JPWO2015001613A1 - Refrigeration cycle equipment - Google Patents
Refrigeration cycle equipment Download PDFInfo
- Publication number
- JPWO2015001613A1 JPWO2015001613A1 JP2015524933A JP2015524933A JPWO2015001613A1 JP WO2015001613 A1 JPWO2015001613 A1 JP WO2015001613A1 JP 2015524933 A JP2015524933 A JP 2015524933A JP 2015524933 A JP2015524933 A JP 2015524933A JP WO2015001613 A1 JPWO2015001613 A1 JP WO2015001613A1
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- dryness
- refrigeration cycle
- injection pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2101—Temperatures in a bypass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Abstract
圧縮機にインジェクションを行う冷凍サイクル装置において、インジェクション配管から圧縮機内へ流れる冷媒のインジェクション量を調整する流量調整器と流量調整器の開度制御を行う制御装置とを備える。制御装置は、圧縮機の吸入側から吸入された冷媒とインジェクション配管から供給された冷媒との合流部の乾き度が1以上になるように、流量調整器の開度を制御する。A refrigeration cycle apparatus that injects into a compressor includes a flow rate regulator that adjusts the amount of refrigerant injected from the injection pipe into the compressor, and a controller that controls the opening of the flow rate regulator. The control device controls the opening degree of the flow rate regulator so that the dryness of the joining portion of the refrigerant sucked from the suction side of the compressor and the refrigerant supplied from the injection pipe becomes 1 or more.
Description
本発明は、圧縮機にインジェクションを行う冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus that injects a compressor.
圧縮機、凝縮器、膨張弁、蒸発器が順に接続された冷凍サイクルにおいて、圧縮機にインジェクションを行うものが知られている(例えば特許文献1−5参照)。特許文献1、2には、凝縮器と膨張弁の間に圧縮機内の圧縮過程の中途に至るインジェクション配管(バイパス)が設けられており、インジェクション配管の開閉弁等の流量調整器を制御してインジェクション量を制御する空気調和機が開示されている。特に、特許文献1においては、冷媒としてR32冷媒が用いられており、特許文献3には、R32冷媒の比熱比が1.51であることが開示されている。
In a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, one that performs injection to the compressor is known (see, for example, Patent Documents 1-5). In
特許文献4には、ポリトロープ指数に基づいて中間インジェクション部の温度を算出し、算出した温度に基づいてインジェクション量を制御する空気調和機が開示されている。特許文献5には、凝縮器と膨張弁の間から、圧縮機の吸入に至る第2のバイパス経路を有し、第2のバイパス経路上に第2のキャピラリと第2の開閉弁を設け、開閉弁の第2の開閉弁の開度制御を行う制御装置を有する冷凍装置が開示されている。
Patent Document 4 discloses an air conditioner that calculates the temperature of an intermediate injection unit based on a polytropic index and controls the injection amount based on the calculated temperature.
特許文献1の場合、合流直後のR32冷媒が飽和ガス近辺の状態になるように、すなわち乾き度が0.9〜0.99の間になるようにインジェクション量を制御するようにしている。また、上述したR32冷媒以外の冷媒を用いて液インジェクションを行う際には、一般的にはインジェクション量が少ないほど性能が良く、圧縮機(吐出ガス温度)の信頼性の制約でインジェクション量が規定されている。しかし、特許文献1−5よりもさらに圧縮機の信頼性を確保しながら効率の良い運転を行うことが望まれている。
In the case of
本発明は、上記のような課題を解決するためになされたもので、比熱比の高い冷媒を用いた場合であっても、圧縮機の信頼性を確保しながら効率の良い運転を行うことができる冷凍サイクル装置を提供することを目的とするものである。 The present invention has been made to solve the above-described problems. Even when a refrigerant having a high specific heat ratio is used, efficient operation can be performed while ensuring the reliability of the compressor. An object of the present invention is to provide a refrigeration cycle apparatus that can be used.
本発明の冷凍サイクル装置は、圧縮機、凝縮器、膨張弁、蒸発器を順に接続した冷凍サイクルが形成された冷凍サイクル装置であって、凝縮器と膨張弁との間から圧縮機内へ冷媒が流れるインジェクション配管と、インジェクション配管に配置され、インジェクション配管から圧縮機内へ流れる冷媒のインジェクション量を調整する流量調整器と、流量調整器の開度制御を行う制御装置と、を備え、冷媒のポリトロープ指数は、1.28以上であり、制御装置は、圧縮機の吸入側から吸入された冷媒とインジェクション配管から供給された冷媒との合流部の乾き度が1以上になるように、流量調整器の開度を制御するものであることを特徴とする。 The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order is formed, and refrigerant is introduced into the compressor from between the condenser and the expansion valve. A flow injection pipe, a flow rate regulator that is arranged in the injection pipe and adjusts the injection amount of the refrigerant flowing from the injection pipe into the compressor, and a control device that controls the opening degree of the flow regulator. Is equal to or greater than 1.28, and the control device controls the flow regulator so that the dryness of the merged portion between the refrigerant sucked from the suction side of the compressor and the refrigerant supplied from the injection pipe is 1 or more. The opening degree is controlled.
本発明の冷凍サイクル装置によれば、ポリトロープ指数が1.28以上の冷媒を用いた際に、合流部での乾き度が1以上になるようにインジェクション量を制御することにより、断熱圧縮時の温度上昇が大きい比熱比の高い冷媒を用いた場合であっても、高効率及び高信頼性を実現することができる。 According to the refrigeration cycle apparatus of the present invention, when a refrigerant having a polytropic index of 1.28 or more is used, the injection amount is controlled so that the dryness at the junction is 1 or more. Even when a refrigerant having a large specific heat ratio and a large temperature rise is used, high efficiency and high reliability can be realized.
以下、図面を参照しながら本発明の冷凍サイクル装置の実施形態について説明する。図1は本発明の冷凍サイクル装置の実施形態1を示す冷媒回路図であり、図1を参照して冷凍サイクル装置1について説明する。冷凍サイクル装置1は、圧縮機2、凝縮器3、膨張弁4、蒸発器5が配管により接続された冷凍サイクルを形成している。この冷凍サイクル装置1に流れる冷媒として、ポリトロープ指数が1.28以上(比熱比が1.2以上)の冷媒が用いられており、例えばR32冷媒の単一冷媒もしくはR32冷媒を含む混合冷媒が用いられている。
Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit
圧縮機2は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出するものである。凝縮器3は、圧縮機2から吐出された冷媒と空気(外気)との間で熱交換を行うものであって、例えば冷媒を通過させる伝熱管と、伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィンとを備えた構造を有している。膨張弁4は、蒸発器7を通過する冷媒の圧力を調整するものである。蒸発器5は、冷媒と空気(外気)との間で熱交換を行うものであって、例えば冷媒を通過させる伝熱管と、伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィンとを備えた構造を有している。
The
また、冷凍サイクル装置1は、凝縮器3と膨張弁4との間から圧縮機2内へ冷媒が流れるインジェクション配管(バイパス)11と、インジェクション配管11に配置され、インジェクション配管11から圧縮機2内へ流れるインジェクション量Ginjを調整する流量調整器12とを有している。ここで、圧縮機2は、例えば低段側圧縮部と後段側圧縮部とを有する2段圧縮機であって、低圧側圧縮部で中間圧まで圧縮し、高圧側圧縮部で最高圧力まで圧縮する機能を有している。インジェクション配管11は、圧縮機2における低圧側圧縮部と高圧側圧縮部との間に合流部2aに接続されており、インジェクション配管11から圧縮機2内に流入した冷媒は、圧縮機2内の圧縮機構における圧縮過程の中途であって低圧側圧縮部から吐出された冷媒と合流部2aにおいて合流する。In addition, the
次に、冷凍サイクル装置1における冷媒の流れについて説明する。まず、低圧ガスの冷媒が圧縮機2において圧縮され高温高圧のガス状態になる。高圧ガス状態の冷媒は、凝縮器3において外気と熱交換され、冷媒のエネルギーを熱源(空気や水)に伝達することで凝縮し高圧液冷媒となる。その後、冷媒は膨張弁4で減圧され低圧二相状態となり、蒸発器5に入る。蒸発器5において、冷媒は空気のエネルギーを吸収して蒸発し低圧ガスとなる。このとき、冷媒と熱交換された水または空気等は冷却される。その後、蒸発器5から流出した冷媒は再び圧縮機2に吸入される。
Next, the flow of the refrigerant in the
このとき、凝縮器3と膨張弁4との間から高圧低温の液冷媒の一部が分岐して、インジェクション配管11側に流れる。インジェクション配管11内の冷媒は流量調整器12で流量を調整されながら減圧され中間圧の二相となり、圧縮機2内の合流部2aで合流し、合流した冷媒は圧縮機2内の高圧側圧縮部で圧縮されて吐出する。
At this time, a part of the high-pressure and low-temperature liquid refrigerant branches from between the
上述したインジェクション配管11を流れる冷媒のインジェクション量(バイパス量)Ginjは流量調整器12により制御されており、流量調整器12の開度は制御装置30により各センサ21〜25の出力に基づいて制御されている。具体的には、冷凍サイクル装置1は、吐出温度センサ21、吸入温度センサ22、中間温度センサ23、吐出圧力センサ24、吸入圧力センサ25、を有している。吐出温度センサ21は、圧縮機2の吐出側に設けられており、圧縮機2から吐出される冷媒の吐出温度を検出するものである。吸入温度センサ22は、圧縮機2の吸入側に設けられており、圧縮機2に吸入される冷媒の吸入温度を検出するものである。中間温度センサ23は、インジェクション配管11上に設けられており、インジェクション配管11を流れる冷媒の中間温度を検出するものである。吐出圧力センサ24は圧縮機2の吐出側(高圧側)に配置されており、圧縮機2から吐出される冷媒の吐出圧力を検出するものである。吸入圧力センサ25は、圧縮機2の吸入側(低圧側)に配置されており、圧縮機2へ吸入される冷媒の吸入圧力を検出するものである。The injection amount (bypass amount) G inj of the refrigerant flowing through the above-described
制御装置30は、乾き度算出手段31及び開度調整手段32を有している。乾き度算出手段31は、各センサ21〜25において検出された吸入温度、吐出温度、吸入圧力、吐出圧力及び圧縮機2の運転周波数(回転数)を用いて、圧縮機2の合流部2aにおける乾き度Xinを算出するものである。例えば、乾き度算出手段31は、吸入圧力、吐出圧力及び圧縮機2の回転数と圧縮機効率との関係を予め記憶したテーブルもしくは関数を有しており、各センサ21〜25により検出された吸入圧力、吐出圧力及び圧縮機2の回転数から圧縮機効率を導出する。同時に、乾き度算出手段31は中間温度から飽和圧力を算出する。インジェクション配管11内を流れる冷媒は気液二相状態であって中間温度は気液二相状態の冷媒温度であるため、中間温度から飽和圧力が算出することができる。そして、乾き度算出手段31は、検出した吐出側圧力及び吐出温度と算出した飽和圧力Tm及び圧縮機効率ηとから合流部2aにおける乾き度Xinを算出する。
The
なお、乾き度Xinの算出は、例えば上述したパラメータを引数としたテーブルを予め記憶しておき、テーブルを参照することにより算出してもよいし、上述したパラメータを引数とした近似式から算出してもよい。さらに、各センサ21〜25の検出結果に基づいて乾き度Xinを算出する場合について例示しているが、算出精度を向上するために、吸入温度などのパラメータ(引数)を増やしてもよいし、その他種々の公知の手法を用いることができる。
The dryness Xin may be calculated by, for example, storing a table with the above parameters as an argument in advance and referring to the table, or by calculating from an approximate expression using the above parameters as an argument. May be. Furthermore, although the case of calculating the dryness Xin based on the detection results of the
開度調整手段32は、乾き度算出手段31において算出された乾き度Xinに基づいて、乾き度Xinが1以上になるように流量調整器12の開度を制御するものである。具体的には、開度調整手段32は、1以上の目標の乾き度Xref(例えば下限目標乾き度=1.0、上限目標乾き度=1.1)と乾き度Xinとの差分(Xin−Xref)を算出し、差分(Xin−Xref)に所定の係数を乗じて過不足分のインジェクション量Ginj(開度)の増減量を算出する。開度調整手段32は、算出した増減量に従い現在の流量調整器12の開度を制御する。例えば乾き度Xinが1.0未満の場合、開度調整手段32は開度を開く方向に流量調整器12を制御し、乾き度Xinが乾き度1.1より大きい場合、開度調整手段32は開度を閉じる方向に流量調整器12を制御する。The opening degree adjusting means 32 controls the opening degree of the
このように、例えばR32冷媒のような比熱比κが高く吐出温度が高くなるような冷媒を用いた場合に乾き度Xinが1以上になるようにインジェクション量Ginjを制御することにより、信頼性を維持しながら高効率運転を行うことができる。特に、吐出ガス温度が高くなる高圧縮比運転において、高効率運転が実施できる。Thus, for example, when a refrigerant having a high specific heat ratio κ and a high discharge temperature, such as an R32 refrigerant, is used, reliability is controlled by controlling the injection amount G inj so that the dryness Xin is 1 or more. High-efficiency operation can be performed while maintaining In particular, high-efficiency operation can be performed in high-compression ratio operation in which the discharge gas temperature increases.
以下に、例えばR32冷媒のようなポリトロープ指数が1.28以上(比熱比が1.2以上)の冷媒が用いた場合、乾き度が1以上になるようにインジェクション量Ginjを制御する理由について説明する。まず、一般的に圧縮機2を駆動するために必要な電力である圧縮機入力Wが小さいほどCOPは高くなる。図2は図1の圧縮機での状態を示すPH線図である。なお、図2において、実線があるインジェクション量Ginjがある場合であり、破線はインジェクション量Ginjが無い場合である。また、以下において、能力一定で高圧と低圧と中間圧と吸入温度が変化しないことを前提にする。Hereinafter, for example, when a refrigerant having a polytropic index of 1.28 or more (specific heat ratio of 1.2 or more) such as R32 refrigerant is used, the reason for controlling the injection amount G inj so that the dryness becomes 1 or more is described. explain. First, in general, the smaller the compressor input W, which is the power required to drive the
インジェクション配管11からインジェクションがある場合、圧縮機入力Wは下記式(1)で示される。なお、式(1)において、Δh1は低段側の圧縮機2のエンタルピ差、Δh2はインジェクションがなされた後の高段側の圧縮機2のエンタルピ差、Geは圧縮機2の吸入側から入る冷媒流量、Ginjはインジェクション配管11から圧縮機2に流入されるインジェクション量を示している。When there is injection from the
一方、インジェクションがない場合、の圧縮機入力Woは下記式(2)で示される。なお、Δh20はインジェクションがない場合の高段側(吐出側)の圧縮機2のエンタルピ差を示している。On the other hand, when there is no injection, the compressor input Wo is expressed by the following equation (2). Incidentally, [Delta] h2 0 represents the enthalpy difference of the
上記式(1)、(2)からインジェクションがなされた圧縮機入力Wは下記式(3)のように表すことができる。 The compressor input W injected from the above formulas (1) and (2) can be expressed as the following formula (3).
式(3)において、右辺第2項はインジェクション量Ginjによる圧縮機入力Wの増加量を示し、右辺第3項は高段側の圧縮機2のインジェクションによる圧縮機入力Wの減少量を示している。つまり、インジェクション量Ginjの変化により圧縮機入力Wが変化するものであって、インジェクション量Ginjが増加すると右辺第2項が増加し、右辺第3項が単調減少する。In Expression (3), the second term on the right side indicates the amount of increase in the compressor input W due to the injection amount G inj , and the third term on the right side indicates the amount of decrease in the compressor input W due to the injection of the high- stage
また、インジェクション量に対する圧縮機2の入力の変化は、式(3)をインジェクション量Ginjで微分した下記式(4)で示される。Moreover, the change of the input of the
式(4)において、右辺第1項の高段側のエンタルピ差Δh2は、正の値になるものであるが(Δh2>0)、インジェクション量Ginjの増加に対し単調減少する。また、右辺第2項は、負の値になるものであるが、インジェクション量Ginjの増加に対し単調増加し、0に漸近する。In Expression (4), the enthalpy difference Δh2 on the high stage side of the first term on the right side is a positive value (Δh2> 0), but monotonously decreases as the injection amount G inj increases. The second term on the right side is a negative value, but monotonously increases with increasing injection amount G inj and gradually approaches 0.
ところで、式(4)に示すように、圧縮機入力Wと圧縮機2でのエンタルピhの変化(エンタルピ差Δh2)とは密接に関連している。このエンタルピは、理想ガスの場合に下記式(5)のように表すことができる。なお、式(5)においてCpは低圧比熱である。式(5)に示すように、エンタルピhは温度Tの関数として表される。 By the way, as shown in Expression (4), the compressor input W and the change in the enthalpy h in the compressor 2 (enthalpy difference Δh2) are closely related. This enthalpy can be expressed as the following formula (5) in the case of an ideal gas. In the formula (5), Cp is the low pressure specific heat. As shown in equation (5), enthalpy h is expressed as a function of temperature T.
[数5]
h=Cp・T ・・・(5)
(Δh=Cp・ΔT)[Equation 5]
h = Cp · T (5)
(Δh = Cp · ΔT)
圧縮機2内での圧縮過程は断熱圧縮であり、温度変化は、下記式(6)のように表すことができる。なお、式(6)において、κは冷媒の比熱比を示す。
The compression process in the
さらに、実際の変化を考慮したポリトロープ変化は、ポリトロープ指数をnとしたとき、下記式(7)のようになる。 Furthermore, the polytropic change in consideration of the actual change is represented by the following formula (7), where n is the polytropic index.
式(6)及び式(7)に示すように、エンタルピh(エンタルピ変化Δh)は、冷媒の比熱比κ又はポリトロープ指数nに依存する。つまり、冷媒の比熱比κ又はポリトロープ指数nが小さければ温度変化が小さくなりエンタルピ変化Δhも小さくなる。一方、冷媒の比熱比κ又はポリトロープ指数nが大きければ温度変化が大きくなりエンタルピ変化Δhも大きくなる。また、式(1)〜式(4)に示すように、インジェクション量Ginjに対する圧縮機入力Wの変化はエンタルピ変化Δhに依存する。したがって、圧縮機入力Wの変化は、比熱比κ及びポリトロープ指数nに依存する。As shown in the equations (6) and (7), the enthalpy h (enthalpy change Δh) depends on the specific heat ratio κ or the polytropic index n of the refrigerant. That is, if the specific heat ratio κ or the polytropic index n of the refrigerant is small, the temperature change is small and the enthalpy change Δh is also small. On the other hand, if the specific heat ratio κ or the polytropic index n of the refrigerant is large, the temperature change increases and the enthalpy change Δh also increases. Further, as shown in the equations (1) to (4), the change in the compressor input W with respect to the injection amount G inj depends on the enthalpy change Δh. Therefore, the change of the compressor input W depends on the specific heat ratio κ and the polytropic index n.
比熱比κ及びポリトロープ指数nは、下記表1のように冷媒の種類によって異なるものであり、R32冷媒は、R404A冷媒よりも比熱比κ及びポリトロープ指数nが大きい。 The specific heat ratio κ and the polytropic index n are different depending on the type of refrigerant as shown in Table 1 below, and the R32 refrigerant has a specific heat ratio κ and a polytropic index n larger than those of the R404A refrigerant.
まず、冷凍サイクルを流れる冷媒として一般的なR404Aを採用した場合について述べる。R404A冷媒は、表1に示すように比熱比κが小さく断熱圧縮時の温度変化ΔTが比較的小さい。また、温度変化ΔTが小さければエンタルピ変化Δhも小さい。そのため、式(4)の右辺第1項は常に正の値であるのに対し、右辺第2項が常に小さい値になる。このため、インジェクション量Ginjに関係なく式(4)の圧縮機入力Wの変化率δW/δGinj>0になる。これは、インジェクション量Ginjが増加すると圧縮機入力Wが単調増加することを意味している。よって、R404A冷媒を用いた場合に圧縮機入力Wを最小にするためには、開度調整手段32はインジェクション量Ginjが最小になるように流量調整器12を制御することになる。これにより、インジェクションを行うことによる圧縮機2の信頼性を確保しながら広い運転範囲内で高効率運転を実現することができる。
R404A冷媒を用いた場合の挙動を図3で示すと、インジェクション量Ginjの増加は合流部2aの乾き度低下となり、圧縮機入力の増加はCOPの低下となる。圧縮機(吐出ガス温度)の信頼性の制約で定まる乾き度より高い状態で運転できないため、同時にCOPが定まる。First, the case where general R404A is adopted as the refrigerant flowing through the refrigeration cycle will be described. As shown in Table 1, the R404A refrigerant has a small specific heat ratio κ and a relatively small temperature change ΔT during adiabatic compression. Further, if the temperature change ΔT is small, the enthalpy change Δh is also small. For this reason, the first term on the right side of Equation (4) is always a positive value, whereas the second term on the right side is always a small value. For this reason, the change rate δW / δG inj > 0 of the compressor input W in the equation (4) regardless of the injection amount G inj . This means that the compressor input W monotonously increases as the injection amount G inj increases. Therefore, in order to minimize the compressor input W when the R404A refrigerant is used, the opening degree adjusting means 32 controls the
When the behavior when the R404A refrigerant is used is shown in FIG. 3, an increase in the injection amount G inj results in a decrease in the dryness of the merging
次に、R32冷媒の場合について述べる。R32冷媒は、表1に示すように比熱比κが大きく断熱圧縮時の温度変化が比較的大きい。また温度変化ΔTが大きいと、エンタルピ変化Δhも大きい。そのため式(4)の右辺第2項がインジェクション量Ginjの増加に従い大きく変化する。Next, the case of R32 refrigerant will be described. As shown in Table 1, the R32 refrigerant has a large specific heat ratio κ and a relatively large temperature change during adiabatic compression. When the temperature change ΔT is large, the enthalpy change Δh is also large. Therefore, the second term on the right side of the equation (4) changes greatly as the injection amount G inj increases.
具体的には、インジェクション量Ginjがゼロから第1所定値になるまでの範囲では、式(4)において|右辺第1項|>|右辺第2項|の関係が成立し、圧縮機入力Wの変化率δW/δGinj>0となる。一方、インジェクション量Ginjが第1所定値から第2所定値になるまでの範囲では、|右辺第1項|<|右辺第2項|となり、圧縮機入力Wの変化率δW/δGinj<0となる。さらに、インジェクション量Ginjが第2所定値よりも大きいとき、再び|右辺第1項|>|右辺第2項|となり、圧縮機入力Wの変化率δW/δGinj>0となる。よって、式(3)の圧縮機入力Wは、インジェクション量Ginjがゼロから第1所定値になるまでは増加し、第1所定値から第2所定値までの間では減少し、第2所定値より大きくなると増加する。このように、圧縮機入力Wの極小値(最小値)はインジェクション量Ginj=0の場合、もしくは第2所定値の場合である。Specifically, in the range from the injection amount G inj to the first predetermined value from zero, the relationship | first term on the right side |> | second term | W change rate δW / δG inj > 0. On the other hand, in the range from the first predetermined value to the second predetermined value, the injection amount G inj becomes | the first term on the right side | <| the second term on the right side |, and the change rate δW / δG inj < 0. Further, when the injection amount G inj is larger than the second predetermined value, the first term on the right side |> | the second term on the right side is again obtained, and the change rate δW / δG inj > 0 of the compressor input W is obtained. Therefore, the compressor input W of the expression (3) increases until the injection amount G inj reaches zero from the first predetermined value, decreases from the first predetermined value to the second predetermined value, and becomes the second predetermined value. It increases when it becomes larger than the value. Thus, the minimum value (minimum value) of the compressor input W is the case where the injection amount G inj = 0 or the second predetermined value.
このうち、インジェクション量Ginj=0の場合、吐出温度の上昇により圧縮機2の運転の信頼性が大きく下がってしまう。したがって、インジェクション量Ginjが第2所定値になるように制御する。この第2所定値は、高段側のエンタルピ差Δh2の変化が鈍感になるポイントであり、合流部2aの冷媒は飽和ガス(乾き度Xin=1)となる状態である。従って、圧縮機入力Wは、合流部2aでの冷媒の乾き度Xin=1のときに最小になる。したがって、開度調整手段32は、乾き度Xinが1以上になるように流量調整器12を制御することにより、圧縮機2の信頼性を確保しながら圧縮機入力Wを最小にすることができる。Among these, when the injection amount G inj = 0, the reliability of the operation of the
R32冷媒を用いた場合の挙動を図3で示すと、インジェクション量Ginjの増加は合流部2aの乾き度低下となり、圧縮機入力の増加はCOPの低下となる。インジェクション量Ginj=0の場合から、第2所定値に変化すると、合流部2aの乾き度は、1.15以上から1.1に低下し、微小だがCOPは単調に減少する。インジェクション量Ginjが第2所定値から第1所定値に変化すると、合流部2aの乾き度は、1.1以上から1に低下し、微小だがCOPは単調に増加する。インジェクション量Ginjが第1所定値からさらに低下すると、合流部2aの乾き度は、1よりさらに低下し、COPは単調に減少し、その低下量は大きい。When the behavior when the R32 refrigerant is used is shown in FIG. 3, an increase in the injection amount G inj results in a decrease in the dryness of the merging
また、乾き度=1となるように制御する場合であるが、実際は一つの値に制御することは困難であり、ある一定の幅を許容して制御する。この場合、乾き度1以下ではCOP低下が顕著となるため、好ましくない。乾き度を1から1.1までの間に許容しておけば、COP極大からの変化が小さく、安定して高COP状態で運転が可能である。 In addition, although control is performed so that the dryness = 1, it is actually difficult to control to a single value, and control is performed while allowing a certain range. In this case, if the dryness is 1 or less, the COP decrease is remarkable, which is not preferable. If the dryness is allowed to be between 1 and 1.1, the change from the COP maximum is small, and the operation can be stably performed in the high COP state.
上述の通り、R404A冷媒及びR32冷媒を例示して説明したが、上述したR32冷媒のようなCOPが極大(圧縮機入力Wが極小)になる冷媒の特性を有するものであれば、合流部2aの乾き度Xinが1以上になるように制御すればよい。このCOPが極大値を有する条件を以下に定式化する。
As described above, the R404A refrigerant and the R32 refrigerant have been exemplified and described. However, if the COP such as the R32 refrigerant has the characteristic of a refrigerant that maximizes the compressor input W (minimum compressor input W), the
まず、冷凍サイクル装置1において、ある状態Aと、状態Aからインジェクション量GinjがΔGだけ減少した状態Bとを比較する。状態Aにおける圧縮機2の合流部2aでのエネルギーバランスは下記式(8)のように表すことができる。なお、式(8)において、Hmixは合流部2aのエンタルピ、Hliqは合流前のインジェクションエンタルピ、Δh1は低段側(吸入−合流前)の圧縮機2のエンタルピ差、h1は圧縮機吸入でのエンタルピをそれぞれ示している。First, in the
一方、状態Bでの合流部2aでのエネルギーバランスは下記式(9)のように表すことができる。なお式(9)において、ΔGはインジェクション量Ginjの減少分、ΔHは合流2aのエンタルピの変化分、Δh*は低段側(吸入−合流前)の圧縮機2のエンタルピ差の変化分を示す。On the other hand, the energy balance at the
式(8)及び式(9)から式(10)が成立する。 Expression (10) is established from Expression (8) and Expression (9).
一方、状態方程式から下記式(11)が成立する。式(11)において、ρは合流部2aの密度、Δρは状態変化に伴う密度差、ΔPは状態変化に伴う圧力差、ΔTは状態変化に伴う温度差を示している。
On the other hand, the following equation (11) is established from the state equation. In equation (11), ρ represents the density of the joining
また、式(8)における低段側の圧縮機2のエンタルピ差Δh1は、下記式(12)で表すことができる。式(12)において、P1は圧縮機2の吸入圧力、P2は合流部2aの圧力である。
Further, the enthalpy difference Δh1 of the low-
同様に、式(9)における低段側の圧縮機2のエンタルピ差Δh1+Δh*は、下記式(13)で表すことができる。
式(12)と式(13)より、下記式(14)が成立する。 From the equations (12) and (13), the following equation (14) is established.
上記式(14)に、式(5)に示すΔH=Cp・ΔTと式(10)及び式(11)とを代入すると式(15)のようになる。 When ΔH = Cp · ΔT shown in Equation (5) and Equations (10) and (11) are substituted into Equation (14), Equation (15) is obtained.
つまり、インジェクション量変化ΔGの減少時(ΔG<0)に圧力変化ΔPが上昇するには(ΔP>0)、下記式(16)の条件を満たしたときである。 That is, when the injection amount change ΔG decreases (ΔG <0), the pressure change ΔP increases (ΔP> 0) when the condition of the following equation (16) is satisfied.
上記式(16)を満たすようなポリトロープ指数n(比熱比κ)を有する冷媒の場合にはCOPが極大値を有するため、合流部2aの乾き度Xinが1以上になるように制御すれば最大の運転効率を得ることができる。そして、この式(16)を満たすのは、ポリトロープ指数n≧1.28、もしくは比熱比κ≧1.2である。
In the case of a refrigerant having a polytropic index n (specific heat ratio κ) satisfying the above equation (16), COP has a maximum value, and therefore, if the control is performed so that the dryness Xin of the joining
上記実施の形態によれば、従来のようにインジェクション量Ginjが増加するとCOPが低下するのではなく、吐出温度が高い冷媒では合流部2aの乾き度Xinが1以上となるインジェクション量GinjのときにCOPが最大になる特徴を利用し、高効率運転を実施でき、なおかつ信頼性が維持できる。According to the above-described embodiment, when the injection amount G inj increases as in the conventional case, the COP does not decrease, but in the refrigerant with a high discharge temperature, the injection amount G inj at which the dryness Xin of the joining
すなわち、冷凍用途などでは、低圧に対する高圧の比(圧縮比)が大きくなり、圧縮機2から出る冷媒の温度が高くなる。この冷媒の温度が高いと、圧縮機2の内部において、部材の膨張係数の差による圧縮機構への過大な荷重の発生、温度上昇による冷凍機油の粘度の低下に伴う異常摩耗、圧縮機2の内部の樹脂部材の劣化、スラッジの発生等の信頼性が低下し、さらには圧縮機2が損傷することで性能が低下する。このため、インジェクション配管11から液冷媒を圧縮過程に供給することで潜熱分は圧縮機2の内部を冷却することができる。よって、圧縮機2の内部の温度上昇を防ぎ信頼性を確保することができる。なお、インジェクション配管11へ入る冷媒は、過冷却液であっても、二相冷媒であってもよい。
That is, in refrigeration applications, the ratio of high pressure to low pressure (compression ratio) increases, and the temperature of the refrigerant coming out of the
また、ポリトロープ指数≧1.28となる吐出温度が高い冷媒という制約の中で、合流部2aの乾き度Xinが1以上となるインジェクション量Ginjが最大COPである特徴を利用し、高効率運転を実施できる。さらに、ポリトロープ指数n又は比熱比κという動作状態での冷媒物性値と、動作状態での圧縮機性能特性で判別できる。さらに、仕様差による特性も考慮でき、精度よく判定できる。Further, in the restriction of a refrigerant having a high discharge temperature that satisfies a polytropic index ≧ 1.28, a high-efficiency operation is performed by utilizing the feature that the injection amount G inj at which the dryness Xin of the joining
1 冷凍サイクル装置、2 圧縮機、2a 合流部、3 凝縮器、4 膨張弁、5 蒸発器、11 インジェクション配管、12 流量調整器、21 吐出温度センサ、22 吸入温度センサ、23 中間温度センサ、24 吐出圧力センサ、25 吸入圧力センサ、30 制御装置、31 乾き度算出手段、32 開度調整手段、Ginj インジェクション量、h エンタルピ、Δh1、Δh2 エンタルピ差、Δh* 低段側(吸入−合流前)の圧縮機のエンタルピ差の変化分、n ポリトロープ指数、Tm 飽和圧力、W、Wo 圧縮機入力、Xin 乾き度、Xref 目標の乾き度、ΔG インジェクション量変化、Δh エンタルピ変化、ΔP 圧力変化、P1 圧縮機の吸入圧力、P2 合流部の圧力、ΔT 温度変化、η 圧縮機効率、κ 比熱比。DESCRIPTION OF
本発明の冷凍サイクル装置は、圧縮機、凝縮器、膨張弁、蒸発器を順に接続した冷凍サイクルが形成された冷凍サイクル装置であって、凝縮器と膨張弁との間から圧縮機内へ冷媒が流れるインジェクション配管と、インジェクション配管に配置され、インジェクション配管から圧縮機内へ流れる冷媒のインジェクション量を調整する流量調整器と、流量調整器の開度制御を行う制御装置と、圧縮機の吐出側における冷媒の吐出温度を検出する吐出温度センサと、インジェクション配管を流れる冷媒の中間温度を検出する中間温度センサと、圧縮機の吸入側における冷媒の吸入圧力を検出する吸入圧力センサと、圧縮機の吐出側における冷媒の吐出圧力を検出する吐出圧力センサとを備え、冷媒のポリトロープ指数は、1.28以上であり、制御装置は、吐出温度、中間温度、吸入圧力、吐出圧力及び圧縮機の運転周波数を用いて、圧縮機の吸入側から吸入された冷媒とインジェクション配管から供給された冷媒との合流部における乾き度を算出する乾き度算出手段と、乾き度算出手段により算出された乾き度が1以上になるように流量調整器の開度を制御する開度調整手段とを備えることを特徴とする。 The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order is formed, and refrigerant is introduced into the compressor from between the condenser and the expansion valve. A flow injection pipe, a flow rate regulator that is arranged in the injection pipe and adjusts the amount of refrigerant injected from the injection pipe into the compressor, a control device that controls the opening of the flow regulator, and a refrigerant on the discharge side of the compressor A discharge temperature sensor for detecting the discharge temperature of the refrigerant, an intermediate temperature sensor for detecting an intermediate temperature of the refrigerant flowing through the injection pipe, an intake pressure sensor for detecting the intake pressure of the refrigerant on the intake side of the compressor, and the discharge side of the compressor and a discharge pressure sensor for detecting the discharge pressure of the refrigerant in the polytropic exponent of the refrigerant is at 1.28 or higher, braking Apparatus, discharge temperature, intermediate temperature, suction pressure, with the operating frequency of the discharge pressure and the compressor, the dryness fraction of the merging portion of the supplied refrigerant from refrigerant and injection pipe from the suction side of the compressor It is characterized by comprising: a dryness calculating means for calculating; and an opening adjusting means for controlling the opening of the flow rate regulator so that the dryness calculated by the dryness calculating means is 1 or more .
Claims (5)
前記凝縮器と前記膨張弁との間から前記圧縮機内へ冷媒が流れるインジェクション配管と、
前記インジェクション配管に配置され、前記インジェクション配管から前記圧縮機内へ流れる冷媒のインジェクション量を調整する流量調整器と、
前記流量調整器の開度制御を行う制御装置と、
を備え、
冷媒のポリトロープ指数は、1.28以上であり、
前記制御装置は、前記圧縮機の吸入側から吸入された冷媒と前記インジェクション配管から供給された冷媒との合流部の乾き度が1以上になるように、前記流量調整器の開度を制御するものである
ことを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus in which a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order is formed,
An injection pipe through which refrigerant flows into the compressor from between the condenser and the expansion valve;
A flow rate regulator that is disposed in the injection pipe and adjusts the injection amount of the refrigerant flowing from the injection pipe into the compressor;
A control device for controlling the opening of the flow regulator;
With
The refrigerant polytropic index is 1.28 or more,
The control device controls the opening degree of the flow rate regulator so that the dryness of the joining portion of the refrigerant sucked from the suction side of the compressor and the refrigerant supplied from the injection pipe becomes 1 or more. A refrigeration cycle apparatus characterized by being a thing.
前記圧縮機の吐出側における冷媒の吐出温度を検出する吐出温度センサと、
前記インジェクション配管を流れる冷媒の中間温度を検出する中間温度センサと、
前記圧縮機の吸入側における冷媒の吸入圧力を検出する吸入圧力センサと、
前記圧縮機の吐出側における冷媒の吐出圧力を検出する吐出圧力センサと
をさらに有し、
前記制御装置は、
前記吸入温度、前記吐出温度、前記中間温度、前記吸入圧力、前記吐出圧力及び前記圧縮機の運転周波数を用いて前記合流部における乾き度を算出する乾き度算出手段と、
前記乾き度算出手段により算出された乾き度が1以上になるように前記流量調整器の開度を制御する開度調整手段と
を備えたものであることを特徴とする請求項1〜4のいずれか1項に記載の冷凍サイクル装置。An intake temperature sensor for detecting an intake temperature of the refrigerant on the intake side of the compressor;
A discharge temperature sensor for detecting the discharge temperature of the refrigerant on the discharge side of the compressor;
An intermediate temperature sensor for detecting an intermediate temperature of the refrigerant flowing through the injection pipe;
A suction pressure sensor for detecting the suction pressure of the refrigerant on the suction side of the compressor;
A discharge pressure sensor for detecting a discharge pressure of the refrigerant on the discharge side of the compressor;
The controller is
A dryness calculating means for calculating a dryness in the merging section using the suction temperature, the discharge temperature, the intermediate temperature, the suction pressure, the discharge pressure, and an operating frequency of the compressor;
Opening adjustment means for controlling the opening degree of the flow rate regulator so that the dryness calculated by the dryness calculation means is 1 or more. The refrigeration cycle apparatus according to any one of the above.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/068103 WO2015001613A1 (en) | 2013-07-02 | 2013-07-02 | Refrigeration cycle device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015001613A1 true JPWO2015001613A1 (en) | 2017-02-23 |
JP6091616B2 JP6091616B2 (en) | 2017-03-08 |
Family
ID=52143236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015524933A Active JP6091616B2 (en) | 2013-07-02 | 2013-07-02 | Refrigeration cycle equipment |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6091616B2 (en) |
DE (1) | DE112013007202T5 (en) |
GB (1) | GB2530453B (en) |
WO (1) | WO2015001613A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106247573B (en) * | 2016-09-27 | 2019-05-31 | 广东美的暖通设备有限公司 | Air conditioner and its compressor return liquid judgment method and device |
WO2018198164A1 (en) | 2017-04-24 | 2018-11-01 | 三菱電機株式会社 | Air conditioning device |
KR102350935B1 (en) * | 2017-06-19 | 2022-01-12 | 엘지전자 주식회사 | Air conditioner |
JP2023148249A (en) * | 2022-03-30 | 2023-10-13 | 株式会社富士通ゼネラル | air conditioner |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10325622A (en) * | 1997-03-26 | 1998-12-08 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2008249236A (en) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | Air conditioner |
JP2010216687A (en) * | 2009-03-13 | 2010-09-30 | Daikin Ind Ltd | Heat pump system |
JP2010223542A (en) * | 2009-03-25 | 2010-10-07 | Mitsubishi Electric Corp | Refrigerating air-conditioning device |
WO2012104890A1 (en) * | 2011-01-31 | 2012-08-09 | 三菱電機株式会社 | Air-conditioning device |
WO2013001572A1 (en) * | 2011-06-29 | 2013-01-03 | 三菱電機株式会社 | Air-conditioning device |
-
2013
- 2013-07-02 JP JP2015524933A patent/JP6091616B2/en active Active
- 2013-07-02 DE DE112013007202.5T patent/DE112013007202T5/en active Pending
- 2013-07-02 GB GB1522798.6A patent/GB2530453B/en active Active
- 2013-07-02 WO PCT/JP2013/068103 patent/WO2015001613A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10325622A (en) * | 1997-03-26 | 1998-12-08 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2008249236A (en) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | Air conditioner |
JP2010216687A (en) * | 2009-03-13 | 2010-09-30 | Daikin Ind Ltd | Heat pump system |
JP2010223542A (en) * | 2009-03-25 | 2010-10-07 | Mitsubishi Electric Corp | Refrigerating air-conditioning device |
WO2012104890A1 (en) * | 2011-01-31 | 2012-08-09 | 三菱電機株式会社 | Air-conditioning device |
WO2013001572A1 (en) * | 2011-06-29 | 2013-01-03 | 三菱電機株式会社 | Air-conditioning device |
Also Published As
Publication number | Publication date |
---|---|
DE112013007202T5 (en) | 2016-03-17 |
WO2015001613A1 (en) | 2015-01-08 |
GB2530453A9 (en) | 2017-09-06 |
GB201522798D0 (en) | 2016-02-03 |
GB2530453B (en) | 2018-02-14 |
GB2530453A (en) | 2016-03-23 |
JP6091616B2 (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5169295B2 (en) | Refrigeration equipment | |
US9453668B2 (en) | Refrigeration cycle apparatus and refrigerant circulating method | |
EP2693136A1 (en) | Expansion valve control device, heat source machine, and expansion valve control method | |
JP2008267787A5 (en) | ||
JP5355016B2 (en) | Refrigeration equipment and heat source machine | |
JP2011208860A (en) | Air conditioner | |
JP6359095B2 (en) | Refrigeration equipment | |
JP6091616B2 (en) | Refrigeration cycle equipment | |
JP2011133209A (en) | Refrigerating apparatus | |
JP2017044454A (en) | Refrigeration cycle device and control method for the same | |
JP6264688B2 (en) | Refrigeration equipment | |
JP2011133205A (en) | Refrigerating apparatus | |
JP6080031B2 (en) | Refrigeration equipment | |
JP2010002173A (en) | Refrigerator | |
JP2007232230A (en) | Refrigerating device | |
JP2013155972A (en) | Refrigeration device | |
JP2011133207A (en) | Refrigerating apparatus | |
JP2011133206A (en) | Refrigerating apparatus | |
JP2011133210A (en) | Refrigerating apparatus | |
JP6253370B2 (en) | Refrigeration cycle equipment | |
JP2014070783A (en) | Refrigerator and added cooling medium volume adjusting device for refrigerator | |
JP6563374B2 (en) | Hydrogen gas cooling device | |
JP2011137557A (en) | Refrigerating apparatus | |
JPWO2016046876A1 (en) | Refrigeration cycle equipment | |
JP2004003717A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6091616 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |