 subordinate to claim 2.
  8. 前記記憶手段には、前記過去の第1状態値に対応して前記機器の異常情報が登録されて記憶され、
    前記判定手段は、前記一致度判定手段が抽出した前記一致度の高い過去の第1状態値に前記機器の異常情報が登録されている場合には、前記駆動部の起動を禁止する請求項2、及び請求項2に従属する請求項3〜7のいずれか1項に記載の異常検出装置。
    In the storage means, the abnormality information of the device is registered and stored corresponding to the past first state value,
    The determination unit prohibits activation of the drive unit when abnormality information of the device is registered in the first state value with a high degree of coincidence extracted by the coincidence degree determination unit. And the abnormality detection device according to any one of claims 3 to 7, which is dependent on claim 2.
  9. 駆動部を有する機器における前記駆動部が停止している時の前記機器に関する第1状態値を検出するステップと、
    前記第1状態値と対応して計測され前記駆動部が起動した時の前記機器に関する第2状態値を検出するステップと、
    前記第1状態値と前記第2状態値とを対応させて記憶するステップと、
    今回検出した前記第1状態値と、記憶された複数の過去の第1状態値とを比較して一致度の高い過去の第1状態値を抽出するステップと、
    前記一致度の高い過去の第1状態値に対応して記憶された過去の第2状態値と、今回検出した第2状態値とを比較し前記機器の異常を検出するステップと、
    を有する異常検出方法。
    Detecting a first state value relating to the device when the drive unit is stopped in the device having the drive unit;
    Detecting a second state value related to the device when measured corresponding to the first state value and when the driving unit is activated;
    Storing the first state value and the second state value in association with each other;
    Comparing the first state value detected this time with a plurality of stored past first state values to extract a past first state value having a high degree of coincidence;
    Comparing the past second state value stored in correspondence with the past first state value having a high degree of coincidence with the second state value detected this time, and detecting an abnormality of the device;
    An abnormality detection method comprising:
  10. 前記第1状態値は、圧縮機のシェル温度、外気温度、室外熱交換器温度、室内温度、室内熱交換器温度、外気風速のうちの少なくとも1つである請求項9に記載の異常検出方法。   The abnormality detection method according to claim 9, wherein the first state value is at least one of a shell temperature of the compressor, an outdoor air temperature, an outdoor heat exchanger temperature, an indoor temperature, an indoor heat exchanger temperature, and an outdoor air speed. .
  11. 前記第2状態値は、圧縮機または室外送風機の起動電流値を含む請求項9または10に記載の異常検出方法。   The abnormality detection method according to claim 9 or 10, wherein the second state value includes a starting current value of a compressor or an outdoor fan.
  12. 前記機器の異常を検出するステップにおいて、前記機器の異常を検出した際に異常警報を発報する請求項9〜11のいずれか1項に記載の異常検出方法。   The abnormality detection method according to claim 9, wherein an abnormality alarm is issued when the abnormality of the device is detected in the step of detecting abnormality of the device.
  13. 前記過去の第1状態値を抽出するステップにおいて、前記今回検出した第1状態値及び前記記憶された過去の第1状態値の差分の二乗和を算出し、該差分の二乗和が閾値以下の時に前記一致度の高い過去の第1状態値として抽出する請求項9〜12のいずれか1項に記載の異常検出方法。   In the step of extracting the past first state value, a sum of squares of a difference between the first state value detected this time and the stored past first state value is calculated, and the sum of squares of the difference is less than a threshold value The abnormality detection method according to any one of claims 9 to 12, wherein the first state value having a high degree of coincidence is sometimes extracted as the first state value.
  14. 前記過去の第1状態値を抽出するステップにおいて、前記今回検出した第1状態値及び前記記憶された過去の第1状態値の平均二乗偏差を算出し、該平均二乗偏差に閾値を設けて算出した前記平均二乗偏差を複数の区分に分類し、前記今回の第1状態値と同一区分に分類された前記過去の第1状態値を前記一致度の高い過去の第1状態値として抽出する請求項9〜12のいずれか1項に記載の異常検出方法。   In the step of extracting the past first state value, a mean square deviation of the first state value detected this time and the stored past first state value is calculated, and a threshold is provided for the mean square deviation. The average square deviation is classified into a plurality of categories, and the past first state value classified into the same category as the current first state value is extracted as a past first state value having a high degree of coincidence. Item 13. The abnormality detection method according to any one of Items 9 to 12.
  15. 前記第1状態値と前記第2状態値とを対応させて記憶するステップにおいて、前記過去の第1状態値に対応して前記機器の異常情報が登録されて記憶され、
    前記一致度の高い過去の第1状態値に前記機器の異常情報が登録されている場合には、前記駆動部の起動を禁止する請求項9〜14のいずれか1項に記載の異常検出方法。
    In the step of storing the first state value and the second state value in association with each other, abnormality information of the device is registered and stored in correspondence with the past first state value,
    The abnormality detection method according to claim 9, wherein when the abnormality information of the device is registered in the past first state value having a high degree of coincidence, activation of the drive unit is prohibited. .
JP2016546259A 2014-09-04 2014-09-04 Abnormality detection apparatus and abnormality detection method Active JP6320540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073350 WO2016035187A1 (en) 2014-09-04 2014-09-04 Abnormality detection device and abnormality detection method

Publications (2)

Publication Number Publication Date
JPWO2016035187A1 true JPWO2016035187A1 (en) 2017-04-27
JP6320540B2 JP6320540B2 (en) 2018-05-09

Family

ID=55439286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546259A Active JP6320540B2 (en) 2014-09-04 2014-09-04 Abnormality detection apparatus and abnormality detection method

Country Status (2)

Country Link
JP (1) JP6320540B2 (en)
WO (1) WO2016035187A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239517A1 (en) * 2018-06-13 2019-12-19 三菱電機株式会社 Refrigeration cycle device
WO2020075262A1 (en) * 2018-10-11 2020-04-16 三菱電機株式会社 Failure sign detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177072A (en) * 1990-11-09 1992-06-24 Japan Electron Control Syst Co Ltd Air conditioner
JPH10197031A (en) * 1997-01-10 1998-07-31 Calsonic Corp Trouble detector for air conditioner
JP2002004932A (en) * 2000-06-21 2002-01-09 Toyota Motor Corp Diagnostic device for abnormality in engine system
WO2003047950A1 (en) * 2001-12-07 2003-06-12 Nsk Ltd. Control device for electric power steering device
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2007286904A (en) * 2006-04-17 2007-11-01 Fanuc Ltd Controller and control method for motor
JP2008062916A (en) * 2006-08-10 2008-03-21 Nsk Ltd Temperature detection device for motor system and electric power steering control device using it
JP2009115075A (en) * 2007-10-15 2009-05-28 Toyota Motor Corp Hydraulic control device for engine
JP2011229317A (en) * 2010-04-21 2011-11-10 Makita Corp Internal temperature estimation apparatus for electric tool battery and electric tool device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177072A (en) * 1990-11-09 1992-06-24 Japan Electron Control Syst Co Ltd Air conditioner
JPH10197031A (en) * 1997-01-10 1998-07-31 Calsonic Corp Trouble detector for air conditioner
JP2002004932A (en) * 2000-06-21 2002-01-09 Toyota Motor Corp Diagnostic device for abnormality in engine system
WO2003047950A1 (en) * 2001-12-07 2003-06-12 Nsk Ltd. Control device for electric power steering device
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2007286904A (en) * 2006-04-17 2007-11-01 Fanuc Ltd Controller and control method for motor
JP2008062916A (en) * 2006-08-10 2008-03-21 Nsk Ltd Temperature detection device for motor system and electric power steering control device using it
JP2009115075A (en) * 2007-10-15 2009-05-28 Toyota Motor Corp Hydraulic control device for engine
JP2011229317A (en) * 2010-04-21 2011-11-10 Makita Corp Internal temperature estimation apparatus for electric tool battery and electric tool device

Also Published As

Publication number Publication date
WO2016035187A1 (en) 2016-03-10
JP6320540B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
US20180320690A1 (en) Diagnostic System
US10775084B2 (en) System for refrigerant charge verification
US7941294B2 (en) System and method for detecting fluid delivery system conditions based on motor parameters
US8539786B2 (en) System and method for monitoring overheat of a compressor
US8904814B2 (en) System and method for detecting a fault condition in a compressor
JP2608655B2 (en) Air conditioner
US8800309B2 (en) Method of automatically detecting an anomalous condition relative to a nominal operating condition in a vapor compression system
ES2523290T3 (en) Compressor diagnostic and protection system
JP4265982B2 (en) Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system
US9568226B2 (en) Refrigerant charge indication
US7752854B2 (en) Monitoring a condenser in a refrigeration system
US7716936B2 (en) Method and apparatus for affecting defrost operations for a refrigeration system
US6799951B2 (en) Compressor degradation detection system
US6578373B1 (en) Rate of change detector for refrigerant floodback
US10371406B2 (en) Maintenance and diagnostics for refrigeration systems
AU2004230692B2 (en) Compressor protection from liouid hazards
JP5871157B2 (en) Method for preventing surging of centrifugal compression equipment
US7752853B2 (en) Monitoring refrigerant in a refrigeration system
US8109104B2 (en) System and method for detecting decreased performance in a refrigeration system
US7665315B2 (en) Proofing a refrigeration system operating state
ES2643319T3 (en) Vibration protection in a variable speed compressor
US7558700B2 (en) Equipment diagnosis device, refrigerating cycle apparatus, fluid circuit diagnosis method, equipment monitoring system, and refrigerating cycle monitoring system
CN106594966A (en) Method for detecting refrigerant leakage of air conditioning system and air conditioning system
AU2009263640B2 (en) Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
JP5063346B2 (en) Refrigeration and air conditioning system having refrigerant leakage detection function, refrigeration and air conditioning apparatus, and refrigerant leakage detection method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150