JPWO2014069551A1 - Sensor chip and measurement system - Google Patents

Sensor chip and measurement system Download PDF

Info

Publication number
JPWO2014069551A1
JPWO2014069551A1 JP2014544567A JP2014544567A JPWO2014069551A1 JP WO2014069551 A1 JPWO2014069551 A1 JP WO2014069551A1 JP 2014544567 A JP2014544567 A JP 2014544567A JP 2014544567 A JP2014544567 A JP 2014544567A JP WO2014069551 A1 JPWO2014069551 A1 JP WO2014069551A1
Authority
JP
Japan
Prior art keywords
sample
flow path
sensor chip
fluid connection
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014544567A
Other languages
Japanese (ja)
Other versions
JP6090330B2 (en
Inventor
悠 石毛
悠 石毛
釜堀 政男
政男 釜堀
佑介 後藤
佑介 後藤
淳子 田中
淳子 田中
理子 岩田
理子 岩田
中村 英博
英博 中村
健 澤崎
健 澤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2014069551A1 publication Critical patent/JPWO2014069551A1/en
Application granted granted Critical
Publication of JP6090330B2 publication Critical patent/JP6090330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/726Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/02Assays, e.g. immunoassays or enzyme assays, involving carbohydrates involving antibodies to sugar part of glycoproteins

Abstract

使い捨てのセンサチップにおいて,流路詰まりの懸念なく,検体の計量を高精度に行う。検体導入口3014から流体接続部3011に向けて検体を吸引し,その後,流体接続部3011から圧力をかけて,導入した規定量の検体を測定部3017を有する流路に送出し,測定を行う。With a disposable sensor chip, the sample is weighed with high accuracy without the risk of clogging the flow path. A sample is aspirated from the sample introduction port 3014 toward the fluid connection unit 3011, and then pressure is applied from the fluid connection unit 3011, and the introduced specified amount of sample is sent to the flow path having the measurement unit 3017 for measurement. .

Description

本発明は,生体物質を測定するための測定装置とそれに組み込まれて使用されるセンサチップとそれを用いた測定装置及び測定方法に関する。   The present invention relates to a measurement device for measuring a biological substance, a sensor chip incorporated in the measurement device, a measurement device using the same, and a measurement method.

臨床検査は,人や動物の健康状態を把握して病気の早期発見を行ったり,患者の病気の進行状況や原因の分析を行ったりするのに欠かすことができない。従来は検査室や検査センタにおいて専門の技師が大型の自動分析装置を用いて検査を行うのが一般的であった。近年,小型で簡便に使用できる装置が開発されたことにより,患者のそばや自宅で検査を行うポイント・オブ・ケア・テスティング(POCT)が広まりつつある。POCT向けの装置は,大きく分けてドライケミストリと言われる乾燥試薬を保持させたフィルムやメンブレンに検体を添加するものと,流路や分注機構を用いて検体と試薬を混合するものがある。   Laboratory tests are indispensable for understanding the health status of people and animals for early detection of illnesses and for analyzing the progress and causes of illnesses in patients. In the past, it was common for specialists in inspection rooms and inspection centers to perform inspections using large automatic analyzers. In recent years, point-of-care testing (POCT) in which a test is performed near a patient or at home has been spreading due to the development of a small and easy-to-use apparatus. The apparatus for POCT is roughly classified into a device for adding a sample to a film or membrane holding a dry reagent called dry chemistry, and a device for mixing a sample and a reagent using a flow path or a dispensing mechanism.

臨床検査においては通常複数の項目を測定するため,複数の項目を高精度に測定できる装置が求められている。自動分析装置では検体を精密に分注し,様々な試薬と順次混合させていくことで,これを実現していた。POCT向けの装置では,自動分析装置と同様に分注吐出機構を用いて自動で検体を分注して順次測定を行うか,使用者が手動で順次測定を行っていた。   In clinical examinations, a plurality of items are usually measured, so a device capable of measuring a plurality of items with high accuracy is required. Automatic analyzers have achieved this by accurately dispensing samples and mixing them with various reagents in sequence. In the apparatus for POCT, as with the automatic analyzer, the sample is automatically dispensed using the dispensing discharge mechanism and sequentially measured, or the user manually performs the sequential measurement.

WO 03/076937 A2WO 03/076937 A2 特開平10−123150号公報JP 10-123150 A

発明者は,流路を有する使い捨てのセンサチップを適用することで使用者が煩雑な操作を行うことなく複数項目の精密な測定を行うことができるPOCT向けの小型の装置を考案し,研究開発を行った。   The inventor has devised a small device for POCT that can perform precise measurement of multiple items without complicated operation by applying a disposable sensor chip having a flow path, and research and development. Went.

高精度な測定には検体を高精度に計量する必要があり,使い捨てのセンサチップでは物理形状で規定された計量部に検体を満たすことでこれを実現していた(特許文献1)。しかし,物理形状を規定するために良く用いられる隘路部において検体が詰まることが懸念された。さらに,複数項目を計測するためには,検体を分割する,例えば複数回高精度に計量を行わなければならず,その際にこの詰まりは一層懸念された。   For high-accuracy measurement, it is necessary to measure the sample with high accuracy, and in a disposable sensor chip, this is realized by filling the sample in a measuring part defined by a physical shape (Patent Document 1). However, there was concern about clogging of specimens in the bottleneck that is often used to define the physical shape. Furthermore, in order to measure a plurality of items, it is necessary to divide the specimen, for example, to perform measurement with high accuracy a plurality of times, and this clogging is further concerned.

本発明のセンサチップは,圧力調整機構と複数の装置側流体接続部を備える測定装置の前記複数の装置側流体接続部にそれぞれ接続される複数の流体接続部を有し,測定装置と組み合わせて使用される。   The sensor chip of the present invention has a plurality of fluid connection portions respectively connected to the plurality of device side fluid connection portions of a measurement device including a pressure adjusting mechanism and a plurality of device side fluid connection portions, and is combined with the measurement device. used.

本発明のセンサチップは,第1の流体接続部と第2の流体接続部とを結ぶ第1の流路と,検体を導入するための検体導入口と,第1の流路に設けられた第1の分岐点と検体導入口とを結ぶ第2の流路と,第1の分岐点より第2の流体接続部寄りの位置に設けられた第1の流路の第2の分岐点と第3の流体接続部とを結ぶ第3の流路とを有し,第1の流路には,第1の流体接続部と第1の分岐点との間もしくは第1の分岐点と第2の分岐点との間に検体検出部が配置されており,第3の流路には,検体導入口から導入された検体についての測定を行う測定部が配置されている。   The sensor chip of the present invention is provided in the first flow path connecting the first fluid connection portion and the second fluid connection portion, the sample introduction port for introducing the sample, and the first flow channel. A second flow path connecting the first branch point and the sample introduction port; a second branch point of the first flow path provided at a position closer to the second fluid connection portion than the first branch point; And a third flow path connecting the third fluid connection portion, and the first flow path includes the first fluid connection portion and the first branch point or the first branch point and the first flow point. A sample detection unit is disposed between the two branch points, and a measurement unit that performs measurement on the sample introduced from the sample introduction port is disposed in the third flow path.

第2の流路は,検体導入口と第1の分岐点の間に逆止弁もしくはフィルタを備えるのが好ましい。また,検体検出部は電極を備えるのが好ましい。   The second flow path preferably includes a check valve or a filter between the sample introduction port and the first branch point. Moreover, it is preferable that the specimen detection unit includes an electrode.

また,本発明のセンサチップは,廃液が導入される廃液溜を有し,検体検出部及び測定部に電極を備え,廃液溜が形成された基板の上に電極が形成された基板が配置され,電極が形成された基板の上に第1の流路,第2の流路及び第3の流路が形成された基板が配置された積層構造とすることができる。廃液溜は第1の流路につながっていない第5の流体接続部と第6の流体接続部に接続されている構造とすることができる。この場合,第1の流路の第2の流体接続部を計測装置側に設けた流路を介して第5の流体接続部に接続することで,廃液を廃液溜に導入することができる。あるいは,廃液溜は直接第1の流路に接続する構造としてもよい。   In addition, the sensor chip of the present invention has a waste liquid reservoir into which waste liquid is introduced, includes an electrode in the specimen detection unit and the measurement unit, and the substrate on which the electrode is formed is disposed on the substrate on which the waste liquid reservoir is formed. , A laminated structure in which the substrate on which the first channel, the second channel, and the third channel are formed is disposed on the substrate on which the electrode is formed. The waste liquid reservoir can be structured to be connected to the fifth fluid connection portion and the sixth fluid connection portion that are not connected to the first flow path. In this case, the waste liquid can be introduced into the waste liquid reservoir by connecting the second fluid connection part of the first flow path to the fifth fluid connection part via the flow path provided on the measuring device side. Alternatively, the waste liquid reservoir may be directly connected to the first flow path.

本発明の測定装置は,第1の流体接続部と第2の流体接続部とを結ぶ第1の流路と,検体を導入するための検体導入口と,第1の流路に設けられた第1の分岐点と検体導入口とを結ぶ第2の流路と,第1の分岐点より第2の流体接続部寄りの位置に設けられた第1の流路の第2の分岐点と第3の流体接続部とを結ぶ第3の流路と,第1の流路に接続された圧力調整機構と,第3の流体接続部に接続された試薬導入機構と,装置各部の動作を制御する制御部とを有し,第1の流路には,第1の流体接続部と第1の分岐点との間もしくは第1の分岐点と第2の分岐点との間に検体検出部が配置されており,第3の流路には,検体導入口から導入された検体についての測定を行う測定部が配置されており,制御部は,圧力制御機構を制御して検体を検体導入口から検体検出部に向けて第1の流路内に吸引し,検体検出部が検体を検出したとき圧力制御機構による吸引を停止し,次に圧力制御機構を制御して第1の流路に導入された検体を第3の流路に搬送し,その後,試薬導入機構を制御して第3の流路に試薬を導入する制御を行う。   The measuring device of the present invention is provided in the first flow path connecting the first fluid connection portion and the second fluid connection portion, the sample introduction port for introducing the sample, and the first flow channel. A second flow path connecting the first branch point and the sample introduction port; a second branch point of the first flow path provided at a position closer to the second fluid connection portion than the first branch point; The third flow path connecting the third fluid connection section, the pressure adjusting mechanism connected to the first flow path, the reagent introduction mechanism connected to the third fluid connection section, and the operation of each part of the apparatus A control unit for controlling, and the first flow path includes a specimen detection between the first fluid connection unit and the first branch point or between the first branch point and the second branch point. And a measurement unit for measuring the sample introduced from the sample introduction port is disposed in the third flow path, and the control unit controls the pressure control mechanism to control the sample. Aspiration into the first channel from the body introduction port toward the sample detection unit, and when the sample detection unit detects the sample, the suction by the pressure control mechanism is stopped, and then the pressure control mechanism is controlled to control the first The sample introduced into the flow path is transported to the third flow path, and then the reagent introduction mechanism is controlled to control the introduction of the reagent into the third flow path.

一例として,圧力制御機構は第1の流体接続部に接続された吸引吐出ポンプとすることができる。その場合,制御部は,吸引吐出ポンプを吸引動作させて検体を第1の流路内に吸引し,吸引吐出ポンプを吐出動作させて検体を第3の流路内に吐出させる。   As an example, the pressure control mechanism may be a suction / discharge pump connected to the first fluid connection. In this case, the control unit causes the suction / discharge pump to perform a suction operation to suck the sample into the first channel, and causes the suction / discharge pump to perform a discharge operation to discharge the sample into the third channel.

また,本発明による測定方法は,第1の流路に第2の流路を介して接続された検体導入口から検体を第1の流路に吸引する工程と,第1の流路に設けられた検体検出部が検体を検出したとき吸引を停止して規定量の検体を第1の流路に導入する工程と,第1の流路に圧力をかけて規定量の検体を,第1の流路に接続された測定部を有する第2の流路に導入する工程と,測定部に試薬を供給する工程と,測定部で測定を行う工程と,を有する。   In addition, the measurement method according to the present invention includes a step of sucking a sample into the first channel from a sample inlet connected to the first channel via the second channel, and the first channel. A step of stopping the aspiration and introducing a prescribed amount of the sample into the first flow path when the detected specimen detection unit detects the specimen, and applying a pressure to the first flow path to remove the prescribed amount of the sample from the first flow path. A step of introducing into a second flow path having a measurement unit connected to the flow path, a step of supplying a reagent to the measurement unit, and a step of measuring in the measurement unit.

本発明のセンサチップは,流路と,検体を流路に導入するための検体導入口と,流路に配置された電極と,電極の上流と下流に配置された捕捉物質とを有することを特徴とする。   The sensor chip of the present invention includes a flow channel, a sample introduction port for introducing a sample into the flow channel, an electrode disposed in the flow channel, and a capture substance disposed upstream and downstream of the electrode. Features.

捕捉物質としては,非糖化タンパク質と糖化タンパク質に共通の部位を認識する抗体を用いることができる。当該糖化タンパク質は,HbA1cもしくはグリコアルブミンとすることができる。また,センサチップには,流路に接続された廃液溜を備えるのが好ましい。さらに,検体導入口は検体保持部を備えることができる。   As a capture substance, an antibody that recognizes a site common to non-glycated protein and glycated protein can be used. The glycated protein can be HbA1c or glycoalbumin. The sensor chip preferably includes a waste liquid reservoir connected to the flow path. Further, the sample introduction port can include a sample holding unit.

さらに,糖化タンパク質の測定方法を開示する。測定方法は,非糖化タンパク質と糖化タンパク質に共通の部位を認識する抗体と,糖化部を認識する酵素標識抗体とを用いて,電位測定により検体中の糖化タンパク質の糖化割合を定量化することを特徴とする。   Furthermore, the measuring method of glycated protein is disclosed. The measurement method consists of quantifying the glycation ratio of glycated protein in a sample by measuring the potential using an antibody that recognizes a site common to non-glycated protein and glycated protein and an enzyme-labeled antibody that recognizes the glycated portion. Features.

ここで,本糖化タンパク質の測定方法では,抗体が固相に固定化された固定化抗体であり,固相に検体を供給する工程,試料液中の糖化タンパク質を固定化抗体に結合させる工程,固相に酵素標識抗体を供給する工程,酵素標識抗体を抗体に結合した糖化タンパク質に結合させて固定化抗体―糖化タンパク質―酵素標識抗体複合体を形成する工程,固相に基質を供給する工程,基質を複合体の酵素と反応させて反応産物を生成させる工程,電位測定により反応産物の濃度を測定する工程,反応産物の濃度を試料液中の糖化タンパク質濃度に換算する工程を有することができる。   Here, in the method for measuring glycated protein, the antibody is an immobilized antibody immobilized on a solid phase, a step of supplying a specimen to the solid phase, a step of binding a glycated protein in a sample solution to the immobilized antibody, Supplying an enzyme-labeled antibody to the solid phase, binding the enzyme-labeled antibody to the glycated protein bound to the antibody to form an immobilized antibody-glycated protein-enzyme-labeled antibody complex, supplying the substrate to the solid phase , Having a step of reacting a substrate with a complex enzyme to produce a reaction product, a step of measuring the concentration of the reaction product by measuring potential, and a step of converting the concentration of the reaction product into a glycated protein concentration in the sample solution it can.

本発明によると,物理形状ではなく流路上に設けた検体検出部を用いて検体の計量を行うことで,隘路部などの検体を物理的に阻害する構成を必要最小限として検体を高精度に計量できるため,詰まりを予防することができる。   According to the present invention, the sample is measured using the sample detection unit provided on the flow path instead of the physical shape, so that the configuration of physically obstructing the sample such as a bottleneck is minimized, and the sample is accurately obtained. Because it can be measured, clogging can be prevented.

上記した以外の,課題,構成及び効果は,以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

センサチップの一例を示す概略図。Schematic which shows an example of a sensor chip. 計測装置とセンサチップの一例を示す概略図。Schematic which shows an example of a measuring device and a sensor chip. 測定手順の一例を示すフローチャート。The flowchart which shows an example of a measurement procedure. センサチップを測定装置にセットした状態を示す図。The figure which shows the state which set the sensor chip to the measuring apparatus. 電気的検出器によって構成された検体検出部の例を示す図。The figure which shows the example of the sample detection part comprised by the electrical detector. 複数の検体検出部を配置した例を示す図。The figure which shows the example which has arrange | positioned the some sample detection part. 測定部の例を示す図。The figure which shows the example of a measurement part. センサチップの流路を酵素などで修飾する方法の一例を示す模式図。The schematic diagram which shows an example of the method of modifying the flow path of a sensor chip with an enzyme. 検体検出部の別の配置例を示す概略図。Schematic which shows another example of arrangement | positioning of a sample detection part. 測定装置とセンサチップの別の例を示す概略図。Schematic which shows another example of a measuring device and a sensor chip. センサチップの一例を示す概略図。Schematic which shows an example of a sensor chip. センサチップの他の例を示す概略図。Schematic which shows the other example of a sensor chip. センサチップの他の例を示す模式図。The schematic diagram which shows the other example of a sensor chip. 測定装置にセンサチップを装着した状態の一例を示す模式図。The schematic diagram which shows an example of the state which mounted | wore the measuring apparatus with the sensor chip. 計測装置とセンサチップの一例を示す概略図。Schematic which shows an example of a measuring device and a sensor chip. GA/アルブミン比の測定の概略を示した図。The figure which showed the outline of the measurement of GA / albumin ratio. GA/アルブミン比を測定する手順の概略を示した図。The figure which showed the outline of the procedure which measures GA / albumin ratio. 抗ヒトアルブミン抗体固定固相で一定量のヒトアルブミンが捕捉できることを示した図。The figure which showed that a fixed amount of human albumin could be capture | acquired by the anti-human albumin antibody fixed solid phase. 総アルブミン濃度への依存を小さく抑えてGA/アルブミン比を検出できることを示した図。The figure which showed that the GA / albumin ratio could be detected with a small dependence on the total albumin concentration. GA/アルブミン比とGA・抗GA抗体複合体の濃度の関係を理論的に算出した図。The figure which calculated theoretically the relationship between GA / albumin ratio and the density | concentration of GA and an anti- GA antibody complex. 抗ヒトアルブミン抗体を検出用抗体として用いてヒトアルブミン量を補正する方法を示した図。The figure which showed the method of correct | amending the amount of human albumins using an anti-human albumin antibody as a detection antibody. GA/アルブミン比測定用のセンサチップの一例を示す図。The figure which shows an example of the sensor chip for GA / albumin ratio measurement. センサチップで測定を行うための装置の一例を示す図。The figure which shows an example of the apparatus for measuring with a sensor chip. グリコアルブミン測定キットの概要を示す図。The figure which shows the outline | summary of a glycoalbumin measuring kit. センサチップで測定を行うための装置の外観を示す図。The figure which shows the external appearance of the apparatus for measuring with a sensor chip. センサチップと装置を用いた測定方法の一例を示す図。The figure which shows an example of the measuring method using a sensor chip and an apparatus. センサチップ流路への検体の導入方法を示す図。The figure which shows the introduction method of the test substance to a sensor chip flow path. 電気化学センサを用いた電位測定方法を示す図。The figure which shows the electric potential measurement method using an electrochemical sensor. 電位計測用電極と抗体固定部位の位置関係の例を示す図。The figure which shows the example of the positional relationship of the electrode for electric potential measurement, and an antibody fixed part. HbA1c/ヘモグロビン比の測定結果の一例を示す図。The figure which shows an example of the measurement result of HbA1c / hemoglobin ratio.

以下,図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は,本発明のセンサチップの一例を示す概略図である。センサチップ3001は後述する計測装置を用いて測定を行う。センサチップ3001は,計測装置と接続される流体接続部3011,3012,3013,検体が供給される検体導入口3014,計測装置と接続される信号接続部3021を有する。流体接続部3011,3012,3013及び検体導入口3014には流路3024,3025,3026,3027,3028,3029が接続されている。また,それぞれの流路は分岐点3022,3023で接続されている。検体導入口3014に接続されている流路3028には,検体保持部3016が配置されている。検体保持部3016は,検体導入口3014に接するように外側に配置されていてもよい。センサチップ3001の流路,例えば流路3026上には測定部3017が配置されている。測定部3017の上流と下流には,抗体などの補足物質3018が配置されている。好ましくは,センサチップ3001は廃液溜3019を有する。好ましくは,廃液溜3019内には液体吸収体3020が配置されている。   FIG. 1 is a schematic view showing an example of a sensor chip of the present invention. The sensor chip 3001 performs measurement using a measurement device described later. The sensor chip 3001 includes fluid connection portions 3011, 3012, 3013 connected to the measurement device, a sample introduction port 3014 to which a sample is supplied, and a signal connection portion 3021 connected to the measurement device. Channels 3024, 3025, 3026, 3027, 3028, and 3029 are connected to the fluid connection portions 3011, 3012, 3013 and the sample introduction port 3014. Each flow path is connected at branch points 3022 and 3023. A sample holding unit 3016 is disposed in the flow path 3028 connected to the sample introduction port 3014. The sample holder 3016 may be disposed on the outside so as to contact the sample introduction port 3014. A measurement unit 3017 is disposed on the flow path of the sensor chip 3001, for example, the flow path 3026. A supplementary substance 3018 such as an antibody is disposed upstream and downstream of the measurement unit 3017. Preferably, the sensor chip 3001 has a waste liquid reservoir 3019. Preferably, a liquid absorber 3020 is disposed in the waste liquid reservoir 3019.

図2は,計測装置101と,計測装置101に組み込まれて使用されるセンサチップ102の一例を示す概略図である。   FIG. 2 is a schematic diagram illustrating an example of the measurement device 101 and a sensor chip 102 that is used by being incorporated in the measurement device 101.

計測装置101は,制御部111,計測部112,流体接続部113,114,115,116,117,信号接続部135を有する。流体接続部113には吸引吐出ポンプ118が配管で接続されている。流体接続部114,115,116にはバルブ119,124,129が接続され,バルブは「閉」,「大気開放」もしくは「試薬供給」を切り替えられる。流体接続部114,115,116は,バルブ119,124,129を「試薬供給」に設定すると,第一試薬121,126,131を供給するためのポンプ120,125,130,又は第二試薬123,128,133を供給するためのポンプ122,127,132に接続される。流体接続部117には,バルブ134が接続され,バルブ134は「閉」と「大気開放」に切り替えられる。   The measuring apparatus 101 includes a control unit 111, a measuring unit 112, fluid connecting units 113, 114, 115, 116, 117, and a signal connecting unit 135. A suction / discharge pump 118 is connected to the fluid connection portion 113 by piping. Valves 119, 124, and 129 are connected to the fluid connection portions 114, 115, and 116, and the valves can be switched between “closed”, “open to atmosphere”, and “reagent supply”. When the valves 119, 124, and 129 are set to “reagent supply”, the fluid connection parts 114, 115, and 116 are pumps 120, 125, and 130 for supplying the first reagent 121, 126, and 131, or the second reagent 123. , 128, 133 are connected to pumps 122, 127, 132. A valve 134 is connected to the fluid connection portion 117, and the valve 134 is switched between “closed” and “atmospheric release”.

吸引吐出ポンプ118やバルブ119,124,129,134は圧力調整機構を構成する。また,バルブ119,124,129,ポンプ120,125,130,122,127,132,第一試薬121,126,131,第二試薬123,128,133は試薬供給機構を構成する。   The suction / discharge pump 118 and the valves 119, 124, 129, and 134 constitute a pressure adjusting mechanism. Valves 119, 124, 129, pumps 120, 125, 130, 122, 127, 132, first reagents 121, 126, 131, and second reagents 123, 128, 133 constitute a reagent supply mechanism.

センサチップ102は,計測装置101の流体接続部113,114,115,116,117と接続される流体接続部141,142,143,144,145,検体が供給される検体導入口146,計測装置の信号接続部135と接続される信号接続部157を有する。流体接続部141,142,143,144,145(流体接続部141は第1の流体接続部,流体接続部145は第2の接続部,流体接続部142は第3の接続部,流体接続部143は第4の流体接続部に相当)及び検体導入口146には流路171〜180が接続されており,流体接続部141に接続されている流路171上には検体の到達を検知する検体検出部147が配置されている。ここで,流体接続部141と流体接続部145を結ぶ流路171〜176は第1の流路に,分岐点161は第1の分岐点に,検体導入口146と分岐点161を結ぶ流路177は第2の流路に,分岐点162は第2の分岐点に,流体接続部142と分岐点162を結ぶ流路178は第3の流路に,分岐点163は第3の分岐点に,流体接続部143と分岐点163を結ぶ流路179は第4の流路に相当する。また,流体接続部142と分岐点162を接続する流路178上には検体の到達を検知する検体検出部149及び測定部150が,流体接続部143と分岐点163を接続する流路179上には検体の到達を検知する検体検出部151及び測定部152が,流体接続部144と分岐点164を接続する流路180上には検体の到達を検知する検体検出部153及び測定部154が配置されている。検体導入口146と分岐点161を接続する流路177上には逆止弁148が配置されている。センサチップ102は廃液溜155を有し,廃液溜155の配置位置に特に限定はないが,図2のセンサチップでは一例として,廃液溜155は,一端が分岐点164に接続される流路175に,もう一端が流路176により流体接続部145に接続されている。また,これらの流路175,176から分岐する流路を設けてその分岐した流路に廃液溜を接続してもよい。この場合,廃液溜は閉鎖系としてもかまわないが,さらに別の流路を設けて,廃液を排出できる構造としてもよい。廃液溜155内には,必要に応じて,図2に示すように液体吸収体156を配置してもよい。検体検出部147,149,151,153及び測定部150,152,154は信号接続部157に接続されている。   The sensor chip 102 includes a fluid inlet 141, 142, 143, 144, 145, a specimen inlet 146 to which a specimen is supplied, and a measuring device connected to the fluid connectors 113, 114, 115, 116, 117 of the measuring device 101. The signal connection unit 157 is connected to the signal connection unit 135. Fluid connection portions 141, 142, 143, 144, and 145 (the fluid connection portion 141 is the first fluid connection portion, the fluid connection portion 145 is the second connection portion, the fluid connection portion 142 is the third connection portion, and the fluid connection portion. 143 corresponds to the fourth fluid connection portion) and the sample introduction port 146 are connected to channels 171 to 180, and the arrival of the sample is detected on the channel 171 connected to the fluid connection portion 141. A specimen detection unit 147 is arranged. Here, the flow paths 171 to 176 connecting the fluid connection part 141 and the fluid connection part 145 are the first flow path, the branch point 161 is the first branch point, and the flow path connecting the sample introduction port 146 and the branch point 161. 177 is the second flow path, the branch point 162 is the second branch point, the flow path 178 connecting the fluid connection 142 and the branch point 162 is the third flow path, and the branch point 163 is the third branch point. In addition, the flow path 179 connecting the fluid connection portion 143 and the branch point 163 corresponds to a fourth flow path. In addition, on the flow path 178 that connects the fluid connection section 142 and the branch point 162, the sample detection section 149 and the measurement section 150 that detect the arrival of the sample are on the flow path 179 that connects the fluid connection section 143 and the branch point 163. The sample detection unit 151 and the measurement unit 152 that detect the arrival of the sample include the sample detection unit 153 and the measurement unit 154 that detect the arrival of the sample on the flow path 180 that connects the fluid connection unit 144 and the branch point 164. Has been placed. A check valve 148 is disposed on the flow path 177 connecting the sample introduction port 146 and the branch point 161. The sensor chip 102 has a waste liquid reservoir 155, and the position of the waste liquid reservoir 155 is not particularly limited. However, as an example in the sensor chip of FIG. 2, the waste liquid reservoir 155 has a flow path 175 whose one end is connected to the branch point 164. Further, the other end is connected to the fluid connection portion 145 by a flow path 176. Further, a flow path branched from these flow paths 175 and 176 may be provided, and a waste liquid reservoir may be connected to the branched flow path. In this case, the waste liquid reservoir may be a closed system, but a separate flow path may be provided to discharge the waste liquid. In the waste liquid reservoir 155, a liquid absorber 156 may be arranged as shown in FIG. The specimen detection units 147, 149, 151, 153 and the measurement units 150, 152, 154 are connected to the signal connection unit 157.

流路178〜180の測定部150,152,154付近には,検体中の測定対象に対応したプローブ,例えば抗体を固定化しておく。また,第一試薬121,126,131は測定対象に対応した標識プローブ例えば酵素標識抗体を有する。そして,第二試薬123,128,133は標識プローブの標識と反応する物質(基質)を有する。これら固定化抗体,酵素標識抗体,基質により酵素結合免疫吸着法(ELISA;Enzyme-Linked ImmunoSorbant Assay)と同様の手法により各測定部で所望の測定対象を測定できる。   In the vicinity of the measurement units 150, 152, and 154 of the channels 178 to 180, a probe corresponding to the measurement target in the sample, for example, an antibody is immobilized. The first reagents 121, 126, and 131 have a labeled probe corresponding to the measurement target, for example, an enzyme labeled antibody. The second reagents 123, 128, and 133 have a substance (substrate) that reacts with the label of the labeled probe. With these immobilized antibodies, enzyme-labeled antibodies, and substrates, a desired measurement target can be measured at each measurement unit by the same technique as enzyme-linked immunosorbent assay (ELISA).

図3は,図2に示した測定装置101とセンサチップ102を用いた測定手順の一例を示すフローチャートである。まず,使用者はセンサチップ102を測定装置101にセットする(S201)。これにより,図4に示すように,測定装置101の流体接続部113,114,115,115,117はセンサチップ102の流体接続部141,142,143,144,145と接続され,測定装置101の信号接続部135はセンサチップ102の信号接続部157と接続される。続いて,使用者は検体導入口146に検体をセットする(S202)。採血管に適合するようになっている検体導入口146に採血管401をセットする。   FIG. 3 is a flowchart showing an example of a measurement procedure using the measurement apparatus 101 and the sensor chip 102 shown in FIG. First, the user sets the sensor chip 102 to the measuring device 101 (S201). As a result, as shown in FIG. 4, the fluid connecting portions 113, 114, 115, 115, 117 of the measuring device 101 are connected to the fluid connecting portions 141, 142, 143, 144, 145 of the sensor chip 102, and the measuring device 101 The signal connection unit 135 is connected to the signal connection unit 157 of the sensor chip 102. Subsequently, the user sets a sample in the sample introduction port 146 (S202). The blood collection tube 401 is set in the sample introduction port 146 adapted to the blood collection tube.

使用者の操作により測定が開始される(S203)と,これ以降の動作は測定装置101の制御部111から各部への指示に基づいて自動的に行われる。制御部111からの指示でバルブ119,124,129,134が閉じられ(S204),吸引吐出ポンプ118が吸引動作をする(S205)ことで,検体が検体導入口146と流体接続部141を結ぶ流路171に吸引される。制御部111は,検体検出部147まで検体が吸引されたことを検知して(S206)吸引吐出ポンプ118を停止させることで(S207),検体検出部147まで検体を導入することができる。   When measurement is started by a user's operation (S203), the subsequent operations are automatically performed based on instructions from the control unit 111 of the measurement apparatus 101 to each unit. The valves 119, 124, 129, and 134 are closed by an instruction from the control unit 111 (S204), and the suction / discharge pump 118 performs a suction operation (S205), so that the sample connects the sample introduction port 146 and the fluid connection unit 141. It is sucked into the channel 171. The control unit 111 can introduce the sample to the sample detection unit 147 by detecting that the sample has been aspirated to the sample detection unit 147 (S206) and stopping the suction / discharge pump 118 (S207).

次に,制御部111の指示によりバルブ119を開き(S208),吸引吐出ポンプ118で吐出動作を行うと(S209),逆止弁148の働きにより流路171に導入された検体は検体導入口146側には移動できないため,流路171に導入された検体は流体接続部141と流体接続部142を結ぶ流路172,178を流体接続部142に向かって移動する。このとき移動する検体の量は,流路171の分岐点161と検体検出部147との間の容量で規定される。すなわち,流路171の分岐点161と検体検出部147との間の流路は,規定量の検体を計量する計量部として機能する。規定量の検体は,流路171から分岐点162を経て流路178を流れ,制御部111は,検体検出部149まで検体が到達したことを検知して(S210)吸引吐出ポンプ118を停止させることで(S211),検体検出部149まで規定量の検体を搬送することができる。制御部111の指示によりバルブ119を閉じ(S212),流体接続部143,144につながる流路179,180においても同様のことを行うことで(S213),検体検出部151,153まで規定量の検体が搬送される。   Next, when the valve 119 is opened in accordance with an instruction from the control unit 111 (S208) and a discharge operation is performed by the suction / discharge pump 118 (S209), the sample introduced into the flow path 171 by the function of the check valve 148 becomes the sample introduction port. The specimen introduced into the flow path 171 moves toward the fluid connection section 142 through the flow paths 172 and 178 that connect the fluid connection section 141 and the fluid connection section 142 because it cannot move to the 146 side. The amount of the specimen that moves at this time is defined by the capacity between the branching point 161 of the flow path 171 and the specimen detector 147. That is, the flow path between the branch point 161 of the flow path 171 and the sample detection unit 147 functions as a measurement unit that measures a specified amount of the sample. The specified amount of sample flows from the flow channel 171 through the branch point 162 through the flow channel 178, and the control unit 111 detects that the sample has reached the sample detection unit 149 (S210) and stops the suction / discharge pump 118. Thus (S211), a specified amount of sample can be transported to the sample detection unit 149. The valve 119 is closed by an instruction from the control unit 111 (S212), and the same is performed in the flow paths 179 and 180 connected to the fluid connection units 143 and 144 (S213), so that a predetermined amount of the sample detection units 151 and 153 can be obtained. The sample is transported.

制御部111は,搬送された検体中の測定対象物質と測定部150,152,154付近に固定化されたプローブを反応させるため,規定の時間待機する(S214)。次に,制御部111は,バルブ134を開き(S215),バルブ119を開き(S216),ポンプ120で第一試薬121を供給することで(S217),流体接続部142から測定部150を経由して廃液溜155に第一試薬121を流す。分岐点162と流体接続部141を結ぶ流路171には,流体接続部141側に吸引吐出ポンプが接続されているため流れない。これにより,測定部150付近に固定化されたプローブと結合した成分以外の検体成分が洗い流されるとともに,測定部150付近に第一試薬に含まれる標識プローブが供給される。また,廃液溜に流入した検体成分及び第一試薬は液体吸収体156に吸収される。   The control unit 111 waits for a specified time in order to cause the measurement target substance in the transported sample to react with the probes immobilized in the vicinity of the measurement units 150, 152, and 154 (S214). Next, the control unit 111 opens the valve 134 (S215), opens the valve 119 (S216), and supplies the first reagent 121 with the pump 120 (S217), so that the fluid connection unit 142 passes through the measurement unit 150. Then, the first reagent 121 is caused to flow into the waste liquid reservoir 155. The flow path 171 connecting the branch point 162 and the fluid connection portion 141 does not flow because the suction / discharge pump is connected to the fluid connection portion 141 side. As a result, analyte components other than the component bound to the probe immobilized in the vicinity of the measurement unit 150 are washed away, and the labeled probe included in the first reagent is supplied in the vicinity of the measurement unit 150. In addition, the sample component and the first reagent that have flowed into the waste liquid reservoir are absorbed by the liquid absorber 156.

制御部111は,バルブ119を閉じ(S218),流体接続部143,144につながる流路179,180においても同様のことを行うことで(S219),測定部152,154付近においても固定化プローブと結合しなかった検体成分の洗浄及び各第一試薬126,131に含まれる標識プローブの供給を行う。制御部111は,供給された各第一試薬121,126,131に含まれる標識プローブと測定部150,152,154付近に固定化されたプローブに結合した検体成分とを反応させるため,規定の時間待機する(S220)。   The control unit 111 closes the valve 119 (S218), and does the same in the flow paths 179 and 180 connected to the fluid connection units 143 and 144 (S219), so that the immobilized probe is also near the measurement units 152 and 154. The sample components that have not been bound to each other are washed and the labeled probes contained in the first reagents 126 and 131 are supplied. Since the control unit 111 reacts the labeled probe included in each of the supplied first reagents 121, 126, and 131 with the analyte component bound to the probe immobilized in the vicinity of the measurement units 150, 152, and 154, the control unit 111 Wait for time (S220).

制御部111は,再びバルブ119を開き(S221),第一試薬121と同様に第二試薬123をポンプ122で供給することで(S222),流体接続部142から測定部150を経由して廃液溜155に第二試薬121を流す。これにより,未結合の標識プローブが洗い流されるとともに,測定部150付近に第二試薬に含まれる基質が供給される。また,第一試薬及び第二試薬は液体吸収体156に吸収される。次に,制御部111はバルブ119を閉じ(S223),流体接続部143,144につながる流路179,180においても同様のことを行うことで(S224),測定部152,154付近においても未結合の標識プローブが洗い流されるとともに第二試薬に含まれる基質が供給される。制御部111は,供給された各第二試薬123,128,133に含まれる基質と固定化プローブ−検体成分−標識プローブの結合体の標識とを反応させて反応産物を生成させるため,規定の時間待機する(S225)。   The control unit 111 opens the valve 119 again (S221), and supplies the second reagent 123 with the pump 122 in the same manner as the first reagent 121 (S222), so that the waste liquid passes through the measuring unit 150 from the fluid connection unit 142. The second reagent 121 is poured into the reservoir 155. Thereby, the unbound labeled probe is washed away, and the substrate contained in the second reagent is supplied in the vicinity of the measurement unit 150. Further, the first reagent and the second reagent are absorbed by the liquid absorber 156. Next, the control unit 111 closes the valve 119 (S223), and does the same in the flow paths 179 and 180 connected to the fluid connection units 143 and 144 (S224), so that the measurement unit 152 and 154 are not. The bound labeled probe is washed away and the substrate contained in the second reagent is supplied. The control unit 111 reacts the substrate contained in each of the supplied second reagents 123, 128, and 133 with the label of the immobilized probe-analyte component-labeled probe conjugate to generate a reaction product. Wait for time (S225).

制御部111は,反応産物を各測定部150,152,154で計測し(S226),計測部112において各測定部で得られた信号から測定対象物質の量を算出し(S227),表示や印字により使用者に結果を伝える。使用者はセンサチップ102を測定装置101から取り外し,廃棄する(S228)。   The control unit 111 measures the reaction product by each measurement unit 150, 152, 154 (S226), calculates the amount of the measurement target substance from the signal obtained by each measurement unit in the measurement unit 112 (S227), The result is communicated to the user by printing. The user removes the sensor chip 102 from the measuring apparatus 101 and discards it (S228).

このように検体検出部の検知信号をもとにポンプやバルブを用いて流路の圧力制御を行うことで,複数回一定量の検体を高精度に計量吐出できる。また,液体吸収体を配置した廃液溜を測定部の下流に設けることで,物理形状による阻害を必要最小限として複数回の測定を行う際に懸念される液の逆流を予防することができる。   Thus, by controlling the pressure of the flow path using a pump or a valve based on the detection signal of the sample detection unit, a certain amount of sample can be metered and discharged with high accuracy multiple times. In addition, by providing a waste liquid reservoir in which the liquid absorber is arranged downstream of the measurement unit, it is possible to prevent back flow of liquid that is a concern when performing multiple measurements with the minimum necessary obstruction due to physical shape.

図1,2では検体導入口を流体接続部とは別のものとしたが,既存の若しくは別途設けた流体接続部を検体導入口として用いることもできる。   In FIGS. 1 and 2, the sample introduction port is different from the fluid connection portion, but an existing or separately provided fluid connection portion can also be used as the sample introduction port.

図3のフローチャートでは2種類の試薬を供給する場合について説明をしたものの,試薬が1種類であっても,3種類以上であってもよく,また外部から試薬を供給せずにセンサチップや流路中に試薬が保持されていてもよい。また,免疫を用いた測定方法について説明をしたものの,酵素などの他の化学反応を用いた測定方法であってもよい。   In the flowchart of FIG. 3, the case where two types of reagents are supplied has been described. However, the number of reagents may be one or three or more. A reagent may be held in the path. Moreover, although the measuring method using immunity was demonstrated, the measuring method using other chemical reactions, such as an enzyme, may be sufficient.

図2の構成において図3の手順で測定を行うことで,加えて次のような利点も得られる。検体の計量にピペッターなどの分注吐出機構を用いる場合と比較して,機構を簡素化することができ,測定装置をより小型にすることができる。微細な流路で検体の計量を行うことができるため,検体量をより低減することができる。検体を分割することで,複数項目の測定だけでなく,比較参照データの取得を行うこともできる。検体の搬送がセンサチップ内で閉じているため,検体による汚染リスクを低減したり,キャリーオーバーによる測定誤差を低減したりできる。採血管から直接検体を吸引するため,使用者が採血管から検体を吐出する手間や,そのときに生じる検体飛散による汚染リスクを低減できる。   In the configuration shown in FIG. 2, the following advantages can be obtained by performing the measurement according to the procedure shown in FIG. The mechanism can be simplified and the measuring apparatus can be made smaller compared to the case of using a dispensing discharge mechanism such as a pipetter for measuring the sample. Since the sample can be measured in a fine channel, the amount of the sample can be further reduced. By dividing the sample, not only measurement of a plurality of items but also comparison reference data can be acquired. Since the transport of the specimen is closed in the sensor chip, it is possible to reduce the risk of contamination due to the specimen and to reduce the measurement error due to carry-over. Since the sample is aspirated directly from the blood collection tube, it is possible to reduce the trouble of the user discharging the sample from the blood collection tube and the risk of contamination due to the sample scattering.

検体検出部147,149,151,153には,光学的検出器,電気的検出器,圧力検出器などを用いることができる。   For the specimen detection units 147, 149, 151, and 153, an optical detector, an electrical detector, a pressure detector, or the like can be used.

光学的検出器としては,ハロゲンランプ,発光ダイオード,レーザーダイオードなどの光源と,スリット,レンズなどの光学素子,光電子増倍管,フォトダイオードなどの受光素子を組み合わせて,検体の有無による反射光量,透過光量の違いを検出する。検体検出の精度は光を照射するスポットに依存する。例えば,深さ100μm,幅1mmの流路に直径0.8mmのスポットを照射した場合,深さと幅と直径を掛け合わせた0.08μl程度の精度となる。   Optical detectors include light sources such as halogen lamps, light-emitting diodes, and laser diodes, and optical elements such as slits and lenses, photomultiplier tubes, and light-receiving elements such as photodiodes. A difference in the amount of transmitted light is detected. The accuracy of specimen detection depends on the spot that is irradiated with light. For example, when a spot having a diameter of 0.8 mm is irradiated to a flow path having a depth of 100 μm and a width of 1 mm, the accuracy is about 0.08 μl obtained by multiplying the depth, width, and diameter.

計測装置は,圧力検出器を有していてもよい。図4には一例として,流路を隘路とし,吸引吐出ポンプ118と流体接続部113の配管内の圧力を測定する圧力計1601を設けた。吸引吐出ポンプ118で検体の吸引を行い検体が隘路部まで到達すると,隘路部による圧力損失分だけ圧力が変化する。この圧力変化を圧力計で検知することで検体の到達を検知する。フローチャートのステップ209に示したように,この後で吸引吐出ポンプ118は吐出動作をするため,意図的に隘路部を超えて検体を吸引することは行わない。そのため,従来の隘路部を用いた検体の計量で懸念された詰まりの可能性を低く抑えることができる。検体検出の精度は,圧力検知に必要な隘路部の長さに依存する。例えば,深さ100μm,隘路部幅0.1mmの流路において5mmの隘路部で圧力検知を行った場合,深さと幅と隘路部の長さを掛け合わせた0.05μl程度の精度となる。このように隘路部などの検体を物理的に阻害する構成を用いる場合においても,検体が隘路部を通過することのない構成とすることで詰まりを予防することができる。   The measuring device may have a pressure detector. In FIG. 4, as an example, a pressure gauge 1601 that measures the pressure in the piping of the suction / discharge pump 118 and the fluid connection portion 113 is provided with a flow path as a bottleneck. When the sample is aspirated by the suction / discharge pump 118 and reaches the bottleneck part, the pressure changes by the pressure loss due to the bottleneck part. By detecting this pressure change with a pressure gauge, the arrival of the specimen is detected. As shown in step 209 of the flowchart, since the suction / discharge pump 118 performs a discharge operation thereafter, the sample is not intentionally sucked beyond the bottleneck. Therefore, the possibility of clogging that has been a concern in the measurement of specimens using a conventional bottleneck portion can be kept low. The accuracy of specimen detection depends on the length of the bottleneck required for pressure detection. For example, when pressure is detected in a 5 mm narrow passage in a flow path having a depth of 100 μm and a narrow passage width of 0.1 mm, the accuracy is about 0.05 μl obtained by multiplying the depth, width, and length of the narrow passage. Even in the case of using a configuration that physically obstructs the sample such as the bottleneck portion in this way, clogging can be prevented by adopting a configuration in which the sample does not pass through the bottleneck portion.

電気的検出器としては,電極,電源,電流計を組み合わせて,検体の有無による電極に流れる電流量の違いを検出する。例えば,図5に示すように,流路上に一組の銀塩化銀電極を配置し,交流電源と電流計を接続する。図5(a)は流路の平面の別の位置に電極801,802を配置した場合の例を示し,図5(b)は流路を挟み込むように電極803,804を配置した場合の例を示している。   As an electrical detector, an electrode, a power source, and an ammeter are combined to detect the difference in the amount of current flowing through the electrode depending on the presence or absence of the specimen. For example, as shown in FIG. 5, a pair of silver chloride electrodes are arranged on the flow path, and an AC power source and an ammeter are connected. FIG. 5A shows an example in which the electrodes 801 and 802 are arranged at different positions on the plane of the channel, and FIG. 5B shows an example in which the electrodes 803 and 804 are arranged so as to sandwich the channel. Is shown.

銀塩化銀電極上に検体が存在しない場合,電流はほとんど流れない。例えば右側から検体が導入されてきて右,左の銀塩化銀電極の順で検体に接触する場合,左の銀塩化銀電極が検体に接触すると検体によって銀塩化銀電極間が電気的に接続され,電流が流れる。検体が吐出されると銀塩化銀電極間の電気的な接続が切れ,再び電流が流れなくなる。従って,複数回の計量に必要な複数回の検出を行うことができる。また,吐出の際に電極表面及び流路表面に若干量の検体が残存することがあるため,銀塩化銀電極間の距離が近いと残存した検体により銀塩化銀電極間に電流が流れることがある。これは検体検出の精度を低下させる要因となるため,銀塩化銀電極間の距離を流路の幅程度離しておくことでこれを抑制するのが良い。銀塩化銀電極以外にも,金,白金などの貴金属電極や,カーボン電極を用いても良い。検体検出の精度は電極の大きさに依存する。例えば,深さ100μm,幅1mmの流路に0.5mm×0.5mmの電極を配置した場合,深さと幅と電極の大きさを掛け合わせた0.05μl程度の精度となる。   When there is no specimen on the silver chloride electrode, almost no current flows. For example, when a specimen is introduced from the right side and contacts the specimen in the order of right and left silver-silver chloride electrodes, the silver-silver chloride electrode is electrically connected by the specimen when the left silver-silver chloride electrode contacts the specimen. , Current flows. When the specimen is ejected, the electrical connection between the silver and silver chloride electrodes is broken, and the current does not flow again. Therefore, multiple detections necessary for multiple measurements can be performed. In addition, since a small amount of specimen may remain on the electrode surface and the channel surface during ejection, current may flow between the silver and silver chloride electrodes due to the remaining specimen if the distance between the silver and silver chloride electrodes is short. is there. Since this causes a decrease in the accuracy of specimen detection, it is better to suppress this by separating the distance between the silver and silver chloride electrodes by about the width of the flow path. In addition to the silver chloride electrode, a noble metal electrode such as gold or platinum, or a carbon electrode may be used. The accuracy of analyte detection depends on the size of the electrode. For example, when an electrode of 0.5 mm × 0.5 mm is arranged in a flow path having a depth of 100 μm and a width of 1 mm, the accuracy is about 0.05 μl obtained by multiplying the depth, width, and electrode size.

複数の検体検出部を並べて配置することで,計量の精度と速度を向上させることができる。図3のフローチャートに示したように,制御部111は,検体検出部147での検体の検知(S206)をもとに吸引吐出ポンプ118での吸引を停止する(S207)。吸引吐出ポンプ118での吸引により流路の圧力は大気圧よりも若干減少し,これが原動力となって検体の吸引が行われる。一方,この圧力の減少は,吸引吐出ポンプ118内の空気及び流体接続部113との間の配管内の空気の膨張を引き起こす。吸引吐出ポンプ118が停止すると流路の圧力は大気圧とほぼ等しくなり,検体の吸引が停止する。一方,この圧力の回復は,吸引吐出ポンプ118内の空気及び流体接続部113との間の配管内で膨張した空気の収縮を引き起こす。この収縮により検体の吸引が生じるため,規定量よりも若干多い量の検体が吸引されてしまう可能性がある。例えば,深さ100μm,幅1mmの流路において2mm多く検体を吸引した場合,規定量よりも0.2μl多く検体を計量してしまう。吸引吐出ポンプ118での吸引速度を抑制することで吸引時の流路圧力低下を低減でき,検体の過剰な吸引を抑制することができるものの,吸引速度の抑制は計量に要する時間を長くしてしまう。   By arranging a plurality of specimen detection units side by side, the accuracy and speed of measurement can be improved. As shown in the flowchart of FIG. 3, the control unit 111 stops the suction by the suction / discharge pump 118 based on the detection of the sample by the sample detection unit 147 (S206) (S207). Due to the suction by the suction / discharge pump 118, the pressure in the flow path slightly decreases from the atmospheric pressure, and this serves as a driving force to suck the specimen. On the other hand, this decrease in pressure causes the air in the suction and discharge pump 118 and the air in the piping between the fluid connection 113 to expand. When the suction / discharge pump 118 stops, the pressure in the flow path becomes substantially equal to the atmospheric pressure, and the specimen suction stops. On the other hand, this pressure recovery causes contraction of the air in the suction / discharge pump 118 and the air expanded in the pipe between the fluid connection portion 113. Since the sample is aspirated by this contraction, there is a possibility that a slightly larger amount of the sample is aspirated than the prescribed amount. For example, when a specimen is aspirated by 2 mm more in a flow channel having a depth of 100 μm and a width of 1 mm, the specimen is weighed by 0.2 μl more than the specified amount. By suppressing the suction speed at the suction / discharge pump 118, it is possible to reduce a drop in the flow path pressure during suction and to suppress excessive suction of the specimen, but suppression of the suction speed increases the time required for measurement. End up.

図6に示すように,吸引吐出ポンプと接続する流体接続部と流路の交点161との間に複数の検体検出部901,902を配置することで,吸引速度と計量精度を両立させることができる。制御部111は吸引吐出ポンプ118で高速な吸引を行い,検体導入口146に近い側の検体検出部902で検体の到達を検知したら,吸引吐出ポンプ118による吸引を低速に切り替える。そして,検体導入口146から遠い側の検体検出部901での検体検知をもって計量を行う。これにより,高速な吸引による計量時間の短縮と低速な吸引による高精度な計量を両立させることができる。例えば,検体検出部901と902の距離を3mm離しておくと,検体検出部902での検体の検知の後に2mm多く検体を吸引したとしても,その後の低速な吸引で検体検出部901の検体検出の誤差範囲内に収めることができる。図5では,2つの検体検出部を設けて吸引速度と計量精度を両立させる効果が得られる例を示したが,検体検出部を3つ以上設けても良い。   As shown in FIG. 6, by arranging a plurality of sample detectors 901 and 902 between the fluid connection part connected to the suction / discharge pump and the intersection 161 of the flow path, both the suction speed and the measurement accuracy can be made compatible. it can. The control unit 111 performs high-speed suction with the suction / discharge pump 118, and switches the suction by the suction / discharge pump 118 to low speed when the sample detection unit 902 near the sample introduction port 146 detects arrival of the sample. Then, the measurement is performed by detecting the sample in the sample detection unit 901 on the side far from the sample introduction port 146. Thereby, shortening of the measurement time by high-speed suction and high-precision measurement by low-speed suction can be made compatible. For example, if the distance between the specimen detection units 901 and 902 is 3 mm away, even if a specimen is aspirated 2 mm more after the specimen detection by the specimen detection part 902, the specimen detection of the specimen detection part 901 is performed at a low speed after that. Within the error range. Although FIG. 5 shows an example in which two sample detection units are provided and the effect of achieving both the suction speed and the measurement accuracy can be obtained, three or more sample detection units may be provided.

逆止弁148としては,一般的な弁の他に,フィルタペーパーを用いることができる。検体吸引時(S205)には流体接続部141に陰圧がかかり,流体接続部142,143,144,145が閉じているため,唯一の開口部である検体導入口146からフィルタペーパーを通して流路に検体が吸引される。一方,検体吐出時(S209)には流体接続部141に陽圧がかかり,流体接続部142が大気開放されている。フィルタペーパーの圧力損失により検体導入口146には検体は押し出されず,計量した検体は流体接続部142に向かって搬送される。このように,フィルタペーパーが逆止弁と同様の働きをする。フィルタペーパーとして血球分離フィルタを用いると,全血試料を検体に用いた時に検体中の血球を除去することができる。逆止弁に替えて,隘路部とすることでも圧力損失を増大させ,同様の効果が得られる。その場合,つまりを抑制するため幅の狭い流路を複数並べるのが望ましい。   As the check valve 148, filter paper can be used in addition to a general valve. At the time of sample aspiration (S205), a negative pressure is applied to the fluid connection part 141 and the fluid connection parts 142, 143, 144, and 145 are closed, so that the flow path is passed through the filter paper from the sample introduction port 146 that is the only opening. The sample is aspirated. On the other hand, when the specimen is discharged (S209), a positive pressure is applied to the fluid connecting portion 141, and the fluid connecting portion 142 is opened to the atmosphere. The sample is not pushed out to the sample introduction port 146 due to the pressure loss of the filter paper, and the measured sample is transported toward the fluid connection unit 142. Thus, the filter paper works in the same way as a check valve. When a blood cell separation filter is used as the filter paper, blood cells in the specimen can be removed when the whole blood sample is used as the specimen. A similar effect can be obtained by replacing the check valve with a bottleneck and increasing pressure loss. In that case, it is desirable to arrange a plurality of narrow flow paths in order to suppress clogging.

測定部150,152,154には,吸光度センサ,発光センサ,蛍光センサ,表面プラズモン共鳴(SPR)センサなどの光センサ,水晶発振子マイクロバランス(QCM)センサなどの物理センサ,電流計測(WO 03/076937 A2),電位差計測(特開2008−128803号公報),イオン感応型電界効果トランジスタ(ISFET),イオン選択性電極などの電気化学センサを用いることができる。   Measurement units 150, 152, and 154 include an optical sensor such as an absorbance sensor, a light emission sensor, a fluorescence sensor, and a surface plasmon resonance (SPR) sensor, a physical sensor such as a quartz crystal microbalance (QCM) sensor, and current measurement (WO 03). / 076937 A2), electrochemical sensor such as potential difference measurement (Japanese Patent Laid-Open No. 2008-128803), ion sensitive field effect transistor (ISFET), ion selective electrode, and the like can be used.

図7は,これらの測定部の一例を示した図である。図7(a)は吸光度センサの一例を示している。1801で示された部分がセンサチップを示していて,それ以外の部分は測定装置に内蔵される光学系(レンズ,受光素子など)である。図7(b)は発光センサの一例を示している。1802で示された部分がセンサチップを示していて,それ以外の部分は測定装置に内蔵される光学系(レンズ,受光素子など)である。図7(c)は蛍光センサの一例を示している。1803で示された部分がセンサチップを示していて,それ以外の部分は測定装置に内蔵される光学系(レンズ,受光素子など)である。図7(d)はSPRセンサの一例を示している。1804で示された部分がセンサチップを示していて,それ以外の部分は測定装置に内蔵される光学系(レンズ,受光素子など)である。   FIG. 7 is a diagram showing an example of these measurement units. FIG. 7A shows an example of an absorbance sensor. A portion denoted by reference numeral 1801 represents a sensor chip, and the other portions are optical systems (lenses, light receiving elements, etc.) built in the measuring apparatus. FIG. 7B shows an example of a light emitting sensor. A portion indicated by 1802 indicates a sensor chip, and the other portions are optical systems (lenses, light receiving elements, etc.) built in the measuring apparatus. FIG. 7C shows an example of the fluorescence sensor. A portion indicated by 1803 indicates a sensor chip, and the other portions are optical systems (lenses, light receiving elements, etc.) built in the measuring apparatus. FIG. 7D shows an example of the SPR sensor. A portion indicated by 1804 indicates a sensor chip, and the other portion is an optical system (lens, light receiving element, etc.) built in the measuring apparatus.

図7(e)は,QCMセンサもしくは電気化学センサの一例を示す模式図である。測定部はセンサチップ内に配置される。1805は電極などのセンサ感応部を,1806はセンサ感応部に接続された配線を示している。配線は,センサチップと測定装置のコネクタを経由して測定装置に内蔵される制御部に電気的に接続される。これらの図を比較すると分かるように,QCMセンサや電気化学センサなどの配線で接続される測定部の場合,測定部と測定装置が電気的に接続されさえすれば良いため,比較的自由にセンサチップ内で測定部を配置することができる。   FIG. 7E is a schematic diagram showing an example of a QCM sensor or an electrochemical sensor. The measurement unit is disposed in the sensor chip. Reference numeral 1805 denotes a sensor sensitive part such as an electrode, and 1806 denotes wiring connected to the sensor sensitive part. The wiring is electrically connected to a control unit built in the measuring device via the sensor chip and the connector of the measuring device. As can be seen by comparing these figures, in the case of a measurement unit connected by wiring such as a QCM sensor or an electrochemical sensor, the measurement unit and the measurement device only need to be electrically connected, so the sensor can be relatively freely used. The measuring part can be arranged in the chip.

図8は,センサチップの流路を酵素や抗体によって修飾する方法の一例を示す模式図である。図8(a)のように,流路底部に電極1401,1402を配置し,その反対の上面を酵素や抗体1403で修飾する。これにより,流路上面で酵素反応や免疫反応が生じ,その反応の結果が電極1401,1402で測定できる。また,図8(b)のように,電極1401,1402の配置された部位とは異なる部位を酵素や抗体1403で修飾してもよい。この場合,酵素や抗体で修飾された部位で反応を生じさせた後に反応液を電極の配置された部位まで搬送し測定を行うのが良い。酵素や抗体による修飾には,物理吸着,共有結合,ビオチン−アビジン結合,ラテックスビーズなどのビーズに固定化してからそのビーズを吸着,磁気ビーズに固定化してから磁石を用いて磁気ビーズを保持する方法などを用いることができる。   FIG. 8 is a schematic diagram showing an example of a method for modifying the flow path of the sensor chip with an enzyme or an antibody. As shown in FIG. 8A, electrodes 1401 and 1402 are arranged at the bottom of the flow path, and the opposite upper surface is modified with an enzyme or an antibody 1403. Thereby, an enzyme reaction or an immune reaction occurs on the upper surface of the flow path, and the result of the reaction can be measured by the electrodes 1401 and 1402. Further, as shown in FIG. 8B, a site different from the site where the electrodes 1401 and 1402 are arranged may be modified with an enzyme or an antibody 1403. In this case, after the reaction is caused at the site modified with the enzyme or antibody, the reaction solution is transported to the site where the electrode is arranged, and the measurement is preferably performed. For modification with enzymes and antibodies, physical adsorption, covalent bond, biotin-avidin bond, immobilize on beads such as latex beads, adsorb the beads, immobilize on magnetic beads, and then hold the magnetic beads using a magnet A method or the like can be used.

図9は,検体検出部の別の配置例を示す概略図である。図2では流体接続部141と分岐点161を結ぶ流路上に検体検出部147を配置していたのに対し,図9(a)では分岐点161と廃液溜155を結ぶ流路上に検体検出部147を配置している。この場合,フローチャートのステップ205の吸引吐出ポンプ118での検体の吸引に替えて,測定装置の流体接続部117へ新たに接続した圧力調整機構としての吸引ポンプを用いて流体接続部145から吸引を行う。例えば,図9(b)のように検体が吸引される。この場合は,検体検出部147は隘路部を持たないようにする。   FIG. 9 is a schematic diagram illustrating another arrangement example of the specimen detection units. In FIG. 2, the specimen detection unit 147 is arranged on the flow path connecting the fluid connection part 141 and the branch point 161, whereas in FIG. 9A, the specimen detection unit is placed on the flow path connecting the branch point 161 and the waste liquid reservoir 155. 147 is arranged. In this case, the suction from the fluid connection unit 145 is performed by using a suction pump as a pressure adjusting mechanism newly connected to the fluid connection unit 117 of the measuring device instead of the sample suction by the suction / discharge pump 118 in step 205 of the flowchart. Do. For example, the sample is aspirated as shown in FIG. In this case, the specimen detection unit 147 does not have a bottleneck part.

図3に示したフローチャートでは,計量した検体を測定部150,152,154の順で導入した。しかし,最初の計量と2回目以降の計量では流路側面への検体成分の吸着による流路濡れ性の変化が主要因となり計量にズレが生じることがある。最初の計量は測定部の配置された流路に導入せず廃液溜に捨てることで,これを未然に防ぐことができる。具体的には,フローチャートのステップ208〜212に替えて,バルブ134を「大気開放」,吸引吐出ポンプ118で吐出,バルブ134を「閉」とする。これにより,最初に計量された検体は廃液溜155に搬送され,液体吸収体156に吸収される。その後は,ステップ205〜212を通常通り繰り返す。   In the flowchart shown in FIG. 3, the weighed specimens are introduced in the order of the measurement units 150, 152, and 154. However, in the first measurement and the second and subsequent measurements, a change in the channel wettability due to the adsorption of the sample component on the channel side surface is a main factor, and the measurement may be shifted. The first measurement can be prevented beforehand by throwing it into the waste liquid reservoir without introducing it into the flow path where the measuring section is arranged. Specifically, in place of steps 208 to 212 in the flowchart, the valve 134 is “open to atmosphere”, the suction discharge pump 118 discharges, and the valve 134 is “closed”. As a result, the sample weighed first is transferred to the waste liquid reservoir 155 and absorbed by the liquid absorber 156. Thereafter, steps 205 to 212 are repeated as usual.

図10は,測定装置1101とセンサチップ1102の別の例を示す概略図である。図2との違いは,図2の例ではセンサチップ内の流路が廃液溜155も含めてひとつながりであったのに対し,図10の例ではセンサチップ内の流路が廃液溜とそれ以外(検体の計量と測定を行う部位)に分かれていることである。   FIG. 10 is a schematic diagram illustrating another example of the measuring device 1101 and the sensor chip 1102. The difference from FIG. 2 is that, in the example of FIG. 2, the flow path in the sensor chip is connected to the waste liquid reservoir 155, but in the example of FIG. 10, the flow path in the sensor chip is the waste liquid reservoir. (Parts where the sample is measured and measured).

検体の計量と測定を行うセンサチップの部位は流体接続部1121(第2の流体接続部に相当)につながっており,測定装置の流体接続部1111と流体接続部1112をつなぐバルブを「開」とすることで廃液溜につながっている流体接続部1122(第5の流体接続部に相当)につながる。排出された液は廃液溜に吐出され,その分だけ廃液溜から通気口1123(第6の流体接続部に相当)を通じて廃液溜内の空気が押し出される。吸引吐出ポンプ118と検体検出部147を用いた計量や搬送を行う際には,バルブ1113を「閉」とする。これにより,検体の計量と測定を行う部位と比較的容量の大きな廃液溜との接続を断ち,吸引吐出ポンプ118による圧力変動によって生じる廃液溜内の空気の膨張収縮の影響を抑制し,精度を向上させることができる。   The part of the sensor chip for measuring and measuring the sample is connected to the fluid connection part 1121 (corresponding to the second fluid connection part), and the valve connecting the fluid connection part 1111 and the fluid connection part 1112 of the measuring device is “open”. This leads to a fluid connection part 1122 (corresponding to a fifth fluid connection part) connected to the waste liquid reservoir. The discharged liquid is discharged into the waste liquid reservoir, and the air in the waste liquid reservoir is pushed out from the waste liquid reservoir through the vent 1123 (corresponding to the sixth fluid connection portion). The valve 1113 is set to “closed” when performing measurement or conveyance using the suction / discharge pump 118 and the sample detection unit 147. This cuts off the connection between the part where the sample is measured and measured and the waste liquid reservoir having a relatively large capacity, and suppresses the influence of the expansion and contraction of the air in the waste liquid reservoir caused by the pressure fluctuation by the suction / discharge pump 118, thereby improving the accuracy. Can be improved.

さらに,廃液を行うとき以外にはバルブ1113を「閉」とすることで,廃液溜からの廃液の逆流を抑制することができる。但し,図10のような構成とすると,検体が測定装置の配管に接触する。使い捨てのセンサチップとは異なり,測定装置は複数回使用するため,測定装置の配管への検体の接触は測定対象物質のキャリーオーバーの原因となりうる。しかし,図10の例に示した構成では検体の接触する配管の下流には廃液溜のみで計測を行う部位は存在しないため,装置配管でのキャリーオーバーの計測へ与える影響はほとんどない。   Furthermore, the backflow of the waste liquid from the waste liquid reservoir can be suppressed by closing the valve 1113 except when the waste liquid is used. However, with the configuration as shown in FIG. 10, the specimen contacts the piping of the measuring apparatus. Unlike a disposable sensor chip, since the measuring device is used multiple times, contact of the sample with the piping of the measuring device can cause carryover of the substance to be measured. However, in the configuration shown in the example of FIG. 10, there is no part that performs measurement only with the waste liquid reservoir downstream of the pipe in contact with the specimen, so that there is almost no influence on carryover measurement in the apparatus pipe.

図11は,センサチップの一例を示す概略図である。図11(a)はセンサチップを上から見た模式図であり,図11(b)はセンサチップを横から見た模式図である。この例のセンサチップは,電極基板1201,流路基板1202,廃液溜1203の3つの部位が積層された構造を有する。   FIG. 11 is a schematic diagram illustrating an example of a sensor chip. FIG. 11A is a schematic view of the sensor chip as viewed from above, and FIG. 11B is a schematic view of the sensor chip as viewed from the side. The sensor chip of this example has a structure in which three portions of an electrode substrate 1201, a flow path substrate 1202, and a waste liquid reservoir 1203 are stacked.

電極基板1201にはガラスエポキシ樹脂のプリント基板,半導体チップ埋め込んだプラスチック基板などを用いることができ,検体の検知を行うための電極対1211,1212,1213,1214,測定部となる金電極と銀塩化銀電極の電極対1215,1216,1217,これら電極と測定装置の計測部を接続するためのコネクタ電極1218を有する。   The electrode substrate 1201 can be a glass epoxy resin printed circuit board, a plastic substrate embedded with a semiconductor chip, or the like. Electrode pairs 1211, 1212, 1213, 1214 for detecting a specimen and a silver electrode and silver serving as a measurement unit It has electrode pairs 1215, 1216, 1217 of silver chloride electrodes, and a connector electrode 1218 for connecting these electrodes to the measuring unit of the measuring device.

流路基板1202にはアクリル,塩化ビニル,ポリエチレン,ポリスチレン,ポリプロピレン,シリコーンゴムなどのプラスチック,ガラスなどを用いる。流路基板1202は流路1229,流体接続部1219〜1226(流体接続部1219は第1の流体接続部に,流体接続部1226は第2の流体接続部に,流体接続部1220は第3の流体接続部に,流体接続部1221は第4の流体接続部に,流体接続部1225は第5の流体接続部に,流体接続部1224は第6の流体接続部に相当),検体導入口1227を有する。この例では,流体接続部1219〜1226はテーパー状の凹形状となっており,測定装置のテーパー状で凸形状の流体接続部と適合する。検体導入口1227には採血管がセットできる。検体はフィルタ1230を通して流路に導入される。   For the flow path substrate 1202, plastic such as acrylic, vinyl chloride, polyethylene, polystyrene, polypropylene, and silicone rubber, glass, or the like is used. The flow path substrate 1202 has a flow path 1229, fluid connection parts 1219 to 1226 (the fluid connection part 1219 is the first fluid connection part, the fluid connection part 1226 is the second fluid connection part, and the fluid connection part 1220 is the third fluid connection part. The fluid connection portion, the fluid connection portion 1221 corresponds to the fourth fluid connection portion, the fluid connection portion 1225 corresponds to the fifth fluid connection portion, and the fluid connection portion 1224 corresponds to the sixth fluid connection portion). Have In this example, the fluid connection parts 1219 to 1226 have a tapered concave shape, which is compatible with the tapered and convex fluid connection part of the measuring device. A blood collection tube can be set at the sample introduction port 1227. The specimen is introduced into the flow path through the filter 1230.

廃液溜1203にも流路と同様のプラスチックを用いる。廃液溜1203にはポリアクリル酸ナトリウムなどの高分子吸収体1228が配置されており,流体導入部1225から導入された廃液が吸収される。通常,廃液は流体接続部1226から排出され,測定装置内の配管を経て,流体接続部1225からセンサチップの廃液溜1203に導入される。また,流体接続部1225へ廃液を導入したことにより,廃液溜1203に接続された流体接続部1224から空気が排出される。流体接続部1223は,本例のチップではセンサチップ内の流路には接続されていない。高分子吸収体1228に替えて,フィルタペーパーやメンブレンなどの液体吸水体を用いても良い。   The waste liquid reservoir 1203 is also made of the same plastic as the flow path. A polymer absorber 1228 such as sodium polyacrylate is disposed in the waste liquid reservoir 1203, and the waste liquid introduced from the fluid introduction part 1225 is absorbed. Usually, the waste liquid is discharged from the fluid connection portion 1226 and introduced into the waste liquid reservoir 1203 of the sensor chip from the fluid connection portion 1225 through a pipe in the measuring device. Further, by introducing the waste liquid into the fluid connection part 1225, air is discharged from the fluid connection part 1224 connected to the waste liquid reservoir 1203. The fluid connection portion 1223 is not connected to the flow path in the sensor chip in the chip of this example. Instead of the polymer absorbent body 1228, a liquid water absorbent body such as a filter paper or a membrane may be used.

廃液溜1203を検体の計量と測定を行う流路とは別に電極基板1201の裏面に設けることで,以下の利点が得られる。センサチップを測定装置にセットした際に流路よりも廃液溜が鉛直下側に位置するため,廃液が流路に逆流する可能性が低い。検体微量化のために流路を100μm程度と薄くした際にも,流路の厚みに依存せず十分な大きさの廃液溜を設けることができる。流路と廃液溜を多層構造とすることができ,センサチップを小型化できる。廃液溜を電極基板の裏面に設ける場合,測定部と検体検出部に電気計測法を用いることが望ましい。なぜなら,廃液溜が裏面にあるため,光学的検出法の場合,裏面からの計測が困難となるためである。   By providing the waste liquid reservoir 1203 on the back surface of the electrode substrate 1201 separately from the channel for measuring and measuring the specimen, the following advantages can be obtained. When the sensor chip is set in the measuring device, the waste liquid reservoir is positioned vertically below the flow path, so that the possibility that the waste liquid flows back into the flow path is low. Even when the flow path is made as thin as about 100 μm for the purpose of reducing the amount of the sample, a sufficiently large waste liquid reservoir can be provided without depending on the thickness of the flow path. The flow path and the waste liquid reservoir can have a multilayer structure, and the sensor chip can be miniaturized. When the waste liquid reservoir is provided on the back surface of the electrode substrate, it is desirable to use an electrical measurement method for the measurement unit and the sample detection unit. This is because the waste liquid reservoir is on the back surface, and in the case of the optical detection method, measurement from the back surface becomes difficult.

図12は,センサチップの他の例を示す概略図である。図12(a)はセンサチップを上から見た模式図であり,図12(b)はセンサチップを横から見た模式図である。本例のセンサチップは,電極基板1901,流路基板1902,廃液溜1903の3つの部位を積層した構成を有する。   FIG. 12 is a schematic diagram illustrating another example of a sensor chip. FIG. 12A is a schematic view of the sensor chip as viewed from above, and FIG. 12B is a schematic view of the sensor chip as viewed from the side. The sensor chip of this example has a configuration in which three portions of an electrode substrate 1901, a flow path substrate 1902, and a waste liquid reservoir 1903 are stacked.

電極基板1901にはガラスエポキシ樹脂のプリント基板,半導体チップを埋め込んだプラスチック基板などを用いることができ,検体の検知を行うための電極対1911,1912,1913,1914,測定部となる金電極と銀塩化銀電極の電極対1915,1916,1917,これら電極と測定装置の計測部を接続するためのコネクタ電極1918を有する。   As the electrode substrate 1901, a printed board of glass epoxy resin, a plastic substrate embedded with a semiconductor chip, or the like can be used. An electrode pair 1911, 1912, 1913, 1914 for detecting a specimen, a gold electrode serving as a measurement unit, It has electrode pairs 1915, 1916, 1917 of silver-silver chloride electrodes, and a connector electrode 1918 for connecting these electrodes to the measuring unit of the measuring device.

流路基板1902にはアクリル,塩化ビニル,ポリエチレン,ポリスチレン,ポリプロピレン,シリコーンゴムなどのプラスチック,ガラスなどを用いる。流路基板1902は流路1929,流体接続部1919〜1926(流体接続部1919は第1の流体接続部に,流体接続部1926は第2の流体接続部に,流体接続部1920は第3の流体接続部に相当),検体導入口1927を有する。この例では,流体接続部1919〜1926はテーパー状の凹形状となっており,測定装置のテーパー状で凸形状の流体接続部と適合する。検体導入口1927には採血管がセットできる。検体はフィルタ1931を通して流路に導入される。   A plastic substrate such as acrylic, vinyl chloride, polyethylene, polystyrene, polypropylene, or silicone rubber, glass, or the like is used for the flow path substrate 1902. The flow path substrate 1902 includes a flow path 1929, fluid connection portions 1919 to 1926 (the fluid connection portion 1919 is the first fluid connection portion, the fluid connection portion 1926 is the second fluid connection portion, and the fluid connection portion 1920 is the third fluid connection portion. (Corresponding to a fluid connection portion) and a sample introduction port 1927. In this example, the fluid connecting portions 1919 to 1926 have a tapered concave shape and are compatible with the tapered and convex fluid connecting portion of the measuring device. A blood collection tube can be set in the sample introduction port 1927. The specimen is introduced into the flow path through the filter 1931.

廃液溜1903にも流路と同様のプラスチックを用いる。廃液溜1903にはポリアクリル酸ナトリウムなどの高分子吸収体1928が配置されており,貫通流路1930から導入された廃液が吸収される。貫通流路1930から廃液を導入したことにより,廃液溜1903に接続された流体接続部1926から空気が排出される。流体接続部1923〜1925は本チップではセンサチップ内の流路には接続されていない。高分子吸収体1928に替えて,フィルタペーパーやメンブレンなどの液体吸水体を用いても良い。   The waste liquid reservoir 1903 is also made of the same plastic as the flow path. A polymer absorber 1928 such as sodium polyacrylate is disposed in the waste liquid reservoir 1903, and the waste liquid introduced from the through channel 1930 is absorbed. By introducing the waste liquid from the through channel 1930, air is discharged from the fluid connection portion 1926 connected to the waste liquid reservoir 1903. The fluid connection portions 1923 to 1925 are not connected to the flow path in the sensor chip in this chip. Instead of the polymer absorber 1928, a liquid water absorber such as filter paper or a membrane may be used.

図13は,センサチップの他の例を示す模式図である。図13(a)は平面模式図,図13(b)は側面模式図である。本例のセンサチップは,図11に示したセンサチップと似た構成であり,電極基板1511,流路基板1512,廃液溜1513の3つの部位から構成されが,検体導入の方法が若干異なる。図11の例では検体導入口1227に採血管をセットするのに対し,本例のセンサチップでは検体導入口1501から検体を注入する。注入したい検体を検体導入口1501に接触させると,界面張力によって検体保持部1503に検体が導入され,同時に検体保持部1503の空気が空気口1502から押し出される。検体を検体保持部に導入してからは,前述の手順でフィルタ1504を通して流路に検体が導入される。   FIG. 13 is a schematic diagram illustrating another example of a sensor chip. FIG. 13A is a schematic plan view, and FIG. 13B is a schematic side view. The sensor chip of this example has a configuration similar to that of the sensor chip shown in FIG. 11, and is composed of three parts: an electrode substrate 1511, a channel substrate 1512, and a waste liquid reservoir 1513, but the method of introducing a sample is slightly different. In the example of FIG. 11, a blood collection tube is set at the sample introduction port 1227, whereas the sample is injected from the sample introduction port 1501 in the sensor chip of this example. When the sample to be injected is brought into contact with the sample introduction port 1501, the sample is introduced into the sample holding unit 1503 by the interfacial tension, and at the same time, air in the sample holding unit 1503 is pushed out from the air port 1502. After the sample is introduced into the sample holder, the sample is introduced into the flow path through the filter 1504 in the above-described procedure.

図14は,測定装置にセンサチップを装着した状態の一例を示す模式図である。図14(a)は全体図,図14(b)は測定装置のセンサチップの接続部分の拡大模式図,図14(c)はセンサチップと測定装置の流体接続部の斜視図,図14(d)はセンサチップと測定装置の流体接続部の断面模式図である。   FIG. 14 is a schematic diagram illustrating an example of a state in which a sensor chip is attached to the measurement apparatus. 14 (a) is an overall view, FIG. 14 (b) is an enlarged schematic view of the connection part of the sensor chip of the measuring device, FIG. 14 (c) is a perspective view of the fluid connection part of the sensor chip and the measuring device, and FIG. d) is a schematic cross-sectional view of the fluid connection part of the sensor chip and the measuring device.

測定装置1301にセンサチップ1302をセットし,フタ1303を閉じる。すると,テーパー型凸形状の測定装置の流体接続部1304とテーパー型凹形状のセンサチップの流体接続部1305が接続され,同時に,測定装置のコネクタ端子1306とセンサチップのコネクタ電極1307が電気的に接続される。流体接続部は,図14(c),(d)に図示されるようにテーパー状の凸凹形状が適合し,装置配管とセンサチップ流路が確実に接続される。このとき,測定装置側のガイド1308が位置合わせに効果的である。   The sensor chip 1302 is set in the measuring device 1301, and the lid 1303 is closed. Then, the fluid connecting portion 1304 of the tapered convex measuring device and the fluid connecting portion 1305 of the tapered concave sensor chip are connected, and at the same time, the connector terminal 1306 of the measuring device and the connector electrode 1307 of the sensor chip are electrically connected. Connected. As shown in FIGS. 14C and 14D, the fluid connection portion has a tapered uneven shape so that the apparatus pipe and the sensor chip flow path are securely connected. At this time, the guide 1308 on the measuring device side is effective for alignment.

また,測定装置の流体接続部1304をアクリル,ポリスチレン,ポリエチレンなどの硬質プラスチックとし,センサチップの流体接続部1305をシリコーンゴムなどの軟質プラスチックとすることで,接続の確実性は向上する。Oリングを用いて平面同士を接続する場合に比べて,接触面積が向上させられる,多少の位置ずれが自動的に修正される,接続部のデッドボリュームが低減できるなどの利点がある。また,センサチップの流体接続部1305を薄膜で封じ,凸形状の測定装置の流体接続部1304の挿入で破られるようにすることで,流路内への異物混入が予防できる。また,測定が終了しセンサチップを取り外した際に,流体接続部に付着した液体がセンサチップ側の凹形状により保持されやすいため,廃棄までの間に飛散しにくくなる。   Further, the reliability of the connection is improved by making the fluid connection portion 1304 of the measuring device hard plastic such as acrylic, polystyrene, or polyethylene and the fluid connection portion 1305 of the sensor chip made of soft plastic such as silicone rubber. Compared with the case where planes are connected using an O-ring, there are advantages that the contact area is improved, that some misalignment is automatically corrected, and that the dead volume of the connection portion can be reduced. Further, by sealing the fluid connection portion 1305 of the sensor chip with a thin film and breaking it by inserting the fluid connection portion 1304 of the convex measuring device, it is possible to prevent foreign matter from entering the flow path. Further, when the measurement is completed and the sensor chip is removed, the liquid adhering to the fluid connection portion is easily held by the concave shape on the sensor chip side, so that it is difficult to scatter before disposal.

測定装置とセンサチップの流体接続部の凹凸の関係は,図14の場合と逆であってももちろん良い。センサチップの同一面に流体接続部を集約し,センサチップの流体接続部と測定装置の流体接続部の一方を凹とし一方を凸とすることで,測定装置とセンサチップの接続を確実に行うことができ,物理形状による阻害を必要最小限として,測定装置が有するポンプやバルブなどによる圧力制御によりセンサチップ内で液体を駆動することができる。   Of course, the unevenness relationship between the fluid connection portion of the measuring device and the sensor chip may be the reverse of the case of FIG. Consolidate the fluid connection parts on the same surface of the sensor chip, and make sure that one of the fluid connection part of the sensor chip and the fluid connection part of the measurement device is concave and the other is convex, so that the measurement device and sensor chip are securely connected. It is possible to drive the liquid in the sensor chip by controlling the pressure by a pump, a valve, or the like included in the measuring device with the minimum necessary obstruction due to the physical shape.

図15は,測定装置2001とセンサチップ2002の別の例を示す概略図である。図2との違いは,図2の例では第1の流体接続部に相当する流体接続部141と第2の流体接続部に相当する流体接続部145を結ぶ流路上に廃液溜155が配置されていたのに対し,図15の例ではセンサチップ内の流路が第1の流体接続部に相当する流体接続部141と第2の流体接続部に相当する流体接続部2021を結ぶ流路とは分岐点2023で分岐した流路2024に廃液溜が接続され,さらに別の流体接続部2022に接続されていることである。流体接続部2021,2022は使用時それぞれ測定装置の流体接続部2011,2012に接続される。また,流体接続部2011,2012に接続される流路にはバルブ2013,2014が接続されている。   FIG. 15 is a schematic diagram illustrating another example of the measurement device 2001 and the sensor chip 2002. The difference from FIG. 2 is that, in the example of FIG. 2, a waste liquid reservoir 155 is disposed on the flow path connecting the fluid connection portion 141 corresponding to the first fluid connection portion and the fluid connection portion 145 corresponding to the second fluid connection portion. On the other hand, in the example of FIG. 15, the flow path in the sensor chip is a flow path connecting the fluid connection portion 141 corresponding to the first fluid connection portion and the fluid connection portion 2021 corresponding to the second fluid connection portion. Is that the waste liquid reservoir is connected to the flow path 2024 branched at the branch point 2023 and further connected to another fluid connection portion 2022. The fluid connection parts 2021 and 2022 are respectively connected to the fluid connection parts 2011 and 2012 of the measuring device when in use. Valves 2013 and 2014 are connected to the flow paths connected to the fluid connection portions 2011 and 2012.

ヘモグロビンA1c(HbA1c)やグリコアルブミン(GA)などの糖化タンパク質の量は長期(数週間〜数ヶ月)の血糖値を反映した安定した指標であるため,糖尿病の診断及び治療のために行う血糖コントロールの成否を判定するのに有用である。糖化タンパク質はヘモグロビンやアルブミンといった特定の非糖化タンパク質が血糖値に応じて糖化されたものであるため,特定のタンパク質あたりの糖化タンパク質の存在比は長期の血糖値を反映する。例えば,HbA1cの場合はヘモグロビンに対するHbA1cの存在比(HbA1c/ヘモグロビン比)が,GAの場合はアルブミンに対するGAの存在比(GA/アルブミン比)が長期の血糖値の指標となる。   The amount of glycated protein such as hemoglobin A1c (HbA1c) and glycoalbumin (GA) is a stable index reflecting long-term (several weeks to several months) blood glucose level, so blood glucose control for diagnosis and treatment of diabetes It is useful for determining the success or failure of Since the glycated protein is obtained by glycating a specific non-glycated protein such as hemoglobin or albumin according to the blood glucose level, the abundance ratio of the glycated protein per specific protein reflects a long-term blood glucose level. For example, in the case of HbA1c, the abundance ratio of HbA1c to hemoglobin (HbA1c / hemoglobin ratio), and in the case of GA, the abundance ratio of GA to albumin (GA / albumin ratio) is an indicator of long-term blood glucose level.

本発明においては,HbA1cやグリコアルブミンなどの糖化タンパク質の割合を測定・定量化する場合,固定化抗体と酵素標識抗体には特徴的なペアを用いることができる。   In the present invention, when measuring and quantifying the proportion of glycated protein such as HbA1c or glycoalbumin, a characteristic pair can be used for the immobilized antibody and the enzyme-labeled antibody.

すなわち,あるタンパク質における糖化タンパク質の割合を測定するには,糖化の有無に依らない部位を認識する抗体を固定化抗体として用い,糖化部位を認識する抗体を酵素標識抗体に用いる。換言すると,固定化抗体としては,糖化タンパク質と非糖化タンパク質に共通の部位を認識する抗体を用い,酵素標識抗体としては,糖化タンパク質の糖化部を認識する抗体を用いる。たとえば,HbA1cを測定する場合,固定化抗体に抗Hb抗体を,酵素標識抗体に抗HbA1c抗体を用いることができる。グリコアルブミンを測定する場合,固定化抗体に抗アルブミン抗体を,酵素標識抗体に抗グリコアルブミン抗体を用いることができる。固定化抗体の量は,検体中に含まれる非糖化タンパク質と糖化タンパク質の量よりも十分,例えば健常人の基準値に対して1/10相当量以下とするのが好ましい。 That is, in order to measure the ratio of glycated protein in a certain protein, an antibody that recognizes a site that does not depend on the presence or absence of glycation is used as an immobilized antibody, and an antibody that recognizes a glycated site is used as an enzyme-labeled antibody. In other words, an antibody that recognizes a site common to the glycated protein and the non-glycated protein is used as the immobilized antibody, and an antibody that recognizes the glycated portion of the glycated protein is used as the enzyme-labeled antibody. For example, when measuring HbA1c, an anti-Hb antibody can be used as the immobilized antibody, and an anti-HbA1c antibody can be used as the enzyme-labeled antibody. When measuring glycoalbumin, an anti-albumin antibody can be used as the immobilized antibody, and an anti-glycoalbumin antibody can be used as the enzyme-labeled antibody. The amount of the immobilized antibody is preferably more than the amount of the non-glycated protein and the glycated protein contained in the sample, for example, 1/10 equivalent or less with respect to the reference value of a healthy person.

図16は,本発明に用いたGA/アルブミン比の測定例を図示したものである。固相2101に抗ヒトアルブミン抗体2102が固定化されており,抗ヒトアルブミン抗体2102には試料液中のヒトアルブミン2103及びGA2104が捕捉される。アルカリホスファターゼ(AP)標識された抗GA抗体(以下,酵素標識抗GA抗体)2105は捕捉されたGA2104の糖化部位(図16では○で模式的に表している)を認識して結合する。基質2106を添加すると,酵素標識抗GA抗体2105の標識酵素(この場合,アルカリホスファターゼ)により産物2107に変換される。試料溶液中のGA/アルブミン比が高い場合と低い場合をそれぞれ図16(a),図16(b)に表した。GA/アルブミン比に応じて抗ヒトアルブミン抗体2102に捕捉されるGA2104の量が異なり,それに応じて結合する酵素標識抗GA抗体2105の量が変わるため,産物2107量を比較することでGA/アルブミン比を求めることができる。なお,抗ヒトアルブミン抗体2102を固相に固定化できるものであれば,固相2101の代わりにビーズなどを用いてもよい。   FIG. 16 illustrates a measurement example of the GA / albumin ratio used in the present invention. Anti-human albumin antibody 2102 is immobilized on solid phase 2101, and human albumin 2103 and GA 2104 in the sample solution are captured by anti-human albumin antibody 2102. Alkaline phosphatase (AP) -labeled anti-GA antibody (hereinafter, enzyme-labeled anti-GA antibody) 2105 recognizes and binds to the glycated site of GA2104 that has been captured (schematically represented by ◯ in FIG. 16). When the substrate 2106 is added, it is converted into the product 2107 by the labeling enzyme of the enzyme-labeled anti-GA antibody 2105 (in this case, alkaline phosphatase). The cases where the GA / albumin ratio in the sample solution is high and low are shown in FIGS. 16 (a) and 16 (b), respectively. The amount of GA2104 captured by the anti-human albumin antibody 2102 differs depending on the GA / albumin ratio, and the amount of the enzyme-labeled anti-GA antibody 2105 that binds changes accordingly. The ratio can be determined. Note that beads or the like may be used instead of the solid phase 2101 as long as the anti-human albumin antibody 2102 can be immobilized on the solid phase.

図17は,GA/アルブミン比を測定する手順の概略を示したものである。   FIG. 17 shows an outline of the procedure for measuring the GA / albumin ratio.

ステップ1:試料溶液を添加し,固相2101に固定した抗ヒトアルブミン抗体2102に試料溶液中のヒトアルブミン2103とGA2104を捕捉させる
ステップ2:洗浄により,抗体と結合していない試料溶液中のヒトアルブミン2103及びGA2104を除く
ステップ3:酵素標識抗GA抗体2105を加え,抗ヒトアルブミン抗体2102に捕捉されたGA2104に結合させる
ステップ4:洗浄により,結合していない過剰な酵素標識抗GA抗体2105を除く
ステップ5:アルカリホスファターゼ用の基質2106を加え,産物2107の量から酵素活性を測定する
このとき,一般的な抗原抗体反応では試料溶液中のヒトアルブミンよりも過剰量の捕捉抗体である抗ヒトアルブミン抗体を用いるが,本発明では試料溶液中のヒトアルブミンよりも少ない抗ヒトアルブミン抗体を固相に固定することを特徴とする。抗ヒトアルブミン抗体の固定化密度が同じである条件下では,試料溶液中のヒトアルブミン濃度が,抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合し得る濃度以上であれば,固相上に捕捉されるヒトアルブミン総量は抗ヒトアルブミン抗体と同等量で一定となり,測定毎に一定量のヒトアルブミンを分取することができる。抗原抗体反応における複合体の濃度は式(1)で表せる。
[式1]

Figure 2014069551
Step 1: Sample solution is added, and human albumin 2103 and GA 2104 in the sample solution are captured by anti-human albumin antibody 2102 immobilized on solid phase 2101. Step 2: Human in sample solution not bound to antibody by washing Step 3 except albumin 2103 and GA 2104: Enzyme-labeled anti-GA antibody 2105 is added and allowed to bind to GA 2104 captured by anti-human albumin antibody 2102. Step 4: Excess enzyme-labeled anti-GA antibody 2105 not bound by washing is removed. Exclude Step 5: Add substrate 2106 for alkaline phosphatase and measure enzyme activity from the amount of product 2107. At this time, in a general antigen-antibody reaction, an anti-human that is an excess of capture antibody than human albumin in the sample solution. Although albumin antibody is used, in the present invention, It is characterized by immobilizing an anti-human albumin antibody less than human albumin on a solid phase. Under the condition that the immobilization density of the anti-human albumin antibody is the same, if the human albumin concentration in the sample solution is higher than the concentration at which human albumin can bind to all of the anti-human albumin antibody, it is captured on the solid phase. The total amount of human albumin is the same as that of anti-human albumin antibody, and a constant amount of human albumin can be fractionated for each measurement. The concentration of the complex in the antigen-antibody reaction can be expressed by equation (1).
[Formula 1]
Figure 2014069551

例えば,Ab=10-8(M),kon=105(M-1-1),koff=10-4(s-1),tb=10(min),tw=1(min)とすると,Ag=10-6(M)の場合はXb=9.93×10-9(M),Ag=10-5(M)の場合はXb=9.94×10-9(M)となる。For example, Ab = 10 −8 (M), k on = 10 5 (M −1 s −1 ), k off = 10 −4 (s −1 ), t b = 10 (min), t w = 1 ( min), X b = 9.93 × 10 −9 (M) when Ag = 10 −6 (M), and X b = 9.94 × 10 when Ag = 10 −5 (M). 9 (M).

ここで抗体濃度Abは,抗体の固定密度D,反応場の容量V,反応場における抗体固定面積Sを用いて式(2)で表せる。
[式2]

Figure 2014069551
Here, the antibody concentration Ab can be expressed by equation (2) using the antibody fixing density D, the reaction field volume V, and the antibody fixing area S in the reaction field.
[Formula 2]
Figure 2014069551

式(2)より,容量が100μl,抗体固定面積が154mm2の反応場において,抗ヒトアルブミン抗体を固定密度6.5×10-9mol/m2で固定した条件は抗体濃度10-8Mに相当する。血中のヒトアルブミン濃度は5.6〜7.4×10-4M(37〜49mg/ml)であるため,固定密度6.5×10-9mol/m2で抗ヒトアルブミン抗体を固定した反応場(反応場の容量100μl,抗体固定面積154mm2)にとって,血清試料は固相上の抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合するのに十分なアルブミン濃度である。From the equation (2), the conditions under which the anti-human albumin antibody was immobilized at a fixed density of 6.5 × 10 −9 mol / m 2 in a reaction field having a volume of 100 μl and an antibody immobilization area of 154 mm 2 were as follows: antibody concentration 10 −8 M It corresponds to. Since the human albumin concentration in blood is 5.6 to 7.4 × 10 −4 M (37 to 49 mg / ml), the anti-human albumin antibody is immobilized at a fixed density of 6.5 × 10 −9 mol / m 2. For the reaction field (reaction field volume 100 μl, antibody immobilization area 154 mm 2 ), the serum sample has an albumin concentration sufficient for human albumin to bind to all of the anti-human albumin antibodies on the solid phase.

抗ヒトアルブミン抗体の固定密度は1.7×10-14〜3.6×10-4mol/m2であるとよい。1.7×10-14よりも抗ヒトアルブミン抗体の固定密度が低いと,測定値の有効数字3桁が確保できなくなってしまう。逆に,3.6×10-4mol/m2よりも高い固定密度で抗ヒトアルブミン抗体を固定した反応場は,抗体の性能にもよるが血清試料に含まれるヒトアルブミンがすべて抗ヒトアルブミン抗体に結合してしまうため,固相上に捕捉されるヒトアルブミンの総量は血清試料中のヒトアルブミン濃度によって変動してしまい,測定毎に一定量のヒトアルブミンを捕捉することはできない。The immobilization density of the anti-human albumin antibody is preferably 1.7 × 10 −14 to 3.6 × 10 −4 mol / m 2 . If the fixed density of the anti-human albumin antibody is lower than 1.7 × 10 −14 , 3 significant digits of the measured value cannot be secured. Conversely, in the reaction field in which the anti-human albumin antibody is immobilized at a fixed density higher than 3.6 × 10 −4 mol / m 2 , depending on the performance of the antibody, all human albumin contained in the serum sample is anti-human albumin. Since it binds to the antibody, the total amount of human albumin captured on the solid phase varies depending on the concentration of human albumin in the serum sample, and a certain amount of human albumin cannot be captured for each measurement.

図18は,抗ヒトアルブミン抗体2102を固定化した固相2101を用いることで,試料液中のヒトアルブミン濃度が一定以上であれば一定量のヒトアルブミンを抗体で捕捉できることを示している。詳細な実験手順を以下に示す。   FIG. 18 shows that by using the solid phase 2101 on which the anti-human albumin antibody 2102 is immobilized, a certain amount of human albumin can be captured by the antibody if the concentration of human albumin in the sample solution is a certain level or more. Detailed experimental procedures are shown below.

ビオチン化したモノクローナル抗ヒトアルブミン抗体(捕捉抗体)をストレプトアビジンコートされたマイクロプレートに加え,固定した。0.1%Tween20含有Tris Buffer Saline(以下,TBSTという)で洗浄後,2%ウシ血清アルブミン(BSA)含有TBSTを加えてブロッキングした。TBSTで洗浄し,抗ヒトアルブミン抗体固定プレートを作製した。   A biotinylated monoclonal anti-human albumin antibody (capture antibody) was added to a microplate coated with streptavidin and immobilized. After washing with 0.1% Tween20-containing Tris Buffer Saline (hereinafter referred to as TBST), 2% bovine serum albumin (BSA) -containing TBST was added for blocking. The plate was washed with TBST to prepare an anti-human albumin antibody fixed plate.

ヒトアルブミン(GA含有)とTBSTを混合した希釈系列を用意し,試料溶液とした。抗ヒトアルブミン抗体固定プレートに試料溶液を導入し,試料溶液中のヒトアルブミン及びGAを捕捉抗体と反応させ,TBSTで過剰なヒトアルブミンを洗浄した。アルカリホスファターゼ修飾したモノクローナル抗ヒトアルブミン抗体(検出用抗体)をプレートに加え反応させた後,TBSTで過剰な抗体を洗浄した。   A dilution series prepared by mixing human albumin (containing GA) and TBST was prepared as a sample solution. The sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the capture antibody, and excess human albumin was washed with TBST. An alkaline phosphatase-modified monoclonal anti-human albumin antibody (detection antibody) was added to the plate and reacted, and then the excess antibody was washed with TBST.

アルカリホスファターゼの発色性基質であるブロモクロロインドリルリン酸(BCIP)と発色剤ニトロブルーテトラゾリウム(NTB)を添加し,反応させた後,エチレンジアミン四酢酸(EDTA)を加えて反応を停止させ,595nmの吸光度を測定した。試料溶液中のヒトアルブミン濃度と吸光度の関係を図17に示す。ヒトアルブミン濃度0.05mg/ml以上でほぼ一定の吸光度となっており,捕捉抗体により一定量のヒトアルブミンが捕捉できたことが分かる。   Bromochloroindolyl phosphate (BCIP), which is a chromogenic substrate for alkaline phosphatase, and a color former, nitro blue tetrazolium (NTB), were added and reacted, then ethylenediaminetetraacetic acid (EDTA) was added to stop the reaction, and 595 nm. The absorbance was measured. FIG. 17 shows the relationship between the human albumin concentration in the sample solution and the absorbance. The absorbance was almost constant at a human albumin concentration of 0.05 mg / ml or more, indicating that a certain amount of human albumin could be captured by the capture antibody.

図19は,抗ヒトアルブミン抗体で捕捉されたヒトアルブミンに含まれるGAを抗GA抗体で検出することにより,総ヒトアルブミン濃度への依存性を小さく抑えてGA/アルブミン比を測定できることを示す図である。詳細な実験手順を以下に示す。   FIG. 19 is a diagram showing that the GA / albumin ratio can be measured with a small dependence on the total human albumin concentration by detecting GA contained in human albumin captured by the anti-human albumin antibody with the anti-GA antibody. It is. Detailed experimental procedures are shown below.

図18での測定と同様にして抗ヒトアルブミン抗体固定プレートを作製した。GA/アルブミン比既知の血清検体とTBSTを混合して血清検体を100倍希釈及び1000倍希釈し,試料溶液とした。このとき,試料溶液中のヒトアルブミン濃度は固定した抗ヒトアルブミン抗体のすべてにヒトアルブミンが結合し得る濃度以上であることが望ましい。すなわち,容量が100μl,抗体固定面積が154mm2の反応場に抗ヒトアルブミン抗体を固定密度6.5×10-9mol/m2で固定した場合であれば,5000倍までなら希釈できる。An anti-human albumin antibody fixed plate was prepared in the same manner as the measurement in FIG. A serum specimen having a known GA / albumin ratio and TBST were mixed to dilute the serum specimen 100-fold and 1000-fold to obtain a sample solution. At this time, the human albumin concentration in the sample solution is desirably equal to or higher than the concentration at which human albumin can bind to all of the immobilized anti-human albumin antibodies. That is, when the anti-human albumin antibody is immobilized at a fixed density of 6.5 × 10 −9 mol / m 2 in a reaction field having a volume of 100 μl and an antibody immobilization area of 154 mm 2 , the dilution can be performed up to 5000 times.

抗ヒトアルブミン抗体固定プレートに試料溶液を導入し,検体液中のヒトアルブミン及びGAを抗ヒトアルブミン抗体と反応させ,TBSTで過剰な検体を洗浄した。アルカリホスファターゼ修飾したモノクローナル抗GA抗体(検出用抗体)を加え,抗ヒトアルブミン抗体に捕捉されているGAに反応させた後,TBSTで洗浄した。一般的な抗原抗体反応では検出用抗体の濃度は捕捉抗体の10分の1程度だが,本発明では捕捉抗体である抗ヒトアルブミン抗体のすべてにヒトアルブミンが捕捉されているため,検出用抗体である抗GA抗体の濃度は抗体の性能にもよるが固定した抗ヒトアルブミン抗体の濃度より高いことが望ましい。例えば,抗ヒトアルブミン抗体の固定密度が2.1×10-8mol/m2,反応場の容量が100μl,固定面積が154mm2であれば,抗GA抗体の濃度は33nM以上であるとよい。また,抗GA抗体は複数種のモノクローナル抗体を混合したものでもよく,ポリクローナル抗体でもよい。ヒトアルブミンの糖化部位は複数個所存在するため,エピトープの異なるモノクローナル抗GA抗体を複数種混合することで,感度や再現性を向上させられる。The sample solution was introduced into the anti-human albumin antibody fixed plate, human albumin and GA in the sample solution were reacted with the anti-human albumin antibody, and the excess sample was washed with TBST. Monoclonal anti-GA antibody (detection antibody) modified with alkaline phosphatase was added, reacted with GA captured by anti-human albumin antibody, and then washed with TBST. In a general antigen-antibody reaction, the concentration of the detection antibody is about one-tenth that of the capture antibody. However, in the present invention, human albumin is captured by all of the anti-human albumin antibodies that are capture antibodies. The concentration of a certain anti-GA antibody is preferably higher than the concentration of the immobilized anti-human albumin antibody depending on the antibody performance. For example, if the fixed density of the anti-human albumin antibody is 2.1 × 10 −8 mol / m 2 , the reaction field volume is 100 μl, and the fixed area is 154 mm 2 , the concentration of the anti-GA antibody should be 33 nM or more. . The anti-GA antibody may be a mixture of a plurality of types of monoclonal antibodies or may be a polyclonal antibody. Since there are multiple glycation sites of human albumin, sensitivity and reproducibility can be improved by mixing multiple types of monoclonal anti-GA antibodies with different epitopes.

なお,捕捉抗体の密度と検出抗体の濃度の関係は式(1)及び式(2)を用いて一般化できる。前述したように試料溶液中のヒトアルブミン濃度が抗ヒトアルブミン抗体のすべてに結合し得る濃度以上であれば,固相上に捕捉されるヒトアルブミン総量は抗ヒトアルブミン抗体の分子数で近似できる。したがって,式(1)において抗体に捕捉されたヒトアルブミン濃度Agに式(2)の抗ヒトアルブミン抗体濃度Abを代入することで,捕捉抗体の密度と検出抗体の濃度の関係を1つの式(3)で表せる。
[式3]

Figure 2014069551
The relationship between the density of the capture antibody and the concentration of the detection antibody can be generalized using the equations (1) and (2). As described above, if the human albumin concentration in the sample solution is equal to or higher than the concentration capable of binding to all of the anti-human albumin antibodies, the total amount of human albumin captured on the solid phase can be approximated by the number of molecules of the anti-human albumin antibodies. Therefore, by substituting the anti-human albumin antibody concentration Ab of the formula (2) into the human albumin concentration Ag captured by the antibody in the formula (1), the relationship between the density of the capture antibody and the concentration of the detection antibody can be expressed by one formula ( It can be expressed by 3).
[Formula 3]
Figure 2014069551

BCIP及びNTBを添加し,反応させた後,EDTAを加えて反応を停止させ,595nmの吸光度を測定した。試料溶液中のGA/アルブミン比と吸光度の関係をまとめたグラフを図19に示す。何らかのバックグラウンドシグナルが加わっているものの,GA/アルブミン比に応じた吸光度が得られた。式(3)によると,理論的にはGA/アルブミン比とGA・抗GA抗体複合体の濃度は図20に示すような線形の関係にある。図19においてもGA/アルブミン比と吸光度の関係は線形で表せており,理論に従ってGA/アルブミン比が測定できた。さらに,100倍希釈と1000倍希釈の吸光度で大きな差は見られず,10倍アルブミン濃度が違うにも関わらず,検量線から求めたGA/アルブミン比は1.1〜1.4倍の変化に抑制できた。固定化した抗ヒトアルブミン抗体を用いてヒトアルブミンを捕捉したため,10倍のヒトアルブミン濃度の違いにも関わらず,ほぼ一定のヒトアルブミンが捕捉された効果である。したがって,検体を希釈する際に希釈倍率の変動があったとしても,その変動の影響を抑制してGA/アルブミン比を測定できる。   After BCIP and NTB were added and reacted, EDTA was added to stop the reaction, and the absorbance at 595 nm was measured. A graph summarizing the relationship between the GA / albumin ratio and the absorbance in the sample solution is shown in FIG. Although some background signal was added, absorbance corresponding to the GA / albumin ratio was obtained. According to the equation (3), the GA / albumin ratio and the GA / anti-GA antibody complex concentration theoretically have a linear relationship as shown in FIG. Also in FIG. 19, the relationship between the GA / albumin ratio and the absorbance can be expressed linearly, and the GA / albumin ratio could be measured according to the theory. Furthermore, there is no significant difference in absorbance between the 100-fold dilution and the 1000-fold dilution, and the GA / albumin ratio obtained from the calibration curve varies 1.1 to 1.4 times despite the 10-fold albumin concentration being different. I was able to suppress it. Since human albumin was captured using the immobilized anti-human albumin antibody, almost constant human albumin was captured despite the 10-fold difference in human albumin concentration. Therefore, even if there is a change in the dilution ratio when the specimen is diluted, the GA / albumin ratio can be measured while suppressing the influence of the change.

検体を100倍及び1000倍希釈した例を示したのに対し,無希釈及び低希釈倍率でも同様にして検体溶液中のGA/アルブミン比を求めることができる。ただし,無希釈や低希釈倍率の場合,ヒトアルブミンの非特異吸着により測定値が変動しやすいため,ある程度の希釈を行うのが望ましい。   In contrast to the example in which the specimen is diluted 100 times and 1000 times, the GA / albumin ratio in the specimen solution can be obtained in the same manner even at undiluted and low dilution ratios. However, in the case of undiluted or low dilution ratio, the measured value is likely to fluctuate due to non-specific adsorption of human albumin.

図21に示すように,図21(a)のように抗GA抗体で検出した後に,捕捉抗体とは異なるエピトープを認識する酵素標識抗ヒトアルブミン抗体2108を添加して,図21(b)のように固定化した抗ヒトアルブミン抗体に捕捉されたヒトアルブミン量を測定することにより,固相化抗体の活性が変動するなどしても抗GA抗体での測定値を補正して変動をさらに抑制できる。   As shown in FIG. 21, after detecting with an anti-GA antibody as shown in FIG. 21 (a), an enzyme-labeled anti-human albumin antibody 2108 recognizing an epitope different from the capture antibody is added, and FIG. By measuring the amount of human albumin captured by the immobilized anti-human albumin antibody in this way, even if the activity of the immobilized antibody fluctuates, the measured value with the anti-GA antibody is corrected to further suppress the fluctuation it can.

固相上に結合したヒトアルブミンを抗GA抗体でGA濃度を測定した後に,抗ヒトアルブミン抗体でヒトアルブミン総量の濃度を求めGA/アルブミン比を補正する方法は,静電相互作用や疎水性相互作用などの物理吸着により固相上にヒトアルブミンを一定量吸着させて規格化する場合にも応用できる。物理吸着によるヒトアルブミン総量の変動を補正するステップがあるため,特開2004−242522号公報のような固相への吸着によりヒトアルブミン総量の規格化を行っている従来法よりも精度よく測定できる。   After measuring the GA concentration of human albumin bound on a solid phase with an anti-GA antibody, and determining the total amount of human albumin with the anti-human albumin antibody and correcting the GA / albumin ratio, electrostatic interaction or hydrophobic interaction It can also be applied to normalization by adsorbing a certain amount of human albumin on a solid phase by physical adsorption such as action. Since there is a step of correcting the fluctuation of the total amount of human albumin due to physical adsorption, it can be measured with higher accuracy than the conventional method in which the total amount of human albumin is standardized by adsorption to a solid phase as in JP-A-2004-242522. .

図22は,GA比測定用のセンサチップの一例を示す図である。図22(a)は平面模式図,図22(b)〜(d)は断面模式図である。センサチップは,固相2701,流路部2702,液体保持部2703から構成され,固相2701は,溶液導入検知用電極2713,2714,電位測定用電極2715,抗体固定部位2716,端子2724〜2726を有し,流路部2702は,検体導入口2712,試薬供給口2717,2718,2727,2728,廃液溜め接続口2720を有し,液体保持部2703は検体保持部2711,廃液溜め2719,空気穴2721,境界部2722,2723を有する。試薬供給口2717から流路をたどってそれぞれの位置関係を説明すると,溶液導入検知用電極2713,抗体固定部位2716,電位測定用電極2715,抗体固定部位2716,溶液導入検知用電極2714の順に流路内側に設けられている。また,抗体固定部位2716と検体導入検知用電極2714の間の流路上部には,検体導入口2712がある。センサチップの概寸は20mm×10mmで,流路は幅1mm×長さ13mm×高さ0.25mmとした。   FIG. 22 is a diagram illustrating an example of a sensor chip for GA ratio measurement. 22A is a schematic plan view, and FIGS. 22B to 22D are schematic cross-sectional views. The sensor chip includes a solid phase 2701, a flow path portion 2702, and a liquid holding portion 2703. The solid phase 2701 includes solution introduction detection electrodes 2713 and 2714, a potential measurement electrode 2715, an antibody fixing site 2716, and terminals 2724 to 2726. The flow path portion 2702 has a sample introduction port 2712, reagent supply ports 2717, 2718, 2727, 2728, and a waste liquid reservoir connection port 2720. The liquid holding portion 2703 includes a sample holding portion 2711, a waste liquid reservoir 2719, and air. A hole 2721 and boundary portions 2722 and 2723 are provided. The positional relationship is explained by following the flow path from the reagent supply port 2717. The solution introduction detection electrode 2713, the antibody immobilization site 2716, the potential measurement electrode 2715, the antibody immobilization site 2716, and the solution introduction detection electrode 2714 flow in this order. It is provided inside the road. A sample introduction port 2712 is provided above the flow path between the antibody fixing site 2716 and the sample introduction detection electrode 2714. The approximate dimensions of the sensor chip were 20 mm x 10 mm, and the flow path was 1 mm wide x 13 mm long x 0.25 mm high.

固相2701には,シリコンなどの半導体基板や,ガラスエポキシなどの回路用基板や,ポリエチレンテレフタレート(PET),ポリプロピレン(PP),ポリカーボネート(PC),ポリイミド(PI)などのフィルム状基板を用いることができる。流路部2702には,ポリエチレン(PE),ポリエチレンテレフタレート(PET),ポリプロピレン(PP),ポリカーボネート(PC),ポリイミド(PI)などのフィルムを積層したものや,エチレン酢酸ビニルコポリマー(EVA)などの熱可塑性樹脂や,エポキシ樹脂や,ポリジメチルシロキサン(PDMS)などのシリコーン樹脂を用いることができる。液体保持部2703には,アラミド繊維製,ガラス繊維製,セルロース繊維製,ナイロン繊維製,ビニロン繊維製,ポリエステル繊維製,ポリオレフィン繊維製,レーヨン繊維製のろ紙や不織布や多孔質繊維を用いることができる。   For the solid phase 2701, a semiconductor substrate such as silicon, a circuit substrate such as glass epoxy, or a film substrate such as polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), or polyimide (PI) is used. Can do. In the flow path portion 2702, a film in which polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polyimide (PI) or the like is laminated, ethylene vinyl acetate copolymer (EVA), or the like is used. A thermoplastic resin, an epoxy resin, or a silicone resin such as polydimethylsiloxane (PDMS) can be used. The liquid holding unit 2703 may be made of aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber filter paper, nonwoven fabric or porous fiber. it can.

検体保持部2711は図22(b)に示すように検体導入口2712の外側にあってもよいし,図22(c)に示すように検体導入口2712と流路の間にあってもよく,図22(d)に示すように流路中にあってもよい。なお,図22(b)や図22(c)では検体保持部2711が流路と外部を隔てているため,圧力損失が大きく検体導入口2712を測定時に塞ぐ必要がない。境界部2722,2723には,低密度ポリエチレン(LDPE)樹脂や,エチレン酢酸ビニル(EVA)樹脂や,ポリアミド樹脂やポリエチレンテレフタレート(PET)樹脂を用いることができる。抗体固定部位2716には抗ヒトアルブミン抗体などの抗体が固定化されており,固定化方法は物理吸着であっても,化学結合であってもよく,まずアビジンを固定化した後にビオチン化抗体をアビジン−ビオチン結合により固定化してもよく,ビオチン修飾した分子を固定化した後にアビジンを介して抗体を固定化してもよい。   The sample holder 2711 may be outside the sample inlet 2712 as shown in FIG. 22B, or may be between the sample inlet 2712 and the flow path as shown in FIG. It may be in the flow path as shown in FIG. In FIG. 22B and FIG. 22C, the specimen holding part 2711 separates the flow path from the outside, so that the pressure loss is large and it is not necessary to close the specimen inlet 2712 during measurement. For the boundary portions 2722 and 2723, low density polyethylene (LDPE) resin, ethylene vinyl acetate (EVA) resin, polyamide resin, or polyethylene terephthalate (PET) resin can be used. An antibody such as an anti-human albumin antibody is immobilized on the antibody immobilization site 2716. The immobilization method may be physical adsorption or chemical bonding. First, avidin is immobilized, and then a biotinylated antibody is immobilized. It may be immobilized by an avidin-biotin bond, or an antibody may be immobilized via avidin after immobilizing a biotin-modified molecule.

図23は,図22のセンサチップで測定を行うための装置の一例を示す図である。図23(a)はセンサチップ2801と装置2802の位置関係を上から見た図を示し,図23(b)はセンサチップ2801と装置2802の試薬供給口及び電極・端子の接続関係を横から見た図を示している。装置2802にセンサチップ2801をセットすることで,センサチップ2801の試薬供給口2717,2718,2727,2728と装置2802の試薬供給口2811,2812,2816,2817が流体的に接続され,センサチップ2801の端子2724〜2726と装置2802の端子2813〜2815が電気的に接続される。試薬供給口2811には,ポンプ2825によって抗体試薬液2826が供給され,試薬供給口2812には,ポンプ2823によって検体希釈液2824が供給され,試薬供給口2816には,ポンプ2827によって洗浄液2828が供給され,試薬供給口2817には,ポンプ2821によって基質液2822が供給される。検体希釈液2824と洗浄液2828は同じ組成の溶液でもよい。また,試薬供給口は1から3箇所で,試薬供給洪に接続している流路を分岐させることで複数の試薬が供給されるようにしてもよい。端子2814と端子2815には交流電源2833と交流電流計2834が接続されている。端子2813には電圧計2832が接続されており,電圧計2832のもう一方の端子は試薬供給口2817に接続された流路に配置されている参照電極2831に接続されている。ポンプ2821,2823,2825,2827の制御は制御部2803によって行われ,交流電源2833,交流電流計2834,電圧計2832の制御と計測は計測部2804によって行われる。装置2802は測定結果やメッセージを表示するための表示部2805,ユーザが操作を入力する入力部2806を有する。ポンプ2821,2823,2825,2827は,ペリスタポンプであっても,シリンジポンプであっても,ダイアフラムポンプであってもよい。参照電極2831は一定の電位を示すものであれば,内部液型の銀塩化銀参照電極や,むき出しの銀塩化銀電極や,もしくは,イオン選択電極であってもよい。   FIG. 23 is a diagram showing an example of an apparatus for performing measurement with the sensor chip of FIG. FIG. 23A shows a top view of the positional relationship between the sensor chip 2801 and the device 2802, and FIG. 23B shows from the side the connection relationship between the reagent supply port and the electrodes / terminals of the sensor chip 2801 and the device 2802. Shown is a view. By setting the sensor chip 2801 in the device 2802, the reagent supply ports 2717, 2718, 2727, 2728 of the sensor chip 2801 and the reagent supply ports 2811, 2812, 2816, 2817 of the device 2802 are fluidly connected, and the sensor chip 2801 is connected. Terminals 2724 to 2726 and terminals 2813 to 2815 of the device 2802 are electrically connected. Antibody reagent solution 2826 is supplied to reagent supply port 2811 by pump 2825, sample dilution solution 2824 is supplied to reagent supply port 2812 by pump 2823, and cleaning solution 2828 is supplied to reagent supply port 2816 by pump 2827. Then, the substrate liquid 2822 is supplied to the reagent supply port 2817 by the pump 2821. The sample dilution liquid 2824 and the cleaning liquid 2828 may be solutions having the same composition. Further, the reagent supply ports may be provided at one to three locations, and a plurality of reagents may be supplied by branching a flow path connected to the reagent supply tank. An AC power source 2833 and an AC ammeter 2834 are connected to the terminals 2814 and 2815. A voltmeter 2832 is connected to the terminal 2813, and the other terminal of the voltmeter 2832 is connected to a reference electrode 2831 disposed in a flow path connected to the reagent supply port 2817. Control of the pumps 2821, 2323, 2825, and 2827 is performed by the control unit 2803, and control and measurement of the AC power source 2833, the AC ammeter 2834, and the voltmeter 2832 are performed by the measurement unit 2804. The apparatus 2802 includes a display unit 2805 for displaying measurement results and messages, and an input unit 2806 for a user to input an operation. The pumps 2821, 2323, 2825, and 2827 may be peristaltic pumps, syringe pumps, or diaphragm pumps. The reference electrode 2831 may be an internal liquid-type silver-silver chloride reference electrode, a bare silver-silver chloride electrode, or an ion-selective electrode as long as it exhibits a constant potential.

図24は,グリコアルブミン測定キットの一例を示す図である。本例のグリコアルブミン測定キット2901は,図22に示す抗アルブミン抗体が固定化された抗体固定化部位2716及び電位測定用電極2715が設けられた固相2701と,図23に示す抗体試薬液2826を収容した容器からなる。   FIG. 24 is a diagram showing an example of a glycoalbumin measurement kit. The glycoalbumin measurement kit 2901 of this example includes a solid phase 2701 provided with an antibody immobilization site 2716 on which an anti-albumin antibody is immobilized as shown in FIG. 22 and a potential measurement electrode 2715, and an antibody reagent solution 2826 as shown in FIG. It consists of the container which accommodated.

図25は,測定装置にセンサチップを装着した状態の一例を示す模式図である。測定装置3001にセンサチップ3002をセットし,フタ3003を閉じると,センサチップ3002と装置3001の試薬供給口及び電極・端子が接続される。   FIG. 25 is a schematic diagram illustrating an example of a state in which a sensor chip is attached to the measurement apparatus. When the sensor chip 3002 is set in the measuring apparatus 3001 and the lid 3003 is closed, the sensor chip 3002 is connected to the reagent supply port and electrodes / terminals of the apparatus 3001.

図26は,図22のセンサチップと図23の装置を用いた測定方法の一例を示す図である。流路上に設けられた検体導入口2712に検体を添加する(S2201)。検体としては,生体試料から採取した体液等そのものや,必要に応じて遠心分離やろ過,希釈等の前処理をしたものであってもかまわない。検体保持部2711はろ紙のような吸収体でできており,さらに,検体保持部2711の周囲は境界部2722で囲まれているため,添加した検体は検体保持部2711で保持される。センサチップは装置にセットされ,ポンプ2823を用いて装置の試薬供給口2812からセンサチップの試薬供給口2718に検体希釈液2824を導入する(S2202)。検体希釈液はTris Buffered Saline(以下,TBSという)やPhospahte Buffered Saline(以下,PBSという)などの緩衝液を用いる。検体導入口2712まで検体希釈液2824を導入するため,溶液導入検知用電極2713と2714を用いる。例えば,交流電源2833を用いて溶液導入検知用電極2713と2714の間に交流電圧を印加しておくと,検体希釈液2824導入前はほぼゼロであった電流が,検体希釈液2824が溶液導入検知用電極2714まで達すると溶液導入検知用電極2713と2714が電気的に接続されるために増大する。この電流の増大を計測部2804で監視することで検体希釈液2824が溶液導入検知用電極2714に到達したことを検知できる。溶液導入検知用電極2714で検体希釈液2824の到達を検知したら(S2203),試薬供給口2718からの検体希釈液2824の導入を停止する(S2204)。   26 is a diagram illustrating an example of a measurement method using the sensor chip of FIG. 22 and the apparatus of FIG. A sample is added to the sample introduction port 2712 provided on the flow path (S2201). The specimen may be a body fluid collected from a biological sample itself, or may be subjected to pretreatment such as centrifugation, filtration, or dilution as necessary. The sample holding unit 2711 is made of an absorbent material such as filter paper. Further, since the periphery of the sample holding unit 2711 is surrounded by a boundary 2722, the added sample is held by the sample holding unit 2711. The sensor chip is set in the apparatus, and the sample diluent 2824 is introduced from the reagent supply port 2812 of the apparatus into the reagent supply port 2718 of the sensor chip using the pump 2823 (S2202). As the sample dilution solution, a buffer solution such as Tris Buffered Saline (hereinafter referred to as TBS) or Phospahte Buffered Saline (hereinafter referred to as PBS) is used. In order to introduce the sample diluent 2824 to the sample introduction port 2712, solution introduction detection electrodes 2713 and 2714 are used. For example, when an AC voltage is applied between the solution introduction detection electrodes 2713 and 2714 using an AC power source 2833, the current that was substantially zero before the sample diluent 2824 was introduced, and the sample diluent 2824 was introduced into the solution. When reaching the detection electrode 2714, the solution introduction detection electrodes 2713 and 2714 are electrically connected to increase. By monitoring this increase in current by the measuring unit 2804, it can be detected that the sample diluent 2824 has reached the solution introduction detection electrode 2714. If arrival of the sample diluent 2824 is detected by the solution introduction detection electrode 2714 (S2203), introduction of the sample diluent 2824 from the reagent supply port 2718 is stopped (S2204).

検体保持部2711と検体希釈液2824が接触した状態で一定時間保持する(S2205)と,検体保持部2711に保持された検体中の成分が検体希釈液2824中に拡散する。検体希釈液2824中に拡散する検体中の成分量は保持時間に依存するため,保持時間により検体の希釈倍率を制御できる。試薬供給口2718から検体希釈液2824を若干量吸引し,検体希釈液2824中に拡散した検体の成分を抗体固定部位2716まで搬送する(S2206)と,検体中のヒトアルブミンが抗体固定部位2716に固定された抗ヒトアルブミン抗体に捕捉される。一定時間保持した後に,試薬供給口2718からさらに検体希釈液を導入するなどして,廃液溜め接続口2720を通じて検体を含む検体希釈液2824を廃液溜め2719に廃棄する(S2207)。試薬供給口2727から導入した洗浄液2828で流路を洗浄し(S2208),抗体固定部位2716に固定された抗ヒトアルブミン抗体に捕捉されていないヒトアルブミンを除去する。洗浄に用いた洗浄液2828も廃液溜め2719に廃棄される。   When the sample holding unit 2711 and the sample diluent 2824 are kept in contact with each other for a certain time (S2205), the components in the sample held in the sample holding unit 2711 diffuse into the sample diluent 2824. Since the amount of the component in the specimen that diffuses into the specimen diluent 2824 depends on the retention time, the dilution ratio of the specimen can be controlled by the retention time. When a small amount of the sample diluent 2824 is aspirated from the reagent supply port 2718 and the components of the sample diffused in the sample diluent 2824 are conveyed to the antibody fixing site 2716 (S2206), human albumin in the sample is transferred to the antibody fixing site 2716. Captured by immobilized anti-human albumin antibody. After holding for a certain period of time, the sample dilution liquid 2824 including the sample is discarded into the waste liquid reservoir 2719 through the waste liquid reservoir connection port 2720 by introducing a sample dilution liquid from the reagent supply port 2718 (S2207). The flow path is washed with a washing liquid 2828 introduced from the reagent supply port 2727 (S2208), and human albumin not captured by the anti-human albumin antibody immobilized on the antibody immobilization site 2716 is removed. The cleaning liquid 2828 used for cleaning is also discarded in the waste liquid reservoir 2719.

ポンプ2825を用いて装置の試薬供給口2811からセンサチップの試薬供給口2717に抗体試薬液2826を導入する(S2209)。抗体試薬液2826にはアルカリホスファターゼ標識抗GA抗体(標識抗GA抗体)などを含む液を用いる。すると,抗体試薬液2826中の標識抗GA抗体は抗ヒトアルブミン抗体に捕捉されたGAに結合する。一定時間保持した後,試薬供給口2718から洗浄液2828を導入し,流路を洗浄する(S2210)ことで,未結合の標識抗GA抗体を除去する。抗体試薬液2826や洗浄液2828は廃液溜め2719に廃棄される。ポンプ2821を用いて装置の試薬供給口2817からセンサチップの試薬供給口2728に基質液2822を導入する(S2211)。基質液には,アルカリホスファターゼの基質であるアスコルビン酸リン酸とメディエータであるフェリシアン化カリウムを含む液などを用いる。抗体固定部位2716に存在する抗ヒトアルブミン抗体−GA−標識抗GA抗体の複合体のアルカリホスファターゼにより基質液2824中のアスコルビン酸リン酸が加水分解され,生成したアスコルビン酸がフェリシアン化カリウムと反応してフェロシアン化カリウムを生成し,電位測定用電極2715の電位が変化する。そのため,電圧計2832で電位測定用電極2715と参照電極2831の間の電位差を測定する(S2212)ことで,捕捉されたGA量すなわち検体中のGA/アルブミン比が求まる。より精度よくGA/アルブミン比を求めるために,別に用意したセンサチップにおいてGA/アルブミン比が既知の試料を用いてGA/アルブミン比と測定電位の関係を表す検量線を作成し,GA/アルブミン比が未知の試料の値を計算してもよい。   The antibody reagent solution 2826 is introduced from the reagent supply port 2811 of the apparatus into the reagent supply port 2717 of the sensor chip using the pump 2825 (S2209). As the antibody reagent solution 2826, a solution containing an alkaline phosphatase-labeled anti-GA antibody (labeled anti-GA antibody) or the like is used. Then, the labeled anti-GA antibody in the antibody reagent solution 2826 binds to GA captured by the anti-human albumin antibody. After holding for a certain period of time, a washing liquid 2828 is introduced from the reagent supply port 2718, and the flow path is washed (S2210), thereby removing unbound labeled anti-GA antibody. The antibody reagent solution 2826 and the cleaning solution 2828 are discarded in the waste solution reservoir 2719. The substrate liquid 2822 is introduced from the reagent supply port 2817 of the apparatus into the reagent supply port 2728 of the sensor chip using the pump 2821 (S2211). As the substrate solution, a solution containing ascorbic acid phosphate as a substrate of alkaline phosphatase and potassium ferricyanide as a mediator is used. The ascorbic acid phosphate in the substrate solution 2824 is hydrolyzed by alkaline phosphatase of the complex of anti-human albumin antibody-GA-labeled anti-GA antibody present at the antibody fixing site 2716, and the generated ascorbic acid reacts with potassium ferricyanide. Potassium ferrocyanide is generated, and the potential of the potential measuring electrode 2715 changes. Therefore, by measuring the potential difference between the potential measuring electrode 2715 and the reference electrode 2831 with the voltmeter 2832 (S2212), the amount of captured GA, that is, the GA / albumin ratio in the sample is obtained. In order to obtain the GA / albumin ratio with higher accuracy, a calibration curve representing the relationship between the GA / albumin ratio and the measured potential was prepared using a sample with a separately prepared sensor chip with a known GA / albumin ratio. May calculate the value of an unknown sample.

図27を用いて,S2201〜S2206におけるセンサチップ流路への検体の導入方法について実施例の詳細を示す。図27はセンサチップ流路への検体の導入方法の詳細を示す説明図である。ステップ1として,流路の一部に設けたフィルタ等からなる検体保持部2711に検体3201を滴下する。ステップ2として,流路に緩衝液2824を導入して検体保持部2711に接触させ一定時間保持する。ステップ3として,検体保持部2711に保持された検体の成分が緩衝液中に拡散する。この操作により緩衝液で検体を希釈した場合と同等の希釈検体液が得られる。希釈検体液の希釈倍率は緩衝液の保持時間で制御できる。最後にステップ4として,希釈検体液を抗体固定部位2716に搬送し,抗原抗体反応を行う。緩衝液を導入する側を上流として,抗体固定部位2716が検体保持部2711よりも上流にあるため,その後のS2207〜S2212における溶液の導入において,検体保持部2711より溶液に拡散した検体成分が抗体固定部位2716を通過することを抑制できる。   With reference to FIG. 27, the details of the embodiment will be described with respect to the method for introducing the sample into the sensor chip channel in S2201 to S2206. FIG. 27 is an explanatory diagram showing details of a method for introducing the specimen into the sensor chip flow path. As Step 1, the specimen 3201 is dropped onto a specimen holding part 2711 made of a filter or the like provided in a part of the flow path. In step 2, a buffer solution 2824 is introduced into the flow path and is brought into contact with the sample holder 2711 and held for a certain period of time. In step 3, the components of the sample held in the sample holding unit 2711 diffuse into the buffer solution. By this operation, a diluted specimen solution equivalent to the case where the specimen is diluted with a buffer solution is obtained. The dilution rate of the diluted specimen solution can be controlled by the buffer retention time. Finally, in step 4, the diluted specimen solution is transferred to the antibody fixing site 2716, and antigen-antibody reaction is performed. Since the side where the buffer solution is introduced is upstream and the antibody fixing site 2716 is upstream of the sample holding unit 2711, the sample components diffused into the solution from the sample holding unit 2711 in the subsequent introduction of the solution in S2207 to S2212 Passing through the fixed portion 2716 can be suppressed.

図27において,緩衝液を導入する側を上流として,抗体固定部位2716が検体保持部2711よりも下流にあっても構わない。図27と同様の手順で抗体固定部位2716に希釈検体液を搬送することができる。抗体固定部位2716が検体保持部2711よりも下流にあるため,希釈液を流し続けても検体保持部2711から拡散した検体成分が抗体固定部位2716に供給される。そのため,ステップ2〜3のように希釈液を保持する代わりに,希釈液を送液し続けてもよく,その場合送液速度により供給される希釈検体液の希釈倍率を制御する。   In FIG. 27, the side where the buffer solution is introduced may be upstream, and the antibody immobilization site 2716 may be downstream of the specimen holding unit 2711. The diluted sample solution can be transported to the antibody fixing site 2716 in the same procedure as in FIG. Since the antibody fixing part 2716 is downstream of the specimen holding part 2711, the specimen component diffused from the specimen holding part 2711 is supplied to the antibody fixing part 2716 even if the diluent is kept flowing. Therefore, instead of holding the diluent as in Steps 2 to 3, the diluent may be continuously fed, and in that case, the dilution factor of the diluted specimen solution supplied is controlled by the feeding speed.

検体の導入にフィルタなどからの拡散を利用するため,検体を流路中に導入する場合に懸念される流路のつまりや流路への非特異的な検体成分の吸着を抑制することができる。また,100倍程度の高い希釈倍率を実現するときの課題となり得る微量検体の計量が不要である。また,毛管力によって検体保持部2711に検体が保持されるため,センサチップを取り扱う際の検体の飛散を抑制できる。   Since diffusion from a filter or the like is used for sample introduction, it is possible to suppress adsorption of non-specific sample components in the flow channel, which is a concern when introducing the sample into the flow channel, or in the flow channel. . Further, it is not necessary to measure a small amount of sample that can be a problem when realizing a high dilution factor of about 100 times. In addition, since the sample is held in the sample holding unit 2711 by the capillary force, scattering of the sample when the sensor chip is handled can be suppressed.

検体保持部2711は,アラミド繊維製,ガラス繊維製,セルロース繊維製,ナイロン繊維製,ビニロン繊維製,ポリエステル繊維製,ポリオレフィン繊維製,レーヨン繊維製のろ紙や不織布や多孔質繊維を用いることができる。他には,一つや複数の細孔を代わりに用いることもできる。これらの材料を用いることで,検体保持部2711でセンサチップ流路の詰まりの原因となり得る検体中の物質を除去もしくは低減することができる。また,これらの材料に活性炭や疎水性樹脂を混合することで,免疫反応系の阻害の要因と成り得る検体中の脂質などを除去もしくは低減することができる。このとき,これらの材料はヒトアルブミン及びGAの存在量の極度な減少,GA/アルブミン比の変動を防ぐため,タンパク質や糖質に対する反応性の低い物質であることが望ましい。   The specimen holder 2711 can be made of aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, rayon fiber filter paper, nonwoven fabric or porous fiber. . Alternatively, one or more pores can be used instead. By using these materials, it is possible to remove or reduce substances in the specimen that may cause clogging of the sensor chip flow path by the specimen holding portion 2711. In addition, by mixing activated carbon or hydrophobic resin with these materials, lipids or the like in the specimen that may be a factor of inhibition of the immune reaction system can be removed or reduced. At this time, it is desirable that these materials are substances having low reactivity to proteins and carbohydrates in order to prevent an extreme decrease in the abundance of human albumin and GA and fluctuations in the GA / albumin ratio.

図28を用いて,以下にS2212における電気化学センサを用いた電位測定方法について実施例の詳細を示す。抗原抗体反応の検出ステップにおいて,検出抗体の修飾酵素アルカリホスファターゼの基質であるアスコルビン酸リン酸と,メディエータであるフェリシアン化カリウムを添加することで,抗原抗体反応を電気化学的な信号として検出できる。アルカリホスファターゼによりアスコルビン酸リン酸は加水分解されてアスコルビン酸となる。その後,アスコルビン酸からデヒドロアスコルビン酸が生成するとともに,フェリシアン化カリウムが還元されフェロシアン化カリウムが生成する。その結果,反応溶液中の酸化物質と還元物質の濃度比が変わり反応液の電位が変動する。図28(a)は流路内に存在するアルカリホスファターゼの作用によって時間経過に伴い変動した電位の測定結果を示す。ただし,アルカリホスファターゼの代わりにネガティブコントロールであるBSAが存在しても電位は変動しない。また図28(b)は,電位をネルンストの式(4)を用いて生成したフェロシアン化カリウムの濃度に換算したグラフである。
[式4]

Figure 2014069551
With reference to FIG. 28, the details of the example of the potential measuring method using the electrochemical sensor in S2212 will be described below. In the detection step of the antigen-antibody reaction, the antigen-antibody reaction can be detected as an electrochemical signal by adding ascorbic acid phosphate, which is a substrate of the detection antibody-modifying enzyme alkaline phosphatase, and mediator, potassium ferricyanide. Ascorbic acid phosphate is hydrolyzed by alkaline phosphatase into ascorbic acid. Thereafter, dehydroascorbic acid is produced from ascorbic acid, and potassium ferricyanide is reduced to produce potassium ferrocyanide. As a result, the concentration ratio of the oxidizing substance and the reducing substance in the reaction solution changes and the potential of the reaction solution fluctuates. FIG. 28 (a) shows the measurement results of the potential that fluctuated with time due to the action of alkaline phosphatase present in the flow path. However, the potential does not fluctuate even if BSA, which is a negative control, is present instead of alkaline phosphatase. FIG. 28B is a graph in which the potential is converted into the concentration of potassium ferrocyanide generated using Nernst equation (4).
[Formula 4]
Figure 2014069551

あらかじめ決まったGA/アルブミン存在比のアルブミン・GA混合試料を用いて行った測定結果をキャリブレーションに利用し,検体の測定結果から検体中のGA/アルブミン存在比を求める。用いる測定結果としては,一定時間後の生成フェロシアン化カリウム濃度,単位時間当たりのフェロシアン化カリウム生成量の他に,図28(a)に示すような変曲点を用いることもできる。この変曲点は式(4)によればフェリシアン化カリウムとフェロシアン化カリウムが等量ある点である。任意の時刻における電位からフェロシアン化カリウム濃度を求めるのには標準電極電位が必要なのに対し,変曲点では必ず標準電極電位となる。そのため,変曲点を用いた測定では,測定ごとに生じる標準電極電位の変動の影響を受けない。   A measurement result obtained by using an albumin / GA mixed sample having a predetermined GA / albumin abundance ratio is used for calibration, and a GA / albumin abundance ratio in the specimen is obtained from the measurement result of the specimen. As a measurement result to be used, an inflection point as shown in FIG. 28A can be used in addition to the produced potassium ferrocyanide concentration after a certain time and the amount of produced potassium ferrocyanide per unit time. This inflection point is an equivalent amount of potassium ferricyanide and potassium ferrocyanide according to equation (4). To obtain the potassium ferrocyanide concentration from the potential at an arbitrary time, the standard electrode potential is required, but at the inflection point, it always becomes the standard electrode potential. Therefore, the measurement using the inflection point is not affected by the fluctuation of the standard electrode potential that occurs at each measurement.

電位計測法は測定感度が測定体積に依存しないため,酸化還元電流法や吸光光度法と比べて測定感度に影響せず測定試料を微量化できる。また,電位計測法は酵素標識抗体の濃度の対数に比例した信号が得られるため,酵素標識抗体の濃度に比例した信号が得られる酸化還元電流法や吸光光度法と比べて広いダイナミックレンジが得られる。   Since the measurement sensitivity of the potential measurement method does not depend on the measurement volume, the measurement sample can be made smaller without affecting the measurement sensitivity compared to the oxidation-reduction current method and the spectrophotometry. In addition, since the potential measurement method obtains a signal proportional to the logarithm of the concentration of the enzyme-labeled antibody, a wider dynamic range can be obtained compared to the oxidation-reduction current method and the spectrophotometric method, which can obtain a signal proportional to the concentration of the enzyme-labeled antibody. It is done.

検出のための抗体の修飾酵素,その基質及びメディエータの組み合わせはアルカリホスファターゼとアスコルビン酸リン酸,フェリシアン化カリウムといった加水分解酵素と基質の組み合わせに限らず,グルコースオキシダーゼとグルコース,フェリシアン化カリウムといった酸化還元酵素と酸化還元物質の組み合わせでもよい。メディエータの濃度は基質濃度よりも低いことが望ましく,基質とメディエータの濃度比により測定感度を調節できる。   The combination of antibody modifying enzyme for detection, its substrate and mediator is not limited to the combination of hydrolyzing enzyme and substrate such as alkaline phosphatase, ascorbic acid phosphate and potassium ferricyanide, but also oxidoreductase such as glucose oxidase and glucose and potassium ferricyanide. A combination of redox substances may also be used. The mediator concentration is preferably lower than the substrate concentration, and the measurement sensitivity can be adjusted by the concentration ratio of the substrate to the mediator.

電位測定用電極2715としては電気化学計測が可能なものとして,金,白金などの貴金属,グラファイト,カーボンブラックなどのカーボン素材のもの,カーボン素材と貴金属を混合したものを用いる。電極面積が測定電流に影響を与える電流計測と違い,電位計測では電極の大きさを厳密に調整する必要はない。   As the electrode 2715 for potential measurement, an electrode capable of electrochemical measurement is used, such as a noble metal such as gold or platinum, a carbon material such as graphite or carbon black, or a mixture of a carbon material and a noble metal. Unlike current measurement, where electrode area affects measurement current, potential measurement does not require precise adjustment of the electrode size.

図29を用いて,電位計測用電極2715と抗体固定部位2716の関係を説明する。図29(a)は電極上にのみ抗体を固定化した場合,図29(b)は電極を含む電極よりも広い範囲に抗体を固定化した場合,図29(c)は電極には抗体を固定せず電極を中心として流路の上流と下流方向から挟む位置に抗体を固定化した場合を示す。それぞれのグラフは,固定化抗体−抗原−酵素標識抗体の複合体が形成された状態で基質を添加したときの反応生成物の濃度を示している。   The relationship between the potential measurement electrode 2715 and the antibody fixing site 2716 will be described with reference to FIG. FIG. 29A shows the case where the antibody is immobilized only on the electrode, FIG. 29B shows the case where the antibody is immobilized over a wider range than the electrode including the electrode, and FIG. The case where the antibody is immobilized at a position sandwiched from the upstream and downstream directions of the flow channel with the electrode as the center without being immobilized is shown. Each graph shows the concentration of the reaction product when the substrate is added in the state where the immobilized antibody-antigen-enzyme labeled antibody complex is formed.

添加された基質は固定化抗体−抗原−酵素標識抗体の複合体の酵素によって分解され反応生成物が生じ,拡散によって広がる。電極上にのみ抗体を固定した場合,反応生成物の分布は図29(a)のように電極上で濃度差が生じる。この図の例では,電極の端では電極の中央の半分程度である。これに対し,電極を含む電極よりも広い範囲に抗体を固定化した場合,図29(b)のように電極上での濃度差は抑制され,ほぼ一定濃度となる。また,図29(c)のように,電極には抗体を固定せず電極を中心として流路の上流と下流方向から挟む位置に抗体を固定化した場合,電極上で若干の濃度差は生じるものの,その差はこの例では7%と図29(a)のように電極上にのみ抗体を固定した場合よりも小さい。電位計測において,電位は反応生成物の濃度に応じて変動するため,電極上で反応生成物の濃度が一定になるように,抗体固定部位2716は図29(b)もしくは図29(c)のように電極よりも広い領域で電極を囲むように配置するのが望ましい。他にも,抗体固定部位2716は図29(d)や図29(e)のように電極を四方から囲むように配置してもよく,電極上にも抗体が固定されていても構わない。抗体固定部位で電極を挟み込む場合においても,電極を囲む場合においても,抗体固定部位2716は電極に隣接していることが望ましい。   The added substrate is decomposed by the enzyme of the complex of the immobilized antibody-antigen-enzyme labeled antibody to produce a reaction product, and spreads by diffusion. When the antibody is immobilized only on the electrode, the distribution of the reaction product has a concentration difference on the electrode as shown in FIG. In the example of this figure, the end of the electrode is about half of the center of the electrode. On the other hand, when the antibody is immobilized in a wider range than the electrode including the electrode, the concentration difference on the electrode is suppressed as shown in FIG. In addition, as shown in FIG. 29 (c), when the antibody is not fixed to the electrode and the antibody is fixed at the position sandwiched from the upstream and downstream directions of the flow path centering on the electrode, a slight concentration difference occurs on the electrode. However, the difference is 7% in this example, which is smaller than when the antibody is immobilized only on the electrode as shown in FIG. In the potential measurement, since the potential fluctuates according to the concentration of the reaction product, the antibody immobilization site 2716 of FIG. 29 (b) or FIG. 29 (c) is used so that the concentration of the reaction product on the electrode is constant. Thus, it is desirable to dispose the electrode so as to surround a wider area than the electrode. In addition, the antibody fixing site 2716 may be disposed so as to surround the electrode from four sides as shown in FIGS. 29D and 29E, and the antibody may be fixed on the electrode. It is desirable that the antibody immobilization site 2716 is adjacent to the electrode both when the electrode is sandwiched between the antibody immobilization sites and when the electrode is surrounded.

図30は,抗ヘモグロビン抗体で捕捉されたヘモグロビンに含まれるHbA1cを抗HbA1c抗体で検出することにより,HbA1c/ヘモグロビン比を測定できることを示す図である。HbA1c/ヘモグロビン比が既知の検体に,ドデシルトリメチルアンモニウムボロマイドやスクロースモノラウレートのような界面活性剤を添加して,抗HbA1c抗体の認識部位であるヘモグロビンのβ鎖N末端のバリン残基を露出させた試料溶液を作製した。この試料溶液を用いて,図19の場合と同様の手法で測定を行い,図30に示すような試料溶液中のHbA1c/ヘモグロビン比に応じた吸光度を得た。   FIG. 30 is a diagram showing that the HbA1c / hemoglobin ratio can be measured by detecting HbA1c contained in hemoglobin captured by the anti-hemoglobin antibody with the anti-HbA1c antibody. To a specimen with a known HbA1c / hemoglobin ratio, a surfactant such as dodecyltrimethylammonium boromide or sucrose monolaurate is added, and the β-chain N-terminal valine residue of hemoglobin, which is the recognition site of the anti-HbA1c antibody, is added. An exposed sample solution was prepared. Using this sample solution, measurement was performed in the same manner as in FIG. 19, and absorbance corresponding to the HbA1c / hemoglobin ratio in the sample solution as shown in FIG. 30 was obtained.

なお,本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり,また,ある実施例の構成に他の実施例の構成を加えることも可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

101 計測装置
102 センサチップ
111 制御部
112 計測部
113〜117 流体接続部
118 吸引吐出ポンプ
119,124,129,134 バルブ
120,122,125,127,130,132 ポンプ
121,126,131 第一試薬
123,128,133 第二試薬
135 信号接続部
141,142,143,144,145 流体接続部
(141 第1の流体接続部,145 第2の流体接続部,142 第3の流体接続部,143 第4の流体接続部)
146 検体導入口
147,149,151,153 検体検出部
150,152,154 測定部
155 廃液溜
156 液体吸収体
157 信号接続部
161,162,163,164 分岐点(161 第1の分岐点,162 第2の分岐点,163 第3の分岐点)
171,172,173,174,175,176,177,178,179,180 流路(171〜176 第1の流路,177 第2の流路,178 第3の流路,179 第4の流路)
401 採血管
801,802,803,804 電極
1121,1122 流体接続部(1121 第2の流体接続部,1122 第5の流体接続部)
1123 通気口(第6の流体接続部)
1201 電極基板
1202 流路基板
1203 廃液溜
1601 圧力計
2021,2022 流体接続部(2021 第2の流体接続部)
2023 分岐点
2024 流路
2101 固相
2102 抗ヒトアルブミン抗体
2103 ヒトアルブミン
2104 GA
2105 酵素修飾抗GA抗体
2106 基質
2107 産物
2108 酵素修飾抗アルブミン抗体
2701 固相
2702 流路部
2703 液体保持部
2711 検体保持部
2712 検体導入口
2713,714 溶液導入検知用電極
2715 電位測定用電極
2716 抗体固定部位
2717,718,727,728 試薬供給口
2719 廃液溜め
2720 廃液溜め接続口
2721 空気穴
2722,2723 境界部
2724〜2726 端子
2801 センサチップ
2802 装置
2803 制御部
2804 計測部
2805 表示部
2806 入力部
2811,2812,2816,2817 試薬供給口
2813〜2815 端子
2821,2823 ポンプ
2822 基質液
2824 検体希釈液
2825,2827 ポンプ
2826 抗体試薬液
2828 洗浄液
2831 参照電極
2832 電圧計
2833 交流電源
2834 交流電流計
2901 グリコアルブミン測定キット
3001 センサチップ
3011,3012,3013 流体接続部
3014 検体導入口
3016 検体保持部
3017 測定部
3019 廃液溜
3020 液体吸収体
3021 信号接続部
3024,3025,3026,3027,3028,3029 流路
3022,3023 分岐点
3201 検体
DESCRIPTION OF SYMBOLS 101 Measurement apparatus 102 Sensor chip 111 Control part 112 Measurement part 113-117 Fluid connection part 118 Suction / discharge pump 119,124,129,134 Valve 120,122,125,127,130,132 Pump 121,126,131 1st reagent 123, 128, 133 Second reagent 135 Signal connection portion 141, 142, 143, 144, 145 Fluid connection portion (141 First fluid connection portion, 145 Second fluid connection portion, 142 Third fluid connection portion, 143 Fourth fluid connection part)
146 Sample inlet 147, 149, 151, 153 Sample detector 150, 152, 154 Measuring unit 155 Waste liquid reservoir 156 Liquid absorber 157 Signal connection 161, 162, 163, 164 Branch point (161 First branch point, 162 2nd branch point, 163 3rd branch point)
171, 172, 173, 174, 175, 176, 177, 178, 179, 180 channel (171-176 first channel, 177 second channel, 178 third channel, 179 fourth channel Road)
401 Blood collection tubes 801, 802, 803, 804 Electrodes 1121, 1122 Fluid connection parts (1121 2nd fluid connection part, 1122 5th fluid connection part)
1123 Vent (sixth fluid connection)
1201 Electrode substrate 1202 Flow path substrate 1203 Waste liquid reservoir 1601 Pressure gauges 2021 and 2022 Fluid connection part (2021 2nd fluid connection part)
2023 Branching point 2024 Channel 2101 Solid phase 2102 Anti-human albumin antibody 2103 Human albumin 2104 GA
2105 Enzyme-modified anti-GA antibody 2106 Substrate 2107 Product 2108 Enzyme-modified anti-albumin antibody 2701 Solid phase 2702 Flow path portion 2703 Liquid holding portion 2711 Specimen holding portion 2712 Specimen inlet 2713, 714 Solution introduction detection electrode 2715 Potential measurement electrode 2716 Antibody Fixed portion 2717, 718, 727, 728 Reagent supply port 2719 Waste liquid reservoir 2720 Waste liquid reservoir connection port 2721 Air holes 2722, 2723 Boundaries 2724-2726 Terminal 2801 Sensor chip 2802 Device 2803 Control unit 2804 Measurement unit 2805 Display unit 2806 Input unit 2811 , 2812, 2816, 2817 Reagent supply ports 2813 to 2815 Terminals 2821, 2823 Pump 2822 Substrate liquid 2824 Specimen diluent 2825, 2827 Pump 2826 Antibody reagent liquid 2828 Washing Liquid 2831 Reference electrode 2832 Voltmeter 2833 AC power supply 2834 AC ammeter 2901 Glycoalbumin measurement kit 3001 Sensor chip 3011, 3012, 3013 Fluid connection part 3014 Specimen inlet 3016 Specimen holding part 3017 Measurement part 3019 Waste liquid reservoir 3020 Liquid absorber 3021 Signal Connection portion 3024, 3025, 3026, 3027, 3028, 3029 Channel 3022, 3023 Branch point 3201 Sample

Claims (25)

流路と,
検体を前記流路に導入するための検体導入口と,
前記流路に配置された電極と,
前記電極の上流と下流に配置された捕捉物質とを有することを特徴とするセンサチップ。
A flow path,
A sample inlet for introducing a sample into the flow path;
An electrode disposed in the flow path;
A sensor chip comprising a capture substance disposed upstream and downstream of the electrode.
請求項1のセンサチップにおいて,
前記捕捉物質は非糖化タンパク質と糖化タンパク質に共通の部位を認識する抗体であることを特徴とするセンサチップ。
The sensor chip of claim 1,
The sensor chip, wherein the capture substance is an antibody that recognizes a site common to non-glycated protein and glycated protein.
請求項2記載のセンサチップにおいて,
前記糖化タンパク質はHbA1cもしくはグリコアルブミンであることを特徴とするセンサチップ。
The sensor chip according to claim 2,
The sensor chip, wherein the glycated protein is HbA1c or glycoalbumin.
請求項1記載のセンサチップにおいて,
前記流路に接続された廃液溜を有することを特徴とするセンサチップ。
The sensor chip according to claim 1,
A sensor chip comprising a waste liquid reservoir connected to the flow path.
請求項1記載のセンサチップにおいて,
前記検体導入口は検体保持部を備えることを特徴とするセンサチップ。
The sensor chip according to claim 1,
The sensor chip, wherein the sample introduction port includes a sample holding unit.
非糖化タンパク質と糖化タンパク質に共通の部位を認識する抗体と,糖化部を認識する酵素標識抗体とを用いて,電位測定により検体中の糖化タンパク質の糖化割合を定量化することを特徴とする糖化タンパク質の測定方法。   Saccharification characterized by quantifying the saccharification rate of glycated protein in a sample by potential measurement using an antibody that recognizes a site common to non-glycated protein and glycated protein and an enzyme-labeled antibody that recognizes the glycated portion Protein measurement method. 請求項6に記載の測定方法において,
前記抗体が固相に固定化された固定化抗体であり,前記固相に前記検体を供給する工程,前記試料液中の糖化タンパク質を前記固定化抗体に結合させる工程,前記固相に前記酵素標識抗体を供給する工程,前記酵素標識抗体を前記抗体に結合した糖化タンパク質に結合させて固定化抗体−糖化タンパク質−酵素標識抗体複合体を形成する工程,前記固相に基質を供給する工程,前記基質を前記複合体の酵素と反応させて反応産物を生成させる工程,電位測定により前記反応産物の濃度を測定する工程,前記反応産物の濃度を試料液中の糖化タンパク質濃度に換算する工程を順に有することを特徴とする糖化タンパク質の測定方法。
The measurement method according to claim 6,
The antibody is an immobilized antibody immobilized on a solid phase, the step of supplying the specimen to the solid phase, the step of binding a glycated protein in the sample solution to the immobilized antibody, the enzyme on the solid phase Supplying a labeled antibody, binding the enzyme-labeled antibody to a glycated protein bound to the antibody to form an immobilized antibody-glycated protein-enzyme-labeled antibody complex, supplying a substrate to the solid phase, Reacting the substrate with the enzyme of the complex to produce a reaction product, measuring the concentration of the reaction product by measuring potential, and converting the concentration of the reaction product into a glycated protein concentration in a sample solution. A method for measuring a glycated protein characterized by comprising in order.
請求項6又は請求項7記載の測定方法において,
糖化タンパク質はHbA1cもしくはグリコアルブミンであることを特徴とする糖化タンパク質の測定方法。
In the measuring method according to claim 6 or 7,
The method for measuring a glycated protein, wherein the glycated protein is HbA1c or glycoalbumin.
第1の流体接続部と第2の流体接続部とを結ぶ第1の流路と,
検体を導入するための検体導入口と,
前記第1の流路に設けられた第1の分岐点と前記検体導入口とを結ぶ第2の流路と,
前記第1の分岐点より前記第2の流体接続部寄りの位置に設けられた前記第1の流路の第2の分岐点と第3の流体接続部とを結ぶ第3の流路とを有し,
前記第1の流路には,前記第1の流体接続部と前記第1の分岐点との間もしくは前記第1の分岐点と前記第2の分岐点との間に検体検出部が配置されており,
前記第3の流路には,前記検体導入口から導入された検体についての測定を行う測定部が配置されていることを特徴とするセンサチップ。
A first flow path connecting the first fluid connection and the second fluid connection;
A sample inlet for introducing the sample;
A second flow path connecting the first branch point provided in the first flow path and the sample inlet;
A third flow path connecting the second branch point of the first flow path and the third fluid connection section provided at a position closer to the second fluid connection section than the first branch point; Have
In the first flow path, a sample detection unit is disposed between the first fluid connection unit and the first branch point or between the first branch point and the second branch point. And
A sensor chip according to claim 3, wherein a measurement unit for measuring the sample introduced from the sample introduction port is disposed in the third flow path.
請求項9記載のセンサチップにおいて,
廃液溜を有することを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
A sensor chip having a waste liquid reservoir.
請求項10記載のセンサチップにおいて,
前記廃液溜は前記第1の流路の前記第2の分岐点と前記第2の流体接続部の間に有ることを特徴とするセンサチップ。
The sensor chip according to claim 10,
The sensor chip, wherein the waste liquid reservoir is located between the second branch point of the first flow path and the second fluid connection portion.
請求項10記載のセンサチップにおいて,
前記廃液溜内には液体吸収体が配置されていることを特徴とするセンサチップ。
The sensor chip according to claim 10,
A sensor chip, wherein a liquid absorber is disposed in the waste liquid reservoir.
さらに複数の流体接続部を有する請求項9又は請求項10に記載のセンサチップ。   The sensor chip according to claim 9 or 10, further comprising a plurality of fluid connection portions. 請求項9記載のセンサチップにおいて,
前記第2の流路は,前記検体導入口と前記第1の分岐点の間に逆止弁もしくはフィルタを備えることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
The sensor chip, wherein the second flow path includes a check valve or a filter between the sample introduction port and the first branch point.
請求項9記載のセンサチップにおいて,
前記検体検出部は電極を備えることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
A sensor chip, wherein the specimen detection unit includes an electrode.
請求項9記載のセンサチップにおいて,
前記第1の流路には,前記第1の流体接続部と前記第1の分岐点との間もしくは前記第1の分岐点と前記第2の分岐点との間に複数の検体検出部が配置されていることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
In the first flow path, a plurality of specimen detection units are provided between the first fluid connection unit and the first branch point or between the first branch point and the second branch point. A sensor chip which is arranged.
請求項9記載のセンサチップにおいて,
前記第2の分岐点より前記第2の流体接続部寄りの位置に設けられた前記第1の流路の第3の分岐点と第4の流体接続部とを結ぶ第4の流路とを有し,
前記第4の流路には,前記検体導入口から導入された検体についての測定を行う測定部が配置されていることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
A fourth flow path connecting the third branch point of the first flow path and the fourth fluid connection section provided at a position closer to the second fluid connection section than the second branch point. Have
The sensor chip according to claim 4, wherein a measurement unit for measuring the sample introduced from the sample introduction port is disposed in the fourth flow path.
請求項9記載のセンサチップにおいて,
前記測定部は検体検出部を備えることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
The sensor chip, wherein the measurement unit includes a sample detection unit.
請求項9記載のセンサチップにおいて,
前記第1の流路に接続されない第5の流体接続部と第6の流体接続部とを備え,前記第5の流体接続部と前記第6の流体接続部に接続した廃液溜が設けられていることを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
A waste fluid reservoir having a fifth fluid connection portion and a sixth fluid connection portion that are not connected to the first flow path, and connected to the fifth fluid connection portion and the sixth fluid connection portion; A sensor chip.
請求項9記載のセンサチップにおいて,
廃液が導入される廃液溜を有し,
前記検体検出部及び測定部は電極を備え,
前記廃液溜が形成された基板の上に前記電極が形成された基板が配置され,前記電極が形成された基板の上に前記第1の流路,前記第2の流路及び前記第3の流路が形成された基板が配置された積層構造を有することを特徴とするセンサチップ。
The sensor chip according to claim 9, wherein
A waste liquid reservoir into which the waste liquid is introduced;
The sample detection unit and the measurement unit include electrodes,
A substrate on which the electrode is formed is disposed on the substrate on which the waste liquid reservoir is formed, and the first flow path, the second flow path, and the third flow path are disposed on the substrate on which the electrode is formed. A sensor chip having a laminated structure in which a substrate on which a channel is formed is disposed.
請求項20記載のセンサチップにおいて,
前記廃液溜は前記第1の流路につながっていない第5の流体接続部と第6の流体接続部に接続されていることを特徴とするセンサチップ。
The sensor chip according to claim 20,
The sensor chip, wherein the waste liquid reservoir is connected to a fifth fluid connection portion and a sixth fluid connection portion that are not connected to the first flow path.
請求項20記載のセンサチップにおいて,
前記廃液溜は前記第1の流路に接続されていることを特徴とするセンサチップ。
The sensor chip according to claim 20,
The sensor chip, wherein the waste liquid reservoir is connected to the first flow path.
第1の流体接続部と第2の流体接続部とを結ぶ第1の流路と,
検体を導入するための検体導入口と,
前記第1の流路に設けられた第1の分岐点と前記検体導入口とを結ぶ第2の流路と,
前記第1の分岐点より前記第2の流体接続部寄りの位置に設けられた前記第1の流路の第2の分岐点と第3の流体接続部とを結ぶ第3の流路と,
前記第1の流路に接続された圧力調整機構と,
前記第3の流体接続部に接続された試薬導入機構と,
装置各部の動作を制御する制御部とを有し,
前記第1の流路には,前記第1の流体接続部と前記第1の分岐点との間もしくは前記第1の分岐点と前記第2の分岐点との間に検体検出部が配置されており,
前記第3の流路には,前記検体導入口から導入された検体についての測定を行う測定部が配置されており,
前記制御部は,前記圧力制御機構を制御して検体を前記検体導入口から前記検体検出部に向けて前記第1の流路内に吸引し,前記検体検出部が検体を検出したとき前記圧力制御機構による吸引を停止し,次に前記圧力制御機構を制御して前記第1の流路に導入された検体を前記第3の流路に搬送し,その後,前記試薬導入機構を制御して前記第3の流路に試薬を導入することを特徴とする測定装置。
A first flow path connecting the first fluid connection and the second fluid connection;
A sample inlet for introducing the sample;
A second flow path connecting the first branch point provided in the first flow path and the sample inlet;
A third flow path connecting a second branch point of the first flow path and a third fluid connection portion provided at a position closer to the second fluid connection portion than the first branch point;
A pressure adjusting mechanism connected to the first flow path;
A reagent introduction mechanism connected to the third fluid connection;
A control unit for controlling the operation of each part of the device,
In the first flow path, a sample detection unit is disposed between the first fluid connection unit and the first branch point or between the first branch point and the second branch point. And
In the third flow path, a measurement unit for measuring the sample introduced from the sample introduction port is disposed,
The control unit controls the pressure control mechanism to suck the sample from the sample introduction port toward the sample detection unit into the first flow path, and the pressure is detected when the sample detection unit detects the sample. The suction by the control mechanism is stopped, and then the pressure control mechanism is controlled to transport the sample introduced into the first channel to the third channel, and then the reagent introduction mechanism is controlled. A measuring apparatus for introducing a reagent into the third flow path.
請求項23記載の測定装置において,
前記圧力制御機構は前記第1の流体接続部に接続された吸引吐出ポンプであり,
前記制御部は,前記吸引吐出ポンプを吸引動作させて前記検体を前記第1の流路内に吸引し,前記吸引吐出ポンプを吐出動作させて前記検体を前記第3の流路内に吐出させることを特徴とする測定装置。
The measuring device according to claim 23,
The pressure control mechanism is a suction / discharge pump connected to the first fluid connection;
The controller causes the suction / discharge pump to perform a suction operation to suck the sample into the first channel, and causes the suction / discharge pump to perform a discharge operation to discharge the sample into the third channel. A measuring device.
第1の流路に第2の流路を介して接続された検体導入口から検体を前記第1の流路に吸引する工程と,
前記第1の流路に設けられた検体検出部が検体を検出したとき吸引を停止して規定量の検体を前記第1の流路に導入する工程と,
前記第1の流路に圧力をかけて前記規定量の検体を,前記第1の流路に接続された測定部を有する第2の流路に導入する工程と,
前記測定部に試薬を供給する工程と,
前記測定部で測定を行う工程と,
を有することを特徴とする測定方法。
A step of aspirating a sample into the first channel from a sample inlet connected to the first channel via a second channel;
A step of stopping aspiration when a sample detection unit provided in the first channel detects a sample and introducing a specified amount of sample into the first channel;
Applying a pressure to the first flow path to introduce the specified amount of the sample into a second flow path having a measurement unit connected to the first flow path;
Supplying a reagent to the measuring unit;
A step of measuring in the measuring unit;
A measuring method characterized by comprising:
JP2014544567A 2012-10-31 2013-10-31 Sensor chip and measurement system Expired - Fee Related JP6090330B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012240010 2012-10-31
JP2012240010 2012-10-31
PCT/JP2013/079486 WO2014069551A1 (en) 2012-10-31 2013-10-31 Sensor chip, and measurement device and measurement method using same

Publications (2)

Publication Number Publication Date
JPWO2014069551A1 true JPWO2014069551A1 (en) 2016-09-08
JP6090330B2 JP6090330B2 (en) 2017-03-08

Family

ID=50627449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544567A Expired - Fee Related JP6090330B2 (en) 2012-10-31 2013-10-31 Sensor chip and measurement system

Country Status (2)

Country Link
JP (1) JP6090330B2 (en)
WO (1) WO2014069551A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190977A (en) * 2018-04-25 2019-10-31 株式会社バイオデバイステクノロジー Microchip, microchip measurement system and measurement method
US10648975B2 (en) 2017-07-03 2020-05-12 Lansion Biotechnology Co., Ltd. Single channel chemiluminescent micro-fluidic chip and detection method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087293A (en) * 2013-10-31 2015-05-07 日立化成株式会社 Measuring kit and measuring method of glyco-albumin
US10005080B2 (en) * 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
JP6487190B2 (en) 2014-11-21 2019-03-20 サントル ナショナル ドゥラ ルシェルシュ シヤンティフィック Molecular detection system
CN107405619B (en) * 2015-01-14 2020-03-13 彼克斯赛尔医疗科技有限公司 Disposable cartridge for sample fluid analysis
EP3112869A1 (en) * 2015-06-30 2017-01-04 IMEC vzw Sensor device
JPWO2017082253A1 (en) * 2015-11-09 2018-08-23 東レ株式会社 Sensor
GB2545009A (en) * 2015-12-03 2017-06-07 Univ Ulster Liquid sample collection apparatus
JP6953679B2 (en) 2016-03-30 2021-10-27 ソニーグループ株式会社 Sample sorting kit, sample sorting device
CN105954524B (en) * 2016-07-15 2018-06-29 安徽国科生物科技有限公司 For the biochip of human heat shock protein detection
CN106018786B (en) * 2016-07-15 2018-06-29 安徽国科生物科技有限公司 For detecting the intelligent detection equipment of Procalcitonin
WO2018062320A1 (en) * 2016-09-30 2018-04-05 京セラ株式会社 Detection sensor, kit for detection sensors, sensor device, method for producing detection sensor, and detection method
CN107167619A (en) * 2017-05-18 2017-09-15 易源易贝(北京)科技有限公司 A kind of fluid sample detecting system and detection method
JP6826666B2 (en) * 2017-07-28 2021-02-03 京セラ株式会社 Sensor module
WO2019146662A1 (en) * 2018-01-23 2019-08-01 京セラ株式会社 Measurement method and measurement device
US20220276193A1 (en) * 2019-07-05 2022-09-01 Nippon Telegraph And Telephone Corporation Analysis Device and Method
WO2021133860A1 (en) 2019-12-24 2021-07-01 Vsense Medical Llc Analyte sensing system and cartridge thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658936A (en) * 1992-08-11 1994-03-04 Sekisui Chem Co Ltd Method for measuring saccharifying protein
JPH09196739A (en) * 1995-11-15 1997-07-31 Terametsukusu Kk Method and implement for detection of liquid
JPH1010065A (en) * 1996-06-21 1998-01-16 Showa Shell Sekiyu Kk Immunosensor
JPH1026625A (en) * 1996-07-10 1998-01-27 Olympus Optical Co Ltd Compact analyzer and driving method thereof
JP2003202347A (en) * 2002-01-07 2003-07-18 Mitsubishi Heavy Ind Ltd Microreactor
JP2003302403A (en) * 2002-03-21 2003-10-24 Lifescan Inc Assay
WO2005033666A1 (en) * 2003-10-03 2005-04-14 National Institute For Materials Science Chip using method and test chip
JP2005519304A (en) * 2002-03-05 2005-06-30 アイ−スタット コーポレイション Apparatus and method for analyte measurement and immunoassay
JP2005323519A (en) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc Micro fluid device, method for testing solution to be tested, and system for testing the same
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
WO2006080186A1 (en) * 2005-01-07 2006-08-03 Sekisui Chemical Co., Ltd. Detection device using cartridge
JP2007003268A (en) * 2005-06-22 2007-01-11 Aisin Seiki Co Ltd Device for detecting target substance
WO2007049534A1 (en) * 2005-10-28 2007-05-03 Arkray, Inc. Liquid feeding method and cartridge to be used therein
JP2008020287A (en) * 2006-07-12 2008-01-31 Citizen Holdings Co Ltd Biosensor
JP2008541043A (en) * 2005-05-06 2008-11-20 シェーン ユウ、ジャエ Digital bio-disc and digital bio-disc driver apparatus and method
JP2011107099A (en) * 2009-11-20 2011-06-02 Rohm Co Ltd Electrochemical analysis chip and electrochemical analysis method
JP2013220066A (en) * 2012-04-17 2013-10-28 Hitachi Ltd Sensor chip and measuring method using the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658936A (en) * 1992-08-11 1994-03-04 Sekisui Chem Co Ltd Method for measuring saccharifying protein
JPH09196739A (en) * 1995-11-15 1997-07-31 Terametsukusu Kk Method and implement for detection of liquid
JPH1010065A (en) * 1996-06-21 1998-01-16 Showa Shell Sekiyu Kk Immunosensor
JPH1026625A (en) * 1996-07-10 1998-01-27 Olympus Optical Co Ltd Compact analyzer and driving method thereof
JP2003202347A (en) * 2002-01-07 2003-07-18 Mitsubishi Heavy Ind Ltd Microreactor
JP2005519304A (en) * 2002-03-05 2005-06-30 アイ−スタット コーポレイション Apparatus and method for analyte measurement and immunoassay
JP2003302403A (en) * 2002-03-21 2003-10-24 Lifescan Inc Assay
WO2005033666A1 (en) * 2003-10-03 2005-04-14 National Institute For Materials Science Chip using method and test chip
JP2005323519A (en) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc Micro fluid device, method for testing solution to be tested, and system for testing the same
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
WO2006080186A1 (en) * 2005-01-07 2006-08-03 Sekisui Chemical Co., Ltd. Detection device using cartridge
JP2008541043A (en) * 2005-05-06 2008-11-20 シェーン ユウ、ジャエ Digital bio-disc and digital bio-disc driver apparatus and method
JP2007003268A (en) * 2005-06-22 2007-01-11 Aisin Seiki Co Ltd Device for detecting target substance
WO2007049534A1 (en) * 2005-10-28 2007-05-03 Arkray, Inc. Liquid feeding method and cartridge to be used therein
JP2008020287A (en) * 2006-07-12 2008-01-31 Citizen Holdings Co Ltd Biosensor
JP2011107099A (en) * 2009-11-20 2011-06-02 Rohm Co Ltd Electrochemical analysis chip and electrochemical analysis method
JP2013220066A (en) * 2012-04-17 2013-10-28 Hitachi Ltd Sensor chip and measuring method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648975B2 (en) 2017-07-03 2020-05-12 Lansion Biotechnology Co., Ltd. Single channel chemiluminescent micro-fluidic chip and detection method thereof
JP2019190977A (en) * 2018-04-25 2019-10-31 株式会社バイオデバイステクノロジー Microchip, microchip measurement system and measurement method

Also Published As

Publication number Publication date
WO2014069551A1 (en) 2014-05-08
JP6090330B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6090330B2 (en) Sensor chip and measurement system
US9970923B2 (en) Electronic analyte assaying device
US10775369B2 (en) Fluidic systems for analyses
US7674616B2 (en) Device and method for measuring properties of a sample
JP2736091B2 (en) Elements and methods for accurately, quickly and simply performing a bioassay
EP1942332B1 (en) Measuring device, measuring apparatus and method of measuring
EP2315015A1 (en) Analysis device by capillary electrophoresis method
EP2284538B1 (en) Biosensor
US20110070634A1 (en) Biosensor
CN110892247B (en) Apparatus, systems, and methods for performing optical and electrochemical assays
KR102371415B1 (en) Rotatable cartridge with multiple metering chambers
WO2015064701A1 (en) Glycoalbumin measurement kit and measurement method
CN110869745B (en) Apparatus, system and method for performing optical assays
CN110869746B (en) Techniques for performing optical and electrochemical assays using universal circuitry
WO2016035197A1 (en) Cartridge for electrochemical immunity sensor and measurement device using same
JP2011220768A (en) Analyzer and analysis method
KR101787791B1 (en) Test instrument for measuring analyte in sample, and method for measuring analyte using same
CN115165809A (en) Chip card, molecular interaction analysis system and analysis method based on chip card

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees