JPWO2013187271A1 - ブロア - Google Patents

ブロア Download PDF

Info

Publication number
JPWO2013187271A1
JPWO2013187271A1 JP2014521269A JP2014521269A JPWO2013187271A1 JP WO2013187271 A1 JPWO2013187271 A1 JP WO2013187271A1 JP 2014521269 A JP2014521269 A JP 2014521269A JP 2014521269 A JP2014521269 A JP 2014521269A JP WO2013187271 A1 JPWO2013187271 A1 JP WO2013187271A1
Authority
JP
Japan
Prior art keywords
blower
piezoelectric
suction port
actuator
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014521269A
Other languages
English (en)
Other versions
JP5692465B2 (ja
Inventor
進 竹内
進 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014521269A priority Critical patent/JP5692465B2/ja
Application granted granted Critical
Publication of JP5692465B2 publication Critical patent/JP5692465B2/ja
Publication of JPWO2013187271A1 publication Critical patent/JPWO2013187271A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0027Special features without valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein

Abstract

圧電ブロア(100)は、筐体(17)、天板(37)、側板(38)、振動板(39)、圧電素子(40)、及びキャップ(42)を備える。天板(37)、側板(38)、及び振動板(39)は、ブロア室(36)を構成する。天板(37)には通気孔(45)が設けられている。振動板(39)及び圧電素子(40)は圧電アクチュエータ(41)を構成する。キャップ(42)には、圧電アクチュエータ(41)に対向する壁部(43)と円板形状の吸引口(53)とが形成されている。ここで、壁部(43)の厚み方向に延びる吸引口(53)の中心軸(X)と、壁部(43)の厚み方向に延びる圧電素子(40)の中心軸(Y)とは一致していない。そして、天板(37)、側板(38)及び圧電アクチュエータ(41)の接合体と筐体(17)及びキャップ(42)との間には通気路(31)が形成されている。

Description

本発明は、気体の輸送を行うブロアに関するものである。
特許文献1には、携帯型電子機器の内部で発生する熱を冷却するため、あるいは燃料電池で発電するのに必要な酸素を供給するためのマイクロブロアが開示されている。
図12は、特許文献1に係るマイクロブロア900の断面図である。マイクロブロア900は、内ケース2と、弾性金属板5Aと、圧電素子5Bと、内ケース2の外側を覆う外ケース3と、蓋部材9と、を備えている。内ケース2は複数個の連結部4によって外ケース3に対して弾性的に支持されている。
内ケース2は下方が開口した断面コの字形状であり、開口を閉じるように、弾性金属板5Aが接合されている。これにより、内ケース2は、弾性金属板5Aとともにブロア室6を構成している。そして、内ケース2には、ブロア室6の内部と外部を連通する開口部8が形成されている。また、弾性金属板5Aのブロア室6とは逆側の主面には、圧電素子5Bが貼付されている。
開口部8に対向する外ケース3の領域には、吐出口3Aが形成されている。外ケース3は、内ケース2を収納するよう、蓋部材9を有している。蓋部材9の中央には、吸引口9Aが形成されている。ここで、蓋部材9の厚み方向に延びる吸引口9Aの中心を通る中心軸と、蓋部材9の厚み方向に延びる圧電素子5Bの中心を通る中心軸とは一致している。
そして、内ケース2、弾性金属板5A及び圧電素子5Bの接合体と外ケース3との間には、空気の流入通路7が形成されている。
以上の構成において、交流駆動電圧が圧電素子5Bに印加されると、圧電素子5Bが伸縮し、圧電素子5Bの伸縮により弾性金属板5Aが屈曲振動する。そして、弾性金属板5Aの屈曲変形によりブロア室6の体積が周期的に変化する。
詳述すると、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aが圧電素子5B側へ屈曲すると、ブロア室6の容積が増大する。これに伴い、マイクロブロア900の外部の空気が吸引口9A、流入通路7、及び開口部8を介してブロア室6内に吸引される。このとき、ブロア室6からの空気の流出は無いものの、吐出口3Aからマイクロブロア900の外部への空気の流れの慣性力が働いている。
次に、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aがブロア室6側へ屈曲すると、ブロア室6の容積が減少する。これに伴い、ブロア室6内の空気が開口部8、流入通路7を介して吐出口3Aから吐出される。
このとき、ブロア室6から吐出される気流は,マイクロブロア900の外部の空気を吸引口9A及び流入通路7を介して引き込みながら吐出口3Aから吐出される。そのため、吐出口3Aから吐出される空気の流量は、引き込まれる空気の流量分増大する。
以上により、マイクロブロア900では、消費電力あたりの吐出流量を増大させている。
特開2011−27079号公報
しかしながら、本願の発明者は、前記特許文献1のマイクロブロア900において、弾性金属板5Aが圧電素子5B側へ屈曲する時、吸引口9Aからマイクロブロア900の外部へ漏れる気流BFが生じているという知見を得た。
すなわち、この気流BFによりマイクロブロア900の外部へ漏れる空気の流量分、流入通路7に引き込まれる空気の流量が減少するため、吐出口3Aから吐出される吐出流量が減少してしまうことが分かった。
一方、近年、前述の図12に示すような構造のマイクロブロアを搭載する電子機器には、低消費電力化の傾向がある。そのため、低消費電力で吐出流量の多いマイクロブロアが求められている。
そこで本発明は、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できるブロアを提供することを目的とする。
本発明のブロアは、前記課題を解決するために以下の構成を備えている。
(1)駆動体を有し、前記駆動体への電圧の印加により同心円状に屈曲振動するアクチュエータと、
前記アクチュエータとともにブロア室を構成し、前記ブロア室の内部と外部とを連通させる通気孔を有する第1筐体と、
吸引口が形成され、前記アクチュエータに対向する壁部と、
前記壁部とともに前記アクチュエータ及び前記第1筐体を、間隔を設けて被覆して前記アクチュエータ及び前記第1筐体との間に通気路を形成する第2筐体と、を備え、
前記通気孔に対向する前記第2筐体の箇所には、吐出口が形成され、
前記吸引口の中心軸と前記駆動体の中心軸とは、一致していない。
この構成では、駆動電圧が駆動体に印加されると、駆動体によりアクチュエータが同心円状に屈曲振動する。そして、このアクチュエータの変形によりブロア室の体積が周期的に変化し、ブロア室の気体が通気孔から流出する。そして、ブロア室から通気孔を介して流出する気流が、通気路を介してブロアの外部に存在する気体を引き込みながら吐出口から吐出される。これにより、ブロアの吐出流量が引き込まれる気体の流量分増大する。
この構成では、吸引口の中心を通る吸引口の中心軸と、駆動体の中心を通る駆動体の中心軸とが、一致していない。このため、吸引口の中心軸と駆動体の中心軸とが一致する従来のブロアに比べて、アクチュエータにおける振動エネルギーの高い領域(即ち、アクチュエータにおける変位量の大きい領域)に対向する吸引口の面積の割合が減少する。すなわち、アクチュエータが屈曲振動をしているとき、通気路から吸引口を介してブロアの外部へ漏れる気体の流量が減少し、壁部に衝突する気体の流量が増加する。
なお、壁部に衝突して分散する気流は通気路内に残留する。このため、アクチュエータが屈曲振動をしているとき、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量が増加する。すなわち、吐出口から吐出される吐出流量が増加する。
したがって、この構成によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
(2)前記駆動体の中心は、前記壁部の前記吸引口以外の領域と対向していることが好ましい。
この構成では、振動エネルギーの最も高いアクチュエータの中心(即ち、変位量の最も大きいアクチュエータの中心)が、壁部の吸引口以外の領域に対向する。そのため、アクチュエータが屈曲振動をしているとき、通気路から吸引口を介してブロアの外部へ漏れる気体の流量がより減少し、壁部に衝突する気体の流量がより増加する。
この結果、アクチュエータが屈曲振動をしているとき、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量がより増加し、吐出口から吐出される吐出流量がより増加する。
(3)前記吸引口の直径は、前記駆動体の直径の1/2以下であることが好ましい。
この構成では、より効果的に消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
(4)前記アクチュエータは、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
前記吸引口は、前記アクチュエータの屈曲振動により形成される振動の節のうち、前記アクチュエータの中心から最も距離が短い振動の節に対向する前記壁部の箇所より外側の領域に形成されていることが好ましい。
この構成では、壁部が、アクチュエータにおける振動エネルギーの高い領域の全てに対向する。そのため、前述の振動モードでアクチュエータが屈曲振動をした場合、通気路から吸引口を介してブロアの外部へ漏れる気体の流量がより減少し、壁部に衝突する気体の流量がより増加する。
この結果、前述の振動モードでアクチュエータが屈曲振動をした場合、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量がより増加し、吐出口から吐出される吐出流量がより増加する。
(5)前記吸引口が形成されている前記壁部は、前記第2筺体に対して着脱自在に取り付けられていることが好ましい。
この構成では、第2筺体に装着する壁部の形状を調整することによって、壁部以外の構成を変更せずに、吐出圧力および吐出流量を調整することができる。
この発明によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。 図1に示す圧電ブロア100の分解斜視図である。 図1に示す圧電ブロア100の底面図である。 図1に示す圧電ブロア100のS−S線の断面図である。 図5(A)(B)は、図1に示す圧電ブロア100を1次モードの周波数(基本波)で動作させた場合における圧電ブロア100のS−S線の断面図である。図5(A)は、ブロア室36の容積が増大したときの図であり、図5(B)は、ブロア室36の容積が減少したときの図である。 図6(A)(B)は、本発明の第2実施形態に係る圧電ブロア200を3次モードの周波数(基本波の3倍波)で動作させた場合における圧電ブロア200のS−S線の断面図である。図6(A)は、ブロア室36の容積が増大したときの図であり、図6(B)は、ブロア室36の容積が減少したときの図である。 図6(B)に示す圧電アクチュエータ41の概略断面図である。 図6(A)(B)に示す圧電ブロア200における、圧電素子40の中心軸に対する吸引口253の中心軸の距離と、圧電ブロア200のポンプ特性(吐出圧力および吐出流量)との関係を示す図である。 本発明の第3実施形態に係る圧電ブロア300の外観斜視図である。 図9に示す圧電ブロア300のT−T線の断面図である。 図11(A)(B)は、図9に示す圧電ブロア300を1次モードの周波数(基本波)で動作させた場合における圧電ブロア300のT−T線の断面図である。図11(A)は、ブロア室36の容積が増大したときの図であり、図11(B)は、ブロア室36の容積が減少したときの図である。 特許文献1に係るマイクロブロア900の断面図である。
《本発明の第1実施形態》
以下、本発明の第1実施形態に係る圧電ブロア100について説明する。
図1は、本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。図2は、図1に示す圧電ブロア100の分解斜視図である。図3は、図1に示す圧電ブロア100の底面図である。図4は、図1に示す圧電ブロア100のS−S線の断面図である。
圧電ブロア100は、上から順に、筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ42を備え、それらを順に積層した構造を有している。天板37、側板38、及び振動板39は、ブロア室36を構成している。圧電ブロア100は、幅20mm×長さ20mm×ノズル18以外の領域の高さ1.85mmの寸法となっている。
なお、この実施形態では、天板37及び側板38の接合体が本発明の「第1筐体」に相当し、筐体17が本発明の「第2筐体」に相当する。また、圧電素子40が本発明の「駆動体」に相当する。
筐体17は、空気が吐出される吐出口24が中心に形成されたノズル18を有する。このノズル18は、外形の直径2.0mm×内形(即ち吐出口24)の直径0.8mm×高さ1.6mmの寸法となっている。筐体17の四角には、ネジ穴56A〜56Dが形成されている。
筐体17は、下方が開口した断面コ字状に形成されており、筐体17は、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。筐体17は、例えば樹脂から構成されている。
ブロア室36の天板37は、円板状であり、例えば金属から構成されている。天板37には、中央部61と、中央部61から水平方向に突出し、筐体17の内壁に当接する鍵状の突出部62と、外部回路に接続するための外部端子63とが形成されている。
また、天板37の中央部61には、ブロア室36の内部と外部とを連通させる通気孔45が設けられている。この通気孔45は、筐体17の吐出口24と対向する位置に形成されている。天板37は、側板38の上面に接合する。
ブロア室36の側板38は、円環状であり、例えば金属から構成されている。側板38は、振動板39の上面に接合する。そのため、側板38の厚みは、ブロア室36の高さとなる。
振動板39は、円板状であり、例えば金属から構成されている。振動板39は、ブロア室36の底面を構成する。
圧電素子40は、円板形状であり、例えばチタン酸ジルコン酸鉛系セラミックスから構成されている。圧電素子40の直径は、13.8mmであり、圧電素子40の壁部43側の主面の面積は、150mmである。圧電素子40は、振動板39のブロア室36とは逆側の主面に接合されており、印加された交流電圧に応じて伸縮する。圧電素子40及び振動板39の接合体は、圧電アクチュエータ41を構成する。
そして、天板37、側板38、振動板39、及び圧電素子40の接合体は、天板37に設けられている4個の突出部62によって筐体17に対して弾性的に支持されている。
電極導通用板70は、圧電素子40に接続するための内部端子73と、外部回路に接続するための外部端子72とで構成されている。内部端子73の先端は圧電素子40の平板面にはんだ付けされている。はんだ付け位置を圧電素子40の屈曲振動の節に相当する位置とすることにより、内部端子73の振動がより抑制できる。
キャップ42には、圧電アクチュエータ41に対向する壁部43と円板形状の吸引口53とが形成されている。この実施形態において、壁部43と圧電素子40との間隔は0.3mmであり、壁部43の厚みは0.1mmである。
また、吸引口53の直径は、圧電素子40の直径の1/2以下であることが好ましく、この実施形態では5mmである。吸引口53の開口面の面積は、19.6mmである。また、圧電素子40の壁部43側の主面の面積に対する吸引口53の開口面の面積の割合(面積比)は、約0.13である。
そして、図4に示すように、壁部43の厚み方向に延びる吸引口53の中心を通る中心軸Xと、壁部43の厚み方向に延びる圧電素子40の中心を通る中心軸Yとは、一致していない。また、キャップ42には、筐体17のネジ穴56A〜56Dに対応する位置に切欠き55A〜55Dが形成されている。
また、キャップ42は、外周縁に、天板37側へ突出する突出部52を有する。キャップ42は、突出部52で筐体17を挟持することで、筐体17とともに、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。キャップ42は、例えばガラスエポキシ樹脂から構成されている。
そして、図4に示すように、天板37、側板38及び圧電アクチュエータ41の接合体と筐体17及びキャップ42との間には通気路31が形成されている。
以下、圧電ブロア100が動作しているときにおける空気の流れについて説明する。
図5(A)(B)は、図1に示す圧電ブロア100を1次モードの周波数(以下、基本波)で動作させた場合における圧電ブロア100のS−S線の断面図である。図5(A)は、ブロア室36の容積が増大したときの図であり、図5(B)は、ブロア室36の容積が減少したときの図である。ここで、図中の矢印は、空気の流れを示している。
図4に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は1次モードで同心円状に屈曲振動する。
同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
これにより、図5(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図5(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア100の外部の空気が吸引口53、通気路31、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア100の外部への空気の流れの慣性力が働いている。
図5(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路31を介して吐出口24から吐出される。
このとき、ブロア室36から吐出される気流は,圧電ブロア100の外部の空気を吸引口53及び通気路31を介して引き込みながら吐出口24から吐出される。そのため、圧電ブロア100の外部から吐出孔に付与される圧力を0(以下、無負荷)とすると、吐出口24から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア100では前述したように、吸引口53の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとは、一致していない(図4参照)。そのため、この実施形態の圧電ブロア100では、吸引口の中心を通る中心軸と圧電素子の中心を通る中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口53の面積の割合が減少している。
特に、この実施形態の圧電ブロア100では、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)が、壁部43の吸引口53以外の領域に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路31から吸引口53を介して圧電ブロア100の外部へ漏れる空気の流量が減少し、壁部43に衝突する空気の流量が増加する。
この結果、図5(A)に示すように壁部43に衝突して分散する気流が通気路31内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、吐出口24から吐出される吐出流量が増加する。
従って、この実施形態の圧電ブロア100によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
《本発明の第2実施形態》
以下、本発明の第2実施形態に係る圧電ブロア200について説明する。
図6(A)(B)は、本発明の第2実施形態に係る圧電ブロア200を3次モードの周波数(基本波の3倍波)で動作させた場合における圧電ブロア200のS−S線の断面図である。図6(A)は、ブロア室36の容積が増大したときの図であり、図6(B)は、ブロア室36の容積が減少したときの図である。図7は、図6(B)に示す圧電アクチュエータ41の概略断面図である。図7では、図6(B)に示す圧電アクチュエータ41の屈曲を強調して示している。
この第2実施形態の圧電ブロア200が前記第1実施形態の圧電ブロア100と相違する点は、キャップ242である。その他の構成については同じである。
詳述すると、キャップ242には、圧電アクチュエータ41の屈曲振動により形成される振動の節のうち、圧電アクチュエータ41の中心から最も距離が短い振動の節Fに対向する箇所より外側の領域に、円板形状の吸引口253が形成されている。そして、この吸引口253の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとが一致していない。その他の点についてはキャップ42と同じである。
以下、圧電ブロア200が動作しているときにおける空気の流れについて説明する。
この実施形態の圧電ブロア200では、3次モードの周波数(基本波の3倍波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は、1つの節Fと2つの腹を生じる3次モードで同心円状に屈曲振動する。
同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同じく3次モードで同心円状に屈曲振動する。
これにより、圧電ブロア200においても、図6(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図6(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア200の外部の空気が吸引口253、通気路31、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア200の外部への空気の流れの慣性力が働いている。
図6(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路31を介して吐出口24から吐出される。
このとき、ブロア室36から吐出される気流が,圧電ブロア200の外部の空気を吸引口253及び通気路31を介して引き込みながら吐出口24から吐出される。そのため、圧電ブロア200の外部から吐出孔に付与される圧力を無負荷とすると、吐出口24から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア200においても、吸引口253の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとは、一致していない(図6(A)(B)参照)。そのため、この実施形態の圧電ブロア200でも、吸引口の中心を通る中心軸と圧電素子の中心を通る中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口253の面積の割合が減少している。
この実施形態の圧電ブロア200では、図6(A)(B)と図7に示すように、壁部243のうち、圧電アクチュエータ41における振動の節Fより内側の高振動領域(即ち振動エネルギーの高い領域)に対向している領域に吸引口253が形成されていない。
また、この実施形態の圧電ブロア200でも、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)は、壁部243の吸引口253以外の領域に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路31から吸引口253を介して圧電ブロア200の外部へ漏れる空気の流量が減少し、壁部243に衝突する空気の流量が増加する。
この結果、図6(A)に示すように壁部243に衝突して分散する気流が通気路31内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、吐出口24から吐出される吐出流量が増加する。
従って、この第2実施形態の圧電ブロア200によれば、前記第1実施形態の圧電ブロア200と同様の効果を奏する。
次に、圧電ブロア200の圧電素子40の中心軸Yを基準としたときの、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離と圧電ブロア200のポンプ特性(即ち吐出圧力および吐出流量)との関係について説明する。
図8は、図6(A)(B)に示す圧電ブロア200における、圧電素子40の中心軸に対する吸引口253の中心軸の距離と、圧電ブロア200のポンプ特性(吐出圧力および吐出流量)との関係を示す図である。図8では、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を変化させて、圧電ブロア200の吐出圧力および吐出流量を測定した結果を示している。
ここで、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離が0であるということは、図6(A)(B)に示した吸引口253の中心軸Xと圧電素子40の中心軸Yとが一致していることを意味する。
図8に示す測定結果より、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を0にした圧電ブロア200の吐出圧力および吐出流量に比べて、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を増加させた圧電ブロア200の吐出圧力および吐出流量は増大することが明らかとなった。
特に、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を0にした圧電ブロア200の吐出圧力および吐出流量を100%としたとき、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を4mmにした圧電ブロア200の吐出圧力は155%まで増大し、吐出流量も125%まで増大することが明らかとなった。
以上のような結果になった理由は、吸引口253の中心軸Xと圧電素子40の中心軸Yとが一致していない圧電ブロア200では、吸引口の中心軸と圧電素子の中心軸とが一致する従来の圧電ブロアに比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口253の面積の割合が減少したためであると考えられる。
《本発明の第3実施形態》
以下、本発明の第3実施形態に係る圧電ブロア300について説明する。
図9は、本発明の第3実施形態に係る圧電ブロア300の外観斜視図である。図10は、図9に示す圧電ブロア300のT−T線の断面図である。
この第3実施形態の圧電ブロア300が前記第1実施形態の圧電ブロア100と相違する点は、キャップ342、吐出側ケース301、及び吸引側ケース302である。その他の構成については同じである。
詳述すると、圧電ブロア300は、本体310と、吐出側ケース301と、吸引側ケース302とを備える。この本体310は、筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ342からなる積層体である。
キャップ342には、圧電素子40の中心を通る中心軸Yと中心軸が一致する円板形状の第1吸引口353と第1壁部343とが形成されている。第1吸引口353の直径は11mmであり、第1吸引口353の開口面の面積は、95mmである。また、圧電素子40の第1壁部343側の主面の面積に対する第1吸引口353の開口面の面積の割合(面積比)は、0.63である。その他の点についてはキャップ42と同じである。
なお、前述したように、圧電素子40の直径は、13.8mmであり、圧電素子40の壁部43側の主面の面積は、150mmである。
また、吐出側ケース301には、空気を吐出するための円柱形状の第2吐出口306が中心に形成されたノズル305を有する。ここで、ノズル305はノズル18を囲み、第2吐出口306は第1吐出口24に連通している。吐出側ケース301は例えばアクリル樹脂から構成されている。
また、吸引側ケース302には、空気を吸引するための円柱形状の第2吸引口308が中心に形成されたノズル307と圧電アクチュエータ41に対向する第2壁部303とを有する。ここで、この実施形態の圧電ブロア300では、吸引側ケース302の第2壁部303に形成されている第2吸引口308の中心軸Xと、圧電素子40の中心軸Yとは一致していない。吸引側ケース302は例えばアクリル樹脂から構成されている。
また、第2吸引口308の直径は、圧電素子40の直径の1/2以下であることが好ましく、この実施形態では5mmである。第2吸引口308の開口面の面積は、19.6mmである。また、圧電素子40の第1壁部343側の主面の面積に対する第2吸引口308の開口面の面積の割合は、0.13である。また、この実施形態における第2吸引口308の中心軸Xと圧電素子40の中心軸Yとの距離は4mmである。
吐出側ケース301及び吸引側ケース302は、互いに接合して本体310に着脱自在に装着され、本体310を収納する。そして、図10に示すように、天板37、側板38及び圧電アクチュエータ41の接合体と、筐体17、キャップ342、吐出側ケース301及び吸引側ケース302の接合体との間には通気路331が形成されている。
なお、この実施形態では、天板37及び側板38の接合体が本発明の「第1筐体」に相当し、筐体17及びキャップ342の接合体が本発明の「第2筐体」に相当する。また、第2壁部303が本発明の「壁部」に相当する。
以下、圧電ブロア300が動作しているときにおける空気の流れについて説明する。
図11(A)(B)は、図9に示す圧電ブロア300を1次モードの周波数(基本波)で動作させた場合における圧電ブロア300のT−T線の断面図である。図11(A)は、ブロア室36の容積が増大したときの図であり、図11(B)は、ブロア室36の容積が減少したときの図である。
図10に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は同心円状に屈曲振動する。同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同心円状に屈曲振動する。
これにより、図11(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図11(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア300の外部の空気が第2吸引口308、通気路331、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、第2吐出口306から圧電ブロア300の外部への空気の流れの慣性力が働いている。
図11(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路331を介して第2吐出口306から吐出される。
このとき、ブロア室36から吐出される気流が,圧電ブロア300の外部の空気を第2吸引口308及び通気路331を介して引き込みながら第2吐出口306から吐出される。そのため、圧電ブロア300の外部から吐出孔に付与される圧力を無負荷とすると、第2吐出口306から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア300では、吸引側ケース302の第2吸引口308の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとが一致していない。そのため、この実施形態の圧電ブロア300でも、吸引口の中心軸と圧電素子の中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口の面積の割合が減少している。
特に、この実施形態の圧電ブロア300では、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)が、第2壁部303に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路331から第2吸引口308を介して圧電ブロア300の外部へ漏れる空気の流量が減少し、第2壁部303に衝突する空気の流量が増加する。
この結果、図11(A)に示すように第2壁部303に衝突して分散する気流が通気路331内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、第2吐出口306から吐出される吐出流量が増加する。
従って、この第3実施形態の圧電ブロア300によれば、前記第1実施形態の圧電ブロア100と同様の効果を奏する。なお、この第3実施形態の圧電ブロア300においても、圧電素子40の中心軸Yから第2吸引口308の中心軸Xまでの距離と圧電ブロア300のポンプ特性との関係について、前記第2実施形態の圧電ブロア200と同様の測定結果(図8参照)が得られている。
さらに、この第3実施形態の圧電ブロア300によれば、本体310に装着する吸引側ケース302の第2壁部303の形状を調整することによって、第2壁部303以外の構成(本体310など)を変更せずに、圧電素子40の中心軸Yから第2吸引口308の中心軸Xまでの距離を変化させることができる。即ち、第2壁部303の形状を調整することによって、第2壁部303以外の構成(本体310など)を変更せずに、吐出圧力および吐出流量を調整することができる。
したがって、本体310のポンプ特性を変化させることなく、任意の形状の吐出側ケース301及び吸引側ケース302を選択することができるため、圧電ブロア300の汎用性が高まる。
《その他の実施形態》
前記実施形態では流体として空気を用いているが、これに限るものではない。当該流体が、空気以外の気体であっても適用できる。
また、前記実施形態ではブロアの駆動源として圧電素子40を設けたが、これに限るものではない。例えば、電磁駆動でポンピングを行うブロアとして構成されていても構わない。
また、前記実施形態では、圧電素子40はチタン酸ジルコン酸鉛系セラミックスから構成されているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などから構成してもよい。
また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板39の両面に圧電素子40を貼着したバイモルフ型の圧電振動子を使用してもよい。
また、前記実施形態では円板状の圧電素子40、円板状の振動板39及び円板状の天板37を用いたが、これに限るものではない。例えば、これらの形状が矩形や多角形であってもよい。
また、前記実施形態では、1次モード及び3次モードの周波数で圧電ブロアの振動板を屈曲振動させたが、これに限るものではない。実施の際は、複数の振動の腹を形成する、3次モード以上の奇数次の振動モードで振動板を屈曲振動させても良い。
また、前記実施形態では、天板37が、振動板39の屈曲振動に伴って同心円状に屈曲振動するが、これに限るものではない。実施の際は、振動板39のみが屈曲振動し、天板37が、振動板39の屈曲振動に伴って屈曲振動しなくても良い。
最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2…内ケース
3…外ケース
3A…吐出口
4…連結部
5A…弾性金属板
5B…圧電素子
6…ブロア室
7…流入通路
8…開口部
9…蓋部材
9A…吸引口
17…筐体
18…ノズル
24…吐出口
31…通気路
36…ブロア室
37…天板
38…側板
39…振動板
40…圧電素子
41…圧電アクチュエータ
42…キャップ
43…壁部
45…通気孔
52…突出部
53…吸引口
55A〜55D…切欠き
56A〜56D…ネジ穴
61…中央部
62…突出部
63…外部端子
70…電極導通用板
72…外部端子
73…内部端子
100、200、300…圧電ブロア
242…キャップ
243…壁部
253…吸引口
301…吐出側ケース
302…吸引側ケース
303…第2壁部
305…ノズル
306…第2吐出口
307…ノズル
308…第2吸引口
310…本体
331…通気路
342…キャップ
343…第1壁部
353…第1吸引口
900…マイクロブロア

Claims (5)

  1. 駆動体を有し、前記駆動体への電圧の印加により同心円状に屈曲振動するアクチュエータと、
    前記アクチュエータとともにブロア室を構成し、前記ブロア室の内部と外部とを連通させる通気孔を有する第1筐体と、
    吸引口が形成され、前記アクチュエータに対向する壁部と、
    前記壁部とともに前記アクチュエータ及び前記第1筐体を、間隔を設けて被覆して前記アクチュエータ及び前記第1筐体との間に通気路を形成する第2筐体と、を備え、
    前記通気孔に対向する前記第2筐体の箇所には、吐出口が形成され、
    前記吸引口の中心軸と前記駆動体の中心軸とは、一致していない、ブロア。
  2. 前記駆動体の中心は、前記壁部の前記吸引口以外の領域と対向している、請求項1に記載のブロア。
  3. 前記吸引口の直径は、前記駆動体の直径の1/2以下である、請求項1又は2に記載のブロア。
  4. 前記アクチュエータは、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
    前記吸引口は、前記アクチュエータの屈曲振動により形成される振動の節のうち、前記アクチュエータの中心から最も距離が短い振動の節に対向する前記壁部の箇所より外側の領域に形成されている、請求項1から3のいずれか1項に記載のブロア。
  5. 前記吸引口が形成されている前記壁部は、前記第2筺体に対して着脱自在に取り付けられている、請求項1から4のいずれか1項に記載のブロア。
JP2014521269A 2012-06-11 2013-06-03 ブロア Active JP5692465B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521269A JP5692465B2 (ja) 2012-06-11 2013-06-03 ブロア

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012131542 2012-06-11
JP2012131542 2012-06-11
JP2014521269A JP5692465B2 (ja) 2012-06-11 2013-06-03 ブロア
PCT/JP2013/065321 WO2013187271A1 (ja) 2012-06-11 2013-06-03 ブロア

Publications (2)

Publication Number Publication Date
JP5692465B2 JP5692465B2 (ja) 2015-04-01
JPWO2013187271A1 true JPWO2013187271A1 (ja) 2016-02-04

Family

ID=49758097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014521269A Active JP5692465B2 (ja) 2012-06-11 2013-06-03 ブロア

Country Status (4)

Country Link
US (1) US10626861B2 (ja)
JP (1) JP5692465B2 (ja)
CN (1) CN104364526B (ja)
WO (1) WO2013187271A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343405B2 (en) 2016-09-05 2019-07-09 Microjet Technology Co., Ltd. Manufacturing method of fluid control device
US10350892B2 (en) 2016-09-05 2019-07-16 Microjet Technology Co., Ltd. Manufacturing method of fluid control device

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201322103D0 (en) * 2013-12-13 2014-01-29 The Technology Partnership Plc Fluid pump
US20150192119A1 (en) * 2014-01-08 2015-07-09 Samsung Electro-Mechanics Co., Ltd. Piezoelectric blower
JP6237877B2 (ja) 2014-02-21 2017-11-29 株式会社村田製作所 ブロア
EP3109472B1 (en) 2014-02-21 2019-10-30 Murata Manufacturing Co., Ltd. Fluid control device and pump
WO2016014153A1 (en) * 2014-07-23 2016-01-28 Microdose Therapeutx, Inc. Dry powder nebulizer
DE112016001938T5 (de) 2015-04-27 2018-02-15 Murata Manufacturing Co., Ltd. Pumpe
TWI557321B (zh) * 2015-06-25 2016-11-11 科際精密股份有限公司 壓電泵及其操作方法
JP6528849B2 (ja) 2015-08-31 2019-06-12 株式会社村田製作所 ブロア
CN108138759B (zh) * 2015-10-05 2020-02-21 株式会社村田制作所 流体控制装置、减压装置以及加压装置
WO2017059660A1 (zh) * 2015-10-08 2017-04-13 广东奥迪威传感科技股份有限公司 一种压电微气泵结构
US10487821B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature fluid control device
US10451051B2 (en) * 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
US9976673B2 (en) * 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388850B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10615329B2 (en) 2016-01-29 2020-04-07 Microjet Technology Co., Ltd. Piezoelectric actuator
CN107023459B (zh) * 2016-01-29 2023-07-18 研能科技股份有限公司 微型流体控制装置
US10529911B2 (en) * 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203081B1 (en) * 2016-01-29 2021-06-16 Microjet Technology Co., Ltd Miniature fluid control device
US10371136B2 (en) 2016-01-29 2019-08-06 Microjet Technology Co., Ltd. Miniature pneumatic device
JP6574452B2 (ja) * 2016-01-29 2019-09-11 研能科技股▲ふん▼有限公司 小型空気圧動力装置
US10388849B2 (en) * 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
EP3203080B1 (en) * 2016-01-29 2021-09-22 Microjet Technology Co., Ltd Miniature pneumatic device
TWI625468B (zh) 2016-09-05 2018-06-01 研能科技股份有限公司 流體控制裝置
TWI602995B (zh) 2016-09-05 2017-10-21 研能科技股份有限公司 流體控制裝置
TWI606936B (zh) * 2016-09-05 2017-12-01 研能科技股份有限公司 流體控制裝置
TWI616350B (zh) * 2016-09-05 2018-03-01 研能科技股份有限公司 流體控制裝置之製造方法
TWI613367B (zh) 2016-09-05 2018-02-01 研能科技股份有限公司 流體控制裝置
TWI612246B (zh) 2016-09-05 2018-01-21 研能科技股份有限公司 流體控制裝置之製造方法
TWI683959B (zh) * 2016-09-05 2020-02-01 研能科技股份有限公司 壓電致動器及其所適用之微型流體控制裝置
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
TWI676737B (zh) * 2016-11-10 2019-11-11 研能科技股份有限公司 微型氣壓動力裝置
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
CN108071579A (zh) * 2016-11-10 2018-05-25 研能科技股份有限公司 压电致动器
TWI634264B (zh) * 2017-01-13 2018-09-01 研能科技股份有限公司 空氣馬達
WO2019013164A1 (ja) * 2017-07-14 2019-01-17 株式会社村田製作所 振動構造、振動装置、および触覚提示装置
TWI626775B (zh) 2017-08-22 2018-06-11 研能科技股份有限公司 致動器
CN109420387A (zh) * 2017-08-25 2019-03-05 研能科技股份有限公司 气体清净装置
TW201912248A (zh) * 2017-08-31 2019-04-01 研能科技股份有限公司 氣體輸送裝置
CN109991420A (zh) * 2017-12-29 2019-07-09 研能科技股份有限公司 微型丙酮检测装置
TWI635291B (zh) * 2017-12-29 2018-09-11 研能科技股份有限公司 微型丙酮檢測裝置
GB2582485B (en) * 2018-02-16 2022-08-17 Murata Manufacturing Co Fluid control apparatus
TWI678523B (zh) * 2018-03-30 2019-12-01 研能科技股份有限公司 致動傳感模組
TWI682156B (zh) 2018-03-30 2020-01-11 研能科技股份有限公司 致動傳感模組
CN112204255B (zh) * 2018-05-29 2022-08-30 株式会社村田制作所 流体控制装置
JP2020020283A (ja) * 2018-07-31 2020-02-06 セイコーエプソン株式会社 ダイヤフラム式圧縮機、冷却機、プロジェクター及び流体の圧縮方法
IT201900005808A1 (it) * 2019-04-15 2020-10-15 St Microelectronics Srl Dispositivo mems a micropompa per la movimentazione o eiezione di un fluido, in particolare microsoffiante o flussimetro
CN114222859A (zh) * 2019-09-11 2022-03-22 京瓷株式会社 压电泵以及泵单元
TWI747076B (zh) * 2019-11-08 2021-11-21 研能科技股份有限公司 行動裝置散熱組件
US20210180723A1 (en) * 2019-12-16 2021-06-17 Frore Systems Inc. Virtual valve in a mems-based cooling system
WO2021131288A1 (ja) * 2019-12-26 2021-07-01 株式会社村田製作所 ポンプ装置
US11692776B2 (en) * 2021-03-02 2023-07-04 Frore Systems Inc. Mounting and use of piezoelectric cooling systems in devices
CN113464410B (zh) * 2021-08-19 2022-03-22 浙江大学 一种压力无级可调的大流量压电泵
WO2023019493A1 (zh) * 2021-08-19 2023-02-23 浙江大学 一种压力无级可调的大流量压电泵
USD991984S1 (en) * 2021-11-30 2023-07-11 Murata Manufacturing Co., Ltd. Piezoelectric pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519970B1 (ko) * 2003-10-07 2005-10-13 삼성전자주식회사 밸브리스 마이크로 공기공급장치
CN101297121B (zh) * 2005-10-28 2011-02-02 三洋电机株式会社 流体输送装置、利用其的燃料电池及电子设备
AT9232U1 (de) * 2006-05-22 2007-06-15 Acc Austria Gmbh Kältemittelverdichter
JP2009156253A (ja) * 2007-12-05 2009-07-16 Star Micronics Co Ltd ポンプ
GB0804739D0 (en) * 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
JP2009250132A (ja) * 2008-04-07 2009-10-29 Sony Corp 冷却装置及び電子機器
WO2009148008A1 (ja) * 2008-06-03 2009-12-10 株式会社村田製作所 圧電マイクロブロア
JP5110159B2 (ja) * 2008-06-05 2012-12-26 株式会社村田製作所 圧電マイクロブロア
JP5333012B2 (ja) * 2009-07-29 2013-11-06 株式会社村田製作所 マイクロブロア
WO2011040320A1 (ja) * 2009-10-01 2011-04-07 株式会社村田製作所 圧電マイクロブロア
US8371829B2 (en) * 2010-02-03 2013-02-12 Kci Licensing, Inc. Fluid disc pump with square-wave driver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343405B2 (en) 2016-09-05 2019-07-09 Microjet Technology Co., Ltd. Manufacturing method of fluid control device
US10350892B2 (en) 2016-09-05 2019-07-16 Microjet Technology Co., Ltd. Manufacturing method of fluid control device

Also Published As

Publication number Publication date
US10626861B2 (en) 2020-04-21
US20150071797A1 (en) 2015-03-12
CN104364526A (zh) 2015-02-18
WO2013187271A1 (ja) 2013-12-19
JP5692465B2 (ja) 2015-04-01
CN104364526B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5692465B2 (ja) ブロア
JP5692468B2 (ja) ブロア
JP5962848B2 (ja) 圧電ブロア
JP6528849B2 (ja) ブロア
KR101333542B1 (ko) 유체 펌프
JP6414625B2 (ja) ブロア
JP5177331B1 (ja) ポンプ装置
JP6269907B1 (ja) バルブ、気体制御装置
JP6065160B2 (ja) ブロア
WO2013187270A1 (ja) ブロア
JP2018112193A (ja) ブロア
JP2016211442A (ja) ブロア
JP5849723B2 (ja) 流体制御装置
JP6089584B2 (ja) ブロア

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5692465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150