JPWO2012173276A1 - Hard film-coated member coated with hard film and method for producing the same - Google Patents

Hard film-coated member coated with hard film and method for producing the same Download PDF

Info

Publication number
JPWO2012173276A1
JPWO2012173276A1 JP2013520623A JP2013520623A JPWO2012173276A1 JP WO2012173276 A1 JPWO2012173276 A1 JP WO2012173276A1 JP 2013520623 A JP2013520623 A JP 2013520623A JP 2013520623 A JP2013520623 A JP 2013520623A JP WO2012173276 A1 JPWO2012173276 A1 JP WO2012173276A1
Authority
JP
Japan
Prior art keywords
plating layer
hard film
electroless
nickel plating
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013520623A
Other languages
Japanese (ja)
Other versions
JP5883001B2 (en
Inventor
邦彦 澁澤
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Chemical Industry Co Ltd
Original Assignee
Taiyo Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Chemical Industry Co Ltd filed Critical Taiyo Chemical Industry Co Ltd
Priority to JP2013520623A priority Critical patent/JP5883001B2/en
Publication of JPWO2012173276A1 publication Critical patent/JPWO2012173276A1/en
Application granted granted Critical
Publication of JP5883001B2 publication Critical patent/JP5883001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/323Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one amorphous metallic material layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating

Abstract

本発明の実施形態によって、軟質金属から成る基材に非晶質炭素膜等の硬質膜を従来よりも密着性よく被覆した硬質膜被覆部材を提供する。本発明の一実施形態に係る硬質膜被覆部材1は、軟質金属からなる基材10と、前記基材上に成膜され、前記基材上に成膜された状態でアモルファス状の無電解ニッケルめっき層30と、前記無電解ニッケルめっき層上に形成された硬質膜40とを備える。According to an embodiment of the present invention, a hard film-coated member is provided in which a hard film such as an amorphous carbon film is coated on a base material made of a soft metal with better adhesion than before. A hard film covering member 1 according to an embodiment of the present invention includes a base material 10 made of a soft metal, an amorphous electroless nickel film formed on the base material, and formed on the base material. A plating layer 30 and a hard film 40 formed on the electroless nickel plating layer are provided.

Description

本発明は、硬質膜によって被覆された硬質膜被覆部材及びその製造方法に関する。   The present invention relates to a hard film-coated member coated with a hard film and a method for manufacturing the same.

軟質金属から成る基材の耐摩耗性、耐候性、耐酸性・耐アルカリ性等を向上させるために、基材表面を非晶質炭素膜等の硬質膜で被覆する表面処理技術が知られている。しかし、基材がアルミニウムやアルミニウム合金等の軟質金属から成る場合には、基材と硬質膜との硬度差が大きいため、硬質膜が基材から剥離しやすいという問題が指摘されている。そこで、硬質膜を基材表面に密着性良く形成することが望まれている。   In order to improve the wear resistance, weather resistance, acid resistance, alkali resistance, etc. of a base material made of a soft metal, a surface treatment technology for coating the base material surface with a hard film such as an amorphous carbon film is known. . However, when the substrate is made of a soft metal such as aluminum or an aluminum alloy, a problem has been pointed out that the hardness difference between the substrate and the hard film is large, so that the hard film is easily peeled off from the substrate. Therefore, it is desired to form a hard film on the substrate surface with good adhesion.

硬質膜を基材表面に密着性良く形成することを意図した特許出願の例として、特開2004−346353号公報(特許文献1)がある。特許文献1には、アルミニウム基材の表面に、無電解Ni−Pめっき層を介して非晶質炭素膜を形成する成膜方法が開示されている。この特許文献1の成膜方法においては、非晶質炭素膜の成膜時に無電解Ni−Pめっき膜に熱処理を加えて無電解Ni−Pめっき層を結晶化させることにより、基材から非晶質炭素膜に向かって膜の硬度を段階的に増大させ、これにより非晶質炭素膜と下層との密着性を向上させている。また、特開平3−134184号公報(特許文献2)にも、アルミニウム基材と硬質膜との間に形成された無電解Ni−Pめっき層を加熱して硬化させることにより、基材側から表面に向かって硬度を段階的に増加させ、硬質膜と下層との密着性を向上させることが開示されている。   Japanese Patent Application Laid-Open No. 2004-346353 (Patent Document 1) is an example of a patent application intended to form a hard film on a substrate surface with good adhesion. Patent Document 1 discloses a film forming method in which an amorphous carbon film is formed on the surface of an aluminum base material via an electroless Ni—P plating layer. In the film forming method of Patent Document 1, heat treatment is applied to the electroless Ni—P plating film at the time of forming the amorphous carbon film to crystallize the electroless Ni—P plating layer, so that the non-electrolytic Ni—P plating layer is crystallized from the substrate. The hardness of the film is increased stepwise toward the crystalline carbon film, thereby improving the adhesion between the amorphous carbon film and the lower layer. Japanese Patent Laid-Open No. 3-134184 (Patent Document 2) also discloses that an electroless Ni—P plating layer formed between an aluminum substrate and a hard film is heated and cured, so that from the substrate side. It is disclosed that the hardness is gradually increased toward the surface to improve the adhesion between the hard film and the lower layer.

特開2004−346353号公報JP 2004-346353 A 特開平3−134184号公報JP-A-3-134184

本発明者の検証によれば、軟質金属を硬質膜で被覆した従来の硬質膜被覆部材における硬質膜と下層との密着性は十分ではない。そこで、本発明は、軟質金属から成る基材に非晶質炭素膜等の硬質膜を従来よりも密着性よく被覆した硬質膜被覆部材を提供することを目的とする。   According to the verification by the present inventors, the adhesion between the hard film and the lower layer in the conventional hard film-coated member in which the soft metal is coated with the hard film is not sufficient. Therefore, an object of the present invention is to provide a hard film-coated member in which a hard film such as an amorphous carbon film is coated on a base material made of a soft metal with better adhesion than before.

本発明の一実施形態に係る硬質膜被覆部材は、軟質金属からなる基材と、前記基材上に形成されたアモルファス状の無電解ニッケルめっき層と、前記無電解ニッケルめっき層上に形成された硬質膜と、を備える。無電解ニッケルめっき層を有する従来の硬質膜被覆部材は、加熱処理により無電解ニッケルめっき層を結晶化させているが、本発明の一実施形態においては、硬質膜被覆部材の製造工程における無電解ニッケルめっき層への加熱を260℃未満に抑え、硬質膜被覆部材の完成体において無電解ニッケルめっき層がアモルファス構造を有するようにする。   A hard film covering member according to an embodiment of the present invention is formed on a base material made of a soft metal, an amorphous electroless nickel plating layer formed on the base material, and the electroless nickel plating layer. A hard film. In the conventional hard film covering member having an electroless nickel plating layer, the electroless nickel plating layer is crystallized by heat treatment. In one embodiment of the present invention, the electroless nickel plating layer is electroless in the manufacturing process of the hard film covering member. The heating to the nickel plating layer is suppressed to less than 260 ° C. so that the electroless nickel plating layer has an amorphous structure in the finished hard film covering member.

本発明の様々な実施態様によって、軟質金属から成る基材に非晶質炭素膜等の硬質膜を従来よりも密着性よく被覆した硬質膜被覆部材が提供される。   According to various embodiments of the present invention, a hard film-coated member is provided in which a hard film such as an amorphous carbon film is coated on a base material made of a soft metal with better adhesion than before.

本発明の一実施形態に係る硬質膜被覆部材を模式的に示す図The figure which shows typically the hard film coating | coated member which concerns on one Embodiment of this invention. 測定条件1における試料1の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 1 in the measurement conditions 1 測定条件2における試料1の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 1 in the measurement conditions 2 測定条件1において圧子が10往復した後に撮影された試料1の表面の写真A photograph of the surface of sample 1 taken after 10 indenters reciprocated under measurement condition 1 測定条件2において圧子が31往復した後に撮影された試料1の表面の写真A photograph of the surface of sample 1 taken after 31 reciprocations of the indenter under measurement condition 2 測定条件1における試料2の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 2 in the measurement conditions 1 測定条件2における試料2の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 2 in the measurement conditions 2 測定条件1において圧子が23往復した後に撮影された試料2の表面の写真A photograph of the surface of sample 2 taken after the indenter reciprocates 23 times under measurement condition 1 測定条件2において圧子が21往復した後に撮影された試料2の表面の写真Photograph of surface of sample 2 taken after 21 indenters reciprocated in measurement condition 2 測定条件1における試料3の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 3 in the measurement conditions 1 測定条件2における試料3の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 3 in the measurement conditions 2 測定条件1において圧子が100往復した後に撮影された試料3の表面の写真A photograph of the surface of the sample 3 taken after the indenter has made 100 reciprocations under the measurement condition 1 測定条件2において圧子が100往復した後に撮影された試料3の表面の写真Photograph of surface of sample 3 taken after 100 reciprocations of indenter under measurement condition 2 測定条件1における試料4の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 4 in the measurement conditions 1 測定条件2における試料4の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 4 in the measurement conditions 2 測定条件1において圧子が100往復した後に撮影された試料4の表面の写真Photograph of surface of sample 4 taken after 100 reciprocations of indenter under measurement condition 1 測定条件2において圧子が100往復した後に撮影された試料4の表面の写真Photograph of surface of sample 4 taken after 100 reciprocations of indenter under measurement condition 2 測定条件1における試料5の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 5 in the measurement conditions 1 測定条件2における試料5の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 5 in the measurement conditions 2 測定条件1において圧子が5往復した後に撮影された試料5の表面の写真A photograph of the surface of the sample 5 taken after 5 reciprocations of the indenter under measurement condition 1 測定条件2において圧子が5往復した後に撮影された試料5の表面の写真A photograph of the surface of the sample 5 taken after 5 reciprocations of the indenter under measurement condition 2 測定条件1における試料6の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 6 in the measurement conditions 1 測定条件2における試料6の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 6 in the measurement conditions 2 測定条件1において圧子が6往復した後に撮影された試料6の表面の写真A photograph of the surface of the sample 6 taken after the indenter reciprocated six times under the measurement condition 1 測定条件2において圧子が5往復した後に撮影された試料6の表面の写真A photograph of the surface of the sample 6 taken after the indenter reciprocates 5 times under measurement condition 2 測定条件1における試料7の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 7 in the measurement conditions 1 測定条件2における試料7の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of abrasion of the sample 7 in the measurement conditions 2 測定条件1において圧子が5往復した後に撮影された試料7の表面の写真A photograph of the surface of the sample 7 taken after the indenter reciprocates five times under the measurement condition 1 測定条件2において圧子が100往復した後に撮影された試料7の表面の写真A photograph of the surface of the sample 7 taken after the indenter reciprocates 100 times under measurement condition 2 測定条件1における試料8の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 8 in the measurement conditions 1 測定条件2における試料8の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 8 in the measurement conditions 2 測定条件1において圧子が3往復した後に撮影された試料8の表面の写真A photograph of the surface of the sample 8 taken after the indenter reciprocated three times under the measurement condition 1 測定条件2において圧子が16往復した後に撮影された試料8の表面の写真Photograph of the surface of the sample 8 taken after the indenter reciprocated 16 times under the measurement condition 2 測定条件1における試料9の磨耗回数に応じた摩擦係数の変化を示すグラフThe graph which shows the change of the friction coefficient according to the frequency | count of wear of the sample 9 in the measurement conditions 1 測定条件1において圧子が100往復した後に撮影された試料9の表面の写真A photograph of the surface of the sample 9 taken after 100 reciprocations of the indenter under measurement condition 1

図1は、本発明の一実施形態に係る硬質膜被覆部材1の断面を模式的に示す模式図である。図示のとおり、硬質膜被覆部材1は、基材10と、基材10の一方の表面に形成された亜鉛置換層20と、亜鉛置換層20の基材10と反対側の表面に形成されたアモルファス状の無電解ニッケルめっき層30と、無電解ニッケルめっき層30の亜鉛置換層20と反対側の表面に形成された硬質膜40と、を備える。このように、本発明の一実施形態に係る硬質膜被覆部材1は、基材10、亜鉛置換層20、無電解ニッケルめっき層30、及び硬質膜40が、この順に積層されて構成される。   Drawing 1 is a mimetic diagram showing typically the section of hard film covering member 1 concerning one embodiment of the present invention. As shown in the figure, the hard film covering member 1 was formed on the base 10, the zinc-substituted layer 20 formed on one surface of the base 10, and the surface of the zinc-substituted layer 20 on the side opposite to the base 10. An amorphous electroless nickel plating layer 30 and a hard film 40 formed on the surface of the electroless nickel plating layer 30 opposite to the zinc replacement layer 20 are provided. Thus, the hard film coating | coated member 1 which concerns on one Embodiment of this invention is comprised by laminating | stacking the base material 10, the zinc substituted layer 20, the electroless nickel plating layer 30, and the hard film | membrane 40 in this order.

基材10は、アルミニウム、マグネシウム、もしくはそれらの合金等の軟質金属などの各種素材から成る。本発明の一実施形態に係る基材10の材料として用いられるアルミニウム合金には、例えば、AC系、ADC系、及びAJ系に属する様々なアルミニウム合金が含まれる。基材10の素材としてアルミニウムを用いる場合には、基材10の硬度はビッカース硬さで約50〜200Hvであり、その熱線膨張係数は、概ね23×10−6/℃である。ただし、熱線膨張係数の値は、基材の存在する温度により変化する。本発明の一態様においては、基材10の表面をサンドブラスト処理やホーニング処理、薬液による化学エッチィング等で荒らすことにより、基材10と亜鉛置換層20、その他亜鉛置換層20に替わる無電解ニッケルめっき層30を基材10と密着させるための層との密着性を向上させることができる。The base material 10 is made of various materials such as soft metals such as aluminum, magnesium, or alloys thereof. Examples of the aluminum alloy used as the material of the base material 10 according to the embodiment of the present invention include various aluminum alloys belonging to the AC series, the ADC series, and the AJ series. When aluminum is used as the material of the base material 10, the hardness of the base material 10 is approximately 50 to 200 Hv in terms of Vickers hardness, and the thermal linear expansion coefficient is approximately 23 × 10 −6 / ° C. However, the value of the coefficient of thermal expansion varies depending on the temperature at which the substrate exists. In one embodiment of the present invention, the surface of the substrate 10 is roughened by sandblasting, honing, chemical etching with a chemical solution, etc., so that the substrate 10 and the zinc-substituted layer 20 and other electroless nickel that replaces the zinc-substituted layer 20 are used. Adhesiveness with the layer for adhering the plating layer 30 with the base material 10 can be improved.

亜鉛置換層20は、プライマー層として基材10の一方の表面に成膜される。亜鉛置換層20は、無電解ニッケルめっき層30を基材10と密着させるために設けられるものであり、公知の任意の方法で成膜することができる。成膜方法の一例は後述する。亜鉛置換層20の厚さは他の層(基材10、無電解ニッケルめっき層30、硬質膜40)に比して非常に薄く、例えば、約50〜200nmである。基材10の表面に陽極酸化皮膜を形成して基材10と上層との絶縁を確保する場合には、亜鉛置換層20は、この陽極酸化皮膜の上に形成される。亜鉛置換層20の熱線膨張係数は、約26×10−6/℃である。The zinc substitution layer 20 is formed on one surface of the substrate 10 as a primer layer. The zinc substitution layer 20 is provided for bringing the electroless nickel plating layer 30 into close contact with the substrate 10 and can be formed by any known method. An example of the film forming method will be described later. The thickness of the zinc substitution layer 20 is very thin compared with other layers (base material 10, electroless nickel plating layer 30, hard film 40), and is, for example, about 50 to 200 nm. When an anodic oxide film is formed on the surface of the base material 10 to ensure insulation between the base material 10 and the upper layer, the zinc substitution layer 20 is formed on the anodic oxide film. The thermal expansion coefficient of the zinc substitution layer 20 is about 26 × 10 −6 / ° C.

本発明の他の実施形態においては、無電解ニッケルめっき層30を基材10と密着させるために、亜鉛置換層20に替えて、基材10の表面にPdなどの触媒を付与しても良い。また、基材10の表面には、亜鉛置換層20に代えて、各種スパッタリング法や蒸着法等の乾式めっき法で形成される金属薄膜、又は、各種湿式めっき皮膜等の様々な密着層を設けることができる。これらの密着層は、単一の層であってもよく,複数の層が積層されたものであってもよい。例えば、基材10がアルミニウム又は、アルミニウム合金から成る場合には、基材10の表層に陽極酸化皮膜を形成し、その後亜鉛置換層20を形成することで当該陽極酸化皮膜を絶縁性を付与するプライマー層として用いてもよい。また、亜鉛置換層20に代えて、無電解Cuめっき又は電解Cuめっきをプライマー層として用いてもよい。無電解Cuめっき又は電解Cuめっきは、粗面化された基材10に形成されてもよい。また、無電解Cuめっきを形成するために、基材10の表面にPdなどの触媒を付与しても良い。   In another embodiment of the present invention, a catalyst such as Pd may be applied to the surface of the base material 10 in place of the zinc substitution layer 20 in order to bring the electroless nickel plating layer 30 into close contact with the base material 10. . Moreover, it replaces with the zinc substituted layer 20 on the surface of the base material 10, and provides various adhesion layers, such as a metal thin film formed by dry-type plating methods, such as various sputtering methods and a vapor deposition method, or various wet plating films. be able to. These adhesion layers may be a single layer or a laminate of a plurality of layers. For example, when the base material 10 is made of aluminum or an aluminum alloy, an anodic oxide film is formed on the surface layer of the base material 10, and then the zinc-substituted layer 20 is formed to provide the anodic oxide film with insulating properties. It may be used as a primer layer. Further, in place of the zinc substitution layer 20, electroless Cu plating or electrolytic Cu plating may be used as the primer layer. The electroless Cu plating or the electrolytic Cu plating may be formed on the roughened substrate 10. Further, a catalyst such as Pd may be applied to the surface of the base material 10 in order to form electroless Cu plating.

本発明の一実施形態に係る無電解ニッケルめっき層30は、無電解めっき法により亜鉛置換層20の表面に成膜される。本発明の一実施形態において、無電解ニッケルめっき層30は、硬質膜被覆部材1の完成体においてアモルファス構造を有する。本発明の一実施形態に係る無電解ニッケルめっき層30は、例えば、無電解Ni−Pめっき又は無電解Ni−Bめっきから成る。本発明の一実施形態においては、無電解Ni−Bめっき層を無電解Ni−Pめっき層の表面に形成し、無電解ニッケルめっき層30を無電解Ni−Pめっき層と無電解Ni−Bめっき層とから成る2層構造に構成してもよい。また、無電解ニッケルめっき層30の表面に、電解ニッケルめっき層を形成してもよい。無電解ニッケルめっき層30の硬度は、アモルファス状であるため約500〜600Hvであり、熱線膨張係数は概ね13×10−6/℃である。無電解ニッケルめっき層30は、基材10の用途・用法に応じて、様々な厚さに形成される。無電解ニッケルめっき層30は、通常、0.1〜40μmの厚さに形成される。また、無電解ニッケルめっき層30は、硬質膜被覆部材1においてアモルファス状であるため、膜中に結晶構造の欠陥が存在しない。その結果、基材10に優れた耐候性を付与することができる。後述する硬質膜40には、プラズマプロセスでのアーキング、異物の付着などに起因するピンホールが形成されることが多く、酸やアルカリがそのピンホールから基材10に浸透して基材10を腐食させることがある。本発明の一実施形態に係る硬質膜被覆部材1は、基材10と硬質膜40との間に、アモルファス状の無電解ニッケルめっき層30を設けているため、硬質膜40にピンホールが形成された場合であっても酸やアルカリの基材10への侵入を防止し、硬質膜40の剥離を抑制することができる。The electroless nickel plating layer 30 according to an embodiment of the present invention is formed on the surface of the zinc replacement layer 20 by an electroless plating method. In one embodiment of the present invention, the electroless nickel plating layer 30 has an amorphous structure in the finished body of the hard film covering member 1. The electroless nickel plating layer 30 which concerns on one Embodiment of this invention consists of electroless Ni-P plating or electroless Ni-B plating, for example. In one embodiment of the present invention, an electroless Ni-B plating layer is formed on the surface of the electroless Ni-P plating layer, and the electroless nickel plating layer 30 is formed with the electroless Ni-P plating layer and the electroless Ni-B. You may comprise in the 2 layer structure which consists of a plating layer. Further, an electrolytic nickel plating layer may be formed on the surface of the electroless nickel plating layer 30. Since the electroless nickel plating layer 30 is amorphous, it has a hardness of about 500 to 600 Hv and a thermal linear expansion coefficient of approximately 13 × 10 −6 / ° C. The electroless nickel plating layer 30 is formed in various thicknesses according to the use and usage of the substrate 10. The electroless nickel plating layer 30 is usually formed to a thickness of 0.1 to 40 μm. In addition, since the electroless nickel plating layer 30 is amorphous in the hard film covering member 1, there is no crystal structure defect in the film. As a result, excellent weather resistance can be imparted to the substrate 10. In the hard film 40 to be described later, pinholes are often formed due to arcing in the plasma process, adhesion of foreign matters, etc., and acid or alkali penetrates the base material 10 from the pinholes, and the base material 10 is formed. May corrode. In the hard film covering member 1 according to the embodiment of the present invention, since the amorphous electroless nickel plating layer 30 is provided between the base material 10 and the hard film 40, pinholes are formed in the hard film 40. Even in such a case, it is possible to prevent acid or alkali from entering the base material 10 and to suppress peeling of the hard film 40.

無電解Ni−Pめっき層は、約260℃を超えるとアモルファス構造から結晶構造への移行が起こり、延性の著しい低下と硬度の向上が起こる(電気鍍金研究会編、「無電解めっき―基礎と応用」、日刊工業新聞社、1994年5月30日、p.37参照)。無電解Ni−Pめっき層におけるリン(P)の比率が低いと、無電解Ni−Pめっき層はアモルファス構造ではなく結晶構造として析出することがあるので、一実施態様においては、無電解Ni−Pめっき層におけるPの比率を8wt%以上とすることができる。本発明の一実施形態においては、無電解Ni−Pめっき層の成膜処理、及び、無電解Ni−Pめっき層成膜後の処理(電解ニッケル層や硬質膜40の成膜等)をいずれも約260℃未満で行うことにより、アモルファス構造で析出した無電解Ni−Pめっき層が結晶化することを防止する。   When the electroless Ni—P plating layer exceeds about 260 ° C., the transition from the amorphous structure to the crystal structure occurs, and the ductility is remarkably lowered and the hardness is improved (“Electroless Plating—Basic” Application ”, Nikkan Kogyo Shimbun, May 30, 1994, p.37). If the ratio of phosphorus (P) in the electroless Ni—P plating layer is low, the electroless Ni—P plating layer may precipitate as a crystalline structure instead of an amorphous structure. In one embodiment, the electroless Ni—P The ratio of P in the P plating layer can be 8 wt% or more. In one embodiment of the present invention, either the electroless Ni—P plating layer deposition process or the post-electroless Ni—P plating layer deposition process (such as electrolytic nickel layer or hard film 40 deposition). Is also performed at less than about 260 ° C., the crystallization of the electroless Ni—P plating layer deposited in an amorphous structure is prevented.

また、本発明の一実施形態として無電解ニッケルめっき層30が高温に加熱されないので、無電解ニッケルめっき層30は、硬質膜被覆部材1に成膜された状態において(完成された硬質膜被服部材1の構成層として)非磁性体となる。特に、無電解Ni−Pめっき層成膜後の処理を約260℃未満で行う場合には、無電解ニッケルめっき層30に含有されるPの濃度を概ね11wt%強〜12wt%以上となるように調整することで、無電解ニッケルめっき層30を硬質膜被覆部材1に成膜された状態において非磁性とすることができる。また、無電解Ni−Pめっき層成膜後の処理を約200℃未満で行う場合には、無電解ニッケルめっき層30に含有されるPの濃度を概ね10wt%以上となるように調整することで、無電解ニッケルめっき層30を硬質膜被覆部材1に成膜された状態において非磁性とすることができる。このように、無電解ニッケルめっき層30を非磁性体とすることで、硬質膜被覆部材1が磁石化することを防止することができる。また、、マグネトロン(磁界)にてプラズマや電子線を制御した硬質膜成膜装置を用いて硬質膜40を形成する場合であっても、無電解ニッケルめっき層30が磁石化しないため、硬質膜40を均質に形成することができる。また、本発明の一実施形態に係る硬質膜被覆部材1を、永久磁石や電磁石など使用する磁気選別機、磁気を用いて部品を搬送する部品搬送用フィーダ、静電チャック機構、又は磁石チャック機構等の部品取り扱い装置等に使用した場合に、搬送ワークや金属ごみがフィーダに張り付くことを防止でき、また、搬送電子部品や機器に磁石による不具合が発生することを防止できる。 Moreover, since the electroless nickel plating layer 30 is not heated to high temperature as one embodiment of the present invention, the electroless nickel plating layer 30 is formed on the hard film covering member 1 (completed hard film clothing member). 1 as a constituent layer). In particular, when the treatment after the formation of the electroless Ni—P plating layer is performed at less than about 260 ° C., the concentration of P contained in the electroless nickel plating layer 30 is approximately 11 wt% to 12 wt% or more. By adjusting the thickness, the electroless nickel plating layer 30 can be made nonmagnetic in a state where the electroless nickel plating layer 30 is formed on the hard film covering member 1. In addition, when the treatment after the formation of the electroless Ni—P plating layer is performed at less than about 200 ° C., the concentration of P contained in the electroless nickel plating layer 30 should be adjusted to be approximately 10 wt% or more. Thus, the electroless nickel plating layer 30 can be made nonmagnetic in a state where the electroless nickel plating layer 30 is formed on the hard film covering member 1. Thus, by making the electroless nickel plating layer 30 into a nonmagnetic material, it can prevent that the hard film | membrane coating | coated member 1 magnetizes. Further, even when the hard film 40 is formed using a hard film forming apparatus in which plasma or electron beam is controlled by a magnetron (magnetic field), the electroless nickel plating layer 30 is not magnetized. 40 can be formed homogeneously. In addition, a magnetic sorter using a hard film covering member 1 according to an embodiment of the present invention as a permanent magnet or an electromagnet, a feeder for conveying a component using magnetism, an electrostatic chuck mechanism, or a magnet chuck mechanism When used in a parts handling device such as the above, it is possible to prevent the transfer work and metal dust from sticking to the feeder, and it is possible to prevent the transfer electronic parts and equipment from being troubled by magnets.

無電解Ni−Bめっき層は、約300℃を超えるとアモルファス状構造から結晶構造への移行が起こり、無電解Ni−Pめっき層と同様に延性の著しい低下と硬度の向上が起こる。無電解Ni−Bめっき層におけるホウ素(B)の比率が低いと、無電解Ni−Bめっき層はアモルファス構造ではなく結晶構造として析出することがあるため、一実施態様において、無電解Ni−Bめっき層におけるBの比率を3wt%以上とする。本発明の一実施形態においては、無電解Ni−Bめっき層の成膜、及び、無電解Ni−Bめっき層成膜後の処理(電解ニッケル層や硬質膜40の成膜等)を約300℃未満で行うことにより、アモルファス構造で析出した無電解Ni−Bめっき層が結晶化することを防止する。   When the electroless Ni—B plating layer exceeds about 300 ° C., the transition from the amorphous structure to the crystal structure occurs, and the ductility is remarkably lowered and the hardness is improved similarly to the electroless Ni—P plating layer. If the ratio of boron (B) in the electroless Ni—B plating layer is low, the electroless Ni—B plating layer may precipitate as a crystal structure instead of an amorphous structure. The ratio of B in the plating layer is 3 wt% or more. In one embodiment of the present invention, the film formation of the electroless Ni—B plating layer and the treatment after the film formation of the electroless Ni—B plating layer (film formation of the electrolytic nickel layer, the hard film 40, etc.) are about 300. By performing the treatment at a temperature lower than 0 ° C., the electroless Ni—B plating layer deposited with an amorphous structure is prevented from being crystallized.

硬質膜40は、一実施形態において、ダイヤモンドライクカーボン(DLC)などの非晶質炭素膜、Si含有DLCなどの各種金属元素含有非晶質炭素膜、TiAlN、AlN、TiCN、TiC、TiN、CrC、CrN、SiC又はSiOなどの硬質膜から成る。これらの硬質膜は、例えば、PVD法やCVD法により、無電解ニッケルめっき層30表面に成膜される。これらの材料から成る硬質膜40の硬度は、概ね1000〜4000Hvである。硬質皮膜の熱線膨張係数は、様々ではあるが、軟質基材のアルミニウム(23×10−6/℃)やマグネシウム(25×10−6/℃)に比べ、著しく小さな値を示すものが多く、例えばDLC膜などの非晶質炭素膜で概ね2×10−6/℃前後、炭化ケイ素(SiC)で概ね6.6×10−6/℃である。硬質膜40は、基材の用途に応じて様々な厚さに形成されるが、一態様においては10nm〜10μmに形成され、他の態様においては0.1μm〜3μmに形成される。In one embodiment, the hard film 40 includes an amorphous carbon film such as diamond-like carbon (DLC), an amorphous carbon film containing various metal elements such as Si-containing DLC, TiAlN, AlN, TiCN, TiC, TiN, and CrC. , CrN, SiC, or SiO x hard film. These hard films are formed on the surface of the electroless nickel plating layer 30 by, for example, the PVD method or the CVD method. The hardness of the hard film 40 made of these materials is approximately 1000 to 4000 Hv. Although the thermal expansion coefficient of the hard coating is various, many of them show a remarkably small value compared to aluminum (23 × 10 −6 / ° C.) or magnesium (25 × 10 −6 / ° C.) of a soft substrate, For example, it is approximately 2 × 10 −6 / ° C. for an amorphous carbon film such as a DLC film, and approximately 6.6 × 10 −6 / ° C. for silicon carbide (SiC). The hard film 40 is formed in various thicknesses depending on the use of the substrate, but in one aspect, it is formed to 10 nm to 10 μm, and in another aspect, it is formed to 0.1 μm to 3 μm.

また、無電解ニッケルめっき層30と硬質膜40の密着性をより向上させるために、無電解ニッケルめっき層30と硬質膜40との間に様々な中間層(不図示)を形成することができる。この中間層は、無電解ニッケルめっき層30が所定温度(例えば260℃)以上にならないように形成される。この中間層は、無電解ニッケルめっき層30及び硬質膜40の双方と密着性が良く、その熱線膨張係数が無電解ニッケルめっき層30の熱線膨張係数と硬質膜40の熱線膨張係数との中間の値(概ね7×10−6/℃)を有することが望ましい。このような中間層の例は、例えば、クロム層である。クロム層は、電解めっき法、PVD法、又はスパッタリング法等の公知の手法により形成される。例えば、電解めっき法により形成される硬質クロムめっき皮膜の硬度はビッカース硬さでHv1000以上となるが、300℃以上の熱処理を施された硬質クロムめっき皮膜の硬度はHv800程度にまで減少する。本発明の一実施形態においては、硬質膜被覆部材1の一部を構成することになる硬質クロムめっき層は、300℃を超えて加熱されず、その高い硬度を硬質膜被覆部材1の硬度傾斜構造の一部として活用することが可能となる。In order to further improve the adhesion between the electroless nickel plating layer 30 and the hard film 40, various intermediate layers (not shown) can be formed between the electroless nickel plating layer 30 and the hard film 40. . This intermediate layer is formed so that the electroless nickel plating layer 30 does not exceed a predetermined temperature (for example, 260 ° C.). This intermediate layer has good adhesion to both the electroless nickel plating layer 30 and the hard film 40, and its thermal linear expansion coefficient is intermediate between the thermal linear expansion coefficient of the electroless nickel plating layer 30 and the thermal linear expansion coefficient of the hard film 40. It is desirable to have a value (approximately 7 × 10 −6 / ° C.). An example of such an intermediate layer is a chromium layer, for example. The chromium layer is formed by a known method such as an electrolytic plating method, a PVD method, or a sputtering method. For example, the hardness of the hard chromium plating film formed by the electrolytic plating method is Hv 1000 or more in terms of Vickers hardness, but the hardness of the hard chromium plating film subjected to heat treatment at 300 ° C. or more is reduced to about Hv 800. In one embodiment of the present invention, the hard chromium plating layer that constitutes a part of the hard film covering member 1 is not heated above 300 ° C., and its high hardness is increased in the hardness gradient of the hard film covering member 1. It can be used as part of the structure.

無電解ニッケルめっき層の水素脆性除去は、一般に、150℃以上の熱処理(ベーキング処理)により行われる。そこで、本発明の一実施形態において、硬質膜40を、150℃〜260℃未満の温度、又は、150℃〜300℃未満の温度で成膜することができる。この温度範囲で硬質膜40を成膜することにより、無電解ニッケルめっき層30の結晶構造化を抑制するとともに、無電解ニッケルめっき層30の水素脆性を抑制することができる。   The hydrogen embrittlement removal of the electroless nickel plating layer is generally performed by a heat treatment (baking treatment) at 150 ° C. or higher. Therefore, in one embodiment of the present invention, the hard film 40 can be formed at a temperature of 150 ° C. to less than 260 ° C. or a temperature of 150 ° C. to less than 300 ° C. By forming the hard film 40 in this temperature range, the crystal structure of the electroless nickel plating layer 30 can be suppressed, and the hydrogen embrittlement of the electroless nickel plating layer 30 can be suppressed.

上記のように構成された硬質膜被覆部材1は、基材10及び亜鉛置換層20から成る下層部分と硬質膜40との間にアモルファス構造の無電解ニッケルめっき層30を備えるため、硬質膜40に加えられる応力を、無電解ニッケルめっき層30により緩和して基材10に伝えることができる。これにより、軟質金属等から成る基材10に加わる応力を減少させ、基材10の変形を抑制することができる。その結果、基材10の変形に起因して硬質膜40が基材10から剥離することを抑制できる。このように、本発明の実施形態に係る硬質膜被覆部材1においては、部材表面に硬化膜が形成される一方、部材内部は柔軟な構造を維持しているため、「浸炭」と同様に、耐摩耗性と高靱性とが両立している。   Since the hard film covering member 1 configured as described above includes the electroless nickel plating layer 30 having an amorphous structure between the hard film 40 and the lower layer portion composed of the base material 10 and the zinc substitution layer 20, the hard film 40. Can be relaxed by the electroless nickel plating layer 30 and transmitted to the substrate 10. Thereby, the stress added to the base material 10 which consists of a soft metal etc. can be decreased, and a deformation | transformation of the base material 10 can be suppressed. As a result, the hard film 40 can be prevented from peeling from the base material 10 due to the deformation of the base material 10. Thus, in the hard film covering member 1 according to the embodiment of the present invention, while a cured film is formed on the surface of the member, the inside of the member maintains a flexible structure. Abrasion resistance and high toughness are compatible.

また、本発明の一実施態様においては、硬質膜被覆部材1の製造工程において、約300℃以上の加熱を行わないようにするため、基材10が高温になることを抑制できる。これにより、基材10の機械特性の劣化、酸化、変色、及び/又は加熱による応力変形などを抑制することができる。例えば、基材10がアルミニウム又はアルミニウム合金から成る場合、アルミニウム及びアルミニウム合金の再結晶温度は概ね200℃〜260℃付近に存在するため、硬質膜被覆部材1を約200℃未満で作製することにより、基材10の再結晶化による変形を防止することができる。   Moreover, in one embodiment of this invention, in the manufacturing process of the hard film coating | coated member 1, in order not to heat about 300 degreeC or more, it can suppress that the base material 10 becomes high temperature. Thereby, deterioration of mechanical properties of the base material 10, oxidation, discoloration, and / or stress deformation due to heating can be suppressed. For example, when the base material 10 is made of aluminum or an aluminum alloy, the recrystallization temperature of aluminum and the aluminum alloy is approximately in the vicinity of 200 ° C. to 260 ° C., so that the hard film covering member 1 is produced at less than about 200 ° C. Further, deformation due to recrystallization of the base material 10 can be prevented.

また、硬質膜被覆部材1においては、基材10側から硬質膜40側に向かって、硬度が段階的に増加するとともに(アルミニウム合金基材10:約50〜200Hv、無電解ニッケルめっき層30:500〜600Hv、硬質膜40:1000〜4000Hv)、熱線膨張係数が段階的に減少するため(アルミニウム合金基材10:23×10−6/℃、無電解ニッケルめっき層30:13×10−6/℃、硬質膜40、例えば非晶質炭素膜の場合:2×10−6/℃)、硬度及び熱線膨張係数の層間での変化が緩やかとなり、隣接する層同士の剥離を抑制することができる。このように、本発明の一実施形態に係る硬質膜被覆部材1は、アモルファス構造の無電解ニッケルめっき層30により基材10の変形を抑制するとともに、層間の硬度及び熱線膨張係数が緩やかであるため、基材10に硬質膜40を密着性良く形成できる。特に、無電解ニッケルめっき層30をアモルファス構造としたことにより、特許文献1や特許文献2に代表される従来の硬質膜被覆部材と比較しても基材10と硬質膜40との密着性が向上する。Further, in the hard film covering member 1, the hardness gradually increases from the base material 10 side to the hard film 40 side (aluminum alloy base material 10: about 50 to 200 Hv, electroless nickel plating layer 30: 500 to 600 Hv, hard film 40: 1000 to 4000 Hv), because the linear thermal expansion coefficient decreases stepwise (aluminum alloy substrate 10: 23 × 10 −6 / ° C., electroless nickel plating layer 30: 13 × 10 −6 / ° C., hard film 40, for example, amorphous carbon film: 2 × 10 −6 / ° C.), the change in hardness and thermal linear expansion coefficient between layers becomes gradual, and the peeling between adjacent layers is suppressed. it can. As described above, the hard film covering member 1 according to the embodiment of the present invention suppresses deformation of the base material 10 by the electroless nickel plating layer 30 having an amorphous structure, and the hardness between layers and the thermal linear expansion coefficient are moderate. Therefore, the hard film 40 can be formed on the substrate 10 with good adhesion. In particular, since the electroless nickel plating layer 30 has an amorphous structure, the adhesion between the base material 10 and the hard film 40 can be improved even when compared with conventional hard film covering members represented by Patent Document 1 and Patent Document 2. improves.

続いて、本発明の一実施形態に係る硬質膜被覆部材1の形成方法について説明する。まず、基材10の表面に亜鉛置換層20を成膜する。亜鉛置換層20は、当業者に明らかな公知の方法を用いて成膜することができ、例えば、脱脂工程と、酸性エッチング工程と、硝酸浸漬工程と、第一亜鉛置換工程と、硝酸亜鉛剥離工程と、第二亜鉛置換工程とにより、基材10上に成膜することができる。一態様においては、まず、基材10を、弱アルカリ溶液に浸漬して脱脂し、次いで、硫酸等の酸溶液に浸漬してエッチングした後、硝酸浸漬処理する。次に、この硝酸浸漬処理された基材を、NaOHを主成分とする強アルカリの亜鉛置換溶液に浸漬して亜鉛置換層を析出させる(第一亜鉛置換工程)。次に、この亜鉛置換層が成膜された基材10を硝酸に浸漬してスマットを落とす。そして、硝酸に浸漬した後の基材10を再び亜鉛置換溶液に浸漬させて亜鉛置換層を析出させる(第二亜鉛置換工程)。亜鉛置換層20は、基材10に陽極酸化皮膜が形成されている場合にも同様の方法で成膜できる。また、上述した硝酸浸漬工程や亜鉛置換工程において、硝酸や強アルカリ溶液への基材10の浸漬時間を調整することにより、陽極酸化皮膜を溶解させて、基材10から陽極酸化皮膜を除去することもできる。例えば、陽極酸化皮膜の膜厚が10μmであれば、脱脂、エッチング、酸浸漬、第一次亜鉛置換、酸浸漬、第2次亜鉛置換の各工程をそれぞれ約30秒〜1分間で行なうことで、陽極酸化皮膜を溶解させることができる。   Then, the formation method of the hard film coating | coated member 1 which concerns on one Embodiment of this invention is demonstrated. First, the zinc substitution layer 20 is formed on the surface of the substrate 10. The zinc-substituted layer 20 can be formed using a known method that will be apparent to those skilled in the art. For example, a degreasing process, an acidic etching process, a nitric acid dipping process, a first zinc replacing process, and a zinc nitrate peeling process It can form into a film on the base material 10 by a process and a 2nd zinc substitution process. In one aspect, first, the base material 10 is immersed in a weak alkaline solution for degreasing, and then immersed in an acid solution such as sulfuric acid for etching, followed by a nitric acid immersion treatment. Next, this nitric acid immersion treatment substrate is immersed in a strong alkaline zinc replacement solution mainly composed of NaOH to deposit a zinc replacement layer (first zinc replacement step). Next, the base material 10 on which the zinc-substituted layer is formed is immersed in nitric acid to remove the smut. And the base material 10 after being immersed in nitric acid is again immersed in a zinc substitution solution, and a zinc substitution layer is deposited (2nd zinc substitution process). The zinc-substituted layer 20 can be formed by the same method even when an anodic oxide film is formed on the substrate 10. Further, in the above-described nitric acid dipping step or zinc replacement step, the anodized film is dissolved and the anodized film is removed from the substrate 10 by adjusting the dipping time of the substrate 10 in nitric acid or a strong alkaline solution. You can also For example, if the film thickness of the anodized film is 10 μm, each step of degreasing, etching, acid immersion, primary zinc substitution, acid immersion, and secondary zinc substitution is performed in about 30 seconds to 1 minute, respectively. The anodized film can be dissolved.

次に、亜鉛置換層20の表面に、無電解ニッケルめっき層30を成膜する。無電解ニッケルめっき層30として無電解Ni−Pめっき法により無電解Ni−Pめっき層を形成する場合には、亜鉛置換層20が形成された基材10を、ニッケルイオンと次亜リン酸イオンが入っためっき液に浸漬して、亜鉛置換層20の上にNi−Pめっきを形成させる。当業者に明らかなように、めっき液中のニッケルイオンと還元剤である次亜リン酸イオンが接触すると、アルミニウム基材が触媒となって脱水素分解を生じ、この脱水素分解により生成された水素原子が、亜鉛置換層20の上に吸着されて活性化する。この活性化した水素原子がめっき液中のニッケルイオンに接触してニッケルを金属に還元するので、ニッケルが亜鉛置換層20の表面に析出する。また、活性化した水素原子は、めっき液中の次亜リン酸イオンとも反応し、このイオン中のリンを還元して、還元したリンをニッケルと合金化する。そして、この析出したニッケルが触媒となって前述のニッケルの還元めっき反応が継続して進行する。すなわちニッケルの自己触媒作用によりめっきが継続進行する。この自己触媒作用により、アルミニウム基材の亜鉛置換層表面にめっき液が流通する空隙があれば、亜鉛置換層表面に均一にめっき被膜を形成することができる。また、めっき被膜の厚さはめっき時間と比例するので、めっき時間の制御を通じてめっき被膜の厚さを管理することができる。また、無電解Ni−Bめっき層は、ニッケルイオンと還元剤であるアミンボランなどのホウ素系薬剤とを含有する無電解めっき液を用いることにより、無電解Ni−Pめっき層と同様の手法で形成される。   Next, an electroless nickel plating layer 30 is formed on the surface of the zinc substitution layer 20. When the electroless Ni-P plating layer is formed by the electroless Ni-P plating method as the electroless nickel plating layer 30, the base material 10 on which the zinc replacement layer 20 is formed is made of nickel ions and hypophosphite ions. Ni-P plating is formed on the zinc replacement layer 20 by dipping in a plating solution containing. As apparent to those skilled in the art, when nickel ions in the plating solution come into contact with hypophosphite ions as a reducing agent, the aluminum base material becomes a catalyst to cause dehydrogenation decomposition, which is generated by this dehydrogenation decomposition. Hydrogen atoms are adsorbed on the zinc substitution layer 20 and activated. The activated hydrogen atoms come into contact with nickel ions in the plating solution and reduce nickel to metal, so that nickel is deposited on the surface of the zinc substitution layer 20. The activated hydrogen atoms also react with hypophosphite ions in the plating solution, reduce the phosphorus in these ions, and alloy the reduced phosphorus with nickel. Then, the deposited nickel is used as a catalyst to continue the above-described nickel reduction plating reaction. That is, the plating proceeds continuously by the autocatalytic action of nickel. By this autocatalytic action, if there is a gap through which the plating solution flows on the surface of the zinc-substituted layer of the aluminum base, a plating film can be uniformly formed on the surface of the zinc-substituted layer. Moreover, since the thickness of the plating film is proportional to the plating time, the thickness of the plating film can be managed through the control of the plating time. The electroless Ni-B plating layer is formed by the same method as the electroless Ni-P plating layer by using an electroless plating solution containing nickel ions and a boron-based agent such as amine borane which is a reducing agent. Is done.

硬質膜40は、プラズマCVD法等のCVD(化学的蒸着)法やスパッタリング法等の物理的蒸着(PVD)法等の様々な方法で形成される。本発明の実施形態において用いられるプラズマCVD法には、高圧DCマイクロパルスプラズマCDV法、高圧パルスプラズマCVD法、高周波放電を用いる高周波プラズマCVD法、直流放電を利用する直流プラズマCVD法、及びマイクロ波放電を利用するマイクロ波プラズマCVD法が含まれる。直流プラズマCVD法においては、連続して通電を行うため、冷却装置によって基材の温度制御を行うことが望ましい。プラズマPVD法には、各種のスパッタリング法及び真空蒸着法が含まれる。本発明の一態様においては硬質膜40の成膜工程において、無電解ニッケルめっき層30が所定温度(例えば260℃)以上にならないようにするために、成膜中のワークを適宜冷却することができる。例えば、本発明の一実施形態においては、成膜中のワークの温度を監視し、所定温度(例えば260℃)に達する前に、プラズマ形成プロセスを中断し、ワークを自然冷却させ、ワークが十分に冷却された後にプラズマ形成プロセスを再開することができる。また、本発明の他の実施形態においては、ワークを冷却する冷却装置を用い、プラズマプロセス中に、ワークを冷却することができる。本発明のさらに他の実施形態においては、プラズマ発生装置のパルス電源のデューティー比を調整することにより、ワークの温度が所定温度(例えば260℃)以上にならないように調整することができる。例えば、高圧DCマイクロパルスプラズマCVD法を用いて硬質膜40を成膜する場合には、電源のDuty比を2%〜10%の範囲で制御できるため、成膜温度を低温に制御しやすい。また、低温スパッタリング装置においては、冷媒を伴う冷却機構上にワークを設置することができるので、ワークの無電解ニッケルめっき層30の部分を所定温度(例えば約260℃)未満に保ったままPVD法にて硬質膜40を成膜することができる。   The hard film 40 is formed by various methods such as a CVD (chemical vapor deposition) method such as a plasma CVD method and a physical vapor deposition (PVD) method such as a sputtering method. The plasma CVD method used in the embodiment of the present invention includes a high pressure DC micro pulse plasma CDV method, a high pressure pulse plasma CVD method, a high frequency plasma CVD method using high frequency discharge, a direct current plasma CVD method using direct current discharge, and a microwave. A microwave plasma CVD method using discharge is included. In the direct current plasma CVD method, it is desirable to control the temperature of the base material with a cooling device in order to energize continuously. The plasma PVD method includes various sputtering methods and vacuum deposition methods. In one aspect of the present invention, in the film forming step of the hard film 40, the work during film formation may be appropriately cooled so that the electroless nickel plating layer 30 does not exceed a predetermined temperature (for example, 260 ° C.). it can. For example, in one embodiment of the present invention, the temperature of the workpiece during film formation is monitored, and the plasma formation process is interrupted before the temperature reaches a predetermined temperature (eg, 260 ° C.), the workpiece is naturally cooled, and the workpiece is sufficiently The plasma formation process can be resumed after being cooled down. In another embodiment of the present invention, the work can be cooled during the plasma process using a cooling device for cooling the work. In still another embodiment of the present invention, the temperature of the workpiece can be adjusted not to exceed a predetermined temperature (for example, 260 ° C.) by adjusting the duty ratio of the pulse power supply of the plasma generator. For example, when the hard film 40 is formed by using the high-pressure DC micro pulse plasma CVD method, the duty ratio of the power source can be controlled in the range of 2% to 10%, so that the film forming temperature can be easily controlled to a low temperature. In the low-temperature sputtering apparatus, since the work can be installed on a cooling mechanism with a refrigerant, the PVD method is performed while keeping the electroless nickel plating layer 30 portion of the work below a predetermined temperature (for example, about 260 ° C.). Can form the hard film 40.

以下、本発明の様々な実施形態に係る硬質膜被覆部材1の実施例を説明する。以下の実施例は、例示であり、本発明は以下に述べる実施例に限定されるものではない。   Hereinafter, examples of the hard film covering member 1 according to various embodiments of the present invention will be described. The following examples are illustrative, and the present invention is not limited to the examples described below.

基材の準備
5000系の板状アルミニウム合金基材(5052材)を複数準備した。当該基材は、20mm×100mmで板厚が1mmのものを準備した。
Preparation of base materials A plurality of 5000 series plate-like aluminum alloy base materials (5052 materials) were prepared. The said base material prepared 20 mm x 100 mm and the board thickness of 1 mm.

亜鉛置換層の形成
次に、当該基材の表面に以下の方法で亜鉛置換層を形成した。具体的には、まず、メルテックス株式会社製のアルミ二ウムクリーナーNE−6溶液(濃度60g/L)に基材を浸漬して70℃で60秒間脱脂し、この脱脂後の基材を水道水で30秒間洗浄した。次いで、この水洗浄後の基材を、濃度100ml/LのアクタンE−10と濃度10g/Lのアクタン70との混合溶液に浸漬し、70℃で30秒間エッチングした。次に、エッチング後の基材に1回当たり30秒間の水道水での水洗を2回行った。次に、67%硝酸(500ml/L)、98%硫酸(250ml/L)、アクタン70(120g/L)の混合水溶液中に常温で10秒間酸浸漬し、1回当たり30秒間の水道水での水洗を2回行った。次に、この洗浄後の基材を濃度200ml/LのアルモンENを主成分とする亜鉛置換液に25℃で90秒間浸漬させ、基材表面に亜鉛置換層を析出させた。その後、1回当たり30秒間の水道水による水洗を2回行った。次に、亜鉛置換層が形成された基材を、65%の硝酸に常温で15秒間浸漬し、スマットを除去した。次に、スマットを除去した基材に1回当たり30秒間の水道水洗浄を2回行った。次に、洗浄後の基材を濃度200ml/LのアルモンENを主成分とする亜鉛置換液に25℃で60秒間浸漬させ、2回目の亜鉛置換処理を行った後、水道水にて水洗した。
Formation of Zinc Substitution Layer Next, a zinc substitution layer was formed on the surface of the substrate by the following method. Specifically, first, the base material is immersed in an aluminum cleaner NE-6 solution (concentration 60 g / L) manufactured by Meltex Co., Ltd. and degreased at 70 ° C. for 60 seconds. Washed with water for 30 seconds. Next, the substrate after washing with water was immersed in a mixed solution of Actan E-10 having a concentration of 100 ml / L and Actan 70 having a concentration of 10 g / L, and etched at 70 ° C. for 30 seconds. Next, the substrate after etching was washed twice with tap water for 30 seconds each time. Next, it is immersed in a mixed aqueous solution of 67% nitric acid (500 ml / L), 98% sulfuric acid (250 ml / L), and actan 70 (120 g / L) at room temperature for 10 seconds, and then with tap water for 30 seconds each time. Was washed twice. Next, the washed base material was immersed in a zinc-substituting solution mainly composed of Almon EN having a concentration of 200 ml / L for 90 seconds at 25 ° C. to deposit a zinc-substituting layer on the surface of the base material. Thereafter, water was washed twice with tap water for 30 seconds. Next, the base material on which the zinc-substituted layer was formed was immersed in 65% nitric acid at room temperature for 15 seconds to remove smut. Next, the substrate from which the smut was removed was washed twice with tap water for 30 seconds. Next, the washed substrate was immersed in a zinc replacement solution containing Almon EN having a concentration of 200 ml / L as a main component at 25 ° C. for 60 seconds, subjected to a second zinc replacement treatment, and then washed with tap water. .

無電解ニッケルめっき層の形成
次に、亜鉛置換層が形成された各基材を、55ml/LのメルプレートNI−2280LF M1と、100ml/LのメルプレートNI−2280LF M2、その他補給剤との混合液に90℃で浸漬させ、亜鉛置換層の上にリン濃度が12.8wt%の無電解ニッケルめっきを厚さ20μmで析出させた。このようにして、表面に無電解ニッケルめっき層が形成された基材を複数準備した。
Formation of Electroless Nickel Plating Layer Next, each substrate on which the zinc substitution layer was formed was mixed with 55 ml / L Melplate NI-2280LF M1, 100 ml / L Melplate NI-2280LF M2, and other replenishers. It was immersed in the mixed solution at 90 ° C., and electroless nickel plating having a phosphorus concentration of 12.8 wt% was deposited on the zinc-substituted layer with a thickness of 20 μm. In this way, a plurality of base materials having an electroless nickel plating layer formed on the surface were prepared.

試料1(比較例)の作成
無電解ニッケルめっき層が形成された基材の1つを310℃にて30分間加熱処理した。次に、この加熱処理後の基材の表面に、以下の方法により、シリコンを含む非晶質炭素膜を密着用中間層として160nm形成し、この中間層の上に非晶質炭素膜を340nm形成した。具体的には、まず加熱処理後の基材をイソプロピルアルコールに浸漬し、次いで超音波洗浄を5分間行った。その後、高圧DCパルスプラズマCVD装置に各基材をセットし、以下の条件で非晶質炭素膜を成膜した。すなわち、まず高圧DCパルスプラズマCVD装置を7×10−4Paまで真空排気した後、ガス流量30SCCM、ガス圧2Paのアルゴンガスプラズマを用い、印加電圧−5kV、パルス周波数10kHz、パルス幅10μsの条件で、基材を約5分クリーニングした。次に、当該CVD装置からアルゴンガスを排気した後、基材を約10分間放置して自然降温させた。続いて、CVD装置に流量30SCCM、ガス圧2Paのテトラメチルシランを導入し、印加電圧−4.5Kv、パルス周波数10kHz、パルス幅10μsの条件で8分間成膜し、無電解ニッケルめっき層上にシリコンを含む密着用中間層を形成した。次に、CVD装置内のテトラメチルシランガスを排気した後、基材を20分間放置して自然降温させた。続いて、CVD装置に流量30SCCM、ガス圧2PaのアセチレンをCVD装置内へ導入し、印加電圧−5Kv、パルス周波数10kHz、パルス幅10μsの条件で、10分間非晶質炭素膜を成膜した。次に、非晶質炭素膜が成膜された基材をCVD装置内に20分間放置して自然降温させ冷却した。次に、流量30SCCM、ガス圧2PaのアセチレンをCVD装置内へ再度導入し、印加電圧−5Kv、パルス周波数10kHz、パルス幅10μsの条件で、再度非晶質炭素膜を10分間成膜し、試料1を得た。
Preparation of Sample 1 (Comparative Example) One of the substrates on which the electroless nickel plating layer was formed was heat-treated at 310 ° C. for 30 minutes. Next, 160 nm of an amorphous carbon film containing silicon is formed as an adhesion intermediate layer on the surface of the substrate after the heat treatment by the following method, and the amorphous carbon film is formed on the intermediate layer at 340 nm. Formed. Specifically, the base material after the heat treatment was first immersed in isopropyl alcohol, and then subjected to ultrasonic cleaning for 5 minutes. Thereafter, each substrate was set in a high-pressure DC pulse plasma CVD apparatus, and an amorphous carbon film was formed under the following conditions. That is, first, after evacuating the high-pressure DC pulse plasma CVD apparatus to 7 × 10 −4 Pa, using argon gas plasma with a gas flow rate of 30 SCCM and a gas pressure of 2 Pa, conditions of an applied voltage of −5 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs The substrate was cleaned for about 5 minutes. Next, after evacuating the argon gas from the CVD apparatus, the base material was left to stand for about 10 minutes to be naturally cooled. Subsequently, tetramethylsilane having a flow rate of 30 SCCM and a gas pressure of 2 Pa was introduced into the CVD apparatus, a film was formed for 8 minutes under the conditions of an applied voltage of −4.5 Kv, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and on the electroless nickel plating layer. An adhesion intermediate layer containing silicon was formed. Next, after exhausting the tetramethylsilane gas in the CVD apparatus, the substrate was left to stand for 20 minutes to allow the temperature to fall naturally. Subsequently, acetylene having a flow rate of 30 SCCM and a gas pressure of 2 Pa was introduced into the CVD apparatus, and an amorphous carbon film was formed for 10 minutes under the conditions of an applied voltage of −5 Kv, a pulse frequency of 10 kHz, and a pulse width of 10 μs. Next, the base material on which the amorphous carbon film was formed was left in a CVD apparatus for 20 minutes to cool naturally and cool. Next, acetylene with a flow rate of 30 SCCM and a gas pressure of 2 Pa was reintroduced into the CVD apparatus, and an amorphous carbon film was again formed for 10 minutes under the conditions of an applied voltage of −5 Kv, a pulse frequency of 10 kHz, and a pulse width of 10 μs. 1 was obtained.

非晶質炭素膜成膜中の基材上の無電解ニッケルめっき層の温度の確認
無電解ニッケルめっき層が形成された基材に260℃を変色温度とするサーモラベルを添付したものを準備した。この基材に、試料1と同様の工程(310℃での加熱は行わない)により、シリコンを含む非晶質炭素膜を密着用中間層として160nm形成し、この中間層の上に非晶質炭素膜を340nm形成した。このようにして非晶質炭素膜を成膜した後にサーモラベルの変色が起こっていないことを確認した。このように、試料1の非晶質炭素膜の成膜工程では、無電解ニッケルめっき層を含む基材の温度が
260℃未満に保たれることを確認した。
Confirmation of the temperature of the electroless nickel plating layer on the substrate during the formation of the amorphous carbon film Prepared the substrate on which the electroless nickel plating layer was formed with a thermolabel having a color change temperature of 260 ° C. . On this base material, an amorphous carbon film containing silicon is formed as an adhesion intermediate layer with a thickness of 160 nm by the same process as sample 1 (heating at 310 ° C. is not performed), and an amorphous layer is formed on the intermediate layer. A carbon film was formed at 340 nm. It was confirmed that no thermolabel discoloration occurred after the amorphous carbon film was formed in this manner. Thus, in the film formation process of the amorphous carbon film of Sample 1, it was confirmed that the temperature of the base material including the electroless nickel plating layer was kept below 260 ° C.

試料2(比較例)の作成
無電解ニッケルめっき層が形成された基材の1つを280℃にて60分間加熱処理した後に、試料1と同様の方法を用いて、シリコンを含む非晶質炭素膜を密着用中間層として160nm形成し、この中間層の上に非晶質炭素膜を340nm形成して試料2を得た。
Preparation of Sample 2 (Comparative Example) One of the substrates on which the electroless nickel plating layer was formed was heat-treated at 280 ° C. for 60 minutes, and then an amorphous material containing silicon was used using the same method as Sample 1. A carbon film was formed as an adhesion intermediate layer at 160 nm, and an amorphous carbon film was formed at 340 nm on this intermediate layer to obtain Sample 2.

試料3(実施例)の作成
無電解ニッケルめっき層が形成された基材の1つに、試料1と同様の方法を用いて(310℃での加熱は行わない)、シリコンを含む非晶質炭素膜を密着用中間層として160nm形成し、この中間層の上に非晶質炭素膜を340nm形成し試料3を得た。上述の通り、非晶質炭素膜の成膜工程を通じて基材の温度は常に260℃未満に保たれていた。
Preparation of Sample 3 (Example) One of the substrates on which the electroless nickel plating layer was formed was subjected to the same method as Sample 1 (no heating at 310 ° C.), and amorphous containing silicon A carbon film was formed as an adhesion intermediate layer at 160 nm, and an amorphous carbon film was formed at 340 nm on this intermediate layer to obtain Sample 3. As described above, the temperature of the substrate was always kept below 260 ° C. throughout the amorphous carbon film forming process.

試料4(実施例)の作成
無電解ニッケルめっき層が形成された基材の1つを230℃にて60分間加熱処理した。次に、この加熱処理後の基材に、試料1と同様の方法を用いて(310℃での加熱は行わない)、シリコンを含む非晶質炭素膜を密着用中間層として160nm形成し、この中間層の上に非晶質炭素膜を340nm形成し試料4を得た。上述の通り、非晶質炭素膜の成膜工程を通じて基材の温度は常に260℃未満に保たれていた。
Preparation of Sample 4 (Example) One of the substrates on which the electroless nickel plating layer was formed was heat-treated at 230 ° C. for 60 minutes. Next, an amorphous carbon film containing silicon is formed as an adhesion intermediate layer with a thickness of 160 nm on the base material after this heat treatment using the same method as Sample 1 (heating at 310 ° C. is not performed) A sample 4 was obtained by forming an amorphous carbon film at 340 nm on the intermediate layer. As described above, the temperature of the substrate was always kept below 260 ° C. throughout the amorphous carbon film forming process.

得られた試料1〜試料4のそれぞれについて、摩擦摩耗試験を行った。摩擦摩耗試験は、新東科学株式会社製のトライボギアHHS−2000を用い、常温、無潤滑にて以下の測定条件により、各試料の非晶質炭素膜が形成された面上で、直径2.0mmのSUJ2の圧子を繰り返し往復させながら各試料表面の摩擦係数を測定した。この摩擦係数の測定は、加減重往復測定により実施した。
測定条件1
・測定距離 : 20mm
・測定速度 : 5mm/sec
・最小荷重 : 700g
・最大荷重 : 950g
測定条件2
・測定距離 : 20mm
・測定速度 : 5mm/sec
・最小荷重 : 500g
・最大荷重 : 700g
A frictional wear test was performed on each of the obtained samples 1 to 4. The friction and wear test uses a tribogear HHS-2000 manufactured by Shinto Kagaku Co., Ltd., and has a diameter of 2. on the surface on which the amorphous carbon film of each sample is formed under normal temperature and no lubrication under the following measurement conditions. The friction coefficient of each sample surface was measured while reciprocating a 0 mm SUJ2 indenter repeatedly. The coefficient of friction was measured by reciprocating acceleration / deceleration.
Measurement condition 1
・ Measurement distance: 20mm
・ Measurement speed: 5mm / sec
・ Minimum load: 700g
・ Maximum load: 950g
Measurement condition 2
・ Measurement distance: 20mm
・ Measurement speed: 5mm / sec
・ Minimum load: 500g
・ Maximum load: 700g

図2は、測定条件1における試料1の磨耗回数に応じた摩擦係数の変化を示すグラフ、図3は、測定条件2における試料1の磨耗回数に応じた摩擦係数の変化を示すグラフである。図2及び図3の横軸は磨耗回数を表し、縦軸は測定された摩擦係数を示す。図2に示すとおり、測定条件1において、試料1の摩擦係数は、試験開始直後に、0.2μ程度から0.5μ以上に急上昇し、摩耗回数が10のとき(つまり、圧子を10往復させたとき)に非晶質炭素膜が破壊された。試料1の破壊が確認された時点で試験を中止した。図4は、測定条件1において圧子が10往復した後に撮影された試料1の表面の写真を示す。図4の写真は、CCDカメラを用い、倍率200倍で撮影された。なお、本明細書における類似の写真は、全て、CCDカメラを用い、倍率200倍で撮影したものである。図示のとおり、圧子が10往復した後の試料1の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。また、図3に示すとおり、測定条件2において、試料1の摩擦係数は、試験開始直後に急上昇し摩耗回数が31のときに非晶質炭素膜が破壊された。試料1の破壊が確認された時点で試験を中止した。図5は、測定条件2において圧子が31往復した後に撮影された試料1の表面の写真を示す。図示のとおり、圧子が31往復した後の試料1の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。   FIG. 2 is a graph showing a change in the friction coefficient according to the number of wears of the sample 1 under the measurement condition 1, and FIG. 3 is a graph showing a change in the friction coefficient according to the number of wears of the sample 1 under the measurement condition 2. 2 and 3, the horizontal axis represents the number of wears, and the vertical axis represents the measured coefficient of friction. As shown in FIG. 2, in the measurement condition 1, immediately after the start of the test, the friction coefficient of the sample 1 suddenly increases from about 0.2 μ to 0.5 μ or more, and the number of wear is 10 (that is, the indenter is reciprocated 10 times). The amorphous carbon film was destroyed. The test was stopped when the destruction of Sample 1 was confirmed. FIG. 4 shows a photograph of the surface of the sample 1 taken after the indenter makes 10 reciprocations under the measurement condition 1. The photograph in FIG. 4 was taken at a magnification of 200 using a CCD camera. All similar photographs in this specification were taken at a magnification of 200 times using a CCD camera. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 1 after the indenter has made 10 reciprocations, and the base of the amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed. Further, as shown in FIG. 3, under the measurement condition 2, the friction coefficient of the sample 1 rapidly increased immediately after the start of the test, and the amorphous carbon film was broken when the number of wear was 31. The test was stopped when the destruction of Sample 1 was confirmed. FIG. 5 shows a photograph of the surface of the sample 1 taken after the indenter makes 31 reciprocations under the measurement condition 2. As shown in the figure, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 1 after the indenter 31 reciprocates, and an underlying layer of an amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed.

図6は、測定条件1における試料2の磨耗回数に応じた摩擦係数の変化を示すグラフであり、図7は、測定条件2における試料2の磨耗回数に応じた摩擦係数の変化を示すグラフである。図6に示すとおり、測定条件1において、試料2の摩擦係数は、試験開始直後に0.5μ弱まで急上昇し、摩耗回数が23のときにその表面に形成された非晶質炭素膜が破壊された。この試料2の破壊が確認された時点で試験を中止した。図8は、測定条件1において圧子が23往復した後に撮影された試料2の表面の写真を示す。図示のとおり、圧子が23往復した後の試料2の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。また、図7に示すとおり、測定条件2において、試料2の摩擦係数は、試験開始直後に0.5μ弱まで急上昇し、摩耗回数が21のときに非晶質炭素膜が破壊された。試料2の破壊が確認された時点で試験を中止した。図9は、測定条件2において圧子が21往復した後に撮影された試料2の表面の写真を示す。図示のとおり、圧子が21往復した後の試料2の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。   FIG. 6 is a graph showing a change in the friction coefficient according to the number of wears of the sample 2 under the measurement condition 1, and FIG. 7 is a graph showing a change in the friction coefficient according to the number of wears of the sample 2 under the measurement condition 2. is there. As shown in FIG. 6, under the measurement condition 1, the friction coefficient of the sample 2 rapidly increased to less than 0.5 μ immediately after the start of the test, and the amorphous carbon film formed on the surface was destroyed when the number of wear was 23. It was done. The test was stopped when the destruction of Sample 2 was confirmed. FIG. 8 shows a photograph of the surface of the sample 2 taken after the indenter makes 23 reciprocations under the measurement condition 1. As shown in the figure, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 2 after the indenter has reciprocated 23 times, and the base of the amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed. Further, as shown in FIG. 7, in the measurement condition 2, the friction coefficient of the sample 2 rapidly increased to less than 0.5 μ immediately after the start of the test, and the amorphous carbon film was broken when the number of wear was 21. The test was stopped when the destruction of Sample 2 was confirmed. FIG. 9 shows a photograph of the surface of the sample 2 taken after the indenter makes 21 reciprocations under the measurement condition 2. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 2 after the indenter has made 21 reciprocations, and the base of the amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed.

図10は、測定条件1における試料3の磨耗回数に応じた摩擦係数の変化を示すグラフであり、図11は、測定条件2における試料3の磨耗回数に応じた摩擦係数の変化を示すグラフである。図10及び図11に示すとおり、試料3の摩擦係数は、測定条件1及び測定条件2のいずれにおいても、非晶質炭素膜の存在を示す0.2μ前後で低く安定しており、この実験による摩擦係数の実質的な上昇は見られなかった。図12は、測定条件1において圧子が100往復した後に撮影された試料3の表面の写真を示し、図13は、測定条件2において圧子が100往復した後に撮影された試料3の表面の写真を示す。図示のとおり、いずれの測定条件で実験を行った場合においても、圧子が100往復した後の試料3の表面には圧子の軌跡を視認することができない。これらの試験結果から、試料3は良好な耐摩擦磨耗性を示すことが確認できた。   FIG. 10 is a graph showing a change in the friction coefficient according to the number of wears of the sample 3 under the measurement condition 1, and FIG. 11 is a graph showing a change in the friction coefficient according to the number of wears of the sample 3 under the measurement condition 2. is there. As shown in FIGS. 10 and 11, the coefficient of friction of sample 3 is low and stable around 0.2 μm indicating the presence of the amorphous carbon film in both measurement conditions 1 and 2, and this experiment There was no substantial increase in the coefficient of friction. FIG. 12 shows a photograph of the surface of the sample 3 taken after the indenter 100 reciprocates under the measurement condition 1, and FIG. 13 shows a photograph of the surface of the sample 3 photographed after the indenter 100 reciprocates under the measurement condition 2. Show. As shown in the figure, even when the experiment is performed under any measurement condition, the locus of the indenter cannot be visually recognized on the surface of the sample 3 after the indenter has made 100 reciprocations. From these test results, it was confirmed that Sample 3 exhibited good frictional wear resistance.

図14は、測定条件1における試料4の磨耗回数に応じた摩擦係数の変化を示すグラフであり、図15は、測定条件2における試料4の磨耗回数に応じた摩擦係数の変化を示すグラフである。図14及び図15に示すとおり、試料4の摩擦係数は、測定条件1及び測定条件2のいずれにおいても、非晶質炭素膜の存在を示す0.2μ前後で低く安定しており、この実験による摩擦係数の実質的な上昇は見られなかった。図16は、測定条件1において圧子が100往復した後に撮影された試料4の表面の写真を示し、図17は、測定条件2において圧子が100往復した後に撮影された試料4の表面の写真を示す。図示のとおり、いずれの測定条件で実験を行った場合においても、圧子が100往復した後の試料4の表面には圧子の軌跡を視認することができない。これらの試験結果から、試料4は良好な耐摩擦磨耗性を示すことが確認できた。   FIG. 14 is a graph showing a change in the friction coefficient according to the number of wears of the sample 4 under the measurement condition 1, and FIG. 15 is a graph showing a change in the friction coefficient according to the number of wears of the sample 4 under the measurement condition 2. is there. As shown in FIGS. 14 and 15, the friction coefficient of Sample 4 is low and stable around 0.2 μm indicating the presence of the amorphous carbon film in both measurement conditions 1 and 2, and this experiment There was no substantial increase in the coefficient of friction. FIG. 16 shows a photograph of the surface of the sample 4 taken after the indenter makes 100 reciprocations under the measurement condition 1, and FIG. 17 shows a photograph of the surface of the sample 4 taken after the indenter makes 100 reciprocations under the measurement condition 2. Show. As shown in the figure, even when the experiment is performed under any measurement condition, the locus of the indenter cannot be visually recognized on the surface of the sample 4 after the indenter reciprocates 100 times. From these test results, it was confirmed that Sample 4 exhibited good frictional wear resistance.

次に、試料1〜3と同様の方法により試料5〜7を作製した。試料5〜7は、試料1〜3よりも薄い3μmの膜厚の無電解ニッケルめっき層を有する。具体的には、試料5は、試料1と同様の方法により、基材、亜鉛置換層、無電解ニッケルめっき層(3μm)、非晶質炭素膜を積層して成り、非晶質炭素膜を形成する前に基材を310℃にて30分間加熱処理した。試料6は、試料2と同様に、基材、亜鉛置換層、無電解ニッケルめっき層(3μm)、非晶質炭素膜を積層して成り、非晶質炭素膜を形成後の基材を280℃にて60分間加熱処理することにより得られた。試料7は、試料3と同様に、基材、亜鉛置換層、無電解ニッケルめっき層(3μm)、非晶質炭素膜を積層して成る。試料3と同様に、試料7の無電解ニッケルめっき層は、非晶質炭素膜の成膜工程を通じて常時260℃未満であった。このように、試料5〜7の無電解ニッケルめっき層の厚さはいずれも3μmであり、試料5〜7はこの点において試料1〜3と異なっている。   Next, Samples 5 to 7 were produced by the same method as Samples 1 to 3. Samples 5 to 7 have an electroless nickel plating layer having a thickness of 3 μm thinner than Samples 1 to 3. Specifically, Sample 5 is formed by laminating a base material, a zinc substitution layer, an electroless nickel plating layer (3 μm), and an amorphous carbon film by the same method as Sample 1, and the amorphous carbon film is formed. Prior to formation, the substrate was heat treated at 310 ° C. for 30 minutes. Sample 6 is formed by laminating a base material, a zinc substitution layer, an electroless nickel plating layer (3 μm), and an amorphous carbon film in the same manner as Sample 2, and the base material after forming the amorphous carbon film is 280. It was obtained by heat treatment at 60 ° C. for 60 minutes. Similar to sample 3, sample 7 is formed by laminating a base material, a zinc substitution layer, an electroless nickel plating layer (3 μm), and an amorphous carbon film. Similar to Sample 3, the electroless nickel plating layer of Sample 7 was always below 260 ° C. throughout the amorphous carbon film formation process. Thus, the thicknesses of the electroless nickel plating layers of Samples 5 to 7 are all 3 μm, and Samples 5 to 7 are different from Samples 1 to 3 in this respect.

得られた試料5〜7のそれぞれについて、試料1〜3と同様の方法で摩擦摩耗試験を行った。図18は、測定条件1における試料5の磨耗回数に応じた摩擦係数の変化を示すグラフ、図19は、測定条件2における試料5の磨耗回数に応じた摩擦係数の変化を示すグラフである。図18に示すとおり、測定条件1において、試料5の摩擦係数は、試験開始直後に1.2μ付近まで急上昇し、摩耗回数が5のときに非晶質炭素膜が破壊された。この試料5の破壊が確認された時点で試験を中止した。図20は、測定条件1において圧子が5往復した後に撮影された試料5の表面の写真を示す。図示のとおり、圧子が5往復した後の試料5の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。また、図19に示すとおり、測定条件2において、試料5の摩擦係数は、試験開始直後に0.8μ付近まで急上昇し、摩耗回数が5ときに非晶質炭素膜が破壊された。この試料5の破壊が確認された時点で試験を中止した。図21は、測定条件2において圧子が5往復した後に撮影された試料5の表面の写真を示す。図示のとおり、圧子が5往復した後の試料5の表面には、左右方向に延びる帯状にボールの軌跡が現れておりこの軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。   About each of obtained samples 5-7, the friction abrasion test was done by the method similar to samples 1-3. FIG. 18 is a graph showing a change in the friction coefficient according to the number of wears of the sample 5 under the measurement condition 1, and FIG. 19 is a graph showing a change in the friction coefficient according to the number of wears of the sample 5 under the measurement condition 2. As shown in FIG. 18, in the measurement condition 1, the friction coefficient of Sample 5 rapidly increased to near 1.2 μ immediately after the start of the test, and the amorphous carbon film was destroyed when the number of wear was 5. The test was stopped when the destruction of Sample 5 was confirmed. FIG. 20 shows a photograph of the surface of the sample 5 taken after the indenter reciprocates five times under the measurement condition 1. As shown in the figure, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 5 after the indenter has made five reciprocations, and an amorphous carbon film substrate having a metallic luster is formed along the trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed. Further, as shown in FIG. 19, under the measurement condition 2, the friction coefficient of the sample 5 rapidly increased to about 0.8 μ immediately after the start of the test, and the amorphous carbon film was destroyed when the number of wear was 5. The test was stopped when the destruction of Sample 5 was confirmed. FIG. 21 shows a photograph of the surface of the sample 5 taken after the indenter makes five reciprocations under the measurement condition 2. As shown in the figure, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 5 after the indenter has reciprocated 5 times, and the base of the amorphous carbon film having a metallic luster is exposed along this trajectory. doing. From this, it was confirmed that the amorphous carbon film was destroyed.

図22は、測定条件1における試料6の磨耗回数に応じた摩擦係数の変化を示すグラフであり、図23は、測定条件2における試料6の磨耗回数に応じた摩擦係数の変化を示すグラフである。図22に示すとおり、測定条件1において、試料6の摩擦係数は、試験開始直後に0.8μまで急上昇し、摩耗回数が6のときにその表面に形成された非晶質炭素膜が破壊された。この試料6の破壊が確認された時点で試験を中止した。図24は、測定条件1において圧子が6往復した後に撮影された試料6の表面の写真を示す。図示のとおり、圧子が6往復した後の試料6の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。また、図23に示すとおり、測定条件2において、試料6の摩擦係数は、試験開始直後に0.7μまで急上昇し、摩耗回数が5のときに非晶質炭素膜が破壊された。この試料6の破壊が確認された時点で試験を中止した。図25は、測定条件2において圧子が5往復した後に撮影された試料6の表面の写真を示す。図示のとおり、圧子が5往復した後の試料6の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。   FIG. 22 is a graph showing a change in the friction coefficient according to the number of wears of the sample 6 under the measurement condition 1, and FIG. 23 is a graph showing a change in the friction coefficient according to the number of wears of the sample 6 under the measurement condition 2. is there. As shown in FIG. 22, in the measurement condition 1, the friction coefficient of the sample 6 rapidly increased to 0.8 μ immediately after the start of the test, and when the number of wear was 6, the amorphous carbon film formed on the surface was destroyed. It was. The test was stopped when the destruction of the sample 6 was confirmed. FIG. 24 shows a photograph of the surface of the sample 6 taken after the indenter reciprocated six times under the measurement condition 1. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 6 after the indenter has reciprocated six times, and the base of the amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed. Further, as shown in FIG. 23, under the measurement condition 2, the friction coefficient of the sample 6 rapidly increased to 0.7 μ immediately after the start of the test, and the amorphous carbon film was destroyed when the number of wear was 5. The test was stopped when the destruction of the sample 6 was confirmed. FIG. 25 shows a photograph of the surface of the sample 6 taken after the indenter reciprocates five times under the measurement condition 2. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 6 after the indenter has made five reciprocations, and an amorphous carbon film substrate having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed.

図26は、測定条件1における試料7の磨耗回数に応じた摩擦係数の変化を示すグラフであり、図27は、測定条件2における試料7の磨耗回数に応じた摩擦係数の変化を示すグラフである。図26に示すとおり、測定条件1において、試料7の摩擦係数は、試験開始直後に1以上に急上昇し、摩耗回数が5のときにその表面に形成された非晶質炭素膜が破壊された。この試料7の破壊が確認された時点で試験を中止した。また、図27に示すとおり、試料7の摩擦係数は、測定条件2において、非晶質炭素膜の存在を示す0.2μ前後で低く安定しており、100回の磨耗回数の試験を行った後でも摩擦係数の実質的な上昇は見られない。図28は、測定条件1において圧子が5往復した後に撮影された試料7の表面の写真を示す。図示のとおり、測定条件1で実験圧子が5往復した後の試料7の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認された。図29は、測定条件2において圧子が100往復した後に撮影された試料7の表面の写真を示す。図示のとおり、圧子が100往復した後の試料7の表面には圧子の軌跡が見られるが、図27の摩擦係数の変化にて確認できるように、試料7の測定条件2における摩擦係数は試験開始から終了まで0.2μ付近で安定しており、非晶質炭素膜は試料7の表面に維持されていることが確認できた。このように、試料7は、少なくとも荷重が比較的小さな測定条件2の場合に良好な耐摩擦磨耗性を示すことが分かる。一方、試料5及び試料6は、測定条件によらず非晶質炭素膜が破壊された。したがって、これらの試験結果から、試料7は試料5及び試料6よりも良好な耐摩擦磨耗性を示すことが確認できた。   FIG. 26 is a graph showing a change in the friction coefficient according to the number of wears of the sample 7 under the measurement condition 1, and FIG. 27 is a graph showing a change in the friction coefficient according to the number of wears of the sample 7 under the measurement condition 2. is there. As shown in FIG. 26, in the measurement condition 1, the friction coefficient of the sample 7 rapidly increased to 1 or more immediately after the start of the test, and the amorphous carbon film formed on the surface was destroyed when the number of wear was 5. . The test was stopped when the destruction of Sample 7 was confirmed. Further, as shown in FIG. 27, the friction coefficient of the sample 7 is low and stable at around 0.2 μ which indicates the presence of the amorphous carbon film in the measurement condition 2, and the number of wear tests was performed 100 times. Even after this, there is no substantial increase in the coefficient of friction. FIG. 28 shows a photograph of the surface of the sample 7 taken after the indenter reciprocates five times under the measurement condition 1. As shown in the figure, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 7 after the experimental indenter reciprocates five times under the measurement condition 1, and an amorphous material having a metallic luster along the trajectory. The base of the carbon film is exposed. From this, it was confirmed that the amorphous carbon film was destroyed. FIG. 29 shows a photograph of the surface of the sample 7 taken after the indenter has made 100 reciprocations under the measurement condition 2. As shown in the drawing, the locus of the indenter is seen on the surface of the sample 7 after the indenter has made 100 reciprocations. As can be seen from the change in the friction coefficient in FIG. It was stable at around 0.2 μm from the start to the end, and it was confirmed that the amorphous carbon film was maintained on the surface of the sample 7. Thus, it can be seen that Sample 7 exhibits good frictional wear resistance at least under the measurement condition 2 where the load is relatively small. On the other hand, in Sample 5 and Sample 6, the amorphous carbon film was broken regardless of the measurement conditions. Therefore, from these test results, it was confirmed that Sample 7 showed better frictional wear resistance than Sample 5 and Sample 6.

次に、試料1〜3と同様の方法により、試料8〜9を作製した。具体的には、試料8は、試料1と同様の方法により、基材、亜鉛置換層、無電解ニッケルめっき層(10μm)、電解ニッケルめっき層(10μm)、非晶質炭素膜を積層して成り、非晶質炭素膜の成膜前に基材を310℃にて30分間加熱処理した。試料9は、試料3と同様に、基材、亜鉛置換層、無電解ニッケルめっき層(10μm)、電解ニッケルめっき層(10μm)、非晶質炭素膜を積層して成る。試料3と同様に、試料9の無電解ニッケルめっき層は、非晶質炭素膜の成膜工程を通じて常時260℃未満であった。試料8〜9の電解ニッケルめっき層は、当業者に明らかな様々な方法を用いて形成され、例えば、スルファミン酸Ni、塩化Ni、ホウ酸、及び添加材(光沢材)を用い、55℃程度に維持した溶液中で通電することによって形成される。ただし、電解ニッケルめっき層を形成する工程中、無電解ニッケルめっき層の温度が常に260℃未満となるように温度管理が行われる。試料8〜9は、いずれも電解ニッケルめっき層を有しており、この点で試料1〜3と異なる。また、試料8〜9の無電解ニッケルめっき層の厚さはいずれも10μmであり、試料8〜9はこの点においても試料1〜3と異なっている。   Next, Samples 8 to 9 were produced by the same method as Samples 1 to 3. Specifically, Sample 8 is formed by laminating a base material, a zinc replacement layer, an electroless nickel plating layer (10 μm), an electrolytic nickel plating layer (10 μm), and an amorphous carbon film by the same method as Sample 1. Thus, the base material was heat-treated at 310 ° C. for 30 minutes before forming the amorphous carbon film. Similar to sample 3, sample 9 is formed by laminating a base material, a zinc replacement layer, an electroless nickel plating layer (10 μm), an electrolytic nickel plating layer (10 μm), and an amorphous carbon film. Similar to Sample 3, the electroless nickel plating layer of Sample 9 was always less than 260 ° C. throughout the amorphous carbon film formation process. The electrolytic nickel plating layers of Samples 8 to 9 are formed using various methods apparent to those skilled in the art. For example, Ni sulfamic acid, Ni chloride, boric acid, and an additive (glossy material) are used, and about 55 ° C. It is formed by energizing in a solution maintained at a temperature. However, during the process of forming the electrolytic nickel plating layer, temperature management is performed so that the temperature of the electroless nickel plating layer is always less than 260 ° C. Samples 8 to 9 all have an electrolytic nickel plating layer and are different from Samples 1 to 3 in this respect. Moreover, the thickness of the electroless nickel plating layer of Samples 8-9 is 10 μm, and Samples 8-9 are different from Samples 1-3 in this respect.

得られた試料8〜9のそれぞれについて、試料1〜3と同様の方法で摩擦摩耗試験を行った。図30は、測定条件1における試料8の磨耗回数に応じた摩擦係数の変化を示すグラフ、図31は、測定条件2における試料8の磨耗回数に応じた摩擦係数の変化を示すグラフである。図30に示すとおり、測定条件1において、試料8の摩擦係数は、試験開始直後に0.5μまで急上昇し、摩耗回数が3のときに非晶質炭素膜が破壊された。この試料8の破壊が確認された時点で試験を中止した。図32は、測定条件1において圧子が3往復した後に撮影された試料8の表面の写真を示す。図示のとおり、圧子が3往復した後の試料8の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。また、図31に示すとおり、測定条件2において、試料8の摩擦係数は、試験開始直後に0.5μまで急上昇し、摩耗回数が16のときに非晶質炭素膜が破壊された。この試料8の破壊が確認された時点で試験を中止した。図33は、測定条件2において圧子が16往復した後に撮影された試料8の表面の写真を示す。図示のとおり、圧子が16往復した後の試料8の表面には、左右方向に延びる帯状にボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出している。このことから、非晶質炭素膜が破壊されていることが確認できた。   About each of obtained samples 8-9, the friction abrasion test was done by the method similar to samples 1-3. 30 is a graph showing a change in the friction coefficient according to the number of wears of the sample 8 under the measurement condition 1, and FIG. 31 is a graph showing a change in the friction coefficient according to the number of wears of the sample 8 under the measurement condition 2. As shown in FIG. 30, in the measurement condition 1, the friction coefficient of the sample 8 rapidly increased to 0.5 μ immediately after the start of the test, and the amorphous carbon film was broken when the number of wear was 3. The test was stopped when the destruction of Sample 8 was confirmed. FIG. 32 shows a photograph of the surface of the sample 8 taken after the indenter reciprocates three times under the measurement condition 1. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 8 after the indenter has made three reciprocations, and an amorphous carbon film base with a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed. Further, as shown in FIG. 31, under the measurement condition 2, the friction coefficient of the sample 8 rapidly increased to 0.5 μ immediately after the start of the test, and the amorphous carbon film was broken when the number of wear was 16. The test was stopped when the destruction of Sample 8 was confirmed. FIG. 33 shows a photograph of the surface of the sample 8 taken after the indenter reciprocates 16 times under the measurement condition 2. As shown in the drawing, a ball trajectory appears in a strip shape extending in the left-right direction on the surface of the sample 8 after the indenter has made 16 reciprocations, and an underlying layer of an amorphous carbon film having a metallic luster is formed along this trajectory. Exposed. From this, it was confirmed that the amorphous carbon film was destroyed.

図34は、測定条件1における試料9の磨耗回数に応じた摩擦係数の変化を示すグラフである。図示のとおり、測定条件1において、試料9の摩擦係数は、摩耗回数が約70回のときまでは0.2μと低い値を示し、その後上昇している。このことから、摩耗回数が70前後のときに、非晶質炭素膜が破壊され摩擦係数が増加したことが分かる。加熱を行った試料8が摩耗回数3回で破壊しているのに対して、試料9は摩耗回数70回まで非晶質炭素膜を維持しており、非晶質炭素膜の密着性が格段に向上していることが確認できた。図35は、測定条件1において圧子が100往復した後に撮影された試料9の表面の写真を示す。図示のとおり、ボールの軌跡が現れており、この軌跡に沿って金属光沢を持った非晶質炭素膜の下地が露出していることが確認できるが、これは摩耗回数70回前後以降の非晶質炭素膜の剥離に起因していると考えられる。   FIG. 34 is a graph showing changes in the coefficient of friction according to the number of wears of the sample 9 under the measurement condition 1. As shown in the figure, under the measurement condition 1, the friction coefficient of the sample 9 shows a low value of 0.2 μ until the wear frequency is about 70, and then increases. From this, it can be seen that when the number of wear was around 70, the amorphous carbon film was broken and the friction coefficient increased. While the heated sample 8 was destroyed at the number of wears of 3 times, the sample 9 maintained the amorphous carbon film up to the number of wears of 70, and the adhesion of the amorphous carbon film was remarkably high. It was confirmed that it was improved. FIG. 35 shows a photograph of the surface of the sample 9 taken after the indenter reciprocates 100 times under the measurement condition 1. As shown in the figure, a trajectory of the ball appears, and it can be confirmed that the base of the amorphous carbon film having a metallic luster is exposed along this trajectory. This is thought to be due to peeling of the crystalline carbon film.

本明細書において説明した硬質膜被覆部材及びその作製方法は例示であり、その構成、材料、形成方法に対して、本発明の趣旨を逸脱しない範囲で様々な変更を行うことができる。例えば、基材10と亜鉛置換層20との間、及び/又は、亜鉛置換層20と無電解ニッケルめっき層30との間には、スパッタ法や蒸着法によりNi薄膜やCu薄膜を形成してもよい。また、亜鉛置換層20と無電解ニッケルめっき層30との間には、ストライク銅めっき膜を形成してもよい。これらのNi薄膜、Cu薄膜、及びストライク銅めっき膜は、300nm以下の膜厚となるように非常に薄く形成されるため、硬質膜40の密着性には実質的な影響がない。本明細書において具体的に説明した以外にも、基材10と亜鉛置換層20との間、亜鉛置換層20と無電解ニッケルめっき層30との間、無電解ニッケルめっき層30と硬質膜40との間には、本発明の趣旨を逸脱しない範囲で様々な薄膜を設けることができる。また、基材10、亜鉛置換層20、無電解ニッケルめっき層30、及び硬質膜40には目的に応じた表面処理を適宜行うことができる。   The hard film covering member and the manufacturing method thereof described in this specification are exemplifications, and various changes can be made to the configuration, material, and formation method without departing from the spirit of the present invention. For example, a Ni thin film or a Cu thin film is formed between the base material 10 and the zinc substitution layer 20 and / or between the zinc substitution layer 20 and the electroless nickel plating layer 30 by sputtering or vapor deposition. Also good. A strike copper plating film may be formed between the zinc substitution layer 20 and the electroless nickel plating layer 30. Since these Ni thin film, Cu thin film, and strike copper plating film are formed very thin so as to have a film thickness of 300 nm or less, the adhesion of the hard film 40 is not substantially affected. In addition to those specifically described in the present specification, between the base material 10 and the zinc substitution layer 20, between the zinc substitution layer 20 and the electroless nickel plating layer 30, and between the electroless nickel plating layer 30 and the hard film 40. Various thin films can be provided between and without departing from the spirit of the present invention. In addition, the substrate 10, the zinc substitution layer 20, the electroless nickel plating layer 30, and the hard film 40 can be appropriately subjected to a surface treatment according to the purpose.

Claims (23)

軟質金属からなる基材と、
前記基材上に形成されたアモルファス状の無電解ニッケルめっき層と、
前記無電解ニッケルめっき層上に形成された硬質膜と、
を備える硬質膜被覆部材。
A base material made of soft metal;
An amorphous electroless nickel plating layer formed on the substrate;
A hard film formed on the electroless nickel plating layer;
A hard film covering member comprising:
前記無電解ニッケルめっき層が無電解Ni−Pめっき層である請求項1に記載の硬質膜被覆部材。   The hard film-coated member according to claim 1, wherein the electroless nickel plating layer is an electroless Ni—P plating layer. 前記無電解ニッケルめっき層が無電解Ni−Bめっき層である請求項1に記載の硬質膜被覆部材。   The hard film-coated member according to claim 1, wherein the electroless nickel plating layer is an electroless Ni—B plating layer. 前記無電解Ni−Pめっき層におけるリンの含有量が8wt%以上である請求項2に記載の硬質膜被覆部材。   The hard film-coated member according to claim 2, wherein a content of phosphorus in the electroless Ni—P plating layer is 8 wt% or more. 前記無電解Ni−Bめっき層におけるホウ素の含有量が3wt%以上である請求項3に記載の硬質膜被覆部材。   The hard film-coated member according to claim 3, wherein a content of boron in the electroless Ni—B plating layer is 3 wt% or more. 前記硬質膜は、前記無電解Ni−Pめっき層が260℃未満に保たれるように成膜される請求項2に記載の硬質膜被覆部材。   The said hard film | membrane is a hard film | membrane covering member of Claim 2 formed into a film so that the said electroless Ni-P plating layer may be maintained below 260 degreeC. 前記硬質膜は、前記無電解Ni−Bめっき層が300℃未満に保たれるように成膜される請求項3に記載の硬質膜被覆部材。   The said hard film | membrane is a hard film | membrane covering member of Claim 3 formed into a film so that the said electroless Ni-B plating layer may be maintained below 300 degreeC. 前記基材がアルミニウム又はアルミニウム合金から成る請求項1に記載の硬質膜被覆部材。   The hard film covering member according to claim 1, wherein the substrate is made of aluminum or an aluminum alloy. 前記硬質膜が、非晶質炭素膜、またはSiを含む非晶質炭素膜、Ti、AlN、TiCN、TiC、TiN、TiAlN、CrC、CrN、SiC、及びSiOから成る群より選択された1種以上の硬質膜素材から成る請求項1に記載の硬質膜被覆部材。The hard film is selected from the group consisting of an amorphous carbon film or an amorphous carbon film containing Si, Ti, AlN, TiCN, TiC, TiN, TiAlN, CrC, CrN, SiC, and SiO x 1 The hard film coating | coated member of Claim 1 which consists of a hard film raw material of a seed | species or more. 前記基材と前記無電解ニッケルめっき層との間に亜鉛置換層が形成された請求項1に記載の硬質膜被覆部材。   The hard film coating | coated member of Claim 1 in which the zinc substitution layer was formed between the said base material and the said electroless nickel plating layer. 前記無電解ニッケルめっき層と前記硬質膜との間に電解ニッケルめっき層が形成された請求項1に記載の硬質膜被覆部材。   The hard film coating member according to claim 1, wherein an electrolytic nickel plating layer is formed between the electroless nickel plating layer and the hard film. 前記無電解ニッケルめっき層上に中間接着層を形成し、前記硬質膜を当該中間接着層の上に形成する請求項1に記載の硬質膜被覆部材。   The hard film covering member according to claim 1, wherein an intermediate adhesive layer is formed on the electroless nickel plating layer, and the hard film is formed on the intermediate adhesive layer. 軟質金属からなる基材を準備する工程と、
前記基材上にアモルファス状の無電解ニッケルめっき層を形成する工程と、
前記無電解ニッケルめっき層上に硬質膜を形成する工程と、
を備える硬質膜被覆部材の作製方法。
Preparing a base material made of a soft metal;
Forming an amorphous electroless nickel plating layer on the substrate;
Forming a hard film on the electroless nickel plating layer;
A manufacturing method of a hard film covering member provided with.
前記無電解ニッケルめっき層が無電解Ni−Pめっき層である請求項13に記載の作製方法。   The production method according to claim 13, wherein the electroless nickel plating layer is an electroless Ni—P plating layer. 前記無電解ニッケルめっき層が無電解Ni−Bめっき層である請求項13に記載の作製方法。   The manufacturing method according to claim 13, wherein the electroless nickel plating layer is an electroless Ni—B plating layer. 前記無電解Ni−Pめっき層におけるリンの含有量が8wt%以上である請求項14に記載の作製方法。   The production method according to claim 14, wherein a content of phosphorus in the electroless Ni—P plating layer is 8 wt% or more. 前記無電解Ni−Bめっき層におけるホウ素の含有量が3wt%以上である請求項15に記載の作製方法。   The manufacturing method according to claim 15, wherein a content of boron in the electroless Ni—B plating layer is 3 wt% or more. 前記硬質膜は、前記無電解Ni−Pめっき層が260℃未満に保たれるようにして成膜される請求項14に記載の作製方法。   The said hard film | membrane is a preparation method of Claim 14 formed so that the said electroless Ni-P plating layer may be kept below 260 degreeC. 前記硬質膜は、前記無電解Ni−Bめっき層が300℃未満に保たれるようにして成膜される請求項15に記載の作製方法。   The said hard film | membrane is a preparation method of Claim 15 formed into a film so that the said electroless Ni-B plating layer may be kept below 300 degreeC. 前記基材がアルミニウム又はアルミニウム合金から成る請求項13に記載の作製方法。   The manufacturing method according to claim 13, wherein the substrate is made of aluminum or an aluminum alloy. 前記硬質膜が、ダイヤモンドライクカーボン、Siダイヤモンドライクカーボン、TiAlN、TiCN、TiC、TiN、CrC、CrN、SiC、及びSiOから成る群より選択された1種以上の硬質膜素材から成る請求項13に記載の作製方法。The hard film, diamond-like carbon, Si diamond-like carbon, TiAlN, TiCN, TiC, TiN , CrC, CrN, SiC, and claims comprising one or more rigid film material selected from the group consisting of SiO X 13 The production method described in 1. 前記基材上に亜鉛置換層を形成する工程をさらに有し、前記無電解ニッケルめっき層が前記亜鉛置換層の表面に形成される請求項13に記載の作製方法。   The method according to claim 13, further comprising a step of forming a zinc substitution layer on the base material, wherein the electroless nickel plating layer is formed on a surface of the zinc substitution layer. 前記無電解ニッケルめっき層上に電解ニッケルめっき層を形成する工程をさらに有し、前記硬質膜が前記電解ニッケルめっき層の表面に形成される請求項13に記載の作製方法。
The method according to claim 13, further comprising forming an electrolytic nickel plating layer on the electroless nickel plating layer, wherein the hard film is formed on a surface of the electrolytic nickel plating layer.
JP2013520623A 2011-06-17 2012-06-18 Hard film-coated member coated with hard film and method for producing the same Expired - Fee Related JP5883001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520623A JP5883001B2 (en) 2011-06-17 2012-06-18 Hard film-coated member coated with hard film and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011135061 2011-06-17
JP2011135061 2011-06-17
PCT/JP2012/065532 WO2012173276A1 (en) 2011-06-17 2012-06-18 Hard-film-covered member covered by hard film, and method for manufacturing same
JP2013520623A JP5883001B2 (en) 2011-06-17 2012-06-18 Hard film-coated member coated with hard film and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016019521A Division JP6267730B2 (en) 2011-06-17 2016-02-04 Hard film-coated member coated with hard film and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2012173276A1 true JPWO2012173276A1 (en) 2015-02-23
JP5883001B2 JP5883001B2 (en) 2016-03-09

Family

ID=47357253

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013520623A Expired - Fee Related JP5883001B2 (en) 2011-06-17 2012-06-18 Hard film-coated member coated with hard film and method for producing the same
JP2016019521A Active JP6267730B2 (en) 2011-06-17 2016-02-04 Hard film-coated member coated with hard film and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016019521A Active JP6267730B2 (en) 2011-06-17 2016-02-04 Hard film-coated member coated with hard film and method for producing the same

Country Status (4)

Country Link
JP (2) JP5883001B2 (en)
CN (1) CN103597118B (en)
TW (1) TWI502098B (en)
WO (1) WO2012173276A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757614B (en) * 2014-01-02 2016-08-17 上海交通大学 A kind of coating of magnesium and magnesium alloy and preparation method thereof
WO2016017375A1 (en) * 2014-08-01 2016-02-04 日立金属株式会社 Method for manufacturing a coated tool
JP6588973B2 (en) * 2015-05-07 2019-10-09 株式会社日立製作所 Corrosion-resistant member and manufacturing method thereof
DE102017102059A1 (en) * 2017-02-02 2018-08-02 Friedrich-Alexander-Universität Erlangen Layer system and component
JP6486978B2 (en) 2017-02-10 2019-03-20 三菱重工業株式会社 Laminated member, and impeller, compressor and engine using the same
CN108330442B (en) * 2018-01-29 2021-09-24 九牧厨卫股份有限公司 Chromium carbide composite coating and preparation method thereof
CN112385102A (en) * 2018-07-09 2021-02-19 罗伯特·博世有限公司 Spark plug shell with electroplated or chemically nickel-containing protective layer and silicon-containing sealing layer, spark plug with shell and method for producing shell
JP6551767B2 (en) * 2018-11-19 2019-07-31 三菱重工業株式会社 Laminated member, and impeller, compressor and engine using the same
JP6551766B2 (en) * 2018-11-19 2019-07-31 三菱重工業株式会社 Laminated member, and impeller, compressor and engine using the same
CN109722667B (en) * 2019-01-29 2020-08-18 西南科技大学 High-temperature-resistant ablation-resistant alloy
CN111593334B (en) * 2020-07-10 2021-10-29 瑞声新能源发展(常州)有限公司科教城分公司 Mold surface treatment method and coating structure thereof
CN114686829A (en) * 2020-12-29 2022-07-01 苏州吉恒纳米科技有限公司 Wear-resistant, fatigue-resistant and repeated impact-resistant coating and production process thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110115A (en) * 1987-10-23 1989-04-26 Sailor Pen Co Ltd:The Mold for injection molding of synthetic resin
JPH04161308A (en) * 1990-10-25 1992-06-04 Mitsubishi Electric Corp Simple mold for molding and its manufacture
JP2002226974A (en) * 2000-11-28 2002-08-14 Ebara Corp ELECTROLESS Ni-B PLATING SOLUTION, ELECTRONIC DEVICE, AND MANUFACTURING METHOD THEREOF
JP2003147548A (en) * 2001-11-13 2003-05-21 Kobe Steel Ltd Reel made of aluminum or aluminum alloy
JP2007032576A (en) * 2006-10-23 2007-02-08 Hitachi Ltd Fuel pump for cylinder direct fuel injection device
JP2008311374A (en) * 2007-06-13 2008-12-25 Denso Corp Plated/deposited composite film and method of manufacturing the same, and power semiconductor module device
JP2010202900A (en) * 2009-03-02 2010-09-16 Alps Electric Co Ltd Method of producing electrical contact

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025743B2 (en) * 1993-07-07 2000-03-27 三洋電機株式会社 Hard carbon film forming equipment
JP3031719B2 (en) * 1994-08-24 2000-04-10 ナショナル インスチチュート オブ テクノロジー アンド クオリティ Diamond film deposition method on electroless plated nickel layer
JP2005082844A (en) * 2003-09-08 2005-03-31 Chiyoda Daiichi Kogyo Kk Coating method for base material and coating structure
JP4134194B2 (en) * 2006-05-11 2008-08-13 日立マクセル株式会社 Manufacturing method of resin molded body and electroless plating method
JP2009149955A (en) * 2007-12-21 2009-07-09 Sanden Corp Surface structure of sliding member
JP5182130B2 (en) * 2008-12-24 2013-04-10 株式会社豊田自動織機 Sliding member in compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110115A (en) * 1987-10-23 1989-04-26 Sailor Pen Co Ltd:The Mold for injection molding of synthetic resin
JPH04161308A (en) * 1990-10-25 1992-06-04 Mitsubishi Electric Corp Simple mold for molding and its manufacture
JP2002226974A (en) * 2000-11-28 2002-08-14 Ebara Corp ELECTROLESS Ni-B PLATING SOLUTION, ELECTRONIC DEVICE, AND MANUFACTURING METHOD THEREOF
JP2003147548A (en) * 2001-11-13 2003-05-21 Kobe Steel Ltd Reel made of aluminum or aluminum alloy
JP2007032576A (en) * 2006-10-23 2007-02-08 Hitachi Ltd Fuel pump for cylinder direct fuel injection device
JP2008311374A (en) * 2007-06-13 2008-12-25 Denso Corp Plated/deposited composite film and method of manufacturing the same, and power semiconductor module device
JP2010202900A (en) * 2009-03-02 2010-09-16 Alps Electric Co Ltd Method of producing electrical contact

Also Published As

Publication number Publication date
CN103597118A (en) 2014-02-19
WO2012173276A1 (en) 2012-12-20
TWI502098B (en) 2015-10-01
JP2016112895A (en) 2016-06-23
JP6267730B2 (en) 2018-01-24
TW201307611A (en) 2013-02-16
CN103597118B (en) 2016-10-26
JP5883001B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6267730B2 (en) Hard film-coated member coated with hard film and method for producing the same
WO2011105392A1 (en) Multilayer film laminate using aluminum or aluminum alloy as substrate, and lamination method therefor
WO2001048260A1 (en) Parts for vacuum film-forming device
JP5792257B2 (en) Method for producing antibacterial DLC film-coated member
JP5403816B2 (en) DLC film coated member and method for manufacturing the same
JP2015024625A (en) Molding die for production method thereof
JP6110126B2 (en) Thin film formed on an intermediate layer made of non-magnetic material
KR100870971B1 (en) Method for manufacturing substrate of metal pcb using high rate and high density magnetron sputtering way
JP4990959B2 (en) Thick film DLC coated member and method for manufacturing the same
JP2012015448A (en) Flexible copper clad laminate and manufacturing method of the same, and circuit board using the same
KR100671422B1 (en) Forming method of Aluminum coatings by sputtering
JP2007158030A (en) Rare-earth permanent magnet and its manufacturing method
JP5245103B2 (en) Thick film DLC coated member and method for manufacturing the same
JP2004346353A (en) Method of forming amorphous carbon film
JP2004111516A (en) R-t-b rare earth magnet of high corrosion resistance
JP2006523774A (en) Use of articles as molding tools
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP5205606B2 (en) DLC film coated member and method for manufacturing the same
JP6134341B2 (en) Underlayer-coated substrate used for Ni plating, Ni-plated layer-containing laminate, and magnetic recording medium
US20070193304A1 (en) Glass molding die
JP6593667B1 (en) Covering member and manufacturing method thereof
JPH04283911A (en) Manufacture of permament magnet
JP6114414B2 (en) Underlayer-coated substrate used for Ni plating, Ni-plated layer-containing laminate, and magnetic recording medium
JP2005268340A (en) Corrosive resistant rare-earth group permanent magnet and manufacturing method thereof
KR20000059295A (en) Method of preparing for tungsten alloys on substrate using electroless plating as a anti-corrosion medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5883001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees