JPWO2008026743A1 - Gradient junction conductive film, high-frequency transmission line using the same, and high-frequency filter - Google Patents

Gradient junction conductive film, high-frequency transmission line using the same, and high-frequency filter Download PDF

Info

Publication number
JPWO2008026743A1
JPWO2008026743A1 JP2008532139A JP2008532139A JPWO2008026743A1 JP WO2008026743 A1 JPWO2008026743 A1 JP WO2008026743A1 JP 2008532139 A JP2008532139 A JP 2008532139A JP 2008532139 A JP2008532139 A JP 2008532139A JP WO2008026743 A1 JPWO2008026743 A1 JP WO2008026743A1
Authority
JP
Japan
Prior art keywords
metal thin
film
gradient
conductive film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008532139A
Other languages
Japanese (ja)
Other versions
JP5186375B2 (en
Inventor
加川 清二
清二 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008532139A priority Critical patent/JP5186375B2/en
Publication of JPWO2008026743A1 publication Critical patent/JPWO2008026743A1/en
Application granted granted Critical
Publication of JP5186375B2 publication Critical patent/JP5186375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/023Fin lines; Slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/026Coplanar striplines [CPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/122Dielectric loaded (not air)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0242Structural details of individual signal conductors, e.g. related to the skin effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0269Non-uniform distribution or concentration of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/037Hollow conductors, i.e. conductors partially or completely surrounding a void, e.g. hollow waveguides

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、高周波伝送率の周波数依存性を有する導電膜、及びかかる導電膜を有する高周波伝送線路並びに高周波フィルタを提供することを目的とする。本発明は、プラスチックフィルム10の少なくとも一面に電気抵抗が異なる第一及び第二の金属薄膜11a,11bを有し、第一及び第二の金属薄膜11a,11bの境界が、金属組成比が厚さ方向に変化する傾斜組成層12’を有する傾斜接合導電膜である。An object of the present invention is to provide a conductive film having a frequency dependency of a high-frequency transmission rate, a high-frequency transmission line including the conductive film, and a high-frequency filter. The present invention has first and second metal thin films 11a and 11b having different electrical resistances on at least one surface of a plastic film 10, and the boundary between the first and second metal thin films 11a and 11b has a thick metal composition ratio. This is a gradient junction conductive film having a gradient composition layer 12 ′ that changes in the vertical direction.

Description

本発明は、二種類の金属薄膜が組成の傾斜をもって接合した導電膜、並びにそれを用いた高周波伝送線路及び高周波フィルタに関する。   The present invention relates to a conductive film in which two kinds of metal thin films are joined with a composition gradient, and a high-frequency transmission line and a high-frequency filter using the conductive film.

パーソナルコンピュータ等の情報処理機器、携帯電話等の無線通信機器等には高周波伝送線路が使用されている。従来から高周波伝送線路として、図26に示すように線状の内導体100及び外導体100'の間に誘電体基板200を介在させた同軸ケーブルや、図27に示すように四角い断面を有する金属管100からなる導波管が使用されている。しかし同軸ケーブルや導波管は所定の減衰率で高周波信号を伝送し、かつ伝送特性は等方的(両方向とも同じ)である。   High-frequency transmission lines are used in information processing equipment such as personal computers and wireless communication equipment such as mobile phones. Conventionally, as a high-frequency transmission line, a coaxial cable in which a dielectric substrate 200 is interposed between a linear inner conductor 100 and an outer conductor 100 ′ as shown in FIG. 26, or a metal having a square cross section as shown in FIG. A waveguide consisting of a tube 100 is used. However, coaxial cables and waveguides transmit high-frequency signals with a predetermined attenuation factor, and the transmission characteristics are isotropic (same in both directions).

その他に、誘電体基板210の一面に平行な一対の帯状導体線路110,110を設けた高周波伝送線路(図28)、誘電体基板210の両面に接地導体120,120を設け、中心部に導体110を設けた高周波伝送線路(図29)、誘電体基板210の一面に接地導体120を設け、他面に帯状導体110を設けた高周波伝送線路(図30)、セラミック誘電体基板210の一面に帯状導体110を設け、その両側に接地導体120,120を配置した高周波伝送線路(図31)等がある。特開平7-336113号は、使用周波数における表皮深さの1.14〜2.75倍の膜厚を有する導体膜を有し、例えば図28及び31等に示す構造の高周波伝送線路を開示している。   In addition, a high-frequency transmission line (FIG. 28) provided with a pair of strip-like conductor lines 110 and 110 parallel to one surface of the dielectric substrate 210, ground conductors 120 and 120 provided on both surfaces of the dielectric substrate 210, and a conductor at the center. A high-frequency transmission line with 110 (FIG. 29), a ground conductor 120 on one surface of the dielectric substrate 210, and a high-frequency transmission line with a strip-shaped conductor 110 on the other surface (FIG. 30), on one surface of the ceramic dielectric substrate 210 There is a high-frequency transmission line (FIG. 31) or the like in which a strip-shaped conductor 110 is provided and ground conductors 120 and 120 are disposed on both sides thereof. Japanese Patent Application Laid-Open No. 7-336113 discloses a high-frequency transmission line having a conductor film having a thickness of 1.14 to 2.75 times the skin depth at a used frequency, and having a structure shown in FIGS. 28 and 31, for example.

しかしながら特開平7-336113号に記載のように、セラミック誘電体基板210の上に導体膜を形成しても、周波数に応じて高周波伝送率(入力振幅/出力振幅)が増大したりゼロになったりすることがなく、また高周波信号の伝送方向により特性に差が生じる(異方性を有する)こともない。このような高周波伝送率の周波数依存性や異方性を利用すれば、極めて分波特性の良い高周波フィルタが得られる。   However, as described in JP-A-7-336113, even when a conductor film is formed on the ceramic dielectric substrate 210, the high-frequency transmission rate (input amplitude / output amplitude) increases or becomes zero depending on the frequency. In addition, there is no difference in characteristics (having anisotropy) depending on the transmission direction of the high-frequency signal. By utilizing the frequency dependence and anisotropy of such a high-frequency transmission rate, a high-frequency filter with extremely good demultiplexing characteristics can be obtained.

従って本発明の目的は、高周波伝送率の周波数依存性を有する導電膜、及びかかる導電膜を有する高周波伝送線路並びに高周波フィルタを提供することである。   Accordingly, an object of the present invention is to provide a conductive film having a frequency dependency of a high-frequency transmission rate, a high-frequency transmission line having such a conductive film, and a high-frequency filter.

上記目的に鑑み鋭意研究の結果、本発明者は、プラスチックフィルムに少なくとも二層の金属薄膜を有する導電膜において、金属薄膜同士の境界部が傾斜組成層になっていると、高周波伝送率の周波数依存性が得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventor has found that, in a conductive film having at least two metal thin films on a plastic film, when the boundary between the metal thin films is a gradient composition layer, the frequency of the high frequency transmission rate is The inventors have found that dependency can be obtained, and have arrived at the present invention.

すなわち、本発明の傾斜接合導電膜は、プラスチックフィルムの少なくとも一面に電気抵抗が異なる第一及び第二の金属薄膜を有し、前記第一及び第二の金属薄膜の境界が、金属組成比が厚さ方向に変化する傾斜組成層を有することを特徴とする。   That is, the gradient bonded conductive film of the present invention has first and second metal thin films having different electric resistances on at least one surface of a plastic film, and the boundary between the first and second metal thin films has a metal composition ratio. It has a gradient composition layer that changes in the thickness direction.

かかる傾斜接合導電膜において、前記プラスチックフィルムと前記金属薄膜との境界も、前記金属の割合が前記金属薄膜から前記プラスチックフィルムにかけて減少する傾斜組成層となっているのが好ましい。前記第一の金属薄膜は蒸着膜、めっき膜又は箔であり、前記第二の金属薄膜は蒸着膜又はめっき膜であるのが好ましい。   In such a gradient bonded conductive film, it is preferable that the boundary between the plastic film and the metal thin film is also a gradient composition layer in which the proportion of the metal decreases from the metal thin film to the plastic film. The first metal thin film is preferably a vapor deposition film, a plating film or a foil, and the second metal thin film is preferably a vapor deposition film or a plating film.

本発明の好ましい実施例では、前記第二の金属薄膜は前記第一の金属薄膜より2×10-6Ω・cm以上大きな電気抵抗を有する。この場合、前記第一の金属薄膜が銅からなり、前記第二の金属薄膜がニッケルからなるのが好ましい。In a preferred embodiment of the present invention, the second metal thin film has an electric resistance of 2 × 10 −6 Ω · cm or more larger than that of the first metal thin film. In this case, it is preferable that the first metal thin film is made of copper and the second metal thin film is made of nickel.

本発明の別の好ましい実施例では、前記第一の金属薄膜は前記第二の金属薄膜より2×10-6Ω・cm以上大きな電気抵抗を有する。この場合、前記第一の金属薄膜がニッケルからなり、前記第二の金属薄膜が銅からなるのが好ましい。In another preferred embodiment of the present invention, the first metal thin film has an electric resistance of 2 × 10 −6 Ω · cm or more larger than that of the second metal thin film. In this case, it is preferable that the first metal thin film is made of nickel and the second metal thin film is made of copper.

前記第一の金属薄膜が第二の金属薄膜より大きい電気抵抗を有する場合、及びその逆の場合のいずれにおいても、電気抵抗が小さい方の金属薄膜の厚さを、電気抵抗が大きい方の金属薄膜の厚さに対して2/1〜20/1の比とするのが好ましい。特に前記第一及び第二の金属薄膜がともに蒸着膜である場合、この比を3/1〜15/1とするのがより好ましい。前記第一及び第二の金属薄膜がともに蒸着膜である場合、電気抵抗が大きい方の金属薄膜の厚さが10〜70 nmであり、電気抵抗が小さい方の金属薄膜の厚さが0.1〜1μmであるのが好ましい。   In the case where the first metal thin film has an electric resistance larger than that of the second metal thin film and vice versa, the thickness of the metal thin film having the smaller electric resistance is set to the metal having the larger electric resistance. The ratio is preferably 2/1 to 20/1 with respect to the thickness of the thin film. In particular, when both the first and second metal thin films are vapor-deposited films, the ratio is more preferably 3/1 to 15/1. When both the first and second metal thin films are vapor deposition films, the thickness of the metal thin film having the higher electrical resistance is 10 to 70 nm, and the thickness of the metal thin film having the lower electrical resistance is 0.1 to It is preferably 1 μm.

少なくとも前記第一及び第二の金属薄膜に0.5〜50μmの平均開口径を有する多数の微細孔が形成されているのが好ましい。前記微細孔の平均分布密度は1×104〜2×105個/cm2であるのが好ましい。前記プラスチックフィルムはポリエチレンテレフタレート又はポリイミドからなるのが好ましい。It is preferable that a large number of fine holes having an average opening diameter of 0.5 to 50 μm are formed in at least the first and second metal thin films. The average distribution density of the micropores is preferably 1 × 10 4 to 2 × 10 5 holes / cm 2 . The plastic film is preferably made of polyethylene terephthalate or polyimide.

本発明の高周波伝送線路は、二つの離隔した傾斜接合導電膜を並列に具備する。   The high-frequency transmission line of the present invention comprises two spaced apart inclined conductive films in parallel.

二つの傾斜接合導電膜は、(1) 誘電体基板の同一面上か、(2) 断面コの字状誘電体基板の対向内面上か、(3) 断面L字状の誘電体基板の直交内面上のいずれかに配置されているのが好ましい。   The two graded junction conductive films are either (1) on the same surface of the dielectric substrate, (2) on the opposite inner surface of the U-shaped dielectric substrate, or (3) orthogonal to the L-shaped dielectric substrate. It is preferable to be disposed anywhere on the inner surface.

本発明の高周波フィルタは、上記高周波伝送線路を具備する。   The high frequency filter of this invention comprises the said high frequency transmission line.

本発明の傾斜接合導電膜は高周波伝送率の周波数依存性を有するので、航空機や自動車等、各種の情報処理機器及び無線通信機器等に用いる高周波伝送線路に利用すると、所望の高周波信号を効率良く伝送できるとともに、特定の周波数の高周波信号の伝送をゼロにすることができる。このような高周波伝送線路は、アンテナ、例えば電子タグ用アンテナとしての応用も期待される。また高周波伝送の異方性を有する構成にすると、例えば送信信号は伝送できるが受信信号は伝送しない特性を有する簡単な構造の高周波フィルタが得られ、ハッカー防止用フィルタ等としての応用が期待される。   Since the gradient junction conductive film of the present invention has a frequency dependency of a high frequency transmission rate, a desired high frequency signal can be efficiently used when used in a high frequency transmission line used in various information processing devices and wireless communication devices such as aircraft and automobiles. In addition to being able to transmit, transmission of a high-frequency signal having a specific frequency can be made zero. Such a high-frequency transmission line is expected to be applied as an antenna, for example, an antenna for an electronic tag. In addition, if the configuration has anisotropy of high-frequency transmission, for example, a high-frequency filter having a simple structure that can transmit a transmission signal but does not transmit a reception signal is obtained, and application as a hacker prevention filter or the like is expected. .

本発明の一実施例による傾斜接合導電膜を示す断面図である。It is sectional drawing which shows the gradient joining electrically conductive film by one Example of this invention. 図1(a) のA部分を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a portion A in FIG. 図1(b) のA'部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A ′ of FIG. 1 (b). 図1(b) のA''部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A ″ in FIG. 1 (b). 本発明の別の実施例による傾斜接合導電膜を示す断面図である。It is sectional drawing which shows the gradient joining electrically conductive film by another Example of this invention. 図2(a) のB部分を示す拡大断面図である。It is an expanded sectional view which shows the B section of Fig.2 (a). 図2(b) のB'部分を概略的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a portion B ′ in FIG. 図2(b) のB''部分を概略的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a portion B ″ in FIG. 本発明のさらに別の実施例による傾斜接合導電膜を示す断面図である。It is sectional drawing which shows the gradient joining electrically conductive film by another Example of this invention. 図3(a) のC部分を概略的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view schematically showing a portion C in FIG. 本発明のさらに別の実施例による傾斜接合導電膜を示す断面図である。It is sectional drawing which shows the gradient joining electrically conductive film by another Example of this invention. 図4(a) のD部分を概略的に示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing a D part in FIG. 4 (a). 本発明のさらに別の実施例による傾斜接合導電膜を示す断面図である。It is sectional drawing which shows the gradient joining electrically conductive film by another Example of this invention. 図5(a) のE部分を概略的に示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view schematically showing an E portion in FIG. 本発明のさらに別の実施例による傾斜接合導電膜を示す斜視図である。It is a perspective view which shows the gradient joining electrically conductive film by another Example of this invention. 本発明のさらに別の実施例による傾斜接合導電膜を示す斜視図である。It is a perspective view which shows the gradient joining electrically conductive film by another Example of this invention. 本発明のさらに別の実施例による傾斜接合導電膜を示す斜視図である。It is a perspective view which shows the gradient joining electrically conductive film by another Example of this invention. 本発明の一実施例によるによる高周波伝送線路を示す斜視図である。1 is a perspective view showing a high frequency transmission line according to an embodiment of the present invention. 本発明の別の実施例による高周波伝送線路を示す斜視図である。It is a perspective view which shows the high frequency transmission line by another Example of this invention. 本発明のさらに別の実施例による高周波伝送線路を示す斜視図である。It is a perspective view which shows the high frequency transmission line by another Example of this invention. 本発明のさらに別の実施例による高周波伝送線路を示す斜視図である。It is a perspective view which shows the high frequency transmission line by another Example of this invention. 本発明のさらに別の実施例による高周波伝送線路を示す斜視図である。It is a perspective view which shows the high frequency transmission line by another Example of this invention. 本発明の一実施例による高周波フィルタを示す概略斜視図である。It is a schematic perspective view which shows the high frequency filter by one Example of this invention. 高周波伝送線路に発振器及び受信器を接続した状態を示す概略図である。It is the schematic which shows the state which connected the oscillator and the receiver to the high frequency transmission line. 高周波伝達率の測定に使用した発振器の構成を概略的に示す回路図である。It is a circuit diagram which shows roughly the structure of the oscillator used for the measurement of a high frequency transmissibility. 発振器から信号が(+)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (+) side from an oscillator. 発振器から信号が(−)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (-) side from an oscillator. 実施例1の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of Example 1. 実施例2の高周波伝送線路への結線構成を示す部分断面図である。It is a fragmentary sectional view which shows the connection structure to the high frequency transmission line of Example 2. 実施例2の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of Example 2. 実施例3の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of Example 3. 実施例4の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of Example 4. 比較例1の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of the comparative example 1. 比較例2の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of the comparative example 2. 比較例3の高周波伝送線路について、周波数と高周波伝達率の関係を示すグラフである。It is a graph which shows the relationship between a frequency and a high frequency transmissibility about the high frequency transmission line of the comparative example 3. 従来の高周波伝送線路の例を示す斜視図である。It is a perspective view which shows the example of the conventional high frequency transmission line. 従来の高周波伝送線路の別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line.

[1] 傾斜接合導電膜
(1) 構造
図1は、本発明の傾斜接合導電膜の一例を示す。プラスチックフィルム10の一面に第一及び第二の金属薄膜11a,11bが一様に形成されており、両金属薄膜11a,11bの境界部は、第一の金属と第二の金属との組成比が厚さ方向に変化する傾斜組成層12'になっている。傾斜組成層12'では、金属組成比がほぼ連続的に変化しているのが好ましい。限定的ではないが、プラスチックフィルム10と金属薄膜11aとの境界部は、金属の割合が金属薄膜11aからプラスチックフィルム10にかけて減少する傾斜組成層12となっているのが好ましい。傾斜組成層12では、金属の割合がほぼ連続的に変化するのがより好ましい。図1の(c) は、第二の金属原子11b’が第一の金属原子11a’の間に部分的に進入した様子を概略的に示し、(d) は、第一の金属原子11a’がフィルム10のプラスチック分子10’の間に部分的に進入した様子を概略的に示す。
[1] Gradient junction conductive film
(1) Structure FIG. 1 shows an example of a gradient junction conductive film of the present invention. The first and second metal thin films 11a and 11b are uniformly formed on one surface of the plastic film 10, and the boundary between the metal thin films 11a and 11b is the composition ratio of the first metal and the second metal. Is a gradient composition layer 12 ′ that changes in the thickness direction. In the gradient composition layer 12 ′, the metal composition ratio is preferably changed substantially continuously. Although it is not limited, it is preferable that the boundary portion between the plastic film 10 and the metal thin film 11a is a gradient composition layer 12 in which the proportion of metal decreases from the metal thin film 11a to the plastic film 10. In the gradient composition layer 12, it is more preferable that the ratio of the metal changes substantially continuously. (C) of FIG. 1 schematically shows a state in which the second metal atom 11b ′ partially enters between the first metal atoms 11a ′, and (d) shows the first metal atom 11a ′. 1 schematically shows a state in which the film partially enters between plastic molecules 10 ′ of the film 10.

図2は傾斜接合導電膜の別の例を示す。この例の傾斜接合導電膜は、第一の金属薄膜11aが接着層13を介してプラスチックフィルム10に接合している以外、図1に示すものと同じである。接着層13を有するので、第一の金属薄膜11aは金属箔でよい。図2の(c) は、第二の金属原子11b’が第一の金属原子11a’の間に部分的に進入した様子を概略的に示し、(d) は、接着層13のために第一の金属原子11a’がフィルム10のプラスチック分子10’の間に進入していない様子を概略的に示す。   FIG. 2 shows another example of the gradient junction conductive film. The gradient bonded conductive film of this example is the same as that shown in FIG. 1 except that the first metal thin film 11a is bonded to the plastic film 10 via the adhesive layer 13. Since the adhesive layer 13 is provided, the first metal thin film 11a may be a metal foil. FIG. 2 (c) schematically shows a state in which the second metal atom 11b ′ partially enters between the first metal atoms 11a ′, and FIG. A state in which one metal atom 11a ′ does not enter between plastic molecules 10 ′ of the film 10 is schematically shown.

図3は傾斜接合導電膜のさらに別の例を示す。この例の傾斜接合導電膜は、第一及び第二の金属薄膜11a,11bに多数の微細孔14が設けられている以外、図1に示すものと同じである。多数の微細孔14は、後述するようにダイヤモンド微粒子を表面に有するロールにより形成するので種々の深さを有するが、プラスチックフィルム10を貫通する必要はない。   FIG. 3 shows still another example of the gradient junction conductive film. The gradient bonded conductive film of this example is the same as that shown in FIG. 1 except that a large number of fine holes 14 are provided in the first and second metal thin films 11a and 11b. As will be described later, the large number of fine holes 14 are formed by a roll having diamond fine particles on the surface, and thus have various depths, but need not penetrate through the plastic film 10.

図4は傾斜接合導電膜のさらに別の例を示す。この例の傾斜接合導電膜は、プラスチックフィルム10の両面に第一及び第二の金属薄膜11a,11bが一様に形成されており、一面の第一及び第二の金属薄膜11a,11bに多数の微細孔14が設けられている以外、図1に示すものと同じである。   FIG. 4 shows still another example of the gradient junction conductive film. In the gradient bonded conductive film of this example, the first and second metal thin films 11a and 11b are uniformly formed on both surfaces of the plastic film 10, and a large number are formed on the first and second metal thin films 11a and 11b on one surface. The same as that shown in FIG.

図5は傾斜接合導電膜のさらに別の例を示す。この例では、プラスチックフィルム10の両面に第一及び第二の金属薄膜11a,11bが形成されており、かつ多数の微細孔14はほぼ導電膜を貫通している。金属薄膜11a,11bは貫通する孔の形成中に塑性変形して、微細孔14内に進入すると考えられる。   FIG. 5 shows still another example of the gradient junction conductive film. In this example, the first and second metal thin films 11a and 11b are formed on both surfaces of the plastic film 10, and a large number of the fine holes 14 substantially penetrate the conductive film. It is considered that the metal thin films 11a and 11b are plastically deformed during the formation of the through holes and enter the micro holes 14.

図6は傾斜接合導電膜のさらに別の例を示す。この例の傾斜接合導電膜は、プラスチックフィルム10の一面に二つの積層金属帯状薄膜(第一及び第二の金属薄膜11a,11bからなる)が平行に形成されている以外、図1に示すものと同じである。   FIG. 6 shows still another example of the gradient junction conductive film. The gradient bonded conductive film of this example is shown in FIG. 1 except that two laminated metal strip thin films (consisting of first and second metal thin films 11a and 11b) are formed on one surface of a plastic film 10 in parallel. Is the same.

図7は傾斜接合導電膜のさらに別の例を示す。この例の傾斜接合導電膜は、プラスチックフィルム10の一面に一つの積層金属帯状薄膜(第一及び第二の金属薄膜11a,11bからなる)が形成されており、他面に積層金属薄膜(第一及び第二の金属薄膜11a,11bからなる)が一様に形成されている以外、図1に示すものと同じである。   FIG. 7 shows still another example of the gradient junction conductive film. In this example of the gradient bonding conductive film, one laminated metal strip thin film (consisting of the first and second metal thin films 11a and 11b) is formed on one surface of the plastic film 10, and the laminated metal thin film (first film) is formed on the other surface. 1 is the same as that shown in FIG. 1 except that the first and second thin metal films 11a and 11b are uniformly formed.

図8は傾斜接合導電膜のさらに別の例を示す。この例の傾斜接合導電膜は、プラスチックフィルム10の一面に三本の積層金属帯状薄膜(各々第一及び第二の金属薄膜11a,11bからなる)が設けられている以外、図1に示すものと同じである。   FIG. 8 shows still another example of the gradient junction conductive film. The gradient bonded conductive film of this example is shown in FIG. 1, except that three laminated metal strip thin films (each consisting of first and second metal thin films 11a and 11b) are provided on one surface of the plastic film 10. Is the same.

(2) プラスチックフィルム
プラスチックフィルム10を構成する樹脂は特に制限されず、例えばポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、熱可塑性エラストマー等が挙げられる。中でもポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン及びポリエーテルエーテルケトンのような高耐熱性樹脂が好ましく、特にポリエステル及びポリイミドが好ましい。
(2) Plastic film The resin constituting the plastic film 10 is not particularly limited. For example, polyester, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone, polyetheretherketone, polycarbonate, acrylic resin, polystyrene, ABS resin , Polyurethane, fluororesin, polyolefin (polyethylene, polypropylene, etc.), polyvinyl chloride, thermoplastic elastomer and the like. Among them, highly heat-resistant resins such as polyester, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone and polyetheretherketone are preferable, and polyester and polyimide are particularly preferable.

(a) ポリエステルフィルム
ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等が挙げられる。中でもPETフィルム及びPBTフィルムは安価に市販されているので好ましい。
(a) Polyester film Examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN). Of these, PET films and PBT films are preferred because they are commercially available at low cost.

(i) PETフィルム
PETフィルムは、基本的にエチレングリコールとテレフタル酸とからなる飽和ポリエステルフィルムである。特性を損なわない範囲で、エチレングリコール以外のジオール成分、及びテレフタル酸以外のカンボン酸成分を含んでも良い。市販のPETフィルムは、約3の誘電率(106 Hz)、約0.01〜0.02の誘電正接(106 Hz)、約250〜270℃の融点、及び約70〜80℃のガラス転移温度を有する。誘電率及び誘電正接はASTM D150により測定し、融点はASTM D4591により測定し、ガラス転移温度はJIS K7121により測定する(以下同じ)。
(i) PET film
The PET film is a saturated polyester film basically composed of ethylene glycol and terephthalic acid. A diol component other than ethylene glycol and a cambonic acid component other than terephthalic acid may be included as long as the characteristics are not impaired. Commercially available PET films have a dielectric constant of about 3 (10 6 Hz), a dielectric loss tangent of about 0.01 to 0.02 (10 6 Hz), a melting point of about 250 to 270 ° C., and a glass transition temperature of about 70 to 80 ° C. . The dielectric constant and dielectric loss tangent are measured by ASTM D150, the melting point is measured by ASTM D4591, and the glass transition temperature is measured by JIS K7121 (the same applies hereinafter).

(ii) PBTフィルム
PBTフィルムは、基本的に1,4-ブタンジオールとテレフタル酸とからなる飽和ポリエステルフィルムである。物性を損なわない範囲で、1,4-ブタンジオール以外のジオール成分、及びテレフタル酸以外のカンボン酸成分を含んでも良い。市販のPBTフィルムは、約3〜4の誘電率(106 Hz)、約0.02の誘電正接(106 Hz)、約220〜230℃の融点、及び約20〜45℃のガラス転移温度を有する。PBTフィルムの熱収縮率(150℃に10分間加熱する条件で測定)は、MD(長手方向)及びTD(横手方向)ともに2%以下であるのが好ましい。熱収縮率が2%以下のPBTフィルムは、例えば特開2004-268257号に記載の空冷インフレーション成形法により製造することができる。
(ii) PBT film
The PBT film is basically a saturated polyester film composed of 1,4-butanediol and terephthalic acid. A diol component other than 1,4-butanediol and a cambonic acid component other than terephthalic acid may be included as long as the physical properties are not impaired. Commercially available PBT films have a dielectric constant of about 3-4 (10 6 Hz), a dielectric loss tangent of about 0.02 (10 6 Hz), a melting point of about 220-230 ° C., and a glass transition temperature of about 20-45 ° C. . The thermal contraction rate (measured under the condition of heating to 150 ° C. for 10 minutes) of the PBT film is preferably 2% or less for both MD (longitudinal direction) and TD (lateral direction). A PBT film having a thermal shrinkage rate of 2% or less can be produced, for example, by an air-cooled inflation molding method described in JP-A-2004-268257.

(iii) 他の添加成分
ポリエステルは、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリウレタン、フッ素樹脂、ポリオレフィン、ポリ塩化ビニル、熱可塑性エラストマー等の熱可塑性樹脂を含有しても良い。他の熱可塑性樹脂の含有量は、ポリエステル全体を100質量%として、5〜20質量%であるのが好ましく、5〜15質量%であるのがより好ましく、5〜10質量%であるのが特に好ましい。また必要に応じて、可塑剤、酸化肪止剤や紫外線吸収剤等の安定剤、帯電防止剤、界面活性剤、染料や顔料等の着色剤、流動性の改善のための潤滑剤、無機充填剤等の添加剤を適宜含有しても良い。
(iii) Other additive components Polyester is thermoplastic such as polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone, polyetheretherketone, polycarbonate, polyurethane, fluororesin, polyolefin, polyvinyl chloride, thermoplastic elastomer, etc. A resin may be contained. The content of the other thermoplastic resin is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and 5 to 10% by mass, based on 100% by mass of the entire polyester. Particularly preferred. If necessary, stabilizers such as plasticizers, antioxidants and UV absorbers, antistatic agents, surfactants, colorants such as dyes and pigments, lubricants for improving fluidity, inorganic filling You may contain additives, such as an agent, suitably.

(b) ポリイミドフィルム
ポリイミドは、基本的に芳香族テトラカルボン酸二無水物と芳香族ジアミンとの脱水縮合反応物からなり、ピロメリット酸二無水物と4,4’-ジアミノジフェニルエーテルとの脱水縮合反応物を主成分とするものが好ましい。市販のポリイミドは、約3.4の誘電率(106 Hz)及び約0.01の誘電正接(106 Hz)を有する。ポリイミドは他の熱可塑性樹脂や添加剤を含有してもよい。他の熱可塑性樹脂の含有量は、ポリイミド全体を100質量%として、5〜20質量%であるのが好ましい。
(b) Polyimide film Polyimide is basically composed of a dehydration condensation reaction product of aromatic tetracarboxylic dianhydride and aromatic diamine, and dehydration condensation of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether. What has a reaction material as a main component is preferable. Commercially available polyimide has a dielectric constant of about 3.4 (10 6 Hz) and a dielectric loss tangent of about 0.01 (10 6 Hz). The polyimide may contain other thermoplastic resins and additives. The content of the other thermoplastic resin is preferably 5 to 20% by mass based on 100% by mass of the entire polyimide.

(c) 積層フィルム
プラスチックフィルム10は単層に限らず、積層フィルムでも良い。例えば、異なるプラスチックフィルムを熱融着したり、ポリエチレン等の接着層を介して接着したりすることにより、積層フィルムを形成することができる。
(c) Laminated film The plastic film 10 is not limited to a single layer, and may be a laminated film. For example, a laminated film can be formed by thermally fusing different plastic films or bonding them through an adhesive layer such as polyethylene.

(d) フィルムの厚さ
プラスチックフィルム10の厚さは特に限定されないが、実用的には約4〜50μmが好適である。プラスチックフィルム10の厚さを約4μm未満とするのは技術的に困難であり、また約50μm超にすると傾斜接合導電膜が厚くなりすぎる。
(d) Film thickness The thickness of the plastic film 10 is not particularly limited, but is preferably about 4 to 50 μm for practical use. It is technically difficult to make the thickness of the plastic film 10 less than about 4 μm, and when it exceeds about 50 μm, the gradient junction conductive film becomes too thick.

(3) 金属薄膜
第一及び第二の金属薄膜11a,11bは電気抵抗が異なる。電気抵抗は、第一の金属薄膜11aの方が第二の金属薄膜11bより大きくてもよいし、その逆でもよい。第一及び第二の金属薄膜11a,11bの電気抵抗差は、常温で2×10-6 Ω・cm以上であるのが好ましく、4×10-6 Ω・cm以上であるのがより好ましい。
(3) Metal thin film The first and second metal thin films 11a and 11b have different electric resistances. The electric resistance of the first metal thin film 11a may be greater than that of the second metal thin film 11b, or vice versa. The difference in electrical resistance between the first and second metal thin films 11a and 11b is preferably 2 × 10 −6 Ω · cm or more at room temperature, more preferably 4 × 10 −6 Ω · cm or more.

第一及び第二の金属薄膜11a,11bを形成する金属として、銅[抵抗率(20℃):1.6730×10-6 Ω・cm]、アルミニウム[抵抗率(20℃):2.6548×10-6 Ω・cm]、銀[抵抗率(20℃):1.59×10-6 Ω・cm]、金[抵抗率(20℃):2.35×10-6 Ω・cm]、白金[抵抗率(20℃):10.6×10-6 Ω・cm]、ニッケル[抵抗率(20℃):6.84×10-6 Ω・cm]、鉄[抵抗率(20℃):9.71×10-6 Ω・cm]、コバルト[抵抗率(20℃):6.24×10-6 Ω・cm]、マグネシウム[抵抗率(20℃):4.45×10-6 Ω・cm]、チタン[抵抗率(20℃):42×10-6 Ω・cm]、クロム[抵抗率(0℃):12.9×10-6 Ω・cm]、亜鉛[抵抗率(20℃):5.916×10-6 Ω・cm]、ガリウム[抵抗率(20℃):17.4×10-6 Ω・cm]、モリブデン[抵抗率(0℃):5.2×10-6 Ω・cm]、パラジウム[抵抗率(20℃):10.8×10-6 Ω・cm]、錫[抵抗率(0℃):11.0×10-6 Ω・cm]、及びこれらの合金等が挙げられる。As the metal forming the first and second metal thin films 11a and 11b, copper [resistivity (20 ° C.): 1.6730 × 10 −6 Ω · cm], aluminum [resistivity (20 ° C.): 2.6548 × 10 −6 Ω · cm], Silver [Resistivity (20 ° C): 1.59 × 10 -6 Ω · cm], Gold [Resistivity (20 ° C): 2.35 × 10 -6 Ω · cm], Platinum [Resistivity (20 ° C) ): 10.6 × 10 -6 Ω · cm], nickel [resistivity (20 ° C): 6.84 × 10 -6 Ω · cm], iron [resistivity (20 ° C): 9.71 × 10 -6 Ω · cm], Cobalt [Resistivity (20 ° C): 6.24 × 10 -6 Ω · cm], Magnesium [Resistivity (20 ° C): 4.45 × 10 -6 Ω · cm], Titanium [Resistivity (20 ° C): 42 × 10 -6 Ω · cm], chromium [resistivity (0 ° C): 12.9 × 10 -6 Ω · cm], zinc [resistivity (20 ° C): 5.916 × 10 -6 Ω · cm], gallium [resistivity ( 20 ° C): 17.4 × 10 -6 Ω · cm], Molybdenum [Resistivity (0 ° C): 5.2 × 10 -6 Ω · cm], Palladium [Resistivity (20 ° C): 10.8 × 10 -6 Ω · cm ], Tin [resistivity 0 ℃): 11.0 × 10 -6 Ω · cm], and the like alloys thereof.

第一及び第二の金属薄膜11a,11bを形成する金属は、電気抵抗が異なるように上記の中から選択できる。好ましい組合せとして、第一の金属薄膜11aが銅及び/又はアルミニウムからなり、第二の金属薄膜11bがニッケル、亜鉛、錫、チタン、コバルト、鉄及びクロムからなる群から選ばれた少なくとも一種からなる組合せ、並びに第一の金属薄膜11aがニッケル、亜鉛、錫、チタン、コバルト、鉄及びクロムからなる群から選ばれた少なくとも一種からなり、第二の金属薄膜11bが銅及び/又はアルミニウムからなる組合せが挙げられる。中でも第一の金属薄膜11aが銅からなり、第二の金属薄膜11bがニッケルからなる組合せ、及び第一の金属薄膜11aがニッケルからなり、第二の金属薄膜11bが銅からなる組合せがより好ましい。   The metal forming the first and second metal thin films 11a and 11b can be selected from the above so that the electric resistance is different. As a preferred combination, the first metal thin film 11a is made of copper and / or aluminum, and the second metal thin film 11b is made of at least one selected from the group consisting of nickel, zinc, tin, titanium, cobalt, iron and chromium. The combination, and the first metal thin film 11a is made of at least one selected from the group consisting of nickel, zinc, tin, titanium, cobalt, iron and chromium, and the second metal thin film 11b is made of copper and / or aluminum. Is mentioned. Among these, a combination in which the first metal thin film 11a is made of copper, the second metal thin film 11b is made of nickel, and a combination in which the first metal thin film 11a is made of nickel and the second metal thin film 11b is made of copper is more preferable. .

第一の金属薄膜11aが第二の金属薄膜11bより大きい電気抵抗を有する場合、及びその逆の場合のいずれにおいても、電気抵抗が小さい方の金属薄膜の厚さを、電気抵抗が大きい方の金属薄膜の厚さに対して2/1〜20/1の比とするのが好ましい。特に第一及び第二の金属薄膜11a,11bがともに蒸着膜である場合、この比を3/1〜15/1とするのがより好ましい。   In both cases where the first metal thin film 11a has an electric resistance larger than that of the second metal thin film 11b and vice versa, the thickness of the metal thin film having the smaller electric resistance is set to the thickness of the metal thin film having the larger electric resistance. The ratio is preferably 2/1 to 20/1 with respect to the thickness of the metal thin film. In particular, when both the first and second metal thin films 11a and 11b are vapor deposition films, it is more preferable to set this ratio to 3/1 to 15/1.

第一の金属薄膜11aが第二の金属薄膜11bより大きい電気抵抗を有する場合、及びその逆の場合のいずれにおいても、電気抵抗が小さい方の金属薄膜の厚さは0.1〜35μmが好ましく、電気抵抗が大きい方の金属薄膜の厚さは0.01〜20μmが好ましい。ただし第一及び第二の金属薄膜11a,11bがともに蒸着膜である場合、電気抵抗が小さい方の金属薄膜の厚さは0.1〜1μmが好ましく、0.15〜0.7μmがより好ましく、0.2〜0.6μmが最も好ましく、電気抵抗が大きい方の金属薄膜の厚さは10〜70 nmが好ましく、20〜60 nmがより好ましい。電気抵抗が小さい方の金属蒸着膜の厚さが0.1μm未満だと、高周波伝達特性が悪い。一方1μm超だと、高周波伝送率の周波数依存性が悪い。   In any case where the first metal thin film 11a has an electric resistance larger than that of the second metal thin film 11b and vice versa, the thickness of the metal thin film having the smaller electric resistance is preferably 0.1 to 35 μm, The thickness of the metal thin film having the larger resistance is preferably 0.01 to 20 μm. However, when both the first and second metal thin films 11a and 11b are vapor deposition films, the thickness of the metal thin film having the smaller electric resistance is preferably 0.1 to 1 μm, more preferably 0.15 to 0.7 μm, and more preferably 0.2 to 0.6 μm. The thickness of the metal thin film having the larger electric resistance is preferably 10 to 70 nm, and more preferably 20 to 60 nm. If the thickness of the metal vapor-deposited film having the smaller electrical resistance is less than 0.1 μm, the high-frequency transmission characteristics are poor. On the other hand, if it exceeds 1 μm, the frequency dependency of the high-frequency transmission rate is poor.

第一の金属薄膜11aは蒸着、めっき又は箔により形成するのが好ましく、第二の金属薄膜11bは蒸着又はめっきにより形成するのが好ましい。金属の蒸着膜は通常結晶性であり、純度が高く、耐酸化性に優れている。   The first metal thin film 11a is preferably formed by vapor deposition, plating or foil, and the second metal thin film 11b is preferably formed by vapor deposition or plating. Metal vapor deposition films are usually crystalline, have high purity, and excellent oxidation resistance.

(4) 傾斜組成層
(a) 金属薄膜−プラスチックフィルム
例えば図1に示すように、傾斜組成層12では、金属原子11a’はフィルム10のプラスチック分子10’の間に部分的に進入している。従って、金属原子11a’の組成比(濃度)は金属薄膜11aからプラスチックフィルム10にかけて減少する。金属原子11a’の組成比の減少は厚さ方向にほぼ連続的であるのが好ましい。「ほぼ連続的」とは、厚さ方向における金属原子11a’の組成比がほぼ単調に変化することを意味するが、局所的にはこの条件を必ずしも満たさなくても良い。傾斜組成層12では金属原子11a’の濃度が低下するので、非晶質相を形成していると考えられる。
(4) Gradient composition layer
(a) Metal Thin Film—Plastic Film For example, as shown in FIG. 1, in the graded composition layer 12, metal atoms 11 a ′ partially enter between plastic molecules 10 ′ of the film 10. Accordingly, the composition ratio (concentration) of the metal atoms 11a ′ decreases from the metal thin film 11a to the plastic film 10. The decrease in the composition ratio of the metal atoms 11a ′ is preferably almost continuous in the thickness direction. “Substantially continuous” means that the composition ratio of the metal atoms 11a ′ in the thickness direction changes substantially monotonically, but this condition does not necessarily have to be satisfied locally. In the graded composition layer 12, the concentration of the metal atoms 11a ′ decreases, so it is considered that an amorphous phase is formed.

(b) 第一の金属薄膜−第二の金属薄膜
例えば図1に示すように、傾斜組成層12'では、第二の金属原子11b’は第一の金属11a’の間に部分的に進入している。従って、第一の金属11a’の組成比(濃度)は第一の金属薄膜11aから第二の金属薄膜11bにかけて減少し、第二の金属原子11b’は第二の金属薄膜11bから第一の金属薄膜11aにかけて減少する。傾斜組成層12'でも、金属組成比の変化は厚さ方向にほぼ連続的であるのが好ましい。傾斜組成層12'では両金属原子11a’,11b’の濃度が徐々に変化しているので、非晶質であると考えられる。
(b) First metal thin film-second metal thin film For example, as shown in FIG. 1, in the gradient composition layer 12 ′, the second metal atoms 11b ′ partially enter between the first metals 11a ′. is doing. Accordingly, the composition ratio (concentration) of the first metal 11a ′ decreases from the first metal thin film 11a to the second metal thin film 11b, and the second metal atom 11b ′ is reduced from the second metal thin film 11b to the first metal thin film 11b. It decreases toward the metal thin film 11a. Even in the gradient composition layer 12 ′, the change in the metal composition ratio is preferably substantially continuous in the thickness direction. In the graded composition layer 12 ′, the concentration of both metal atoms 11a ′ and 11b ′ is gradually changed, so it is considered to be amorphous.

非晶質な傾斜組成層12,12'を有する導電膜には、明確な理由は不明であるが、高周波伝達率が100%以上の増幅帯域と、高周波伝達率がほぼ0%の減衰帯域とが発現する。   For the conductive film having the amorphous gradient composition layers 12 and 12 ', a clear reason is unknown, but an amplification band having a high-frequency transmission rate of 100% or more and an attenuation band having a high-frequency transmission rate of almost 0%. Is expressed.

(5) 微細孔
優れた高周波伝達特性を得るために、傾斜接合導電膜に微細孔14を形成するのが好ましい。図3及び図4に示すように、微細孔14は、少なくとも金属薄膜11a,11bを貫通しているのが好ましい。微細孔14は、金属薄膜11a,11bを貫通していれば、プラスチックフィルム10の途中まで達しても良い。また図5に示すように、微細孔14は傾斜接合導電膜1を貫通してもよい。
(5) Micropores In order to obtain excellent high-frequency transmission characteristics, it is preferable to form micropores 14 in the gradient bonding conductive film. As shown in FIG. 3 and FIG. 4, it is preferable that the fine holes 14 penetrate at least the metal thin films 11a and 11b. The fine hole 14 may reach the middle of the plastic film 10 as long as it penetrates the metal thin films 11a and 11b. Further, as shown in FIG. 5, the fine hole 14 may penetrate the gradient junction conductive film 1.

微細孔14の平均開口径は0.1〜100μmが好ましく、0.5〜50μmがより好ましい。微細孔14の平均開口径を0.1μm未満とするのは技術的に困難である。また微細孔14の平均開口径を100μm超にすると、傾斜接合導電膜1の強度が低下するおそれがある。良好な伝送損失を有するために、平均開口径の上限は20μmが特に好ましく、10μmが最も好ましい。平均開口径は、傾斜接合導電膜の任意の位置における50μm×50μmの5箇所の領域内の全微細孔14の径を原子間力顕微鏡を用いて測定し、平均することにより求める。   The average opening diameter of the micropores 14 is preferably 0.1 to 100 μm, and more preferably 0.5 to 50 μm. It is technically difficult to make the average opening diameter of the fine holes 14 less than 0.1 μm. On the other hand, if the average opening diameter of the fine holes 14 exceeds 100 μm, the strength of the gradient bonding conductive film 1 may be reduced. In order to have good transmission loss, the upper limit of the average aperture diameter is particularly preferably 20 μm, and most preferably 10 μm. The average opening diameter is obtained by measuring and averaging the diameters of all the fine holes 14 in five regions of 50 μm × 50 μm at arbitrary positions of the gradient bonding conductive film using an atomic force microscope.

微細孔14の平均分布密度は500個/cm2以上であるのが好ましく、5×103個/cm2以上であるのがより好ましい。微細孔14の平均分布密度が500個/cm2未満であると、伝送損失が大きくなる。その理由は明らかではないが、高周波信号の伝送時に微細孔14付近に渦電流が発生するためであると推測される。良好な伝送損失を有するために、微細孔14の平均分布密度は1×104〜3×105個/cm2であるのが特に好ましく、1×104〜2×105個/cm2であるのが最も好ましい。微細孔14の平均分布密度は、傾斜接合導電膜の任意の位置における50μm×50μmの5箇所の領域内の微細孔14の個数を、原子間力顕微鏡を用いて数え、得られた値を平均し、1cm2当たりの個数に換算することにより求める。The average distribution density of the micropores 14 is preferably 500 / cm 2 or more, and more preferably 5 × 10 3 / cm 2 or more. If the average distribution density of the fine holes 14 is less than 500 / cm 2 , transmission loss increases. The reason is not clear, but it is presumed that eddy currents are generated in the vicinity of the fine holes 14 during transmission of the high-frequency signal. In order to have a good transmission loss, the average distribution density of the fine pores 14 is particularly preferably in the range of 1 × 10 4 ~3 × 10 5 cells / cm 2, 1 × 10 4 ~2 × 10 5 cells / cm 2 Most preferably. The average distribution density of the fine holes 14 is obtained by counting the number of fine holes 14 in five regions of 50 μm × 50 μm at arbitrary positions of the gradient junction conductive film using an atomic force microscope, and averaging the obtained values. Then, it is calculated by converting to the number per 1 cm 2 .

図5に示すように微細孔14が傾斜接合導電膜を貫通する場合、金属薄膜11a,11bは塑性変形し、微細孔14の壁面に進入する。これにより伝送損失が一層少なくなる。   As shown in FIG. 5, when the fine hole 14 penetrates the inclined bonding conductive film, the metal thin films 11 a and 11 b are plastically deformed and enter the wall surface of the fine hole 14. This further reduces transmission loss.

(6) 接着層
接着層13は、例えばポリウレタン樹脂、エポキシ樹脂、アクリル樹脂、エチレン−ビニルアルコール共重合体(EVA)、ポリビニルアセタール系樹脂[例えばポリビニルホルマール、ポリビニルブチラール(PVB)、変性PVB等]、塩化ビニル樹脂、ホットメルト接着剤、シーラントフィルム等からなる。
(6) Adhesive layer The adhesive layer 13 is, for example, polyurethane resin, epoxy resin, acrylic resin, ethylene-vinyl alcohol copolymer (EVA), polyvinyl acetal resin [eg, polyvinyl formal, polyvinyl butyral (PVB), modified PVB, etc.] , Vinyl chloride resin, hot melt adhesive, sealant film and the like.

[2] 傾斜接合導電膜の製造方法
傾斜接合導電膜1は、プラスチックフィルム10の一面又は両面に、蒸着法、めっき法又は箔接合法により第一の金属薄膜11aを形成し、さらに蒸着法又はめっき法により第二の金属薄膜11bを形成することにより製造する。第一の金属薄膜11aと第二の金属薄膜11bとの間に傾斜組成層12’が形成されるので、プラスチックフィルム10と第一の金属薄膜11aとの間に傾斜組成層12が形成される必要はない。例えば図2に示す傾斜接合導電膜1では、金属箔からなる第一の金属薄膜11aをプラスチックフィルム10に接着し、蒸着法又はめっき法により第二の金属薄膜11bを形成する。
[2] Method for Producing Gradient Bonded Conductive Film In the gradient bonded conductive film 1, the first metal thin film 11a is formed on one surface or both surfaces of the plastic film 10 by a vapor deposition method, a plating method, or a foil bonding method. The second metal thin film 11b is formed by plating. Since the gradient composition layer 12 ′ is formed between the first metal thin film 11a and the second metal thin film 11b, the gradient composition layer 12 is formed between the plastic film 10 and the first metal thin film 11a. There is no need. For example, in the gradient bonding conductive film 1 shown in FIG. 2, the first metal thin film 11a made of metal foil is bonded to the plastic film 10, and the second metal thin film 11b is formed by vapor deposition or plating.

(1) 金属薄膜形成工程
(a) 蒸着法
金属の蒸着は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD法、熱CVD法、光CVD法等の化学気相蒸着法等により行うことができる。経済性の観点から、真空蒸着法が好ましい。
(1) Metal thin film formation process
(a) Vapor deposition method Metal deposition is performed by, for example, physical vapor deposition such as vacuum vapor deposition, sputtering, or ion plating, chemical vapor deposition such as plasma CVD, thermal CVD, and photo CVD. Can do. From the viewpoint of economy, the vacuum deposition method is preferable.

プラスチックフィルム10と蒸着金属との密着性を高めるために、あらかじめプラスチックフィルム10に洗浄を兼ねた表面処理を施してもよい。表面処理としては、ブラスト、エンボス加工等による機械的処理;コロナ放電、プラズマ、火炎処理、UV照射等による物理化学的処理;溶剤、酸性溶液、アルカリ性溶液等による化学的処理等がある。表面処理後のフィルム10を加熱又は真空加熱処理して、フィルム10中の水分やガス分を除去してもよい。   In order to improve the adhesion between the plastic film 10 and the deposited metal, the plastic film 10 may be subjected to a surface treatment that also serves as a cleaning in advance. The surface treatment includes mechanical treatment by blasting, embossing, etc .; physicochemical treatment by corona discharge, plasma, flame treatment, UV irradiation, etc .; chemical treatment by solvent, acidic solution, alkaline solution, etc. The film 10 after the surface treatment may be heated or vacuum heat treated to remove moisture and gas content in the film 10.

真空蒸着法は、半連続法(フィルムの送り出し、蒸着及び巻取りを真空中で行う方法)、又は連続法(蒸着のみ真空中で行う方法)のいずれでも良い。いずれも、10-2 Pa程度の高真空下で金属蒸気をプラスチックフィルム10又は第一の金属薄膜11a上に凝縮させる。第一の金属薄膜11aの蒸着後直ちに、第二の金属薄膜11bを蒸着するのが好ましい。The vacuum vapor deposition method may be either a semi-continuous method (a method in which film feeding, vapor deposition and winding are performed in vacuum) or a continuous method (a method in which only vapor deposition is performed in vacuum). In either case, the metal vapor is condensed on the plastic film 10 or the first metal thin film 11a under a high vacuum of about 10 −2 Pa. The second metal thin film 11b is preferably deposited immediately after the first metal thin film 11a is deposited.

化学気相蒸着法(CVD法)の場合、低温で薄膜を形成できるプラズマCVD法が好ましい。プラズマCVD法では、低圧反応ガスのプラズマを発生させて金属蒸着層を形成するか、減圧下で反応ガスの分解により金属蒸着層を形成する。出発原料として、ハロゲン化金属、有機金属、有機金属錯体、金属アルコラート等を用い、さらに窒素、アンモニア、一酸化二窒素、酸素、一酸化炭素、メタン、水素等の反応性ガスをヘリウム、アルゴン等のキャリアガスとともに用いる。   In the case of a chemical vapor deposition method (CVD method), a plasma CVD method capable of forming a thin film at a low temperature is preferable. In the plasma CVD method, a metal vapor deposition layer is formed by generating plasma of a low-pressure reaction gas, or a metal vapor deposition layer is formed by decomposition of the reaction gas under reduced pressure. As starting materials, metal halides, organometallics, organometallic complexes, metal alcoholates, etc. are used, and reactive gases such as nitrogen, ammonia, dinitrogen monoxide, oxygen, carbon monoxide, methane, hydrogen, etc. are used as helium, argon, etc. Used together with the carrier gas.

銅の蒸着層を形成する場合、原料ガスとして例えば銅アセチルアセトナート[Cu(acac)2]を用いる。またアルミニウムの蒸着層を形成する場合、原料ガスとして例えばトリメチルアルミニウム(Al(CH3)3)を用いる。さらにニッケルの蒸着層を形成する場合、原料ガスとして例えば塩化ニッケルガスを用いる。When forming a copper vapor deposition layer, for example, copper acetylacetonate [Cu (acac) 2 ] is used as a source gas. When forming a vapor deposition layer of aluminum, for example, trimethylaluminum (Al (CH 3 ) 3 ) is used as a source gas. Furthermore, when forming a nickel vapor deposition layer, for example, nickel chloride gas is used as a raw material gas.

(b) めっき法
めっきは、電解めっき法、無電解めっき法等により行う。めっき法の詳細は、例えば「めっき技術ハンドブック」(東京鍍金材料協同組合技術委員会編)等に開示されている。無電解めっき層を形成した後、電解めっき層を形成してもよい。
(b) Plating method Plating is performed by electrolytic plating, electroless plating, or the like. The details of the plating method are disclosed in, for example, “Plating Technology Handbook” (edited by the Technical Committee of the Tokyo Sheet Metal Cooperative Association). After forming the electroless plating layer, the electrolytic plating layer may be formed.

めっき法により金属薄膜11a,11bを形成する場合、プラスチックフィルム10又は第一の金属薄膜11aに下地層を設けても良い。無電解めっきの場合、下地層は、金属蒸着層、めっき触媒を含有するポリマーバインダー層、触媒プリカーサーを含有するポリマーバインダー層等でよい。触媒含有下地層は、例えばPd触媒を含浸したポリマーバインダー層、還元性金属粒子(例えばNi、Co、Rh、Pd等のコロイド)を添加したポリマーバインダー層等である。   When the metal thin films 11a and 11b are formed by plating, an underlayer may be provided on the plastic film 10 or the first metal thin film 11a. In the case of electroless plating, the underlayer may be a metal vapor deposition layer, a polymer binder layer containing a plating catalyst, a polymer binder layer containing a catalyst precursor, or the like. The catalyst-containing underlayer is, for example, a polymer binder layer impregnated with a Pd catalyst, a polymer binder layer to which reducing metal particles (for example, colloids such as Ni, Co, Rh, and Pd) are added.

例えば無電解銅めっきの場合、まずプラスチックフィルム10に、帯電防止剤、金属粒子、カーボン等を含有する樹脂層、導電性金属酸化物層、又は金属薄膜層等の導電性下地層を設けた後、硫酸銅めっき浴等の無電解銅めっき液に浸漬する。無電解銅めっき液の組成自体は公知であるのでその説明を省略する。銅めっき層は無電解めっき法だけで形成しても良いが、効率を上げるために無電解めっき法と電解めっき法を組合せるのが好ましい。無電解ニッケルめっきには例えばアルカリニッケル液を用い、電解ニッケルめっきには例えばワット浴,スルファミン酸浴等を用いる。   For example, in the case of electroless copper plating, after first providing a conductive underlayer such as an antistatic agent, metal particles, a resin layer containing carbon, a conductive metal oxide layer, or a metal thin film layer on the plastic film 10 Soak in an electroless copper plating solution such as a copper sulfate plating bath. Since the composition itself of the electroless copper plating solution is known, its description is omitted. The copper plating layer may be formed only by the electroless plating method, but it is preferable to combine the electroless plating method and the electrolytic plating method in order to increase the efficiency. For example, an alkaline nickel solution is used for the electroless nickel plating, and for example, a watt bath or a sulfamic acid bath is used for the electrolytic nickel plating.

(c) 金属帯状薄膜を形成する場合
図6〜図8に示すような金属帯状薄膜11a,11bは、(i) プラスチックフィルム10に一様に金属薄膜11a,11bを形成した後、帯状にフォトレジストを塗布し、露光後エッチングする方法、(ii) プラスチックフィルム10にあらかじめ帯状開口部を有するようにフォトレジストを塗布し、露光後、蒸着法又はめっき法により金属薄膜11a,11bを形成し、フォトレジスト層を除去する方法等により、形成できる。
(c) In the case where a metal strip thin film is formed The metal strip thin films 11a and 11b as shown in FIGS. 6 to 8 are obtained by (i) uniformly forming the metal thin films 11a and 11b on the plastic film 10 and A method of applying a resist and etching after exposure; (ii) applying a photoresist so as to have a strip-shaped opening in advance on the plastic film 10; after exposure, forming metal thin films 11a and 11b by vapor deposition or plating; It can be formed by a method of removing the photoresist layer or the like.

(2) 微細孔の形成
図3〜5に示すように傾斜接合導電膜の金属薄膜11a,11bに多数の微細孔14を形成する場合、いわゆるポーラス加工法を用いる。ポーラス加工法は、例えば特許第2063411号、特許第2542772号、特許第2643730号、特許第2703151号、特開平9-99492号、特開平9-57860号、特開2002-059487号等に記載されている。例えば、鋭い角部を有する多数のモース硬度5以上の粒子が表面に付着した第一ロールと、表面が平滑な第二ロールとの間に、金属薄膜11a,11bを第一ロールの側にして、傾斜接合導電膜を均一な押圧力下で通過させる。第二ロールとしては、例えば鉄系ロール、Niメッキ、Crメッキ等を施した鉄系ロール、ステンレス系ロール、特殊鋼ロール等を用いることができる。微細孔14の平均開口径及び平均分布密度は、第一ロールの微粒子の粒径及び密度を調整することにより調整できる。第一ロール及び第二ロール間の押圧力により、微細孔14の深さ、及び傾斜接合導電膜を貫通するか否かが決まる。微細孔14は傾斜接合導電膜1に均一に設けるのが好ましい。微細孔14を高密度に形成する場合、第一及び第二のロールからなる二つ以上のユニットをタンデムに設けたポーラス加工装置を用いるのが好ましい。
(2) Formation of micropores As shown in FIGS. 3 to 5, when a large number of micropores 14 are formed in the metal thin films 11a and 11b of the gradient junction conductive film, a so-called porous processing method is used. The porous processing method is described in, for example, Japanese Patent No. 2063411, Japanese Patent No. 2547772, Japanese Patent No. 2643730, Japanese Patent No. 2703151, Japanese Patent Laid-Open No. 9-99492, Japanese Patent Laid-Open No. 9-57860, Japanese Patent Laid-Open No. 2002-059487, etc. ing. For example, the metal thin films 11a and 11b are on the first roll side between a first roll having a large number of Mohs hardness 5 or more having sharp corners attached to the surface and a second roll having a smooth surface. Then, the inclined bonding conductive film is passed under a uniform pressing force. As the second roll, for example, an iron-based roll, an iron-based roll subjected to Ni plating, Cr plating or the like, a stainless-based roll, a special steel roll, or the like can be used. The average opening diameter and average distribution density of the fine holes 14 can be adjusted by adjusting the particle diameter and density of the fine particles of the first roll. The pressing force between the first roll and the second roll determines the depth of the fine hole 14 and whether or not it penetrates the gradient bonding conductive film. The fine holes 14 are preferably provided uniformly in the gradient bonding conductive film 1. When forming the fine holes 14 at a high density, it is preferable to use a porous processing apparatus in which two or more units composed of first and second rolls are provided in tandem.

多数の微細孔14が形成される際、微細孔14の壁面金属薄膜11a,11bは塑性変形し、微細孔14の壁面を少なくとも部分的に覆う。   When a large number of micropores 14 are formed, the wall surface metal thin films 11a and 11b of the micropores 14 are plastically deformed to at least partially cover the wall surfaces of the micropores 14.

[3] 高周波伝送線路
以下本発明の高周波伝送線路について詳細に説明する。
[3] High-frequency transmission line The high-frequency transmission line of the present invention will be described in detail below.

(1) 第一の高周波伝送線路
図9に示す第一の高周波伝送線路は、二本の帯状傾斜接合導電膜1,1が誘電体基板2の上面に平行に配置されている。帯状傾斜接合導電膜1,1は傾斜接合導電膜1を公知の方法によりスリットしたものである。二本の帯状傾斜接合導電膜1,1の間に電界が集中するので、高周波信号を効率良く伝送することができる。優れた高周波伝送性を得るために、誘電体基板2は、二本の帯状傾斜接合導電膜1,1間に凸部20を有するのが好ましい。支持体2上に配置する帯状傾斜接合導電膜1,1は、金属薄膜が上に来ても下に来ても良い。
(1) First High Frequency Transmission Line In the first high frequency transmission line shown in FIG. 9, two strip-shaped inclined junction conductive films 1 and 1 are arranged in parallel on the upper surface of the dielectric substrate 2. The strip-shaped gradient bonding conductive films 1 and 1 are formed by slitting the gradient bonding conductive film 1 by a known method. Since the electric field concentrates between the two strip-shaped gradient junction conductive films 1, 1, a high-frequency signal can be transmitted efficiently. In order to obtain an excellent high-frequency transmission property, the dielectric substrate 2 preferably has a convex portion 20 between the two strip-shaped gradient junction conductive films 1 and 1. The strip-like gradient bonding conductive films 1 and 1 disposed on the support 2 may be provided with the metal thin film on the upper side or the lower side.

各傾斜接合導電膜1,1の幅d1は、高周波信号の周波数及び振幅等に応じて適宜設定するが、1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。幅d1が1mm以上であれば、十分な高周波信号伝達性を有する。また幅d1を10 mm超としても、高周波信号伝達性のさらなる向上は得られない。The width d 1 of each of the gradient bonding conductive films 1 and 1 is appropriately set according to the frequency and amplitude of the high-frequency signal, but is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. If the width d 1 is 1mm or more, having a sufficient high-frequency signal transmission property. Further, even if the width d 1 is more than 10 mm, further improvement in high-frequency signal transmission cannot be obtained.

二本の帯状傾斜接合導電膜1,1の間隔d2は1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。間隔d2が1mm未満だと高周波信号伝達性が不十分であり、一方10 mm超だと放射損失が多い。凸部20の高さhは1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。The distance d 2 between the two strip-shaped gradient bonding conductive films 1 and 1 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. If the distance d 2 is less than 1 mm, the high-frequency signal transmission is insufficient, while if it exceeds 10 mm, the radiation loss is large. The height h of the convex portion 20 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm.

支持体2を形成する誘電体は、例えば樹脂(プラスチックフィルム10と同じでも良い)、アルミナ等のセラミックス等からなる。傾斜接合導電膜1,1を誘電体基板2に固定するには、接着層3を介するのが好ましい。   The dielectric that forms the support 2 is made of, for example, a resin (which may be the same as the plastic film 10), ceramics such as alumina, or the like. In order to fix the gradient bonding conductive films 1 and 1 to the dielectric substrate 2, it is preferable that the adhesive layer 3 be interposed.

(2) 第二の高周波伝送線路
図10に示す第二の高周波伝送線路では、二本の帯状傾斜接合導電膜1,1がコの字状断面を有する誘電体基板2の対向内面に配置されている。二本の帯状傾斜接合導電膜1,1の間に電界が集中し、高周波信号を効率良く伝送することができる。図10に示すように、二本の帯状傾斜接合導電膜1,1が片面に金属薄膜11a,11bを有する場合、両金属薄膜11b,11bが対向するように配置するのが好ましい。誘電体基板2は、二本の帯状傾斜接合導電膜を対向配置できれば、図示の形状に限定されない。
(2) Second high-frequency transmission line In the second high-frequency transmission line shown in FIG. 10, two strip-shaped inclined junction conductive films 1 and 1 are disposed on the opposing inner surface of a dielectric substrate 2 having a U-shaped cross section. ing. An electric field concentrates between the two strip-shaped gradient junction conductive films 1 and 1, and a high-frequency signal can be transmitted efficiently. As shown in FIG. 10, when the two strip-shaped gradient junction conductive films 1 and 1 have the metal thin films 11a and 11b on one side, it is preferable to arrange the two metal thin films 11b and 11b so as to face each other. The dielectric substrate 2 is not limited to the shape shown in the figure as long as the two strip-shaped gradient junction conductive films can be arranged to face each other.

各傾斜接合導電膜1,1の幅は第一の高周波伝送線路と同じでよい。二本の帯状傾斜接合導電膜1,1の間隔d3は、1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。間隔d3が1mm未満だと高周波信号伝達性が不十分であり、一方10 mm超だと放射損失が多い。The width of each inclined junction conductive film 1, 1 may be the same as that of the first high-frequency transmission line. The distance d 3 between the two strip-like gradient bonding conductive films 1 and 1 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. If the distance d 3 is less than 1 mm, the high-frequency signal transmission is insufficient, while if it is more than 10 mm, the radiation loss is large.

(3) 第三の高周波伝送線路
図11に示す第三の高周波伝送線路では、二本の帯状傾斜接合導電膜1,1が、L字状断面を有する誘電体基板2の直交内面に配置されている。二本の帯状傾斜接合導電膜1,1の間に電界が集中し、高周波信号を効率良く伝送することができる。誘電体基板2は、二本の帯状傾斜接合導電膜1,1を直交するように配置できれば、図示の形状に限定されない。
(3) Third high-frequency transmission line In the third high-frequency transmission line shown in FIG. 11, two strip-shaped inclined junction conductive films 1 and 1 are disposed on the orthogonal inner surface of a dielectric substrate 2 having an L-shaped cross section. ing. An electric field concentrates between the two strip-shaped gradient junction conductive films 1 and 1, and a high-frequency signal can be transmitted efficiently. The dielectric substrate 2 is not limited to the shape shown in the figure as long as the two strip-like gradient junction conductive films 1 and 1 can be arranged so as to be orthogonal to each other.

各傾斜接合導電膜1,1の幅は第二の高周波伝送線路と同じでよい。二本の帯状傾斜接合導電膜1,1の間隔d4は、1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。間隔d4が1mm未満だと高周波信号伝達性が不十分であり、一方10 mm超だと放射損失が多い。The width of each inclined junction conductive film 1, 1 may be the same as that of the second high-frequency transmission line. The distance d 4 between the two strip-shaped gradient bonding conductive films 1 and 1 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. If the distance d 4 is less than 1 mm, the high-frequency signal transmission is insufficient, while if it exceeds 10 mm, the radiation loss is large.

(4) 第四の高周波伝送線路
図12に示す第四の高周波伝送線路は、円柱状誘電体基板2を傾斜接合導電膜1が被覆した誘電体円形導波管である。
(4) Fourth High-Frequency Transmission Line The fourth high-frequency transmission line shown in FIG. 12 is a dielectric circular waveguide in which a cylindrical dielectric substrate 2 is covered with an inclined junction conductive film 1.

(5) 第五の高周波伝送線路
図13に示す第五の高周波伝送線路は、円筒状誘電体基板2の内面に傾斜接合導電膜からなる中心導体1を設け、外面に傾斜接合導電膜からなる接地導体1'を設けた同軸線路である。同軸線路の内径及び外径は、高周波信号の周波数に応じて適宜設定すればよい。中心導体1及び接地導体1'の一方のみに傾斜接合導電膜を用いてもよい。
(5) Fifth high-frequency transmission line The fifth high-frequency transmission line shown in FIG. 13 is provided with a central conductor 1 made of a gradient bonded conductive film on the inner surface of a cylindrical dielectric substrate 2 and made of a gradient bonded conductive film on the outer surface. A coaxial line provided with a ground conductor 1 ′. What is necessary is just to set the internal diameter and outer diameter of a coaxial line suitably according to the frequency of a high frequency signal. A gradient junction conductive film may be used for only one of the center conductor 1 and the ground conductor 1 ′.

[4] 高周波フィルタ
本発明の高周波フィルタは、上記いずれかの高周波伝送線路に入力端子及び出力端子を設ければ得られる簡単な構造を有する。図14はかかる高周波フィルタの一例を示す。第二の金属薄膜11bが第一の金属薄膜11aより大きな電気抵抗を有する場合、第一の金属薄膜11aに端子4を設けるのが好ましい。本発明の高周波フィルタは優れた高周波伝達率及び必要に応じて異方性を有し、帯域除去フィルタやハッカー防止用フィルタとして有用である。
[4] High-frequency filter The high-frequency filter of the present invention has a simple structure obtained by providing an input terminal and an output terminal on any of the above-described high-frequency transmission lines. FIG. 14 shows an example of such a high frequency filter. When the second metal thin film 11b has an electric resistance larger than that of the first metal thin film 11a, it is preferable to provide the terminal 4 on the first metal thin film 11a. The high-frequency filter of the present invention has an excellent high-frequency transmission rate and anisotropy as necessary, and is useful as a band elimination filter or a hacker prevention filter.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(1) 傾斜接合導電膜の作製
二軸延伸ポリイミドフィルム[厚さ:25μm、融点:なし、ガラス転移温度:280℃以上、商品名:「カプトンH」(東レ・デュボン(株)製)]の一面に、厚さ30μmの圧延銅箔を接着した。銅箔上に電解めっき法により15μmの厚さのニッケル層を形成した。得られた傾斜接合導電膜を5mmの幅となるようにスリットした。
Example 1
(1) Production of gradient bonded conductive film Biaxially stretched polyimide film [thickness: 25 μm, melting point: none, glass transition temperature: 280 ° C or higher, product name: “Kapton H” (manufactured by Toray Dubon Co., Ltd.)] A rolled copper foil having a thickness of 30 μm was bonded to one surface. A nickel layer having a thickness of 15 μm was formed on the copper foil by electrolytic plating. The obtained gradient bonded conductive film was slit so as to have a width of 5 mm.

(2) 高周波伝送線路の作製
帯状傾斜接合導電膜2本を、ポリイミドフィルムが支持体側となるように、塩化ビニル樹脂製支持体に平行に接着し、図9に示す平行線路型の高周波伝送線路を作製した(長さ:50 cm、二本の帯状傾斜接合導電膜の間隔d2:3mm)。
(2) Production of a high-frequency transmission line Two parallel strip-like conductive films are bonded in parallel to a vinyl chloride resin support so that the polyimide film is on the support side, and the parallel-line high-frequency transmission line shown in FIG. (Length: 50 cm, distance d 2 between two strip-shaped gradient junction conductive films: 3 mm).

(3) 高周波伝達率の測定
(a) 高周波発振器のスプリアス特性測定
(i) スプリアス特性測定用高周波伝送線路の作製
二軸延伸PETフィルム[厚さ:12μm、誘電率:3.2(1 MHz)、誘電正接:1.0%(1 MHz)、融点:265℃、ガラス転移温度:75℃、商品名:「ルミラー」(東レ(株)製)]の一面に、蒸着法により0.3μmの厚さの銅層を形成した。得られた導電膜を5mmの幅となるようにスリットした。帯状導電膜2本を、PETフィルムが支持体側となるように、塩化ビニル樹脂製支持体に平行に接着し、上記と同様にして平行線路型のスプリアス特性測定用高周波伝送線路を作製した(長さ:50 cm、二本の帯状導電膜の間隔d2:3mm)。
(3) Measurement of high frequency transmissibility
(a) Measuring spurious characteristics of high-frequency oscillators
(i) Fabrication of high-frequency transmission line for measuring spurious characteristics Biaxially stretched PET film [Thickness: 12μm, dielectric constant: 3.2 (1 MHz), dielectric loss tangent: 1.0% (1 MHz), melting point: 265 ℃, glass transition temperature : 75 ° C., trade name: “LUMIRROR” (manufactured by Toray Industries, Inc.)], a copper layer having a thickness of 0.3 μm was formed by vapor deposition. The obtained conductive film was slit so as to have a width of 5 mm. Two strip-shaped conductive films were bonded in parallel to a vinyl chloride resin support so that the PET film was on the support side, and a parallel line type high-frequency transmission line for measuring spurious characteristics was produced in the same manner as described above (long Length: 50 cm, distance d 2 between the two strip-like conductive films: 3 mm).

(ii) スプリアス特性測定
図15に示すように、接続用ケーブル70を介して、スプリアス特性測定用高周波伝送線路の導電膜1'',1''の一端に高周波発振器5を接続し、他端に高周波受信器6を接続した。反射波防止のための終端抵抗R(100Ω)を、受信器6の直前に設けた。図16に示すように、高周波発振器5は、電圧制御発振器(VCO)51、伝送する信号の周波数に応じて切り替えるようになっている3個の高周波発振モジュール52,52',52''及び2個の高周波アンプ53,53'を具備している。高周波発振器5は、100〜200 MHz、260〜550 MHz及び600〜1,050 MHzの範囲の信号を伝送することができる。発振器5から100、200、300、500、700及び1,000 MHzの信号を伝送し、スプリアス特性を調べた。結果を表1に示す。この高周波発振器5は高調波の発生が少なく、高調波以外のスプリアスがない。
(ii) Spurious characteristic measurement As shown in FIG. 15, a high-frequency oscillator 5 is connected to one end of conductive films 1 '' and 1 '' of a high-frequency transmission line for spurious characteristic measurement via a connection cable 70, and the other end. A high-frequency receiver 6 was connected to. A terminating resistor R (100Ω) for preventing reflected waves was provided immediately before the receiver 6. As shown in FIG. 16, the high-frequency oscillator 5 includes a voltage-controlled oscillator (VCO) 51, three high-frequency oscillation modules 52, 52 ′, 52 ″ and 2 which are switched according to the frequency of the signal to be transmitted. A plurality of high-frequency amplifiers 53 and 53 ′ are provided. The high frequency oscillator 5 can transmit signals in the range of 100 to 200 MHz, 260 to 550 MHz, and 600 to 1,050 MHz. Signals of 100, 200, 300, 500, 700 and 1,000 MHz were transmitted from the oscillator 5, and the spurious characteristics were examined. The results are shown in Table 1. The high-frequency oscillator 5 generates less harmonics and has no spurious other than the harmonics.

Figure 2008026743
Figure 2008026743

(b) 伝達係数の設定
接続用ケーブル70(図15参照)で発振器5と受信器6を接続し、発振器5から、1.0 Vの出力振幅で120〜1,050 MHzの周波数の信号を伝送した。図17(a)に示すように、発振器5の出力端子50,50から信号が(+)側から出力するように伝送した場合(信号パターン1)と、図17(b)に示すように、発振器5の出力端子50,50から信号が(−)側から出力するように伝送した場合(信号パターン2:信号パターン1に対して位相が1/2波長ずれている)との両方について入力振幅を求めた。式:伝達係数=入力振幅(V)/出力振幅(V)に従い、各測定周波数における伝達係数を求め、信号パターン1及び2の各々について周波数−伝達係数曲線を作成した。
(b) Transmission coefficient setting The oscillator 5 and the receiver 6 were connected by a connection cable 70 (see FIG. 15), and a signal having a frequency of 120 to 1,050 MHz with an output amplitude of 1.0 V was transmitted from the oscillator 5. As shown in FIG. 17A, when the signal is transmitted from the output terminals 50, 50 of the oscillator 5 so that the signal is output from the (+) side (signal pattern 1), as shown in FIG. Input amplitude for both cases where the signal is transmitted from the output terminals 50, 50 of the oscillator 5 so that the signal is output from the (−) side (signal pattern 2: phase shifted by 1/2 wavelength with respect to signal pattern 1). Asked. According to the formula: transfer coefficient = input amplitude (V) / output amplitude (V), the transfer coefficient at each measurement frequency was obtained, and a frequency-transfer coefficient curve was created for each of the signal patterns 1 and 2.

(c) 高周波伝達率の測定
上記(2)で作製した帯状傾斜接合導電膜を有する高周波伝送線路に、上記と同様にして上記高周波発振器5及び高周波受信器6を接続し、終端抵抗R(100Ω)を受信器6の直前に設けた(図15参照)。発振器5から1.0 Vの出力振幅(V)で発振した120〜1,050 MHzの信号(信号パターン1及び2)を伝送し、入力振幅(V)を求めた。上記周波数−伝達係数曲線から求められる伝達係数を用い、各測定周波数における高周波伝達率(%)を、式:高周波伝達率(%)=入力振幅(V)/(出力振幅(V)×伝達係数)×100に従い、算出した。周波数と高周波伝達率の関係をプロットした結果を図18に示す。図18から、信号パターン2に対して、430〜490 MHz及び650〜750 MHzの領域がほぼ除去されたことが分かる。信号パターン1を伝送した場合、特に700〜1,050 MHzの領域に対しては、伝達性に優れていた。中でも710〜810 MHz及び940〜1,050 MHzの領域で高周波伝達率が100%以上であった。
(c) Measurement of high-frequency transmissibility The high-frequency oscillator 5 and the high-frequency receiver 6 are connected to the high-frequency transmission line having the band-like inclined junction conductive film produced in (2) above, and the terminating resistor R (100Ω) ) Is provided immediately before the receiver 6 (see FIG. 15). A 120 to 1,050 MHz signal (signal patterns 1 and 2) oscillated with an output amplitude (V) of 1.0 V was transmitted from the oscillator 5, and an input amplitude (V) was obtained. Using the transfer coefficient obtained from the above frequency-transfer coefficient curve, the high-frequency transfer rate (%) at each measurement frequency is expressed by the formula: high-frequency transfer rate (%) = input amplitude (V) / (output amplitude (V) × transfer coefficient ) × 100. The result of plotting the relationship between the frequency and the high frequency transmissibility is shown in FIG. From FIG. 18, it can be seen that the regions of 430 to 490 MHz and 650 to 750 MHz are substantially removed from the signal pattern 2. When the signal pattern 1 was transmitted, the transmission was excellent particularly in the region of 700 to 1,050 MHz. Among them, the high-frequency transmission rate was 100% or more in the region of 710 to 810 MHz and 940 to 1,050 MHz.

実施例2
上記PETフィルムの一面に、各々蒸着法により、0.3μmの厚さの銅層を形成し、40 nmの厚さのニッケル層を形成した。得られた傾斜接合導電膜を5mmの幅となるようにスリットした。帯状傾斜接合導電膜2本を、ニッケル層が支持体側となるように、塩化ビニル樹脂製支持体に平行に接着した以外実施例1と同様にして平行線路型の高周波伝送線路を作製した(長さ:50 cm、二本の帯状傾斜接合導電膜の間隔d2:3mm)。図19に示すように、高周波伝送線路の両端部のPETフィルム10及び支持体2を除去し、ニッケル層11bの下の接着層3に絶縁体8を接合した状態で、鰐口クリップ7を用いて、傾斜接合導電膜1,1の銅層11aに上記高周波発振器5及び高周波受信器6を接続した以外実施例1と同様にして、高周波伝達率(%)を調べた。結果を図20に示す。図20から、信号パターン2に対して、670〜840 MHzの領域がほぼ除去されたことが分かる。信号パターン1及び2の両方に対して、260〜400 MHz及び950〜1,050 MHzの領域の伝達性に優れていた。中でも信号パターン2に対して、260〜380 MHz及び970〜1,050 MHzの領域で高周波伝達率が100%以上であった。
Example 2
A copper layer having a thickness of 0.3 μm was formed on one surface of the PET film by a vapor deposition method, and a nickel layer having a thickness of 40 nm was formed. The obtained gradient bonded conductive film was slit so as to have a width of 5 mm. A parallel line type high-frequency transmission line was prepared in the same manner as in Example 1 except that two strip-like inclined conductive films were bonded in parallel to a vinyl chloride resin support so that the nickel layer was on the support side (long). Length: 50 cm, the distance d 2 between the two strip-shaped gradient junction conductive films: 3 mm). As shown in FIG. 19, the PET film 10 and the support 2 at both ends of the high-frequency transmission line are removed, and the insulator 8 is joined to the adhesive layer 3 under the nickel layer 11b, and the lip clip 7 is used. The high-frequency transmission rate (%) was examined in the same manner as in Example 1 except that the high-frequency oscillator 5 and the high-frequency receiver 6 were connected to the copper layer 11a of the gradient junction conductive films 1 and 1. The results are shown in FIG. From FIG. 20, it can be seen that the region of 670 to 840 MHz is almost removed from the signal pattern 2. With respect to both signal patterns 1 and 2, the transmissibility in the region of 260 to 400 MHz and 950 to 1,050 MHz was excellent. In particular, with respect to the signal pattern 2, the high-frequency transmission rate was 100% or more in the region of 260 to 380 MHz and 970 to 1,050 MHz.

実施例3
実施例2と同様にして、PETフィルムの一面に、0.3μmの厚さの銅層及び40 nmの厚さのニッケル層を形成した。得られた傾斜接合導電膜を、定位置に固定した第一ロール(粒径15〜30μmの合成ダイヤモンド微粒子を電着したもの)と金属製第二ロールとの間に、金属薄膜が第一ロール側となるようにして通過させた。得られた多孔質傾斜接合導電膜は、ニッケル層及び銅層にのみ微細孔が形成され、微細孔の平均開口径が3μmであり、微細孔の平均分布密度が5×104 個/cm2であった。多孔質傾斜接合導電膜をスリットし、5mmの幅とし、実施例1と同様にして、平行線路型の高周波伝送線路を作製した。この高周波伝送線路について、実施例2と同様にして高周波伝達率(%)を調べた。結果を図21に示す。図21から、信号パターン2に対して、680〜740 MHzの領域がほぼ除去されたことが分かる。信号パターン1及び2に対して、260〜400 MHz及び780〜860 MHzの領域の伝達性に優れていた。特に信号パターン2に対して、260〜400 MHz、760〜840 MHz及び990〜1,050 MHzの領域で高周波伝達率が100%以上であった。
Example 3
In the same manner as in Example 2, a 0.3 μm thick copper layer and a 40 nm thick nickel layer were formed on one surface of the PET film. Between the first roll (electrodeposited with a synthetic diamond fine particle having a particle size of 15 to 30 μm) and the second roll made of metal, the metal thin film is the first roll. It was allowed to pass side by side. The obtained porous gradient bonding conductive film has micropores formed only in the nickel layer and the copper layer, the average aperture diameter of the micropores is 3 μm, and the average distribution density of micropores is 5 × 10 4 pieces / cm 2. Met. The porous gradient bonding conductive film was slit to a width of 5 mm, and a parallel line type high frequency transmission line was produced in the same manner as in Example 1. About this high frequency transmission line, it carried out similarly to Example 2, and investigated the high frequency transmissibility (%). The results are shown in FIG. From FIG. 21, it can be seen that the region of 680 to 740 MHz is almost removed from the signal pattern 2. With respect to the signal patterns 1 and 2, the transmissibility in the region of 260 to 400 MHz and 780 to 860 MHz was excellent. In particular, for the signal pattern 2, the high-frequency transmission rate was 100% or more in the regions of 260 to 400 MHz, 760 to 840 MHz, and 990 to 1,050 MHz.

実施例4
上記PETフィルムの一面に、各々蒸着法により、50 nmの厚さのニッケル層を形成し、0.45μmの厚さの銅層を形成した。得られた傾斜接合導電膜に、実施例3と同様にして微細孔を形成した。得られた多孔質傾斜接合導電膜は、銅層及びニッケル層にのみ微細孔が形成され、微細孔の平均開口径が3μmであり、微細孔の密度が5×104 個/cm2であった。多孔質傾斜接合導電膜を5mmの幅となるようにスリットした。帯状多孔質傾斜接合導電膜2本を、PETフィルムが支持体側となるように、塩化ビニル樹脂製支持体に平行に接着した以外実施例1と同様にして平行線路型の高周波伝送線路を作製した(長さ:50 cm、二本の帯状傾斜接合導電膜の間隔d2:3mm)。この高周波伝送線路について、実施例1と同様にして高周波伝達率(%)を調べた。結果を図22に示す。図22から、信号パターン1に対して、480〜530 MHzの領域がほぼ除去され、信号パターン2に対して、650〜700 MHzの領域がほぼ除去されたことが分かる。信号パターン1に対して、130〜160 MHz、260〜300 MHz、380〜400 MHz、650〜720 MHz及び920〜1,000 MHzの領域の伝達性に優れていた。信号パターン2に対して、130〜180 MHz、260〜360 MHz、450〜500 MHz、750〜820 MHz及び960〜990 MHzの領域の伝達性に優れていた。
Example 4
A nickel layer having a thickness of 50 nm was formed on one surface of the PET film by a vapor deposition method, and a copper layer having a thickness of 0.45 μm was formed. Fine pores were formed in the obtained gradient bonded conductive film in the same manner as in Example 3. The obtained porous gradient bonding conductive film had micropores formed only in the copper layer and nickel layer, the average aperture diameter of micropores was 3 μm, and the density of micropores was 5 × 10 4 pieces / cm 2. It was. The porous gradient bonding conductive film was slit so as to have a width of 5 mm. A parallel-line type high-frequency transmission line was prepared in the same manner as in Example 1 except that two strip-shaped porous gradient bonding conductive films were bonded in parallel to a vinyl chloride resin support so that the PET film was on the support side. (Length: 50 cm, distance d 2 between two strip-shaped gradient junction conductive films: 3 mm). About this high frequency transmission line, it carried out similarly to Example 1, and investigated the high frequency transmissibility (%). The results are shown in FIG. From FIG. 22, it can be seen that the region of 480 to 530 MHz is substantially removed for the signal pattern 1 and the region of 650 to 700 MHz is substantially removed for the signal pattern 2. With respect to the signal pattern 1, the transmission was excellent in the region of 130 to 160 MHz, 260 to 300 MHz, 380 to 400 MHz, 650 to 720 MHz, and 920 to 1,000 MHz. With respect to the signal pattern 2, the transmission was excellent in the region of 130 to 180 MHz, 260 to 360 MHz, 450 to 500 MHz, 750 to 820 MHz, and 960 to 990 MHz.

比較例1
銅箔上にニッケル層を形成しなかった以外実施例1と同様にして、導電膜を形成した。この導電膜をスリットし、5mmの幅とし、PIフィルムが支持体側となるように塩化ビニル樹脂製支持体に平行に接着した以外実施例1と同様にして高周波伝送線路を作製した。この高周波伝送線路について、実施例1と同様にして高周波伝達率(%)を調べた。結果を図23に示す。この導電膜は傾斜組成層を有さないので、高周波伝達率が0%の領域が発現しなかった。
Comparative Example 1
A conductive film was formed in the same manner as in Example 1 except that the nickel layer was not formed on the copper foil. This conductive film was slit to a width of 5 mm, and a high-frequency transmission line was produced in the same manner as in Example 1 except that the PI film was bonded in parallel to the support made of vinyl chloride resin so that the PI film was on the support side. About this high frequency transmission line, it carried out similarly to Example 1, and investigated the high frequency transmissibility (%). The results are shown in FIG. Since this conductive film did not have a gradient composition layer, a region having a high-frequency transmission rate of 0% did not appear.

比較例2
実施例1と同様にして傾斜接合導電膜を作製した後、ニッケル層側から500℃で加熱し、傾斜組成層を消失させた。得られた金属フィルム(ニッケル/銅)を用い、ニッケル層が支持体側となるように、塩化ビニル樹脂製支持体に平行に接着した以外実施例1と同様にして高周波伝送線路を作製した。この高周波伝送線路について、実施例1と同様にして高周波伝達率(%)を調べた。結果を図24に示す。この導電膜は傾斜組成層を有さないので、高周波伝達率が0%の領域が発現しなかった。
Comparative Example 2
A gradient bonded conductive film was prepared in the same manner as in Example 1, and then heated from the nickel layer side at 500 ° C. to eliminate the gradient composition layer. Using the obtained metal film (nickel / copper), a high-frequency transmission line was produced in the same manner as in Example 1 except that the nickel layer was bonded in parallel to a vinyl chloride resin support so that the nickel layer was on the support side. About this high frequency transmission line, it carried out similarly to Example 1, and investigated the high frequency transmissibility (%). The results are shown in FIG. Since this conductive film did not have a gradient composition layer, a region having a high-frequency transmission rate of 0% did not appear.

比較例3
上記PETフィルムの一面に、鉄10原子%及び銅90原子%の合金を5,000Åの厚さで蒸着した。得られた導電膜をスリットし、5mmの幅とし、PETフィルムが支持体側となるように塩化ビニル樹脂製支持体に平行に接着した以外実施例1と同様にして高周波伝送線路を作製した。この高周波伝送線路について、実施例1と同様にして高周波伝達率(%)を調べた。結果を図25に示す。この導電膜は傾斜組成層を有さないので、実施例1〜4の高周波伝送線路に比べて、全体的に高周波伝達率が劣っていた。
Comparative Example 3
An alloy of 10 atomic% iron and 90 atomic% copper was deposited on one surface of the PET film at a thickness of 5,000 mm. The obtained conductive film was slit to have a width of 5 mm, and a high-frequency transmission line was produced in the same manner as in Example 1 except that the PET film was adhered in parallel to the vinyl chloride resin support so that the PET film was on the support side. About this high frequency transmission line, it carried out similarly to Example 1, and investigated the high frequency transmissibility (%). The results are shown in FIG. Since this electrically conductive film does not have a gradient composition layer, the overall high frequency transmission rate was inferior to the high frequency transmission lines of Examples 1 to 4.

Claims (19)

プラスチックフィルムの少なくとも一面に下から順に電気抵抗が異なる第一及び第二の金属薄膜を有する傾斜接合導電膜であって、前記第一及び第二の金属薄膜の境界に、金属組成比が厚さ方向に変化する傾斜組成層があることを特徴とする傾斜接合導電膜。 A gradient bonded conductive film having first and second metal thin films having different electrical resistances in order from the bottom on at least one surface of a plastic film, wherein the metal composition ratio is thick at the boundary between the first and second metal thin films. There is a gradient composition layer that changes in a direction, a gradient junction conductive film. 請求項1に記載の傾斜接合導電膜において、前記プラスチックフィルムと前記第一の金属薄膜との境界も、前記金属の割合が前記第一の金属薄膜から前記プラスチックフィルムにかけて減少する傾斜組成層があることを特徴とする傾斜接合導電膜。 2. The gradient bonded conductive film according to claim 1, wherein a boundary between the plastic film and the first metal thin film is also a gradient composition layer in which a proportion of the metal decreases from the first metal thin film to the plastic film. A graded junction conductive film. 請求項1又は2に記載の傾斜接合導電膜において、前記第一の金属薄膜は蒸着膜、めっき膜又は箔であり、前記第二の金属薄膜は蒸着膜又はめっき膜であることを特徴とする傾斜接合導電膜。 3. The gradient bonding conductive film according to claim 1, wherein the first metal thin film is a vapor deposition film, a plating film, or a foil, and the second metal thin film is a vapor deposition film or a plating film. Tilted junction conductive film. 請求項1〜3のいずれかに記載の傾斜接合導電膜において、前記第二の金属薄膜は前記第一の金属薄膜より2×10-6Ω・cm以上大きな電気抵抗を有することを特徴とする傾斜接合導電膜。4. The gradient junction conductive film according to claim 1, wherein the second metal thin film has an electric resistance that is 2 × 10 −6 Ω · cm or more larger than that of the first metal thin film. Tilted junction conductive film. 請求項4に記載の傾斜接合導電膜において、前記第一の金属薄膜が銅からなり、前記第二の金属薄膜がニッケルからなることを特徴とする傾斜接合導電膜。 5. The gradient junction conductive film according to claim 4, wherein the first metal thin film is made of copper and the second metal thin film is made of nickel. 請求項4又は5に記載の傾斜接合導電膜において、前記第一の金属薄膜と前記第二の金属薄膜との厚さ比が2/1〜20/1であることを特徴とする傾斜接合導電膜。 6. The gradient junction conductive film according to claim 4, wherein a thickness ratio of the first metal thin film to the second metal thin film is 2/1 to 20/1. film. 請求項4〜6のいずれかに記載の傾斜接合導電膜において、前記第一の金属薄膜は厚さが0.1〜1μmであり、前記第二の金属薄膜は厚さが10〜70 nmであることを特徴とする傾斜接合導電膜。 7. The graded junction conductive film according to claim 4, wherein the first metal thin film has a thickness of 0.1 to 1 [mu] m, and the second metal thin film has a thickness of 10 to 70 nm. A graded junction conductive film. 請求項1〜3のいずれかに記載の傾斜接合導電膜において、前記第一の金属薄膜は前記第二の金属薄膜より2×10-6Ω・cm以上大きな電気抵抗を有することを特徴とする傾斜接合導電膜。4. The gradient junction conductive film according to claim 1, wherein the first metal thin film has an electric resistance larger by 2 × 10 −6 Ω · cm or more than the second metal thin film. Tilted junction conductive film. 請求項8に記載の傾斜接合導電膜において、前記第一の金属薄膜がニッケルからなり、前記第二の金属薄膜が銅からなることを特徴とする傾斜接合導電膜。 9. The gradient junction conductive film according to claim 8, wherein the first metal thin film is made of nickel and the second metal thin film is made of copper. 請求項8又は9に記載の傾斜接合導電膜において、前記第二の金属薄膜と前記第一の金属薄膜との厚さ比が2/1〜20/1であることを特徴とする傾斜接合導電膜。 The gradient junction conductive film according to claim 8 or 9, wherein the thickness ratio of the second metal thin film to the first metal thin film is 2/1 to 20/1. film. 請求項8〜10のいずれかに記載の傾斜接合導電膜において、前記第一の金属薄膜は厚さが10〜70 nmであり、前記第二の金属薄膜は厚さが0.1〜1μmであることを特徴とする傾斜接合導電膜。 11. The graded junction conductive film according to claim 8, wherein the first metal thin film has a thickness of 10 to 70 nm, and the second metal thin film has a thickness of 0.1 to 1 μm. A graded junction conductive film. 請求項1〜11のいずれかに記載の傾斜接合導電膜において、少なくとも前記第一及び第二の金属薄膜に0.5〜50μmの平均開口径を有する多数の微細孔が形成されていることを特徴とする傾斜接合導電膜。 The gradient junction conductive film according to any one of claims 1 to 11, wherein a plurality of fine holes having an average opening diameter of 0.5 to 50 µm are formed in at least the first and second metal thin films. An inclined bonding conductive film. 請求項12に記載の傾斜接合導電膜において、前記微細孔の平均分布密度は1×104〜2×105個/cm2であることを特徴とする傾斜接合導電膜。13. The gradient junction conductive film according to claim 12, wherein the average distribution density of the micropores is 1 × 10 4 to 2 × 10 5 holes / cm 2 . 請求項1〜13のいずれかに記載の傾斜接合導電膜において、前記プラスチックフィルムはポリエチレンテレフタレート又はポリイミドからなることを特徴とする傾斜接合導電膜。 14. The gradient bonded conductive film according to claim 1, wherein the plastic film is made of polyethylene terephthalate or polyimide. 請求項1〜14のいずれかに記載の二つの離隔した傾斜接合導電膜を並列に具備することを特徴とする高周波伝送線路。 A high-frequency transmission line comprising two spaced-apart inclined junction conductive films according to any one of claims 1 to 14 in parallel. 請求項15に記載の高周波伝送線路において、二つの前記傾斜接合導電膜が誘電体基板の同一面上に配置されていることを特徴とする高周波伝送線路。 16. The high-frequency transmission line according to claim 15, wherein the two inclined junction conductive films are arranged on the same surface of the dielectric substrate. 請求項15に記載の高周波伝送線路において、二つの前記傾斜接合導電膜が、断面コの字状誘電体基板の対向内面上に配置されていることを特徴とする高周波伝送線路。 16. The high frequency transmission line according to claim 15, wherein the two inclined junction conductive films are disposed on opposing inner surfaces of a U-shaped dielectric substrate in cross section. 請求項15に記載の高周波伝送線路において、二つの前記傾斜接合導電膜が、断面L字状の誘電体基板の直交内面上に配置されていることを特徴とする高周波伝送線路。 16. The high-frequency transmission line according to claim 15, wherein the two inclined junction conductive films are arranged on orthogonal inner surfaces of a dielectric substrate having an L-shaped cross section. 請求項15〜18のいずれかに記載の高周波伝送線路を具備することを特徴とする高周波フィルタ。 19. A high frequency filter comprising the high frequency transmission line according to claim 15.
JP2008532139A 2006-08-31 2007-08-31 Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same Expired - Fee Related JP5186375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008532139A JP5186375B2 (en) 2006-08-31 2007-08-31 Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006237076 2006-08-31
JP2006237076 2006-08-31
PCT/JP2007/067075 WO2008026743A1 (en) 2006-08-31 2007-08-31 Gradient bonding conductive film, high-frequency transmission line and high-frequency filter using the same
JP2008532139A JP5186375B2 (en) 2006-08-31 2007-08-31 Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same

Publications (2)

Publication Number Publication Date
JPWO2008026743A1 true JPWO2008026743A1 (en) 2010-01-21
JP5186375B2 JP5186375B2 (en) 2013-04-17

Family

ID=39136024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532139A Expired - Fee Related JP5186375B2 (en) 2006-08-31 2007-08-31 Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same

Country Status (3)

Country Link
JP (1) JP5186375B2 (en)
TW (1) TWI464956B (en)
WO (1) WO2008026743A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410094B2 (en) * 2006-12-20 2014-02-05 清二 加川 Conductive film, method for producing the same, and high-frequency component
WO2010026650A1 (en) * 2008-09-05 2010-03-11 東芝ストレージデバイス株式会社 Head suspension unit and head suspension assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298093A (en) * 1989-05-12 1990-12-10 Tokyo Electron Ltd Flexible wiring board
JP3447070B2 (en) * 1992-09-17 2003-09-16 三井化学株式会社 Flexible circuit board materials
JPH06334410A (en) * 1993-05-24 1994-12-02 Japan Aviation Electron Ind Ltd Flexible wiring board
JP2953298B2 (en) * 1994-03-30 1999-09-27 日本電気株式会社 Microstrip line and method of manufacturing the same
JPH07273509A (en) * 1994-04-04 1995-10-20 Toshiba Corp Manufacture of microwave circuit and printed circuit board
JP3362535B2 (en) * 1994-12-14 2003-01-07 株式会社村田製作所 High frequency electromagnetic field coupling type thin film laminated electrode, high frequency transmission line, high frequency resonator, high frequency filter, high frequency device, and method of setting film thickness of high frequency electromagnetic field coupling type thin film laminated electrode
JPH0974257A (en) * 1995-09-01 1997-03-18 Dainippon Printing Co Ltd Thick film wiring and manufacture thereof
JPH09162514A (en) * 1995-12-08 1997-06-20 Ibiden Co Ltd Printed wiring board and its manufacture
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line

Also Published As

Publication number Publication date
JP5186375B2 (en) 2013-04-17
WO2008026743A1 (en) 2008-03-06
TW200820485A (en) 2008-05-01
TWI464956B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP4976316B2 (en) Electromagnetic wave absorbing film
CN103718664B (en) There is the electromagentic wave absorption film of high-cooling property
JPH01251805A (en) Microstrip antenna
JPH0249544B2 (en)
JP2007221713A (en) High frequency transmission line
JP6208394B1 (en) Electromagnetic wave absorption filter
CN101682982B (en) Wiring member and process for producing the same
JP2005219259A (en) Metallized polyimide film
JP5186375B2 (en) Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same
Wu et al. Fabrication of polyetheretherketone (PEEK)-based 3D electronics with fine resolution by a hydrophobic treatment assisted hybrid additive manufacturing method
JP5410094B2 (en) Conductive film, method for producing the same, and high-frequency component
JP4417062B2 (en) Electromagnetic noise suppressor and electromagnetic noise control electronic device
JP2008028468A (en) High-frequency transmission line and high-frequency filter
KR20220042307A (en) A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate
JP4459360B2 (en) Circuit board and manufacturing method thereof
WO2003056058A1 (en) A method of producing a composite electroconductive material
CN116685051B (en) Metal foil, carrier foil, metal-clad laminate, printed wiring board, and battery
JP2004039455A (en) Metal deposition conductive thin film with conductive hole, and its manufacturing method and application
JP2018166241A (en) Planar antenna and manufacturing method thereof
JP2018123261A (en) Resin and method for producing resin
JP2009188770A (en) Beltlike high frequency transmission line and parallel type high frequency transmission line
EP2960985A1 (en) High-frequency transmission line, antenna and electronic circuit board
JP2003136626A (en) Conductive layer-laminated material and part using the material
JP2007312322A (en) Distributor for high frequency signal
CN116801512A (en) Method for manufacturing substrate with roughened surface and method for manufacturing substrate with plating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5186375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees