JPWO2008078441A1 - 液晶表示パネル、液晶表示素子、及び、液晶表示装置 - Google Patents

液晶表示パネル、液晶表示素子、及び、液晶表示装置 Download PDF

Info

Publication number
JPWO2008078441A1
JPWO2008078441A1 JP2008550977A JP2008550977A JPWO2008078441A1 JP WO2008078441 A1 JPWO2008078441 A1 JP WO2008078441A1 JP 2008550977 A JP2008550977 A JP 2008550977A JP 2008550977 A JP2008550977 A JP 2008550977A JP WO2008078441 A1 JPWO2008078441 A1 JP WO2008078441A1
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
pixel
display panel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008550977A
Other languages
English (en)
Other versions
JP5214466B2 (ja
Inventor
雄一 井ノ上
雄一 井ノ上
貢祥 平田
貢祥 平田
山田 直
直 山田
俊英 津幡
俊英 津幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008550977A priority Critical patent/JP5214466B2/ja
Publication of JPWO2008078441A1 publication Critical patent/JPWO2008078441A1/ja
Application granted granted Critical
Publication of JP5214466B2 publication Critical patent/JP5214466B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本発明は、透過率の低下を抑制しつつ応答速度の向上を図ることができる液晶表示パネルを提供する。本発明の液晶表示パネルは、第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、上記第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、上記配向制御構造物は、片側に突出した櫛歯構造を有する液晶表示パネルであり、好ましくは、上記液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、上記櫛歯構造は、配向制御構造物間の間隔が広い側に形成されている液晶表示パネルである。

Description

本発明は、液晶表示パネル、液晶表示素子、及び、液晶表示装置に関する。より詳しくは、モニター、テレビジョン(TV)等に好適に用いられるマルチドメイン垂直配向(MVA;Multi-domain Vertical Alignment)モードの液晶表示パネル、液晶表示素子、及び、液晶表示装置に関するものである。
液晶表示装置は、近年広視野角を実現するため、様々な表示モードが提案された。そのような表示モードとしては、例えば、垂直配向(VA;Vertical Alignment)モードの一種であるMVAモードが挙げられる(例えば、特許文献1参照。)。図24は、特許文献1に記載のMVAモードの液晶表示装置であり、図25に示す一点鎖線X−Yに沿った断面模式図である。図24(a)は電圧オフの状態を示し、図24(b)は閾値以上の電圧が印加されている状態を示す。図24に示すように、電圧オフの状態では液晶分子6は基板面に対し垂直に配向しており、閾値以上の電圧が印加されると、共通電極16上に形成された突起2と画素電極13に形成された電極の開口部であるスリット1とを境として突起2及びスリット1の方向に倒れる(チルトする)。なお、図24(b)で示した点線は電圧印加時の電気力線である。
図25は、特許文献1に記載のMVAモードの液晶表示装置の1画素の平面模式図である。特許文献1に記載のMVAモードの液晶表示装置は、一対の基板とその間に挟持された液晶層とを有しており、そのうちアクティブマトリクス基板側には、図25に示すように、画素に対応する信号線(ソースバスライン)21と走査線(ゲートバスライン)22とが縦横の方向に配置され、信号線21と走査線22とのクロス部近くに、スイッチング素子であるTFT23が配置されている。また、これら信号線21と走査線22とによって1つの画素が形成され、この形状に合わせて画素電極13が形成されており、画素電極13は、コンタクトホール24を介してTFT23のドレイン電極と電気的に接続されている。更に、走査線22と平行に、保持容量配線(Cs配線)25が形成されている。そして、画素電極13には、電極を形成しない開口部(スリット)1が配向規制手段として形成され、対向基板側の共通電極16上には、低誘電性(絶縁性)の材料で形成された突起2及び突起2から分岐した補助突起2aが配向規制手段として設けられている。スリット1及び突起2は平行かつ交互に配置されており、スリット1及び突起2によって液晶分子6の配向方向が規定される。スリット1と突起2との間の領域が配向規制ドメインである。この形態では、1画素が複数のドメインで構成されており、液晶分子6のチルト方向は4種の方向に規定される。
画素電極13と共通電極16との間に電圧が印加されたとき、スリット1や突起2近傍の液晶分子6は図25の片矢印で示す方向に倒れる。すなわち、液晶分子6の倒れる方向は基板の両面にそれぞれ取り付けられた偏光板の偏光軸に対して、45°又は−45°の方向を向いている。なお、図25中、直交する両矢印は偏光板の偏光軸を示す。スリット1と突起2との中間付近に位置する液晶分子6は、スリット1や突起2近傍の液晶分子6の倒れる方向にならって配向する。このように、MVA型の場合、チルト方向が伝播することによって、液晶分子6のそれぞれは最終的にスリット1や突起2に対し垂直な方向に配向する。そして電圧を印加したとき液晶の傾斜する方向を4種類とすることでマルチドメイン化している。こうして、広視野角に対して良好な表示が実現される。
しかしながら、スリット1や突起2の占める割合が画素中で大きくなる場合には、液晶表示は通常よりも全体的に暗い表示となってしまっていた。この場合、スリット1と突起2との間隔を広げることで透過率を上げることは可能であるが、上述したように、液晶分子6のチルトはスリット1や突起2の近傍から伝播して傾くので電圧を印加した瞬間はスリット1や突起2から離れた部分にある液晶分子6のチルト方向は定まらず、応答が遅れてしまう場合があった。
これに対しては、配向規制のための構造パターンとして、更に、微細な構造パターンを形成し、応答速度を改善する方法が提案されている(例えば、特許文献2参照。)。図26は、特許文献2に記載のMVAモードの液晶表示装置の1画素の平面模式図である。図25に示した特許文献1に記載の液晶表示装置と同様、特許文献2に記載のMVAモードの液晶表示装置もまた、一対の基板とその間に挟持された液晶層とを有しており、図26に示すように、アクティブマトリクス基板側には、画素に対応する信号線(ソースバスライン)21と走査線(ゲートバスライン)22とが縦横の方向に配置され、信号線21と走査線22とのクロス部近くに、スイッチング素子であるTFT23が配置されている。また、信号線21と走査線22とによって1つの画素が形成され、この形状に合わせて画素電極13が形成されており、画素電極13は、コンタクトホール24を介してTFT23のドレイン電極と電気的に接続されている。更に、走査線22と平行に、保持容量配線(Cs配線)25が形成されている。そして、画素電極13には、電極を形成しない開口部(スリット)1が配向規制手段として形成され、対向基板側の共通電極上には、低誘電性(絶縁性)の材料で形成された突起2が配向規制手段として設けられている。ただし、特許文献2の液晶表示装置の場合には、画素電極13には、単純な線状のカットアウトパターン(スリット)1aに加え、そのカットアウトパターン1aの方向と直交する方向に、周期的に微細カットアウトパターン1bが形成されており、その微細カットアウトパターン1bは対向基板の凸パターン(突起)2が設けられた領域まで伸びている。
このような微細カットアウトパターンの役割について、図27を使って説明する。図27は、特許文献2に記載のMVAモードの液晶表示装置の1画素のV−Zに沿った断面模式図である。図27(a)は電圧がほとんどかかっていない状態であり、図27(b)は電圧が充分かかっている状態である。図27(a)に示すように、電圧がほとんどかかっていない状態では、共通電極16と画素電極13との間に位置する液晶分子6は、微細カットアウトパターン1bに向かって傾斜したプレチルトを有する。そして、図27(b)に示すように、電圧が充分かかっている状態では、液晶分子6は紙面に対して垂直な方向にチルトする。これは左右に倒れる液晶分子6が相互に干渉しあって、それぞれが微細カットアウトパターン1bの延伸する方向に倒れるためである。このような微細カットアウトパターン1bの作用によって、液晶の応答速度は改善される。
ところが、特許文献2に記載の液晶表示装置のように微細カットアウトパターンが形成されることで液晶の応答速度は向上するものの逆に透過率が低下してしまうことがあったため、この形態には未だ改善の余地があった。
特開平11−242225号公報 特開2002−107730号公報
本発明は、上記現状に鑑みてなされたものであり、透過率の低下を抑制しつつ応答速度の向上を図ることができる液晶表示パネルを提供することを目的とするものである。
本発明者らは、応答速度及び透過率を向上させることができる液晶表示パネルについて種々検討したところ、配向規制に関与する構造物の形状及び大きさに着目した。そして、スリットや突起等の配向制御構造物の構造物上では液晶にかかる電界が弱くなり、他の部分に比べ電圧をかけたときの液晶分子の傾斜が小さくなるために、スリットや突起の画素内に占める割合が大きすぎる場合は、透過率が下がり表示が暗くなる傾向にあること、及び、逆にスリットや突起等の配向制御構造物間の距離を広くしすぎると、透過率は大きくなるが応答速度は遅くなる傾向にあることを見いだした。またそれとともに、配向制御構造物の微細スリットを設ける位置を配向制御構造物の片側とすることで、このような関係にある応答速度及び透過率のバランスを容易に調整することができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、上記第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、上記配向制御構造物は、片側に突出した櫛歯構造を有する液晶表示パネル(以下、第一の液晶表示パネルともいう。)である。
以下、本発明の第一の液晶表示パネルについて詳述する。
本発明の第一の液晶表示パネルは、第一基板、液晶層及び第二基板をこの順に備える。第一基板及び第二基板には、通常、一方の基板に複数の画素電極が、他方の基板に共通電極が設けられ、これらの電極を介して液晶層に一定の電圧が印加されて液晶表示のオン及びオフの制御が行われる。また、アクティブマトリクス駆動の場合、画素電極を備える側の基板には、通常、走査線(ゲート配線)及び信号線(ソース配線)が直交するようにして配線され、かつ、これらの交点においてスイッチング素子である薄膜トランジスタ(TFT)が配置される。このような構成を有する液晶表示パネルの画素は、走査線及び信号線で囲まれた領域でマトリクス状に複数形成され、TFTによって画素毎で駆動制御が行われる。なお、画素電極は1つの画素の大きさに合わせて設けられる。更に、保持容量配線(Cs配線)を設け、画素電極との間で保持容量を形成させることで、TFTがオフ状態での液晶層の電圧を安定させることができる。
上記第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有する。すなわち、線状の配向制御構造物は、画素を平面的に見たときに画素を複数の領域(ドメイン)に区切るように配置される。このように配向制御構造物が設けられることで、区切られた領域毎に液晶分子の配向方向は異なることになる。本明細書において「配向制御構造物」とは、液晶分子の配向方向を規定することができるものであれば特に限定されないが、上述のように、第一基板に画素電極を備え、かつ第二基板に共通電極を備える場合は、上記配向制御構造物は、画素電極及び/又は共通電極上に形成される絶縁性の突起物(以下、リブともいう。)、又は、画素電極及び/又は共通電極に形成されるスリット(以下、電極スリットともいう。)であることが好ましい。なお、その他の配向制御構造物としては、例えば、画素電極及び/又は共通電極下の層間絶縁膜に形成された凹構造等が挙げられる。このような配向制御構造物は線状で設けられ、そうすることで、配向制御構造物の近傍に位置する液晶分子は、電圧無印加時において配向制御構造物に向かって均一に並んでプレチルト配向することになる。本発明は、液晶表示パネル内に配向制御構造物を設けており、垂直配向(VA)モードの構成とすることで、広視野角が得られるMVAモードの構成とすることができる。
上記配向制御構造物は、片側に突出した櫛歯構造を有する。すなわち、本発明の液晶表示パネルが備える配向制御構造物は、平面的に見て櫛型をしており、櫛の柄にあたるメインの線状構造と、そこから片側に突出した櫛歯構造とで構成されている。このような櫛歯構造は、例えば、その配向制御構造物に対して一定間隔で複数のスリットを形成することにより作製することができる。したがって、このような櫛歯構造は、電極スリットで形成することが作製面で効率的である。なお、リブ又は凹構造にスリットを形成し、リブ又は凹構造を櫛歯構造とすることも可能であるが、電極スリットを櫛歯構造とする場合と比べてパターニングが難しい。本明細書において「片側」とは、配向制御構造物の櫛歯構造が実質的に片側にのみ形成されていることをいう。上述したように、応答速度を向上させるために配向制御構造物に櫛歯構造を設ける場合には、逆に透過率が低下してしまう可能性があるため、それを最小限にするためには、櫛歯構造の形状、大きさ等を調整する必要がある。本発明では、メインの線状構造に対し櫛歯構造が片側に設けられた構成となっているため、透過率と応答速度とのバランスの調整を容易に行うことができる。このような調整は、特に液晶表示パネルの画素サイズが変更となる場合に効果を発揮する。画素サイズによって透過率及び応答速度に対し櫛歯の構造が与える影響は異なっているため、このようなバランス調整は重要となる。すなわち、本発明のように片側に櫛歯構造となった形態によれば、単に片側のみに櫛歯構造の数を減らして透過率を向上させるだけでなく、透過率と応答速度との調整が容易に可能となり、様々な画素サイズにおいて、透過率や応答速度が適切なバランスになるよう配向制御構造物を配置しやすくなる。これによって、応答速度の低下を最小限に抑制しつつ透過率を向上することができる、あるいは逆に、透過率の低下を最小限に抑制しつつ応答速度を向上させることができる。
以下に、本発明の第一の液晶表示パネルの好ましい形態について、詳述する。
上記液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、上記櫛歯構造は、配向制御構造物間の間隔が広い側に形成されていることが好ましい。このとき櫛歯の向きは、配向制御構造物間の間隔が広い側に形成されていれば、画素の中心側を向いていても、エッジ(外枠)側を向いていてもよい。ここで、画素サイズは画面の大きさや解像度から定められる。上下左右の視野角を大きくするため、通常、配向制御構造物のメインとなる線状構造は画素エッジに対して約45°になるように、また、それぞれが平行かつ等間隔になるように配置されることになるが、画素のサイズによっては、これらの間隔を等間隔に設計した場合に透過率、応答速度及びコントラスト比について最適な条件に調整することが困難となる場合がある。そこで本形態では、配向制御構造物間の間隔が広い側に櫛歯構造を設けることとしており、そうすることで、画素サイズにあわせてメインとなる線状構造の間隔を相互で異なるように形成したとしても、配向制御構造物間の間隔が広い領域において応答速度が低減することを抑制し、かつ、配向制御構造物そのものが画素に占める割合を低減することができるので、透過率及び応答速度を向上させることができる。また、リブ近傍の領域では、電圧を印加しなくても突起の斜面にならって液晶が少し斜めに配向し、その部分で光漏れが生じるため、リブが画素内に占める大きさが大きすぎる場合はコントラスト比が低下する傾向にあるが、本形態では、リブを含め配向制御構造物が画素に占める割合が低減されているため、コントラスト比もまた向上させることができる。すなわち本形態によれば、画素サイズにあわせて、透過率、応答速度及びコントラスト比を最適な条件に調整することが容易に可能となる。
上記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、上記櫛歯構造は、主領域側に形成されていることが好ましい。このように画素の中心側に液晶配向に大きく関与する主領域を形成し、櫛歯構造を中心方向に配置することで、特に画素エッジ近傍の領域において設計が容易となり、かつ液晶の配向性が安定し、応答速度が向上する。また、主領域を少なくとも4つとすることで、液晶の配向方向をバランスよく設定して広視野角を得ることができ、かつ、画素に占める配向制御構造物の割合を必要最小限に減らすことができるので、応答速度、透過率及びコントラスト比のバランスの取れた適切な特性の設計が容易となる。なお、主領域とは別に周辺領域を設けておくことで、一画素全体としてより精密な配向制御が可能となる。このような主領域を4つ以上設ける方法としては、例えば、直線状の配向制御構造物を平面的にくの字型(V字型)として画素を分割する形態が挙げられる。なお、画素毎に視野角特性を方向によって均等にするために、画素単位で配向方向の異なる4種類のドメインを形成し、かつ、これらの面積が均等となるようにすることが好ましい。したがって、リブや電極スリット等の配向制御構造物は画素単位で4種類のドメイン面積が均等に近づくように配置することが好適である。
本発明はまた、第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、上記第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、上記液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、上記配向制御構造物は、両側に突出した櫛歯構造を有し、上記櫛歯構造は、配向制御構造物間の間隔が広い側の櫛歯が反対側の櫛歯よりも長い液晶表示パネル(以下、第二の液晶表示パネルともいう。)でもある。本発明の第二の液晶表示パネルが備える第一基板、液晶層、第二基板、配向制御構造物等の主な特徴は上述の第一の液晶表示パネルと同様であるが、櫛歯構造の形態が異なっている。以下に、その相違点について詳述する。なお、本発明の第二の液晶表示パネルについても、第一基板に画素電極を備え、かつ第二基板に共通電極を備える場合は、上記配向制御構造物は、画素電極及び/又は共通電極上に形成される絶縁性の突起物(リブ)、又は、画素電極及び/又は共通電極に形成されるスリット(電極スリット)であることが好ましい。
上記液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、上記配向制御構造物は、両側に突出した櫛歯構造を有し、上記櫛歯構造は、配向制御構造物間の間隔が広い側の櫛歯が反対側の櫛歯よりも長い。このように、配向制御構造物間の間隔が広い側に位置する櫛歯を長くすることで、透過率の低減を効果的に抑制しつつ、応答速度を向上させることができる。すなわち、本発明によれば、配向制御構造物間の間隔を異ならせることが好適な画素サイズに適用する場合にも、透過率、応答速度及びコントラスト比について最適な条件に調整することが容易に可能となる。また、第一の液晶表示パネルと同様、本発明では、配向制御構造物の量を通常よりも減らすことができるため、コントラスト比の低下を効果的に抑制することができる。
以下に、本発明の第二の液晶表示パネルの好ましい形態について、詳述する。
上記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、上記櫛歯構造は、主領域側に、長い櫛歯が形成されていることが好ましい。第一の液晶表示パネルと同様、こうすることで、特に画素エッジ近傍の領域において設計が容易となる。また、画素に占める配向制御構造物の割合を必要最小限に減らすことができるので、応答速度、透過率及びコントラスト比のバランスの取れた適切な特性の設計が容易となる。なお、画素毎に視野角特性を方向によって均等にするために、画素単位で配向方向の異なる4種類のドメインを形成し、かつ、これらの面積が均等となるようにすることが好ましい。したがって、リブや電極スリット等の配向制御構造物は画素単位で4種類のドメイン面積が均等に近づくように配置することが好適である。
本発明は更に、第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、上記第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、上記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、上記主領域に接する配向制御構造物は、主領域側に突出した櫛歯構造を有する液晶表示パネル(以下、第三の液晶表示パネルともいう。)でもある。上述の第一及び第二の液晶表示パネルの好ましい形態と同様、このように画素の中心側に液晶配向に大きく関与する主領域を形成し、櫛歯構造を中心方向に配置することで、特に画素エッジ近傍の領域において設計が容易となり、かつ液晶の配向性が安定し、応答速度が向上する。また、主領域を少なくとも4つとすることで、液晶の配向方向をバランスよく設定して広視野角を得ることができ、かつ、画素に占める配向制御構造物の割合を必要最小限に減らすことができるので、応答速度、透過率及びコントラスト比のバランスの取れた適切な特性の設計が容易となる。なお、主領域とは別に周辺領域を設けておくことで、一画素全体としてより精密な配向制御が可能となる。このような主領域を4つ以上設ける方法としては、例えば、直線状の配向制御構造物を平面的にくの字型(V字型)として画素を分割する形態が挙げられる。また、本発明によれば、画素が大きく、主領域が4つ以上設けられる場合にも適宜効率よく応答速度、透過率及びコントラスト比のバランス調整を行うことができる。
なお、本発明の第三の液晶表示パネルについても、第一基板に画素電極を備え、かつ第二基板に共通電極を備える場合は、上記配向制御構造物は、画素電極及び/又は共通電極上に形成される絶縁性の突起物、又は、画素電極及び/又は共通電極に形成されるスリットであることが好ましい。また、画素毎に視野角特性を方向によって均等にするために、画素単位で配向方向の異なる4種類のドメインを形成し、かつ、これらの面積が均等となるようにすることが好ましい。したがって、リブや電極スリット等の配向制御構造物は画素単位で4種類のドメイン面積が均等に近づくように配置することが好適である。
以下に、本発明の第一、第二、及び、第三の液晶表示パネルの好ましい形態について詳述する。
上記液晶表示パネルは、第一基板に保持容量配線を備え、上記スリットは、保持容量配線に重畳しない領域に形成されていることが好ましい。すなわち本形態は、配向制御構造物として電極スリットを用い、かつ保持容量配線(Cs配線)を形成する場合に好適に用いられる形態である。保持容量配線と重畳する領域において形成される電極スリットの形状、大きさ等が画素毎でばらつくと、画素電極と保持容量配線との間で形成される保持容量も画素毎にばらつくことになり、画素容量に保持される電荷が画素毎で異なってしまい、表示に輝度ムラが出る可能性がある。したがって、配向制御構造物が電極スリットで構成される場合は、本形態のように櫛歯構造によって保持容量に影響が出ないように、保持容量配線と電極スリットとが重畳しないようにしておくことが好ましい。
上記液晶表示パネルは、第一基板に保持容量配線を備え、上記スリットの櫛歯構造は、保持容量配線に重畳しない領域に形成されていることがより好ましい。櫛歯構造を設ける場合、各櫛歯が細かく、形も複雑であり、また保持容量を形成する電極としての周囲長が長くなるので、上述の保持容量のばらつきも各画素で大きくなりやすい。したがって、スリットのうち、特に櫛歯部分はこのように保持容量配線と電極スリットとが重畳しないような形態とすることが好ましい。
上記液晶表示パネルは、第一基板に、保持容量配線、第一絶縁膜、保持容量上電極、第二絶縁膜及び画素電極をこの順に備え、上記保持容量上電極は、第二絶縁膜を貫通するコンタクトホールを介して画素電極と電気的に接続されており、上記スリットは、保持容量配線と重畳する領域に形成されていることが好ましい。すなわち、本形態もまた、配向制御構造物として電極スリットを用い、かつ保持容量配線(Cs配線)を有する場合に好適に用いられる形態である。保持容量上電極を絶縁膜を介して保持容量配線と重畳して設けることで、保持容量上電極と保持容量配線との間で一定の保持容量を形成することができる。したがって、画素電極との間で保持容量が形成されるわけではないので、このような形態とすることで、画素電極の構成に影響されることなく各画素に均一な保持容量を形成することができる。これにより、画素電極に対して設けられるスリットの設計により保持容量の値がばらつきにくくなるため、画素電極に形成されるスリットが設計しやすくなる。
上記液晶表示パネルは、第一基板に、保持容量配線、第一絶縁膜、保持容量上電極、第二絶縁膜及び画素電極をこの順に備え、上記保持容量上電極は、第二絶縁膜を貫通するコンタクトホールを介して画素電極と電気的に接続されており、上記スリットの櫛歯構造は、保持容量配線と重畳する領域に形成されていることが好ましい。上述と同様、スリットのうち櫛歯構造の部分は、各櫛歯が細かく、形も複雑であり設計が難しいため、画素電極の構成に影響されにくくなることは、特にスリットの櫛歯部分の設計に関して効果的である。
上記画素は、複数の副画素から構成されていることが好ましい。本明細書において「副画素」とは、1つの画素をそれぞれ異なる制御手段により制御される複数個の小さな画素としたものであり、こうすることで、TFT不良や上下電極のリークによる画素欠陥が起こったとしても、駆動画素が通常の画素よりも小さいサイズの副画素単位となっているため欠陥を目立たなくすることができる。また、例えば、もともと1つの画素であった副画素同士をそれぞれ明表示及び暗表示と異なるように設定することで、広視野角を得ることができる。このように副画素を設ける方法としては、保持容量配線の電圧を変動させて副画素の電圧を変化させるCsマルチ画素駆動法、走査線又は信号線を副画素の数だけ用意しそれぞれの副画素に異なる電圧を印加する方法、副画素間にコンデンサを形成する容量結合法等が挙げられる。なお、このように副画素単位で画素の駆動を行う場合、副画素毎に輝度が異なることとならないよう、また、視野角特性が均等となるよう、副画素単位で配向方向の異なる4種類のドメインを形成し、かつ、これらの面積が均等となるようにすることが好ましい。したがって、リブや電極スリット等の配向制御構造物は副画素単位で4種類のドメインの面積が均等に近づくように配置することが好適である。このように副画素とした形態に本発明の櫛歯構造を適用すれば、視野角、透過率、応答速度、コントラスト比等の表示特性をバランスよく調整することができ、より効率の良い画素構造とすることができる。
本発明は更に、上記液晶表示パネルを備える液晶表示素子でもある。上記液晶表示パネルに、更に、偏光板、駆動制御のためのソースドライバ及びゲートドライバを設けることで、本発明の液晶表示素子が得られる。偏光板は、通常、液晶表示パネルの両側に液晶表示パネルの主面を挟持するように、かつそれぞれの偏光軸が直交するようにして配置される。各ドライバは、液晶表示パネルの側面のソース側又はゲート側所定の位置に取り付けられる。本発明の液晶表示素子は、上記液晶表示パネルを備えているため、応答速度及び透過率のバランスが容易に調整可能である。
本発明は更に、上記液晶表示素子を備える液晶表示装置でもある。上記液晶表示素子に、更に、バックライト光源及び表示制御回路を設けることで、本発明の液晶表示装置が得られる。バックライト光源としては、例えば、点状光源、線状光源等が挙げられる。また、点状光源としては、例えば、発光ダイオード(LED)が挙げられ、線状光源としては、例えば、冷陰極蛍光ランプ、熱陰極蛍光ランプが挙げられる。なお、このようなバックライト光源の配置としては、直下型及びエッジライト型のいずれであってもよい。表示制御回路としては、例えば、テレビジョン等の電波を受信し、それを表示するための制御回路が挙げられる。すなわち、本発明の液晶表示装置は、テレビジョン受像装置で構成されていることが好ましい。本発明の液晶表示装置は、上記液晶表示素子を備えているため、応答速度及び透過率のバランスが容易に調整可能であり、特にテレビジョン表示に対して良好な表示を提供することができる。
本発明はまた、上述の、画素が複数の副画素から構成されている液晶表示パネルを備える液晶表示装置であって、上記液晶表示装置は、第一基板又は第二基板に各副画素と保持容量を形成する保持容量配線を有し、かつ、上記保持容量配線の電圧を制御する保持容量配線信号により、各副画素に印加される電圧を異ならせる電圧制御機構を有する液晶表示装置でもある。このように各副画素に異なる電圧を印加する、いわゆる「マルチ画素駆動」にすることで、視野角による階調のズレを抑制することができる。マルチ画素駆動は、本形態のように保持容量配線を利用することで容易に行うことができる。
以下に、マルチ画素駆動方式を採用する場合の本発明の液晶表示装置の好ましい形態について詳述する。
上記液晶表示装置は、第一基板又は第二基板に薄膜トランジスタを有し、かつ、保持容量配線信号により、上記薄膜トランジスタがオフとなった後の副画素に対して印加する電圧を上昇又は降下させるとともに、上記保持容量配線信号が次に薄膜トランジスタがオフとなるまで保たれるようにする電圧制御機構を有することが好ましい。このように印加電圧を突き上げ放し、又は、突き下げ放しとなるように電位を制御しておくことで、副画素毎に次のフレームまで同一の映像表示を保たせることができる。すなわち、保持容量配線信号が信号遅延により波形鈍りを生じても映像表示ムラが発生することを抑制することができる。なお、薄膜トランジスタは、通常、第一基板又は第二基板のうち保持容量配線が設けられた側の基板に設けられる。
上記液晶表示装置は、保持容量配線信号により、副画素に印加する電圧の上昇及び降下を1水平走査期間ずらす電圧制御機構を有することが好ましい。このように制御することで、上述のように保持容量配線信号が信号遅延により波形鈍りを生じても映像表示ムラが発生し難くなるように、保持容量配線信号を薄膜トランジスタがオフとなった後の副画素に対して印加する電圧を上昇又は降下させるとともに、上記保持容量配線信号が次に薄膜トランジスタがオフとなるまで保たれるようにしても、列方向に隣接する副画素が同一の保持容量配線を共有することができるので、保持容量配線本数を増加する必要をなくすことができる。
本発明の液晶表示パネルでは、液晶の配向を制御するための配向制御構造物の片側に櫛歯構造が設けられているため、容易に応答速度及び透過率のバランスを調整することができる。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。なお、以下に示す各実施形態は、いわゆるMVAモードである。
(実施形態1)
図1は、実施形態1の液晶表示パネルが有する配向制御構造物の模式図である。(a)は配向制御構造物部分の拡大平面模式図であり、(b)は(a)に示す一点鎖線A−Bに沿った断面模式図である。図1(a)に示すように、本実施形態では配向制御構造物として電極スリット1と絶縁性のリブ(突起物)2との両方を用いている。本実施形態において、第一基板3は画素電極13を備えるアレイ基板であり、第二基板4は共通電極16を備えるカラーフィルタ基板である。また、電極スリット1は第一基板3側に、リブ2は第二基板4側に形成されている。更に、画素電極13に形成された電極スリット1は櫛型であり、すなわち、電極スリット1は直線状のメインスリット1aと、そこから直交方向に突出して形成されたファインスリット(櫛歯構造)1bとで構成される。なお、ファインスリット1bはメインスリット1aの片側にのみ形成されている。また、リブ2は直線状であり、メインスリット1aと平行に設けられている。
図1(b)に示すように、実施形態1の液晶表示パネルは第一基板3、液晶層5、及び、第二基板4をこの順に積層して備える。アレイ基板側である第一基板3は、透明基板11上に絶縁膜12、画素電極12及び配向膜14等が積層されて構成されている。一方、カラーフィルタ基板側である第二基板4は、透明基板15上に共通電極16及び配向膜14等が積層されて構成されている。また、共通電極16上には線状のリブ2が一部に設けられている。
図1(a)及び図1(b)に示すように、電圧無印加時において液晶分子6は電極スリット1及びリブ2に向かって傾斜している。このように、メインスリット1a及びリブ2は、それぞれが延伸する方向に対して垂直な方向に液晶分子6を配向させる効果がある。これに対してファインスリット1bは、櫛歯状に形成されることで液晶分子6をファインスリット1bに対して平行な方向に配向させる効果を奏する。このようにファインスリット1bを設けることで、透過率の減少を抑制しつつ、応答速度を向上させることができる。
図1(a)に示すように、隣接する配向制御構造物間の間隔が相違している部分のうち、間隔がより広い側に位置する第一の領域7では、リブ2、メインスリット1a及びファインスリット1bの3つの構造によって液晶分子6を配向制御する構成となっている。一方、間隔がより狭い側に位置する第二の領域8では、突起2とメインスリット1aとの2つの構造によって液晶分子6を配向制御する構成となっている。なお、第一の領域7では、ファインスリット1bを形成しない領域も一部に設ける方が、より透過率と応答速度のバランスの取れた特性とすることができる。なお、第二の領域8において、ファインスリットは設けられていない。このような第二の領域8の間隔W2は第一の領域7の間隔W1よりも狭いため、液晶分子6の応答は第一の領域7に比べ速いので、ファインスリットを設けなくてもよく、また透過率も有利である。このような構成とすることで、同一画素内で配向制御構造物間の間隔が異なる領域があっても、透過率と応答速度のバランスの取れた特性とすることができ、また、画素サイズなどの制約事項があっても設計の自由度を向上させることができる。これは、特に小さい画素サイズの場合に効果が大きい。
配向制御構造物の大きさについては、まずリブ2の幅は8〜12μm、高さは1〜2μmが好ましく、断面形状は15〜50°の順テーパー形状であることが好ましい。一方、メインスリット1aの幅は8〜12μmが好ましく、櫛歯構造であるファインスリット1bの幅Sは、ファインスリット1b間の距離Lの30〜100%の長さとすることが好ましく、より好ましくは90%である。したがって、例えば、ファインスリット1b間の距離Lを4.2μm、ファインスリット1bの幅Sを3.8μmとする構成が好適である。また、L+Sの長さにあたるファインスリット1bのピッチPの長さは、6〜10μmが好ましく、より好ましくは8μmである。
配向制御構造物間の距離については、電極にファインスリット1bを設ける側である第一領域7の幅W1は33〜51μmとすることが好ましく、電極にファインスリット1bを設けない側の第二領域8の幅W2は14〜32μmとすることが好ましい。また、ファインスリット1bの奥行きDは第一領域7の幅W1の分だけ自由に広げることができるが、W1に対し20〜50%であることがより好ましい。W1に対し50%以上となる長さであってもよいが、応答速度の改善効果に比べると透過率の低下が大きくなる傾向にあるため、効率的ではない。本実施形態のように、液晶表示パネル内にスリット1や突起2等の配向制御構造物を設ける場合であって、スリット1やリブ2の画素内に占める割合が大きすぎる場合は、スリット1やリブ2上の液晶に電圧が充分に印加されず、透過率が下がり表示が暗くなる傾向にあり、一方、スリット1やリブ2間の距離を広くしすぎると、透過率は大きくなるが応答速度は遅くなる傾向にある。また、ファインスリット1bの奥行きD、第一領域7の幅W1、第二領域8の幅W2、ファインスリット1b間の距離L、及び、ファインスリット1bの幅Sの大きさも応答速度及び透過率に影響する。具体的には、リブとスリットとの間の距離(W1、W2)が大きくなるにつれ、透過率は増大し、応答速度は低下する。また、ファインスリット占有率(D/W1)が大きくなるにつれ、透過率は下がり、応答速度は大きくなる。更に、ファインスリット間の距離Lとファインスリットの幅Sとの比(S/(L+S))が大きくなるにつれ、透過率は下がり、応答速度は大きくなる。図2、3、4はこのような本実施形態の液晶表示パネルのそれぞれのパラメータと特性(応答速度、透過率)との関係をまとめたグラフである。図2は、ピッチP(L+S)の値を一定値に固定したときの、ファインスリット間の距離Lとファインスリットの幅Sとの比(S/(L+S))の大きさの違いによる応答速度と透過率との関係を示すグラフであり、図3はファインスリットの幅S及びピッチP(L+S)の値を一定値に固定したときの、奥行きDの違いによる応答速度と透過率との関係を示すグラフである。図2及び図3のグラフからわかるように透過率と応答速度とは、一方が上がれば他方が下がる関係にある。したがって、リブ2やスリット1を形成する際には、これらのバランスを適切に調整した値を採用する必要がある。なお、図4は第一領域の幅W1、ファインスリット間の距離Lとファインスリットの幅Sとの比(S/(L+S))、奥行きDをそれぞれ個別に設定したときの応答速度及び透過率を示すグラフである。ここで、応答速度は、液晶分子が電圧オフの配向状態から電圧オンの配向状態となるまでの速度を示す。このように、各パラメータの設定は重要であるが、本実施形態のように配向制御構造物間の距離が長い第一の領域7にファインスリット1bを設け、間隔の短い第二領域8にはファインスリットを設けないことで、応答速度と透過率とのバランス調整を容易に行うことができ、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。
なお、本実施形態では画素電極13にスリット1を形成し、共通電極16上にリブ2を設ける形態としたが、特に限定されず、両電極にスリットを設ける構成でもよく、ファインスリットをいずれかの電極のみ、又は、両方の電極に設けてもよい。またリブについても同様である。なお、リブの代わりに基板側に設けた凹構造を櫛型としてもよい。ただし、リブや凹構造の場合は、電極にファインスリットを形成する場合に比べてリブを形成する樹脂や層間絶縁膜のパターン解像精度の調整がより困難であるため、パターニングが難しい。
本実施形態の画素電極13のファインスリット1bのパターンは単純な長方形であるが、図5(a)又は(b)に示すような三角形や台形のパターンでもよい。この場合、液晶分子の配向方向がファインスリット1bの開いた側に傾く力が強くなり、電圧印加時にメインスリット1aに対して垂直な方向に液晶分子が向きやすく、応答速度を速くすることができるのでより好ましい。ただし、このような櫛歯のパターンは、通常の液晶表示パネルの製造で用いられる露光装置の解像限界に近いため仕上がりがばらつく可能性があり、どのパターンを選択するかはプロセスの精度にしたがって選んだほうがよい。
次に、図6を用いて、上述のファインスリット(櫛歯構造)を実際の画素に適用した例を説明する。図6(a)は本実施形態の液晶表示パネルの画素の平面模式図である。図6(b)は図6(a)に示す一点鎖線C−Dに沿った断面模式図である。また、図7は、本実施形態の液晶表示パネルの等価回路図である。本実施形態の液晶表示パネルはアクティブマトリクス型であり、図6(a)に示すように、アレイ基板側には、画素に対応する信号線(ソースバスライン)21と走査線(ゲートバスライン)22とが縦横の方向に配置され、各信号線21のクロス部近くに、スイッチング素子であるTFT23が配置されている。TFT23は半導体層、絶縁膜、ゲート電極、ソース電極、ドレイン電極等で構成され、TFT23のドレイン電極と画素電極13とはコンタクトホール24aを介して電気的に接続されている。また、画素電極13のスリット1として、画素電極13のエッジに対し45°の角度の方向にメインスリット1aが、また、メインスリット1aに対して垂直な方向にファインスリット1bが形成されている。なお、メインスリット1aには電極接続部1cが形成されており、画素電極13全体が電気的に接続されるような構成となっている。
次に、液晶の配向の向きを規定するいわゆる配向ドメイン(領域)について説明する。図6(a)の画素中に示した片矢印a1〜a4及びb1〜b4は、その領域に位置する液晶分子の配向の向きを表しており、a1、a2、a3及びa4、並びに、b1、b2、b3及びb4のそれぞれはこの順に90°ずつ異なる4つの方向を向いている。これにより、液晶分子の倒れる方向は基板の両面にそれぞれ取り付けられた図6(a)中の両矢印で示される偏光板の偏光軸に対して、45°又は−45°の方向を向いている。本実施形態の1つの画素は、4つの主領域(a1〜a4の配向方向を規定する領域)と、その周辺領域(b1〜b4の配向方向を規定する領域)とで構成されている。上下左右ともバランスよく広視野角にするためには、配向方向の同じ各ドメインの和a1+b1、a2+b2、a3+b3、及び、a4+b4の面積をできるだけ等しくなるように近づけることが好ましい。
4つのメインドメイン(a1〜a4)に位置する液晶分子は、周辺の4つのサブドメイン(b1〜b4)に位置する液晶分子よりも配向が安定している。したがって、メインドメインに位置する液晶分子が透過率及び応答特性により大きく関与する。なお、サブドメイン(b1〜b4)を設けることで、一画素全体としてより精密な配向制御が可能となる。本実施形態では、画素が4つのメインドメイン(a1〜a4)において、4つのサブドメイン(b1〜b4)よりもリブ2とスリット1との間の距離を広げ透過率を向上させ、かつ応答速度の低下をファインスリット1bで抑制している。また、4つのサブドメイン(b1〜b4)ではリブ2とスリット1との間の距離を広げることとせず、応答速度の低下を抑制しつつ、ファインスリットを設けないことで透過率を確保している。更に、従来のようなメインスリットの両側にファインスリットを設けた構成と比べ、電圧オフ状態でも液晶分子を傾かせることができるリブが有効画素領域に占める比率を少なくしているので、リブ近傍での光漏れが少なくなりコントラスト比が向上する。
本実施形態において、配向制御構造物の数は特に限定されず、したがって、メインドメインやサブドメインの数も特に限定されず、画素サイズに応じて適宜調整される。
アレイ基板3には、走査線22と平行に保持容量配線(Csバスライン)25及び保持容量上電極26が設けられており、図6(b)に示すように、これらが保持容量形成用絶縁膜27(第一絶縁膜)を介して重畳して形成されることで保持容量Cs(Storage Capacitor)が形成される。このような保持容量上電極26は、TFT23のソース電極やドレイン電極と同様の金属層で構成されている。また、保持容量上電極26は、その上に設けられたパッシベーション膜(保護膜)28(第二絶縁膜)の一部に設けられたコンタクトホール24cによって画素電極13と電気的に接続されている。なお、保持容量形成用絶縁膜27及びパッシベーション膜28はSiNx等で構成されている。ファインスリット1bが形成された画素電極13はパッシベーション膜28を介して保持容量上電極26の上層に形成されるため、ファインスリット1bの製造ばらつきが生じて保持容量配線25と重畳する領域にファインスリット1bが形成されたとしても、保持容量Csへの影響は少なく、製造マージンが向上する。なお、図7に示すように、画素電極13及び共通電極16は、液晶層5を介して、画素容量Clcを形成する。
なお、本実施形態の変形例として、保持容量上電極26を画素電極13と共用し、保持容量配線25と画素電極13との間で保持容量を形成することも可能であり、その場合は図8に示すように、ファインスリット1bを保持容量配線25と重畳しないように形成することで、保持容量のばらつきを抑制することができる。
一方、カラーフィルタ基板4側には共通電極16が設けられており、共通電極16の上に誘電体からなる直線状のリブ2が形成されている。リブ2は画素エッジに対して45°に配置され、メインスリット1aと交互に平行に配置されている。また、画素エッジとリブ2とが交わる場所の鈍角側には、配向を安定させるための、同様に絶縁体からなる直線状の短い補助突起2aが突起2から分岐して設けられている。
本実施形態のアレイ基板3及びカラーフィルタ基板4に設けられる配向膜14は、いずれもポリイミド系の垂直配向膜である。また、液晶層5には誘電異方性が負のネマチック液晶6が封入されており、配向制御構造物近傍以外の領域では、電圧が無印加の状態で基板3、4に対しほぼ垂直に配向しており、画素電極13と共通電極16との間に一定以上の電圧(閾値電圧)を印加すると、液晶分子6は基板3、4に対し水平な方向に向かって傾く。セルギャップは2.5〜4.5μmであることが好ましく、より好ましくは3〜4μmである。更に、各基板3、4の両側には、図6(a)中の両矢印で示すように偏光軸がそれぞれ直交するような偏光板が配置されている。なお、必要に応じて基板と偏光板との間に位相差板を配置してもよい。
(実施形態2)
図9は実施形態2の液晶表示パネルの画素の平面模式図である。図9に示すように、実施形態2の液晶表示パネルで形成されるファインスリット1bの向きは、図6で示した実施形態1の液晶表示パネルで形成されるファインスリット1bの向きと反対方向になっている点で実施形態1と異なっているが、それ以外は実施形態1と同様である。本実施形態では4つのメインドメイン(a1〜a4)の間隔よりも4つのサブドメイン(b1〜b4)の間隔の方が広くなっているが、間隔の広い方にファインスリット1bを設けるという関係は変わっていない。このような形態であっても、配向制御構造物間の間隔が長い第一の領域にファインスリット1bを配置し、間隔が短い第二の領域にはファインスリットを配置していないので、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。
(実施形態3)
図10は、実施形態3の液晶表示パネルの画素の平面模式図である。図10に示すように、本実施形態の液晶表示パネルでは、画素電極13の電極スリット1として、メインスリット1aの片側にのみファインスリット1bが設けられたスリット、及び、メインスリット1aの両側にファインスリット1dが設けられたスリットのいずれもが形成されている点で実施形態1と異なっているが、それ以外は実施形態1と同様である。なお、メインスリット1aの両側にファインスリット1dが設けられたスリット1は、配向制御構造物間の間隔が広い側に、より長いファインスリット1dが設けられており、このようなファインスリット1b、1dを設けることで、応答速度と透過率のバランスが効果的に調整されている。本実施形態は、例えば、配向制御構造物同士の間隔が、各配向制御構造物間で異なるような場合に好適に用いられる。なお、本実施形態においても、液晶分子の配向方向は4種類の方向に規定されるが、配向方向の同じ各ドメインの面積はできるだけ等しくなるように近づけることが好ましい。更に、本実施形態では画素電極13にスリット1を形成し、共通電極16上にリブ2を設ける形態としたが、特に限定されず、両電極にスリットを設ける構成でもよく、ファインスリットをどちらかの電極のみ、又は、両方の電極に設けてもよい。またリブについても同様である。また、配向制御構造物の数は特に限定されず、したがって、メインドメインやサブドメインの数も特に限定されず、画素サイズに応じて適宜調整される。
(実施形態4)
図11は、実施形態4の液晶表示パネルの画素の平面模式図である。図11に示すように、本実施形態の液晶表示パネルでは、実施形態1の画素よりも大きな画素を用いており、そのため、スリット1やリブ2等の配向制御構造物が実施形態1よりも多く設けられている点、及び、スリット1のいくつかはメインスリット1aの両側にファインスリット1bが形成されている点で実施形態1とは異なっているが、それ以外は実施形態1と同様である。本実施形態においては、12個のメインドメイン(a1〜a4)と4つのサブドメイン(b1〜b4)とが形成されており、かつ液晶分子を4種類の方向に配向させる形となっているが、メインドメイン(a1〜a4)側にファインスリット1bを設けるという関係は変わっていない。なお、実施形態1と同様、配向方向の同じ4種類の各ドメインの面積はできるだけ等しくなるように近づけることが好ましい。このような形態であっても、メインドメイン(a1〜a4)側にファインスリット1bを配置し、サブドメイン(b1〜b4)側にはファインスリット1bを配置していないので、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。本実施形態では画素電極13にスリット1を形成し、共通電極16上にリブ2を設ける形態としたが、特に限定されず、両電極にスリットを設ける構成でもよく、ファインスリットをどちらかの電極のみ、又は、両方の電極に設けてもよい。またリブについても同様である。また、配向制御構造物の数は特に限定されず、したがって、メインドメインやサブドメインの数も特に限定されず、画素サイズに応じて適宜調整される。
(実施形態5)
図12は、実施形態5の液晶表示パネルの画素の平面模式図である。図12に示すように、本実施形態の液晶表示パネルでは、実施形態1の画素よりも大きな画素を用いており、そのため、スリット1やリブ2等の配向制御構造物が実施形態1よりも多く設けられている点、スリット1のいくつかはメインスリット1aの両側にファインスリット1bが形成されている点、及び、スリット1の他のいくつかはいずれの側においてもファインスリットが形成されていない点で実施形態1とは異なっているが、それ以外は実施形態1と同様である。本実施形態においては、8つのメインドメイン(a1〜a4)と8つのサブドメイン(b1〜b4)とが形成されており、かつ液晶分子を4種類の方向に配向させる形となっているが、メインドメイン(a1〜a4)側にファインスリット1bを設けるという関係は変わっていない。なお、実施形態1と同様、配向方向の同じ4種類の各ドメインの面積はできるだけ等しくなるように近づけることが好ましい。このような形態であっても、メインドメイン(a1〜a4)側にファインスリット1bを配置し、サブドメイン(b1〜b4)側にはファインスリット1bを配置していないので、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。なお、本実施形態では画素電極13にスリット1を形成し、共通電極16上にリブ2を設ける形態としたが、特に限定されず、両電極にスリットを設ける構成でもよく、ファインスリットをどちらかの電極のみ、又は、両方の電極に設けてもよい。またリブについても同様である。また、配向制御構造物の数は特に限定されず、したがって、メインドメインやサブドメインの数も特に限定されず、画素サイズに応じて適宜調整される。
(実施形態6)
図13−1は実施形態6の液晶表示パネルの画素の平面模式図である。図13−1に示すように、本実施形態では配向制御構造物としてスリットのみを用いており、すなわち、画素電極13のみでなく共通電極16においてもスリット1eが設けられている、すなわち、実施形態1の共通電極上に設けられたリブを、共通電極のスリットとした形態である点で実施形態1と異なっているが、それ以外は同様である。なお、実施形態1で補助突起として設けた部分については、代わりに補助スリット1fが設けられている。図13−2は、図13−1のスリットパターンを示す平面模式図であり、(a)は画素電極及び共通電極のスリットパターンを示し、(b)は共通電極のスリットパターンのみを示す。図13−2(a)及び図13−2(b)において、実線は画素電極側の形状を表し、破線は共通電極側のスリットを表す。このように、本実施形態においては共通電極16にはファインスリットを設けず、画素電極13上にのみメインスリット1a及びファインスリット1bからなるスリット1が形成された形態となっている。図13−3は、図13−1に記載の一点鎖線E−Fに沿った断面模式図である。図13−3(a)は電圧オフの状態を示し、図13−3(b)は閾値以上の電圧が印加されている状態を示す。図13−3(a)に示すように、電圧無印加時においては実施形態1と同様、液晶分子6はそれぞれ基板面に対して垂直に配向しているが、図13−3(b)に示すように、電圧印加時においては、電気力線の位置が実施形態1と異なっている。しかしながら、このような形態であっても液晶分子6を斜め方向に配向させる効果としては実施形態1と同様であり、本実施形態においても、配向制御構造物間の間隔が長い第一の領域(メインドメイン側)にファインスリット1bを配置し、かつ間隔が短い第二の領域(サブドメイン側)にはファインスリットを配置していないので、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。
図13−4は、本実施形態の別例として、例えば、図13−1に示した画素よりも大きな画素を用いるときに本実施形態を適用する場合のスリットパターンを示す平面模式図である。図13−4(a)は、画素電極及び共通電極のスリットパターンを示し、図13−4(b)は共通電極のスリットパターンのみを示す。図13−4(a)及び図13−4(b)において、実線は画素電極側の形状を表し、破線は共通電極側のスリットを表す。このように、本別例では、画素電極13に形成されるスリット1として、サブドメイン(b1〜b4)側にはファインスリットを設けず、メインスリット1aと、メインドメイン(a1〜a4)側にファインスリット1bとを形成した形態となっている。また、共通電極16に形成されるスリット1eとしても、サブドメイン(b1〜b4)側にはファインスリットを設けず、メインスリット1gと、メインドメイン(a1〜a4)側にファインスリット1hとを設けた形態となっている。このような形態であっても、同様に、配向制御構造物間の間隔が長い第一の領域(メインドメイン側)にファインスリット1e、1hを配置し、かつ間隔が短い第二の領域(サブドメイン側)にはファインスリットを配置していないので、応答速度の低減を最小限に抑えつつ透過率を向上することができる。あるいは逆に、透過率の低減を最小限に抑えつつ応答速度を向上することができる。
(実施形態7)
図14−1及び図14−2は、実施形態7の液晶表示パネルの画素の平面模式図である。本実施形態では1つの画素は2つの副画素31、32から構成されており、図14−1及び図14−2には、実施形態1〜6での画素の2画素分にあたる副画素、すなわち、4つの副画素が示されている。図14−1で示す画素は、画素電極31a、32aと保持容量配線25a、25bとで保持容量が形成されるため、保持容量配線25a、25bと重畳する領域にファインスリット1bは設けられていない。一方、図14−2で示す画素には保持容量上電極26a、26bが形成されており、保持容量配線25a、25bと保持容量上電極26a、26bとで保持容量が形成されるため、ファインスリット1bの設計が制限されず、保持容量配線25a、25bと重畳する領域にファインスリット1bが設けられている。保持容量上電極26a、26bの形態については実施形態1と同様である。本実施形態において1画素は2つの副画素で形成されているが、特に限定されず、2つ以上であってもよい。本実施形態では、実施形態1と同様、画素に対応する信号線(ソースバスライン)21と走査線(ゲートバスライン)22とが縦横の方向に配置され、各信号線21のクロス部近くに、スイッチング素子であるTFT23a、23bが1つの走査線22に対して2つ配置されている。また、副画素電極31a、32aのスリット1として、副画素電極31a、32aのエッジに対し45°の角度になるようにメインスリット1aが、メインスリット1aに対して垂直な方向にファインスリット1bが形成されている。更に、メインスリット1aの一部にはスリットが形成されていない電極接続部1cが形成されており、1つの副画素電極31a、32a全体が電気的に接続されるような構成となっている。なお、TFT23a、23bのそれぞれには、ドレイン電極と副画素電極31a、32aとを電気的に接続するためのコンタクトホール24a、24bが形成されている。このようにTFT23a、23bを副画素31、32のそれぞれに配置して1つの画素を2つの副画素31、32で駆動することとした場合、TFT不良や上下電極のリークによる画素欠陥が起こったとしても、駆動画素が通常の画素より小さいサイズの副画素単位となっているため欠陥を目立たなくすることができる。また、このとき各副画素31、32にかかる電圧を異ならせるいわゆるマルチ画素駆動にすることで、視野角による階調のズレを抑制することもできる。マルチ画素駆動では各副画素で配向方向の同じ4種類の各ドメインの面積が均等に近づくように配置する方が好ましい。こうすることで上下左右、及び、斜め方向(右上、右下、左上、左下)の視野方向の視野角特性を均等にすることができる。また、1画素を複数の副画素に分けると更に面積が小さくなるので、本発明を適用することがより効果的となる。このように副画素を形成することで、視野角、透過率、応答速度、コントラスト比等の表示特性をバランスよく調整することができ、より効率の良い画素構造とすることができる。
なお、本実施形態では副画素電極31a、32aにスリット1を形成し、共通電極16上にリブ2を設ける形態としたが、特に限定されず、両電極にスリットを設ける構成でもよく、ファインスリットをどちらかの電極のみ、又は、両方の電極に設けてもよい。またリブについても同様である。また、配向制御構造物の数は特に限定されず、したがって、メインドメインやサブドメインの数も特に限定されず、副画素サイズに応じて適宜調整される。
以下に、副画素を形成した場合の駆動方法の一例としてCsマルチ画素駆動法を説明する。本実施形態の液晶表示パネルの画素は、このCsマルチ画素駆動法を実現できる画素の一例であり、図15はその等価回路を示す。(a)は図14−1に対応する等価回路図であり、(b)は図14−2に対応する等価回路図である。Csマルチ画素駆動法は、対象となる画素のTFTがオンになって選択されその後TFTがオフになった後の非選択期間中に保持容量配線に印加される電圧を変動させ、各副画素電極の電位を変動させることで、マルチ画素駆動を実現する。なお、副画素電位の変動の大きさは、副画素の保持容量の大きさにも依存する。したがって、副画素の保持容量の大きさはばらつかないほうが好ましく、そのため、図14−1のような形態の場合、ファインスリット1bは保持容量配線25aに重畳しないことが好ましい。このとき各副画素電極31a、32aに印加される実効電圧(Vsp1:第一副画素、Vsp2:第二副画素)は、
Vsp1=Vs−Vd1+K×Vad−Vcom (1)
Vsp2=Vs−Vd2−K×Vad−Vcom (2)
となる。ここで、KはCs/(Clc+Cs)で表される値であり、Csは各保持容量(Cs1、Cs2)の容量値であり、Clcは各副画素容量(Clc1、Clc2)の容量値である。また、Vdは各副画素電極における引き込み電圧(Vd1、Vd2)であり、Vsはソース電圧であり、Vadは保持容量配線に印加される信号の振幅電圧であり、Vcomは共通電極に印加される電圧である。ファインスリット1bを含むスリット1の幅がパネル面内でばらついた場合、Csが変動し、各副画素31、32に印加される実効電圧(Vsp1、Vsp2)が変動し、輝度ムラといった表示品位の劣化を生じることになるが、ファインスリット1bを含むスリット1を保持容量配線25aに重畳しないように形成することで、このような変動を抑制することが可能となる。
一方、ファインスリット1bを含むスリット1を保持容量配線25a、25bに重畳するように設計する必要がある場合は、図14−2に示すように、保持容量配線25a、25bと重畳する領域にソース電極、ドレイン電極と同様の金属層等で形成された保持容量上電極26a、26bを形成することが好ましい。この保持容量上電極26a、26bは、上述の図6(b)に示した構成と同様、保持容量形成用絶縁膜27を介して保持容量配線25a、25b上に設けられ、更にパッシベーション膜28を介して設けられた副画素電極31a、32aと、コンタクトホールを介して電気的に接続されている。なお、TFT23a、23bのドレイン引き出し配線と保持容量上電極26a、26bとを直接つないでもよい。こうすることで、保持容量は保持容量形成用絶縁膜27を挟んで保持容量配線25a、25bと保持容量上電極26a、26bとで形成されるため、K値が画素毎でばらつくことにより輝度ムラが生じるといった表示品位の劣化を抑制することができる。なお、保持容量上電極は、ドレイン電極に接続されるドレイン引き出し配線によって形成してもよいが、ドレイン引き出し配線の配置により開口率低下が生じる場合、ドレイン引き出し配線は形成するとこととせず、その代わりにドレイン電極上と保持容量上電極26上とにコンタクトホールを形成し、ドレイン電極と保持容量上電極26a、26bとを副画素電極31a、32aにより電気的に接続させてもよい。
次に、Csマルチ画素駆動法について詳述する。図15に示すように、第一副画素電極31aは第一TFT23aを介して信号線21に接続されており、第二副画素電極32aは第二TFT23bを介して信号線21に接続されている。また、第一TFT23a及び第二TFT23bのゲート電極は同一の走査線22に接続されている。第一保持容量上電極26a又は第一副画素電極31aと、第一保持容量配線25aとの間には第一保持容量(Storage Capacitor)Cs1が形成され、第二保持容量上電極26b又は第二副画素電極32aと、第二保持容量配線25bとの間には第二保持容量Cs2が形成される。そして、第一保持容量配線25a及び第二保持容量配線25bには、互いに異なる保持容量信号(保持容量対向電圧)が供給される。
また、図15に示すように、第一副画素電極31a、共通電極16及び両電極間の液晶層5によって第一副画素容量Clc1が構成され、第二副画素電極32a、共通電極16及び両電極間の液晶層5によって第二副画素容量Clc2が構成される。
以下に、本実施形態の液晶表示装置の駆動方法を図16に基づいて説明する。図16は、本実施形態の液晶表示装置の構成及びその表示部を示すブロック図である。本実施形態の液晶表示装置は信号線21の駆動回路であるソースドライバ300と、走査線22の駆動回路であるゲートドライバ400と、Cs(保持容量配線)用コントロール回路500と、アクティブマトリクス型の表示部100と、ソースドライバ300、ゲートドライバ400及びCs用コントロール回路500を制御するための表示制御回路200とを備えている。
表示部100は、複数本(2m本(mは1以上の整数))の走査線22であるゲートラインG1〜G2mと、複数本(2m+1本)の第一保持容量配線25a及び第二保持容量配線25bである保持容量ラインCs1〜Cs2m+1と、それらゲートラインG1〜G2m及び保持容量ラインCs1〜Cs2m+1と交差する複数本(n本)の信号線21であるソースラインS1〜Snと、それらゲートラインG1〜G2mとソースラインS1〜Snとの交差点にそれぞれ対応して設けられた複数個(2m×n個)の画素101と、1画素の半分を単位とする副画素(2×2m×n個)102とを含んでいる。これら画素101、副画素102は、マトリクス状に配置されて表示部100にあたる画素アレイを構成する。
各画素形成部は、対応する交差点を通過するゲートライン22にゲート端子が接続されるとともに、これらの交差点を通過するソースライン21にソース端子が接続されたスイッチング素子であるTFT23(第一TFT23a、第二TFT23b)と、そのTFT23a、23bのドレイン端子に接続され、かつ画素101及び副画素102の形状にあわせて形成された副画素電極(第一副画素電極31a、第二副画素電極32a)と、これら副画素電極31a、32aに対向して共通に設けられた共通電極16と、これら副画素電極31a、32aと共通電極16との間に挟持された液晶層5とからなる。
各画素形成部における第一副画素電極31a及び第二副画素電極32aには、ソースドライバ300及びゲートドライバ400により表示すべき画像に応じた電位が与えられ、共通電極16には、電源回路(図示せず)から所定電位Vcom(共通電位)が与えられる。これにより、第一副画素電極31a及び第二副画素電極32aと共通電極16との間の電位差に応じた電圧が液晶層5に印加され、この電圧印加によって液晶層5に対する光の透過量が制御されることによって、画像表示が行われる。また、液晶層5への電圧印加によって光の透過量を制御するためには偏光板が使用され、本基本構成における液晶表示装置では、ノーマリーブラックとなるように偏光板が配置されている。
表示制御回路200は、外部の信号源から、表示すべき画像を表すデジタルビデオ信号Dvと、そのデジタルビデオ信号Dvに対応する水平同期信号HSY及び垂直同期信号VSYと、表示動作を制御するための制御信号Dcとを受け取り、それらのデジタルビデオ信号Dv、水平同期信号HSY、垂直同期信号VSY及び制御信号Dcに基づき、そのデジタルビデオ信号Dvの表す画像を表示部100に表示させるための信号として、データスタートパルス信号SSPと、データクロック信号SCKと、表示すべき画像を表すデジタル画像信号DA(デジタルビデオ信号Dvに相当する信号)と、ゲートスタートパルス信号GSPと、ゲートクロック信号GCKと、ゲートドライバ出力制御信号GOEとを生成して出力する。
より詳しくは、デジタルビデオ信号Dvを、内部メモリで必要に応じてタイミング調整等を行った後に、デジタル画像信号DAとして表示制御回路200から出力し、そのデジタル画像信号DAの表す画像の各画素に対応するパルスからなる信号としてデータクロック信号SCKを生成し、水平同期信号HSYに基づき1水平走査期間毎に所定期間だけ高いレベル(Hレベル)となる信号としてデータスタートパルス信号SSPを生成し、垂直同期信号VSYに基づき1フレーム期間(1垂直走査期間)毎に所定期間だけHレベルとなる信号としてゲートスタートパルス信号GSPを生成し、水平同期信号HSYに基づきゲートクロック信号GCKを生成し、水平同期信号HSY及び制御信号Dcに基づきゲートドライバ出力制御信号GOEを生成する。
このようにして、表示制御回路200において生成された信号のうち、デジタル画像信号DAと、データスタートパルス信号SSP及びデータクロック信号SCKとは、ソースドライバ300に入力され、ゲートスタートパルス信号GSP及びゲートクロック信号GCKとゲートドライバ出力制御信号GOEとは、ゲートドライバ400に入力される。
ソースドライバ300は、デジタル画像信号DAと、データスタートパルス信号SSP及びデータクロック信号SCKとに基づき、デジタル画像信号DAの表す画像の各水平走査線における画素値に相当するアナログ電圧としてデータ信号S1〜Snを1水平走査期間毎に順次生成し、これらのデータ信号S1〜Snを各ソースラインに印加する。
更に、保持容量ラインCs1〜Cs2m+1を駆動するCs用コントロール回路には、ゲートクロック信号GCKが入力され、ゲートスタートパルス信号GSPが入力される。Cs用コントロール回路により、保持容量信号波形の位相や幅が制御される。
次に、この保持容量信号を用いた駆動方法の一例について、図17に示す液晶表示装置の1画素単位の等価回路と各信号の電圧波形(タイミング)に基づいて説明する。図17(a)はnフレーム目の駆動波形を示すものであり、図17(b)はn+1フレーム目の駆動波形を示すものである。なお、図17(b)に示す駆動波形は図17(a)に示す駆動波形に対して極性が反転したものとなっている。
図17(a)及び(b)に示した電圧波形によれば、第一副画素31が明画素となり、第二副画素32が暗画素となる。Vgはゲート電圧を示し、Vsはソース電圧を示し、VCs1及びVCs2は第一副画素31及び第二副画素32のそれぞれの保持容量配線Cs1及びCs2に印加される電圧を示し、Vlc1及びVlc2はそれぞれ第一副画素31及び第二副画素32の副画素電極31a、32aに印加される電圧を示す。
本実施形態では、図17(a)に示すように、nフレーム目にソース電圧の中央値Vscに対して、プラス極性としてソース電圧に+Vsを与え、図17(b)に示すように、次のn+1フレーム目にマイナス極性としてソース電圧に−Vsを与え、かつフレーム毎にドット反転を行っている。第一保持容量配線25a及び第二保持容量配線25bには、第一保持容量電圧VCs1及び第二保持容量電圧VCs2を振幅電圧Vadで振幅させ、第一保持容量配線25aの位相と第二保持容量配線25bの位相とを180°ずらした信号を入力する。
図17(a)を参照して、nフレーム目のときの各信号の電圧の経時変化を説明する。
時刻T1のとき、ゲート電圧VgはVgLからVgHに変化し、両副画素31、32の第一TFT23a及び第二TFT23bがオン状態となり、第一副画素容量Clc1、第二副画素容量Clc2、第一保持容量Cs1及び第二保持容量Cs2に、それぞれVsの電圧が印加される。
時刻T2のとき、ゲート電圧VgはVgHからVgLに変化し、第一副画素31及び第二副画素32の第一TFT23a及び第二TFT23bがオフ状態となり、第一副画素容量Clc1、第二副画素容量Clc2、第一保持容量Cs1及び第二保持容量Cs2がデータ信号線(ソースライン)22と電気的に絶縁される。なお、この直後に寄生容量等の影響による引き込み現象のために、第一副画素電極31a及び第二副画素電極32aのそれぞれにはVd1及びVd2の引き込み電圧が発生し、各第一副画素31及び第二副画素32の第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1 (3)
Vlc2=Vs−Vd2 (4)
となる。
また、このとき、第一保持容量電圧VCs1及び第二保持容量電圧VCs2は、
VCs1=Vcom−Vad (5)
VCs2=Vcom+Vad (6)
である。
第一引き込み電圧Vd1及び第二引き込み電圧Vd2は、下記の式で表される。
Vd1=Vd2=(VgH−VgL)×Cgd/(Clc(V)+Cgd+Cs) (7)
ここで、VgH及びVgLは、それぞれ第一TFT23a及び第二TFT23bのゲートオン時の電圧及びゲートオフ時の電圧を、Cgdは、第一TFT23a及び第二TFT23bのゲートとドレインとの間に生じる寄生容量を、Clc(V)は液晶容量の静電容量(容量値)を、Csは保持容量の静電容量(容量値)をそれぞれ示す。
時刻T3のとき、第一保持容量配線25aの第一保持容量電圧VCs1はVcom−VadからVcom+Vadへ変化し、第二保持容量配線25bの第二保持容量電圧VCs2はVcom+VadからVcom−Vadへ変化する。このとき各第一副画素31及び第二副画素32の第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1+2×K×Vad (8)
Vlc2=Vs−Vd2−2×K×Vad (9)
となる。なお、KはCs/(Clc(V)+Cs)で表される値である。
時刻T4のとき、第一保持容量電圧VCs1はVcom+VadからVcom−Vadへ変化し、第二保持容量電圧VCs2はVcom−VadからVcom+Vadへ変化する。このとき第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1 (10)
Vlc2=Vs−Vd2 (11)
となる。
時刻T5のとき、第一保持容量電圧VCs1はVcom−VadからVcom+Vadへ変化し、第二保持容量電圧VCs2はVcom+VadからVcom−Vadへ変化する。このとき第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1+2×K×Vad (12)
Vlc2=Vs−Vd2−2×K×Vad (13)
となる。
そしてその後は、次にVg=VgHとなる書き込みが行われるまで、水平期間(1H)の整数倍毎に、第一保持容量電圧VCs1、第二保持容量電圧VCs2、第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、時刻T4と時刻T5との動作を交互に繰り返す。したがって、第一副画素電圧Vlc1及び第二副画素電圧Vlc2の実効値は、
Vlc1=Vsp−Vd1+K×Vad (14)
Vlc2=Vsp−Vd2−K×Vad (15)
となる。
また、nフレーム目において、各副画素電極31a、32aの液晶層に印加される実効電圧(Vsp1、Vsp2)は、
Vsp1=Vsp−Vd1+K×Vad−Vcom (16)
Vsp2=Vsp−Vd2−K×Vad−Vcom (17)
となるため、第一副画素31が明画素となり、第二副画素32が暗画素となる。
以上のようにして、マルチ画素駆動は行われる。すなわち、本実施形態はいわゆるドット反転駆動であり、例えば、図14−1及び図14−2の列方向上方に位置する第一画素(2つの副画素により構成)33は、プラス極性がデータ信号線21から印加された後、副画素電極31aの電位はCs配線25aからの信号による突き上げ効果で実効電位が上昇し明画素となり、一方、副画素電極32aはCs配線25bからの信号による突き下げ効果で実効電位が降下し暗画素となる。そして、列方向下方に位置する第二画素(2つの副画素により構成)34には、上方に位置する第一画素33にデータ信号が印加された1水平期間後(1H後)、ドット反転駆動による極性反転のためマイナス極性の電位がデータ信号線から印加される。下方に位置する第二画素34を構成する副画素電極31aの電位はCs配線25bからの信号による突き下げ効果で実効電位が降下し明画素となり、一方、副画素電極32aはCs配線25aからの信号による突き上げ効果で実効電位が上昇し暗画素となる。このように、本実施形態によれば、1つの画素内に、第一副画素容量Clc1による明画素と、第二副画素容量Clc2による暗画素とを列方向に交互に形成することができる。
なお、ここではデータ信号線21と、第一副画素電極31a及び第二副画素電極32aとの寄生容量等は省略して説明した。また、ここでは簡易的に第一保持容量電圧VCs1の位相と第二保持容量電圧VCs2の位相とを180°ずらしているが、1画素を形成する副画素が明画素と暗画素となればよいので、必ずしも位相のずれが180°でなくても構わない。また、第一保持容量電圧VCs1及び第二保持容量電圧VCs2のパルス幅をVsと同等としたが、特に限定されず、例えば、大型で高精細の液晶表示装置を駆動する場合の、保持容量信号遅延による保持容量の充電不足を考慮してパルス幅を変更してもよい。
これらは、ゲートスタートパルス信号GSPやゲートクロック信号GCKが入力されるCs用コントロール回路500により制御可能である。
VCs1及びVCs2は、図18に示すように、それぞれT3及びT4で高いレベル(Hレベル)の状態になったまま、又は、低いレベル(Lレベル)の状態になったままの波形とすることもできる。すなわち、まず、各トランジスタがオフされた後にVCs1及びVCs2のいずれか一方を電位が突き上げられた状態とし、かつ他方を電位が突き下げられた状態とし、更に、そのフレームでは、電位が突き上げられたまま、又は、電位が突き下げたままの状態で維持されるように電位制御する。なお、ここではT3とT4は時間的に1水平走査期間(1H)ずれている。
ここで、nフレーム目における各電圧波形の経時変化を説明する。まず、時刻T0で、
VCs1=Vcom−Vad (18)
VCs2=Vcom+Vad (19)
とする。なお、Vcomは共通電極の電圧である。
時刻T1のとき、VgはVgLからVgHに変化し、各TFT23a、23bがともにオン状態となる。この結果、Vlc1及びVlc2がVsに上昇し、保持容量Cs1、Cs2及び副画素容量Clc1、Clc2がそれぞれ充電される。
時刻T2のとき、VgはVgHからVgLに変化し、各TFT23a、23bがオフ状態となって、保持容量Cs1、Cs2及び副画素容量Clc1、Clc2が信号線21から電気的に絶縁される。なお、この直後に寄生容量等の影響によって引き込み現象が発生し、第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1 (20)
Vlc2=Vs−Vd2 (21)
となる。
時刻T3のとき、VCs1はVcom−VadからVcom+Vadへ変化する。時刻T4(T3の1水平走査期間後)では、VCs2はVcom+VadからVcom−Vadへ変化する。この結果、第一副画素電圧Vlc1及び第二副画素電圧Vlc2は、
Vlc1=Vs−Vd1+2×K×Vad (22)
Vlc2=Vs−Vd2−2×K×Vad (23)
となる。ここで、K=Cs/(Clc+Cs)であり、Csは各保持容量(Cs1、Cs2)の容量値、Clcは各副画素容量(Clc1、Clc2)の容量値である。
以上から、nフレーム目において各副画素の液晶層にかかる実効電圧(Vsp1:第一副画素、Vsp2:第二副画素)は、
Vsp1=Vs−Vd1+2×K×Vad−Vcom (24)
Vsp2=Vs−Vd2−2×K×Vad−Vcom (25)
となる。こうすることで、VCs1及びVCs2波形のなまりがドレイン実効電位Vdr(Vdr1、Vdr2)に与える影響が小さくなり、輝度ムラが低減される。
以上、本実施形態において本発明のマルチ画素駆動法の一例を示したが、副画素の配置パターンやマルチ画素駆動法のための具体的手段としては本法に特に限定されるものではない。
(実施形態8)
以下に、実施形態1〜7の液晶表示パネル、その液晶表示パネルを備えた液晶表示素子、及び、その液晶表示素子を備えた液晶表示装置の製造方法について説明する。
まず、アクティブマトリクス基板の製造方法について説明する。ガラス等からなる透明基板上に、走査線(ゲート配線、ゲートバスライン)と保持容量配線とを形成するためにスパッタリングにより、Ti(チタン)/Al(アルミニウム)/Tiの積層膜等からなる金属膜を成膜し、フォトリソグラフィー法によりレジストパターンを形成、更に、塩素系ガス等のエッチングガスを用いてドライエッチングし、レジストを剥離する。これにより、透明基板上に、走査線と保持容量配線とが同時に形成される。
その後、窒化シリコン(SiNx)等からなるゲート絶縁膜、アモルファスシリコン等からなる活性半導体層、リン等をドープしたアモルファスシリコン等からなる低抵抗半導体層をCVD(Chemical Vapor Deposition)にて成膜する。そして、信号線(ソース配線、ソースバスライン)、ソース電極、ドレイン電極、ドレイン引き出し配線、及び、保持容量上電極を形成するためにスパッタリングによりAl/Tiの積層膜等からなる金属膜を成膜し、フォトリソグラフィー法によりレジストパターンを形成、更に、塩素系ガス等のエッチングガスを用いてドライエッチングし、レジストを剥離する。これにより、信号線、ソース電極、ドレイン電極、ドレイン引き出し配線、及び、保持容量上電極が同時に形成され、また、TFT素子が形成される。
なお、保持容量上電極は、保持容量配線上の約0.4μmのゲート絶縁膜と、画素電極下の約0.3μmの層間絶縁膜との間に形成されることとなる。
次に、窒化シリコン(SiNx)等からなる層間絶縁膜をCVDにて成膜し、フォトリソグラフィー法によりレジストパターンを形成、更に、フッ素系ガス等のエッチングガスを用いてドライエッチングし、レジストを剥離することで、ドレイン引き出し配線と画素電極とを電気的に接続するためのコンタクトホールと、保持容量上電極と画素電極とを電気的に接続するためのコンタクトホールとを形成する。
次に、画素電極と垂直配向膜とを、この順に構成されるようにして形成する。なお、本実施形態で形成される液晶表示装置は、上述したようにMVAモードであり、ITO等からなる画素電極に電極スリットパターンが設けられている。この構造は、まずスパッタリングによりITOからなる金属膜を成膜し、フォトリソグラフィー法によりレジストパターンを形成、更に、塩化第二鉄等のエッチング液によりエッチングすることで得ることができる。以上により、アクティブマトリクス基板が得られる。
続いて、カラーフィルタ基板の製造方法について説明する。本実施形態で製造されるカラーフィルタ基板は、透明基板上に、3原色(赤、緑、青)からなる着色層、ブラックマトリクス(BM)である遮光層、共通電極、垂直配向膜、及び、配向制御用の突起を有する。
まず、ガラス等からなる透明基板上に、スピンコートによりカーボンの微粒子を分散したネガ型のアクリル系感光性樹脂液を塗布した後、乾燥を行い、黒色感光性樹脂層を形成する。続いて、フォトマスクを介して黒色感光性樹脂層を露光し、現像を行って、ブラックマトリクス(BM)を形成する。このときBMは、各着色層(例えば、第一着色層が赤色層、第二着色層が緑色層、第三着色層が青色層)を形成するための開口部が透明基板上に設けられるように、かつ、その開口部が各画素電極に対応するようにパターニングする。
次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性樹脂液を塗布し、乾燥を行い、更に、フォトマスクを用いて露光及び現像を行い、第一着色層(赤色層)を形成する。その後、第二着色層(緑色層)及び第三着色層(青色層)についても同様に形成する。続いて、ITO等の透明電極からなる共通電極をスパッタリングにより形成し、その後、スピンコートによりポジ型のフェノールノボラック系感光性樹脂液を塗布した後、乾燥を行い、フォトマスクを用いて露光及び現像を行い配向制御用の突起としてのリブ及び補助リブ(補助突起)を形成する。そして、スピンコートによりネガ型のアクリル系感光性樹脂液を塗布した後、乾燥を行い、フォトマスクを用いて露光及び現像を行い、BM上に柱状スペーサを形成する。以上により、カラーフィルタ基板が形成される。なお、本実施形態では樹脂からなるBMの場合を示したが、金属からなるBMであってもよい。また、3原色の着色層は、赤、緑及び青の三色に限定されず、シアン、マゼンタ、イエロー等の着色層があってもよく、またホワイト層が含まれていてもよい。本実施形態では、BMの膜厚を1.0μmとし、各着色層の膜厚を2.0μmとし、突起の膜厚を1.2μmとした。
続いて、このように製造されたカラーフィルタ基板とアクティブマトリクス基板とを用いて液晶表示パネルを製造する方法について説明する。
まず、アクティブマトリクス基板及びカラーフィルタ基板の液晶と接する側の面に、印刷法により垂直配向膜を形成する。具体的には基板洗浄、配向膜塗布を行った後に配向膜焼成を行う。このようにしてできた垂直配向膜は、液晶の配向方向を基板に対して垂直方向に規定する。
次に、アクティブマトリクス基板とカラーフィルタ基板との間に液晶を封入する方法について説明する。液晶の封入方法については、例えば、熱硬化型シール樹脂を基板周辺に一部液晶注入のための注入口を設け、真空で注入口を液晶に浸し、大気開放することによって液晶を注入し、その後UV硬化樹脂等で注入口を封止する、真空注入法が挙げられる。しかしながら、垂直配向型の液晶パネルでは、水平配向型の液晶パネルに比べ注入時間が非常に長くなる欠点があるため、ここではより好適な液晶滴下貼り合せ法による説明を行う。
この方法では、まずアクティブマトリクス基板側の周囲にファイバーガラスなどのスペーサを含有したUV硬化型シール樹脂を塗布し、カラーフィルタ基板側に滴下法によって液晶の滴下を行う。液晶滴下法により最適な液晶量をシールの内側部分に規則的に滴下することができる。この滴下量は、セルギャップ値とセル内に液晶が充填されるべき容積値により決定される。続いて、上述のようにシール描画及び液晶滴下を行ったカラーフィルタ基板とアクティブマトリクス基板とを貼り合わせるため、貼り合わせ装置内の雰囲気を1Paまで減圧を行い、この減圧下において基板の貼り合わせを行う。このように雰囲気を大気圧にすることでシール部分が押しつぶされる。
次に、UV硬化装置にてUV照射を行い、シール樹脂の仮硬化を行う。そして、シール樹脂の最終硬化を行う為にベークを行う。この時点でシール樹脂の内側に液晶が行き渡り液晶がセル内に充填された状態に至る。以上により、液晶表示パネルが完成する。
パネルを洗浄後、図19に示すように、液晶表示パネル700の両側に偏光板41、42を貼り付ける。偏光板41及び42中の両矢印は、各偏光板の偏光軸の軸方向を示し、白抜きの矢印43は、光源からの入射光を示す。偏光板41及び42の偏光軸は互いに直交している。なお、偏光板には必要に応じて、光学補償シート(位相差板)等を積層させてもよい。
次に、ソースドライバ300及びゲートドライバ400を接続する。ここでは、ドライバをTCP(Tape Career Package)方式で接続する方法について説明する。図20に示すように、まず液晶表示パネル700のソース端子部301及びゲート端子部401のそれぞれにACF(Anisotoropic Conductive Film)を仮圧着し、その後、ドライバが載せられたソースTCP302及びゲートTCP402をキャリアテープから打ち抜き、パネル端子電極に位置合わせし、加熱、本圧着する。続いて、ドライバTCP302、402を連結するためのプリント配線基板(PWB;Printed Wiring Board)600とTCP302、402の入力端子とをACFで接続する。このようにして、液晶表示素子84が得られる。
そして、液晶表示素子84のドライバに表示制御回路を接続し、バックライト光源等の照明装置と一体化することで、液晶表示装置が得られる。
次に、このようにして得られた液晶表示装置をテレビジョン受像装置に使用する例について説明する。図21は、テレビジョン受信機用の表示装置800の構成を示すブロック図である。この表示装置800は、Y/C分離回路80と、ビデオクロマ回路81と、A/Dコンバータ82と、液晶コントローラ83と、液晶表示素子84と、バックライト駆動回路85と、バックライト86と、マイコン(マイクロコンピュータ)87と、階調回路88とを備えている。
このような構成の表示装置800では、まず、テレビジョン信号としての複合カラー映像信号Scvが外部からY/C分離回路80に入力され、そこで輝度信号と色信号に分離される。これらの輝度信号と色信号は、ビデオクロマ回路81にて光の3原色に対応するアナログRGB信号に変換され、更に、このアナログRGB信号はA/Dコンバータ82により、デジタルRGB信号に変換される。このデジタルRGB信号は液晶コントローラ83に入力される。また、Y/C分離回路80では、外部から入力された複合カラー映像信号Scvから水平および垂直同期信号も取り出され、これらの同期信号もマイコン87を介して液晶コントローラ83に入力される。
液晶表示素子84には、液晶コントローラ83からデジタルRGB信号が、上記同期信号に基づくタイミング信号と共に所定のタイミングで入力される。また、階調回路88では、カラー表示の3原色である赤(R)、緑(G)、青(B)のそれぞれの階調電圧が生成され、それらの階調電圧も液晶表示素子84に供給される。液晶表示素子84では、これらのRGB信号、タイミング信号および階調電圧に基づき内部のソースドライバやゲートドライバ等により駆動用信号(データ信号、走査信号等)が生成され、それらの駆動用信号に基づき内部の表示部にカラー画像が表示される。なお、この液晶表示素子84によって画像を表示するには、液晶表示素子84の後方から光を照射する必要があり、この表示装置800では、マイコン87の制御の下にバックライト駆動回路85がバックライト86を駆動することにより、液晶パネル84の裏面に光が照射される。
これらの処理を含め、システム全体の制御はマイコン87が行う。なお、外部から入力される映像信号(複合カラー映像信号)としては、テレビジョン放送に基づく映像信号のみならず、カメラにより撮像された映像信号や、インターネット回線を介して供給される映像信号なども使用可能であり、この表示装置800では、様々な映像信号に基づいた画像表示が可能である。
このような構成の表示装置800でテレビジョン放送に基づく画像を表示する場合には、図22に示すように、表示装置800にチューナ部90が接続される。このチューナ部90は、アンテナで受信した受信波(高周波信号)の中から受信すべきチャンネルの信号を抜き出して中間周波信号に変換し、この中間周波数信号を検波することによってテレビジョン信号としての複合カラー映像信号Scvを取り出す。この複合カラー映像信号Scvは、既述のように表示装置800に入力され、この複合カラー映像信号Scvに基づく画像が当該表示装置800によって表示される。
図23は、表示装置800をテレビジョン受信機とするときの機械的構成の一例を示す分解斜視図である。図23に示した例では、テレビジョン受信機は、その構成要素として表示装置800の他に第一筐体801及び第二筐体806を有しており、表示装置800を第一筐体801と第二筐体806とで包み込むようにして挟持した構成となっている。第一筐体801には、表示装置800で表示される画像を透過させる開口部801aが形成されている。また、第二筐体806は、表示装置800の背面側を覆うものであり、表示装置800を操作するための操作用回路805が設けられるとともに、下方に支持用部材808が取り付けられている。
なお、本願は、2006年12月25日に出願された日本国特許出願2006−348124号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
また、本願明細書における「以上」は、当該数値(境界値)を含む。
実施形態1の液晶表示パネルが有する配向制御構造物の模式図である。(a)は配向制御構造物部分の拡大平面模式図であり、(b)は(a)に示す一点鎖線A−Bに沿った断面模式図である。 ピッチP(L+S)の値を一定値に固定したときの、ファインスリット間の距離Lとファインスリットの幅Sとの比(S/(L+S))の大きさの違いによる応答速度と透過率との関係を示すグラフである。 スリットS及びピッチP(L+S)の値を一定値に固定したときの、奥行きDの違いによる応答速度と透過率との関係を示すグラフである。 第一領域の幅W1、ファインスリット間の距離Lとファインスリットの幅Sとの比(S/(L+S))、奥行きDをそれぞれ個別に設定したときの応答速度及び透過率を示すグラフである。 画素電極のスリット部分のファインスリットのパターンの他の形態であり、(a)は三角形、(b)は台形を示す。 実施形態1の液晶表示パネルが有する画素の模式図である。(a)は1画素の平面模式図であり、(b)は(a)に示す一点鎖線C−Dに沿った断面模式図である。 実施形態1の液晶表示パネルの等価回路図である。 実施形態1の液晶表示パネルが有する画素の他の一例を示す平面模式図である。 実施形態2の液晶表示パネルの画素の平面模式図である。 実施形態3の液晶表示パネルの画素の平面模式図である。 実施形態4の液晶表示パネルの画素の平面模式図である。 実施形態5の液晶表示パネルの画素の平面模式図である。 実施形態6の液晶表示パネルの画素の平面模式図である。 図13−1に記載のスリットパターンを示す平面模式図であり、(a)は画素電極及び共通電極のスリットパターンを示し、(b)は共通電極のスリットパターンのみを示す。 図13−1に記載の一点鎖線E−Fに沿った断面模式図である。(a)は電圧オフの状態を示し、(b)は閾値以上の電圧が印加されている状態を示す。 実施形態6のスリットパターンの別例を示す平面模式図であり、(a)は画素電極及び共通電極のスリットパターンを示し、(b)は共通電極のスリットパターンのみを示す。 実施形態7の液晶表示パネルの画素の平面模式図である。画素には保持容量上電極が形成されておらず、保持容量配線と重畳する領域にファインスリットは設けられていない。 実施形態7の液晶表示パネルの画素の平面模式図である。画素には保持容量上電極が形成されており、保持容量配線と重畳する領域にファインスリットが設けられている。 実施形態7の液晶表示パネルの等価回路図である。(a)は図14−1に対応する等価回路図であり、(b)は図14−2に対応する等価回路図である。 実施形態7の液晶表示装置の構成及びその表示部を示すブロック図である。 実施形態7の液晶表示装置の1画素単位の等価回路と各信号の電圧波形(タイミング)を示す波形図である。(a)はnフレーム目の駆動波形を示し、(b)はn+1フレーム目の駆動波形を示す。 実施形態7の液晶表示装置の1画素単位の等価回路と各信号の電圧波形(タイミング)の他の一例を示す波形図である。(a)はnフレーム目の駆動波形を示し、(b)はn+1フレーム目の駆動波形を示す。 液晶表示パネル及び偏光板の配置を示す分解斜視図である。 液晶表示パネル及びドライバの配置を示す平面模式図である。 テレビジョン受像装置の構成を示すブロック図である。 テレビジョン受像装置が備えるチューナ部と表示装置との接続関係を示すブロック図である。 テレビジョン受像装置の、機械的構成の一例を示す分解斜視図である。 特許文献1に記載の従来のMVAモードの液晶表示装置であり、図25に示す一点鎖線X−Yに沿った断面模式図である。(a)は電圧オフの状態を示し、(b)は閾値以上の電圧が印加されている状態を示す。 特許文献1に記載の従来のMVAモードの液晶表示装置の1画素の平面模式図である。 特許文献2に記載の従来のMVAモードの液晶表示装置の1画素の平面模式図である。 図26に示す一点鎖線V−Zに沿った断面模式図である。(a)は電圧オフの状態を示し、(b)は閾値以上の電圧が印加されている状態を示す。
符号の説明
1:スリット(画素電極側)
1a:メインスリット(画素電極側)
1b、1d:ファインスリット(画素電極側)
1c:電極接続部
1e:スリット(共通電極側)
1f:補助スリット
1g:メインスリット(共通電極側)
1h:ファインスリット(共通電極側)
2:突起(リブ)
2a:補助突起
3:アレイ基板(第一基板)
4:カラーフィルタ基板(第二基板)
5:液晶層
6:液晶分子
7:第一領域(ファインスリットを設ける側)
8:第二領域(ファインスリットを設けない側)
11:透明基板(第一基板側)
12:絶縁膜
13:画素電極
14:配向膜
15:透明基板(第二基板側)
16:共通電極
21:信号線(ソース配線、ソースバスライン、ソースライン、データ信号線)
22:走査線(ゲート配線、ゲートバスライン、ゲートライン)
23:TFT(薄膜トランジスタ)
23a:第一TFT
23b:第二TFT
24:コンタクトホール
24a:コンタクトホール(第一TFT側)
24b:コンタクトホール(第二TFT側)
24c:コンタクトホール(保持容量上電極側)
25:保持容量配線(Cs配線、保持容量ライン)
25a:第一保持容量配線
25b:第二保持容量配線
26:保持容量上電極
26a:第一保持容量上電極
26b:第二保持容量上電極
27:保持容量形成用絶縁膜
28:パッシベーション膜(保護膜)
31:第一副画素
31a:第一副画素電極
32:第二副画素
32a:第二副画素電極
33:第一画素
34:第二画素
41、42:偏光板
43:入射光
80:Y/C分離回路
81:ビデオクロマ回路
82:A/Dコンバータ
83:液晶コントローラ
84:液晶表示素子
85:バックライト駆動回路
86:バックライト
87:マイコン(マイクロコンピュータ)
88:階調回路
90:チューナ部
100:表示部
101:画素
102:副画素
200:表示制御回路
300:ソースドライバ
301:ソース端子部
302:ソースTCP
400:ゲートドライバ
401:ゲート端子部
402:ゲートTCP
500:保持容量配線用コントロール回路
600:プリント配線基板
700:液晶表示パネル
800:表示装置
801:第一筐体
801a:開口部
805:操作用回路
806:第二筐体
808:支持用部材
W1:第一領域(ファインスリットを設ける側)の幅
W2:第二領域(ファインスリットを設けない側)の幅
D:ファインスリットの奥行き
L:ファインスリット間の距離
S:ファインスリットの幅
P:ピッチ(L+S)
a1、a2、a3、a4:メインドメインに位置する液晶分子の配向方向
b1、b2、b3、b4:サブドメインに位置する液晶分子の配向方向
Cs:保持容量
Cs1:第一保持容量
Cs2:第二保持容量
Clc:副画素容量
Clc1:第一副画素容量
Clc2:第二副画素容量
Vsp(Vsp1、Vsp2):実効電圧
Vd(Vd1、Vd2):引き込み電圧
Vs:ソース電圧
Vsc:ソース電圧の中央値
Vg:ゲート電圧
Vad:振幅電圧
Vcom:共通電極の電圧
VCs:保持容量電圧
VCs1:第一保持容量電圧
VCs2:第二保持容量電圧
Vlc:副画素電圧
Vlc1:第一副画素電圧
Vlc2:第二副画素電圧
Vdr(Vdr1、Vdr2):ドレイン実効電圧
Dv:デジタルビデオ信号
HSY:水平同期信号
VSY:垂直同期信号
Dc:表示制御信号
SSP:データスタートパルス信号
SCK:データクロック信号
DA:デジタル画像信号
GSP:ゲートスタートパルス信号
GCK:ゲートクロック信号
GOE:ゲートドライバ出力制御信号
Cs1〜Cs2m+1:保持容量ライン
G1〜G2m:ゲートライン
S1〜Sn:ソースライン

Claims (19)

  1. 第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、
    該第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、
    該配向制御構造物は、片側に突出した櫛歯構造を有する
    ことを特徴とする液晶表示パネル。
  2. 前記液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、
    前記櫛歯構造は、配向制御構造物間の間隔が広い側に形成されていることを特徴とする請求項1記載の液晶表示パネル。
  3. 前記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、
    前記櫛歯構造は、主領域側に形成されていることを特徴とする請求項1記載の液晶表示パネル。
  4. 第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、
    該第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、
    該液晶表示パネルは、3以上の配向制御構造物が互いに平行かつ異なる間隔で配置された領域を有し、
    該配向制御構造物は、両側に突出した櫛歯構造を有し、
    該櫛歯構造は、配向制御構造物間の間隔が広い側の櫛歯が反対側の櫛歯よりも長い
    ことを特徴とする液晶表示パネル。
  5. 前記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、
    前記櫛歯構造は、主領域側に、長い櫛歯が形成されていることを特徴とする請求項4記載の液晶表示パネル。
  6. 第一基板、液晶層及び第二基板をこの順に備える液晶表示パネルであって、
    該第一基板及び第二基板の少なくとも一方は、画素を複数の領域に分割する線状の配向制御構造物を有し、
    前記画素は、配向制御構造物によって少なくとも4つの主領域と、該主領域よりも面積の小さい少なくとも1つの周辺領域とに分割され、
    該主領域に接する配向制御構造物は、主領域側に突出した櫛歯構造を有することを特徴とする液晶表示パネル。
  7. 前記液晶表示パネルは、第一基板に画素電極を備え、かつ第二基板に共通電極を備え、
    前記配向制御構造物は、画素電極及び/又は共通電極上に形成される絶縁性の突起物であることを特徴とする請求項1、4又は6記載の液晶表示パネル。
  8. 前記液晶表示パネルは、第一基板に画素電極を備え、かつ第二基板に共通電極を備え、
    前記配向制御構造物は、画素電極及び/又は共通電極に形成されるスリットであることを特徴とする請求項1、4又は6記載の液晶表示パネル。
  9. 前記液晶表示パネルは、第一基板に保持容量配線を備え、
    前記スリットは、保持容量配線に重畳しない領域に形成されていることを特徴とする請求項8記載の液晶表示パネル。
  10. 前記液晶表示パネルは、第一基板に保持容量配線を備え、
    前記スリットの櫛歯構造は、保持容量配線に重畳しない領域に形成されていることを特徴とする請求項8記載の液晶表示パネル。
  11. 前記液晶表示パネルは、第一基板に、保持容量配線、第一絶縁膜、保持容量上電極、第二絶縁膜及び画素電極をこの順に備え、
    該保持容量上電極は、第二絶縁膜を貫通するコンタクトホールを介して画素電極と電気的に接続されており、
    前記スリットは、保持容量配線と重畳する領域に形成されていることを特徴とする請求項8記載の液晶表示パネル。
  12. 前記液晶表示パネルは、第一基板に、保持容量配線、第一絶縁膜、保持容量上電極、第二絶縁膜及び画素電極をこの順に備え、
    該保持容量上電極は、第二絶縁膜を貫通するコンタクトホールを介して画素電極と電気的に接続されており、
    前記スリットの櫛歯構造は、保持容量配線と重畳する領域に形成されていることを特徴とする請求項8記載の液晶表示パネル。
  13. 前記画素は、複数の副画素から構成されていることを特徴とする請求項1、4又は6記載の液晶表示パネル。
  14. 請求項1、4又は6記載の液晶表示パネルを備えることを特徴とする液晶表示素子。
  15. 請求項14記載の液晶表示素子を備えることを特徴とする液晶表示装置。
  16. 前記液晶表示装置は、テレビジョン受像装置で構成されていることを特徴とする請求項15記載の液晶表示装置。
  17. 請求項13記載の液晶表示パネルを備える液晶表示装置であって、
    該液晶表示装置は、第一基板又は第二基板に各副画素と保持容量を形成する保持容量配線を有し、
    かつ、該保持容量配線の電圧を制御する保持容量配線信号により、各副画素に印加される電圧を異ならせる電圧制御機構を有することを特徴とする液晶表示装置。
  18. 前記液晶表示装置は、第一基板又は第二基板に薄膜トランジスタを有し、
    かつ、保持容量配線信号により、該薄膜トランジスタがオフとなった後の副画素に対して印加する電圧を上昇又は降下させるとともに、該保持容量配線信号が次に薄膜トランジスタがオフとなるまで保たれるようにする電圧制御機構を有することを特徴とする請求項17記載の液晶表示装置。
  19. 前記液晶表示装置は、保持容量配線信号により、副画素に印加する電圧の上昇及び降下を1水平走査期間ずらす電圧制御機構を有することを特徴とする請求項18記載の液晶表示装置。
JP2008550977A 2006-12-25 2007-10-03 液晶表示パネル、液晶表示素子、及び、液晶表示装置 Expired - Fee Related JP5214466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550977A JP5214466B2 (ja) 2006-12-25 2007-10-03 液晶表示パネル、液晶表示素子、及び、液晶表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006348124 2006-12-25
JP2006348124 2006-12-25
JP2008550977A JP5214466B2 (ja) 2006-12-25 2007-10-03 液晶表示パネル、液晶表示素子、及び、液晶表示装置
PCT/JP2007/069380 WO2008078441A1 (ja) 2006-12-25 2007-10-03 液晶表示パネル、液晶表示素子、及び、液晶表示装置

Publications (2)

Publication Number Publication Date
JPWO2008078441A1 true JPWO2008078441A1 (ja) 2010-04-15
JP5214466B2 JP5214466B2 (ja) 2013-06-19

Family

ID=39562236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008550977A Expired - Fee Related JP5214466B2 (ja) 2006-12-25 2007-10-03 液晶表示パネル、液晶表示素子、及び、液晶表示装置

Country Status (5)

Country Link
US (1) US8184221B2 (ja)
EP (1) EP2098907A4 (ja)
JP (1) JP5214466B2 (ja)
CN (1) CN101523279B (ja)
WO (1) WO2008078441A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483623B1 (ko) * 2008-01-30 2015-01-16 삼성디스플레이 주식회사 액정 표시 장치
EP2397890B1 (en) * 2009-02-13 2015-07-01 Sharp Kabushiki Kaisha Multi-domain vertical alignment liquid crystal display device and electronic device
CN102365577A (zh) * 2009-04-03 2012-02-29 夏普株式会社 液晶显示装置
RU2486558C1 (ru) * 2009-05-21 2013-06-27 Шарп Кабусики Кайся Жидкокристаллическая панель
US8330779B2 (en) * 2009-09-30 2012-12-11 Sony Corporation ADC calibration for color on LCD with no standardized color bar for geographic area in which LCD is located
EP2515162A4 (en) * 2009-12-17 2013-05-29 Sharp Kk LIQUID CRYSTAL DISPLAY SCREEN AND METHOD FOR MANUFACTURING THE SAME
SG182793A1 (en) * 2010-01-29 2012-09-27 Sharp Kk Liquid crystal display device
JP5871537B2 (ja) * 2010-12-06 2016-03-01 キヤノン株式会社 画像表示装置及びその制御方法
CN102360141B (zh) * 2011-10-12 2014-02-19 深圳市华星光电技术有限公司 液晶显示面板及其像素电极
CN103246116A (zh) * 2012-02-03 2013-08-14 东莞万士达液晶显示器有限公司 主动元件阵列基板以及液晶显示面板
KR101344941B1 (ko) 2012-05-30 2013-12-27 경북대학교 산학협력단 액정을 이용한 동적 간섭무늬 생성 장치 및 그 제조 방법
JP5879212B2 (ja) * 2012-06-25 2016-03-08 株式会社ジャパンディスプレイ 液晶表示装置
TWI484272B (zh) * 2012-10-12 2015-05-11 友達光電股份有限公司 透明液晶顯示面板之畫素結構
KR101996655B1 (ko) * 2012-12-26 2019-07-05 엘지디스플레이 주식회사 홀로그램 표시 장치
JP6207264B2 (ja) * 2013-07-03 2017-10-04 三菱電機株式会社 液晶表示装置
CN104460116B (zh) * 2014-12-19 2017-03-29 京东方科技集团股份有限公司 一种液晶显示面板、其制作方法及显示装置
KR102473677B1 (ko) * 2015-08-17 2022-12-02 삼성디스플레이 주식회사 액정 표시 장치
KR102459604B1 (ko) * 2016-01-06 2022-10-31 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 액정표시장치
CN107479265B (zh) * 2016-06-08 2020-08-14 南京瀚宇彩欣科技有限责任公司 显示面板
US10976625B2 (en) 2016-06-08 2021-04-13 Hannstar Display (Nanjing) Corporation Display panel
CN108051964B (zh) * 2018-02-01 2020-05-05 惠科股份有限公司 一种像素结构、显示面板及显示装置
EP3846199A4 (en) * 2018-08-30 2021-10-27 Toppan Printing Co., Ltd. THIN LAYER TRANSISTOR MATRIX
US11846856B2 (en) * 2020-03-17 2023-12-19 Beijing Boe Display Technology Co., Ltd. Array substrate and display device
CN114047652B (zh) * 2021-11-15 2023-09-15 厦门天马微电子有限公司 显示基板、显示面板及制作方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318077A (ja) * 2003-03-18 2004-11-11 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2006106739A (ja) * 2004-09-30 2006-04-20 Chi Mei Optoelectronics Corp 液晶表示装置
JP2006119539A (ja) * 2004-10-25 2006-05-11 Sharp Corp 液晶表示装置
JP2006308798A (ja) * 2005-04-27 2006-11-09 Sharp Corp 液晶表示装置
JP2006317867A (ja) * 2005-05-16 2006-11-24 Sharp Corp 薄膜トランジスタ基板及び液晶表示パネル

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509905C2 (sv) 1995-12-22 1999-03-22 Electrolux Ab Solenoid
EP1113311B1 (en) 1997-06-12 2009-04-29 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
JP3877129B2 (ja) 2000-09-27 2007-02-07 シャープ株式会社 液晶表示装置
JP4511058B2 (ja) * 2001-02-06 2010-07-28 シャープ株式会社 液晶表示装置及び液晶配向方法
DE10210516B4 (de) * 2002-03-09 2004-02-26 Vb Autobatterie Gmbh Verfahren und Einrichtung zum Ermitteln der Funktionsfähigkeit einer Speicherbatterie
JP3642489B2 (ja) * 2003-06-11 2005-04-27 シャープ株式会社 液晶表示装置
JP2005055880A (ja) * 2003-07-24 2005-03-03 Sharp Corp 液晶表示装置およびその駆動方法
JP2005292523A (ja) 2004-03-31 2005-10-20 Sharp Corp 液晶表示装置およびその駆動方法ならびに電子機器
JP4679067B2 (ja) * 2004-04-23 2011-04-27 富士通株式会社 液晶表示装置
JP4813827B2 (ja) 2005-06-15 2011-11-09 株式会社アルバック シリカ骨格を有する導電性接着剤及びその作製方法
JP2007206346A (ja) * 2006-02-01 2007-08-16 Sharp Corp 液晶表示装置
JP2007306346A (ja) 2006-05-12 2007-11-22 Nec Engineering Ltd 電力制限回路
KR101221961B1 (ko) 2006-09-28 2013-01-15 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318077A (ja) * 2003-03-18 2004-11-11 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2006106739A (ja) * 2004-09-30 2006-04-20 Chi Mei Optoelectronics Corp 液晶表示装置
JP2006119539A (ja) * 2004-10-25 2006-05-11 Sharp Corp 液晶表示装置
JP2006308798A (ja) * 2005-04-27 2006-11-09 Sharp Corp 液晶表示装置
JP2006317867A (ja) * 2005-05-16 2006-11-24 Sharp Corp 薄膜トランジスタ基板及び液晶表示パネル

Also Published As

Publication number Publication date
EP2098907A1 (en) 2009-09-09
JP5214466B2 (ja) 2013-06-19
WO2008078441A1 (ja) 2008-07-03
US20100097535A1 (en) 2010-04-22
US8184221B2 (en) 2012-05-22
CN101523279B (zh) 2012-04-11
EP2098907A4 (en) 2010-09-08
CN101523279A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5214466B2 (ja) 液晶表示パネル、液晶表示素子、及び、液晶表示装置
JP4938032B2 (ja) 液晶パネル、液晶表示装置、およびテレビジョン装置
JP5073766B2 (ja) 表示装置、液晶表示装置、テレビジョン受像機
KR101369587B1 (ko) 액정 표시 장치
JP4932823B2 (ja) アクティブマトリクス基板、表示装置及びテレビジョン受像機
JP5148494B2 (ja) 液晶表示装置
JP5259572B2 (ja) 液晶表示装置
JP5138679B2 (ja) アクティブマトリクス基板、液晶パネル、液晶表示ユニット、液晶表示装置、テレビジョン受像機
US8736779B2 (en) Active matrix substrate, liquid crystal display panel, liquid crystal display device, method for manufacturing active matrix substrate, method for manufacturing liquid crystal display panel, and method for driving liquid crystal display panel
US8436805B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display unit, liquid crystal display device, and television receiver
JP5442754B2 (ja) アクティブマトリクス基板、液晶パネル、液晶表示装置、液晶表示ユニット、テレビジョン受像機
JP5179670B2 (ja) 液晶表示装置
JP2006053546A (ja) 垂直配向型の液晶表示素子
WO2010089820A1 (ja) アクティブマトリクス基板、液晶パネル、液晶表示ユニット、液晶表示装置、テレビジョン受像機
US20130222747A1 (en) Display panel
WO2010100789A1 (ja) アクティブマトリクス基板、アクティブマトリクス基板の製造方法、液晶パネル、液晶パネルの製造方法、液晶表示装置、液晶表示ユニット、テレビジョン受像機
CN101361109A (zh) 显示装置、有源矩阵基板、液晶显示装置、电视接收机
JP2009063696A (ja) 液晶表示装置
JP5301567B2 (ja) アクティブマトリクス基板、アクティブマトリクス基板の製造方法、液晶パネル、液晶パネルの製造方法、液晶表示装置、液晶表示ユニット、テレビジョン受像機
WO2009144966A1 (ja) アクティブマトリクス基板、アクティブマトリクス基板の製造方法、液晶パネル、液晶パネルの製造方法、液晶表示装置、液晶表示ユニット、テレビジョン受像機
JP4501979B2 (ja) 液晶表示装置
JP2010054553A (ja) 液晶表示装置
WO2011039903A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees