JPS649057B2 - - Google Patents

Info

Publication number
JPS649057B2
JPS649057B2 JP7459685A JP7459685A JPS649057B2 JP S649057 B2 JPS649057 B2 JP S649057B2 JP 7459685 A JP7459685 A JP 7459685A JP 7459685 A JP7459685 A JP 7459685A JP S649057 B2 JPS649057 B2 JP S649057B2
Authority
JP
Japan
Prior art keywords
collision
protrusion
nozzle
chamber
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7459685A
Other languages
Japanese (ja)
Other versions
JPS61234959A (en
Inventor
Toshiki Akamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7459685A priority Critical patent/JPS61234959A/en
Publication of JPS61234959A publication Critical patent/JPS61234959A/en
Publication of JPS649057B2 publication Critical patent/JPS649057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 本発明はニユーセラミツクス原料であるアルミ
ナ、炭化硅素、窒化硅素、ジルコニア等の硬質物
質の微粉砕機に関するもので、特にサブミクロン
(1ミクロン以下)の粉体の製造を可能にする流
体エネルギーを用いた微粉砕機(以下ジエツトミ
ルという)に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] "Industrial Application Field" The present invention relates to a pulverizer for hard materials such as alumina, silicon carbide, silicon nitride, and zirconia, which are raw materials for new ceramics. The present invention relates to a pulverizer (hereinafter referred to as a jet mill) using fluid energy that enables the production of micron (1 micron or less) powder.

「従来の技術」 現在、一般的に用いられているジエツトミルは
旋回型(水平旋回及び竪旋回)ジエツトミルと衝
突型(壁衝突及びノズル対向)ジエツトミルに区
分されている。旋回型ジエツトミルは砕料を丸め
る効果が大きいが砕料が丸くなつてしまうと破砕
作用は減じ細粒化が進み難いので旋回作用によつ
ては微粒を得る限度がある。衝突型は砕料を破砕
する効果が大きいが破砕された砕料は角が鋭く、
用途によつてはそのまゝ使用できない。この欠点
を取除いたものが衝突と旋回の両作用を行わせる
衝突旋回複合型ジエツトミルである。特願昭59−
157641号で示されてる発明は衝突と旋回を併用し
た形式の微粉砕機であり、該発明では衝突型ミル
部により破砕された砕料を破砕し、旋回型ミル部
にて更に破砕を行うものであり、その後分級して
微粉を取出し、残部をくり返し破砕を行うもので
ある。
``Prior Art'' Currently, jet mills commonly used are classified into swing type (horizontal rotation and vertical rotation) jet mills and collision type (wall collision and nozzle facing) jet mills. A swirling jet mill has a great effect of rounding the crushed material, but once the crushed material is rounded, the crushing action is reduced and it is difficult to make the grain finer, so there is a limit to the amount of fine particles that can be obtained depending on the swirling action. The collision type has a great effect of crushing the crushed materials, but the crushed materials have sharp edges.
Depending on the purpose, it cannot be used as is. A collision-and-swing compound jet mill that eliminates this drawback is a jet mill that performs both collision and swirling operations. Special request 1987-
The invention disclosed in No. 157641 is a pulverizer of a type that uses both collision and rotation, and in this invention, the crushed material is crushed by the collision type mill part, and further crushed by the rotation type mill part. After that, it is classified to remove the fine powder, and the remaining part is crushed repeatedly.

ノズル対向型を除いた衝突型ジエツトミル(複
合型における衝突型ミル部も同じ)は、ジエツト
流で随伴した砕料を直接固定壁に衝突させて粉砕
を行うもので、その特性はニユーセラミツクス原
料のようなアルミナ、炭化硅素等、特に硬い物質
の粉砕に適していることは周知のことである。
Impingement-type jet mills other than the nozzle facing type (the same applies to the collision-type mill part of the composite type) crush the crushed material entrained in the jet flow by colliding it directly against a fixed wall, and its characteristics are based on the characteristics of the new ceramic raw material. It is well known that grinding is particularly suitable for grinding hard materials such as alumina and silicon carbide.

衝突型の微粉砕機で使用される固定壁の材質
は、一般にはセラミツクスあるいは超硬合金鋼を
用い、ジエツト流に直角に対向して固定壁を設け
ている。
The material of the fixed wall used in an impingement-type pulverizer is generally ceramics or cemented carbide steel, and the fixed wall is provided facing perpendicularly to the jet flow.

「発明が解決しようとする問題点」 このような固定壁に砕料例えば硬度の高いニユ
ーセラミツクス原料をジエツト流に随伴して衝突
させると衝突する部分から摩耗して凹所が形成さ
れ、短時間の固定壁が損耗する。即ち、一般に耐
摩性が大きいとされるセラミツクスあるいは超硬
合金鋼であつても直角に衝突させる場合には固定
壁としては短寿命である。
``Problems to be Solved by the Invention'' When crushed particles, such as hard new ceramic raw materials, are collided with a jet flow against such a fixed wall, the colliding portions are worn away and a recess is formed, causing a short period of time. Fixed walls are worn out. That is, even if ceramics or cemented carbide steel are generally considered to have high wear resistance, they will have a short life as a fixed wall if they are collided at right angles.

このため固定壁をジエツト流に対して斜設平面
としたものがあるが、このようにすると固定壁に
衝突反撥した砕料は一方向のみに集中してとび、
旋回粉砕手段での流れを乱す傾向が生ずる。
For this reason, there is a fixed wall with a flat surface inclined to the jet flow, but in this case, the crushed material that collides with the fixed wall and is repulsed concentrates in one direction and flies away.
A tendency to disrupt the flow in the swirling grinding means occurs.

本発明はジエツト流に随伴した砕料を直接固定
壁に衝突させて粉砕を行う型式の衝突型ジエツト
ミルの構成を備えた微粉砕機において、前記固定
壁を改良することにより耐久性のある微粉砕機を
提供することを目的とするものである。
The present invention provides a pulverizer having the structure of an impact-type jet mill in which pulverized material accompanying a jet flow is directly collided with a fixed wall to achieve durable pulverization by improving the fixed wall. The purpose is to provide opportunities.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本発明は砕料供給口に通ずる固気混合室に高圧
空気の供給されるノズルの先端を開口し、ノズル
と一直線上に固気混合室に連通する加速管を備
え、加速管口に対向して衝突板を備えた微粉砕機
において、前記衝突板に加速管出口中心に向つて
中心部が最も突出した突起を設けたことを特徴と
する微粉砕機である。
"Means for Solving the Problems" The present invention opens the tip of a nozzle through which high-pressure air is supplied to a solid-gas mixing chamber that communicates with a powder supply port, and accelerates air flow that communicates with the solid-gas mixing chamber in a straight line with the nozzle. A pulverizer comprising a tube and a collision plate facing the acceleration tube opening, characterized in that the collision plate is provided with a protrusion whose center most protrudes toward the center of the acceleration tube outlet. It is.

「作用」 衝突板の突起に加速管をとおつて噴出するジエ
ツト流に随伴する砕料が当ると突起に対して偏心
衝突して破砕される。一方突起に沿つて根本側へ
移動する砕料には直進して来る砕料が衝突して破
砕が行われる。衝突後の砕料は放射状に飛び散
る。
``Operation'' When the debris accompanying the jet stream ejected through the accelerating tube hits the protrusion of the collision plate, it eccentrically collides with the protrusion and is crushed. On the other hand, the debris moving toward the root side along the protrusion is crushed by collision with the debris moving straight ahead. After the collision, the debris scatters radially.

「実施例」 以下、本発明の実施例を図面を参照しながら説
明する。第1図は本発明の実施例の縦断面図であ
る。
"Embodiments" Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an embodiment of the invention.

胴体1の一端に固定された通路を構成するヘツ
ド部材2とヘツド部材2に固定された蓋3により
固気混合室4を形成し、この蓋3に固気混合室4
への砕料供給口5と、高圧ヘツダ6に圧縮空気管
7を介して連通されて圧縮空気を固気混合室4へ
噴出するノズル8が隣接開口して設けられてい
る。胴体1の他端には、胴体1と胴体1に固定さ
れた円形皿状の底壁9で旋回粉砕室10が形成さ
れ、該旋回粉砕室10にはそれぞれ圧縮空気管1
1を介して高圧ヘツダ6に連通されて圧縮空気を
噴出する旋回粉砕用ノズル12が、第3図に示す
ようにその取付部と旋回粉砕室10の中心を通る
半径方向の線に対して角度αをもつて外周上に等
配置され、開口している。また、旋回粉砕室10
内には加速管14からのジエツト流に対向する固
定壁として衝突板13が設けてある。この衝突板
13は旋回粉砕室の底壁9の中心孔に嵌入固定さ
れている。(固定方法は図示されない)。
A solid-air mixing chamber 4 is formed by a head member 2 that forms a passage fixed to one end of the body 1 and a lid 3 that is fixed to the head member 2.
A nozzle 8 that communicates with the high-pressure header 6 via a compressed air pipe 7 and jets compressed air into the solid-air mixing chamber 4 is provided adjacently to the crushed material supply port 5 . At the other end of the body 1, a rotating crushing chamber 10 is formed by the body 1 and a circular dish-shaped bottom wall 9 fixed to the body 1, and each of the rotating crushing chambers 10 is provided with a compressed air pipe 1.
As shown in FIG. 3, a rotating crushing nozzle 12 that communicates with a high-pressure header 6 through a high-pressure header 6 and blows out compressed air is at an angle with respect to a radial line passing through its mounting portion and the center of the rotating crushing chamber 10, as shown in FIG. They are equally spaced on the outer periphery with α and are open. In addition, the rotating crushing chamber 10
A collision plate 13 is provided inside as a fixed wall facing the jet flow from the acceleration tube 14. This collision plate 13 is fitted and fixed into the center hole of the bottom wall 9 of the rotating crushing chamber. (Fixation method not shown).

ヘツド部材2には加速管14がねじ込み固定さ
れ、固定混合室4と旋回粉砕室10とを固気混合
気流を加速するためのノズル8と同芯の断面円環
形の加速管14にて連通し、その放出先端部を、
衝突板13と適当な間隔をあけ、この加速管14
の放出先端部を図示例のようにラツパ状に拡大さ
せてある。
An accelerating tube 14 is screwed and fixed to the head member 2, and the fixed mixing chamber 4 and the rotating crushing chamber 10 are communicated through the accelerating tube 14, which has an annular cross section and is concentric with the nozzle 8 for accelerating the solid-gas mixture flow. , its emitting tip,
This acceleration tube 14 is placed at an appropriate distance from the collision plate 13.
As shown in the illustration, the discharging tip is enlarged in a trumpet shape.

さらに、加速管14の外周には、胴体1と所定
の間隔をもつ円環状の整流ゾーン15を設け、旋
回粉砕室10はこの整流ゾーン15を介して整流
ゾーン15につづけて胴体1、ヘツド部材2及び
加速管14により画された円錐形環状の分級室1
6と連通されている。さらにまた、ヘツド部材2
には分級室16内に分級室16を二つの環状に分
割するように加速管14を囲んで、微粉と所定粒
度に適しない細粉を分級するための環状の分級板
17を設け、その内側をより粒度の小さい製品を
分級する微粉室18、外側をより粒度の大きい再
循環用粉体を導入する細粉室19とに区分し、微
粉室18にはこれと連通するヘツド部材2に設け
た二本の排出孔21が各排出管22を経て集合排
出管23に連通される一方、細粉室19はヘツド
部材2において放射状に配された循環路24を経
て固気混合室4に連通されている。
Further, an annular rectification zone 15 having a predetermined distance from the body 1 is provided on the outer periphery of the accelerating tube 14, and the rotating crushing chamber 10 is connected to the body 1 and the head member via this rectification zone 15. 2 and an accelerating tube 14.
It is connected to 6. Furthermore, the head member 2
An annular classification plate 17 is provided in the classification chamber 16 surrounding the accelerator tube 14 so as to divide the classification chamber 16 into two annular shapes, and for classifying fine powder and fine powder not suitable for a predetermined particle size. The powder chamber 18 is divided into a fine powder chamber 18 for classifying products with a smaller particle size, and a fine powder chamber 19 for introducing recirculation powder with a larger particle size on the outside. The two discharge holes 21 communicate with the collective discharge pipe 23 through each discharge pipe 22, while the fine powder chamber 19 communicates with the solid-gas mixing chamber 4 through circulation paths 24 arranged radially in the head member 2. has been done.

衝突板13には突起25が加速管14に対向し
て設けてある。第4図は突起25を説明するため
の衝突板13の拡大図である。衝突板13の中心
と断面円環状の加速管14の中心は一致してお
り、突起25は衝突板13の中心に位置してい
る。突起25は中心が加速管14に向つて最も突
出しており、根本側に向つて連続して続き平板と
なつている衝突板13の室内側下面外周の平面2
6に滑らかにつづく。突起25は円錐体様である
がその頂部をθ1とすると突起25の母線の任意の
位置における衝突板13の中心となす角θ>θ1
あり、角θは連続的に頂角θ1より増大して90度と
なり平板となつている衝突板13の平面26に連
続する。この角θが90度となる点の突起25の根
本径DBは加速管14の出口径D(ラツパ状の口部
を除く部分)とするとDBは約2Dであり、突起2
5の高さH=D/2〜2/3D程度である。
A protrusion 25 is provided on the collision plate 13 so as to face the acceleration tube 14 . FIG. 4 is an enlarged view of the collision plate 13 for explaining the protrusion 25. FIG. The center of the collision plate 13 and the center of the acceleration tube 14 having an annular cross section coincide with each other, and the protrusion 25 is located at the center of the collision plate 13. The center of the protrusion 25 is the most protruding toward the acceleration tube 14, and continues toward the base side to form a flat plate.
Continues smoothly to 6. The protrusion 25 is cone-like, and if its apex is θ 1 , then the angle between the center of the collision plate 13 and the center of the collision plate 13 at any position on the generatrix of the protrusion 25 is θ > θ 1 , and the angle θ is continuously the apex angle θ 1 The angle further increases to 90 degrees and continues to the plane 26 of the collision plate 13, which is a flat plate. The root diameter D B of the protrusion 25 at the point where this angle θ is 90 degrees is approximately 2D, assuming that the exit diameter D of the acceleration tube 14 (excluding the tongue-like opening) is approximately 2D.
The height H of 5 is approximately D/2 to 2/3D.

今、不図示の高圧空気源から、高圧ヘツダ6に
圧縮空気が送り込まれると、圧縮空気管7をとお
り、ノズル8から高速で噴出する圧縮空気によつ
て砕料は砕料供給口5から固気混合室4に吸い込
まれ、固気混合状態で加速管14中で加速されて
衝突板の突起25に衝突する。又、ヘツダ6中の
圧縮空気は圧縮空気管11を通じて旋回粉砕用ノ
ズル12から旋回粉砕室10に吹込まれており、
旋回粉砕室10では加速管14を中心として渦流
を生じている。突起25は加速管14の直径の大
略2倍位あるので、加速管14からジエツト流に
随伴する砕料は加速管14のラツパ状端の作用に
より、直径Dよりもやや大きな直径D2の円の範
囲で突起25に偏衝突する。この偏衝突する最も
外側の直径D2の位置における突起25の母線と
その位置におけるジエツト流の流速に対する接線
のなす角はθ2である。
Now, when compressed air is sent into the high-pressure header 6 from a high-pressure air source (not shown), the crushed material is solidified from the crushed material supply port 5 by the compressed air that passes through the compressed air pipe 7 and is jetted out at high speed from the nozzle 8. The gas is sucked into the gas mixing chamber 4, accelerated in the acceleration tube 14 in a solid-gas mixed state, and collides with the protrusion 25 of the collision plate. Further, compressed air in the header 6 is blown into the rotating crushing chamber 10 from a rotating crushing nozzle 12 through a compressed air pipe 11.
In the rotating crushing chamber 10, a vortex is generated around the acceleration tube 14. Since the protrusion 25 is approximately twice the diameter of the accelerating tube 14, the crushed material accompanying the jet flow from the accelerating tube 14 is shaped into a circle with a diameter D2 slightly larger than the diameter D due to the action of the flap-shaped end of the accelerating tube 14 . It collides unevenly with the protrusion 25 in the range of . The angle formed by the generatrix of the protrusion 25 at the position of the outermost diameter D 2 where the uneven collision occurs and the tangent to the flow velocity of the jet flow at that position is θ 2 .

従つて、セラミツクス製の衝突板13は、直角
的に衝突する作用に対しては非常に脆いのである
が、砕料は突起25の母線とのなす角θ1,θ2を含
むすべての衝突角が角θi<90度で衝突するための
突起25の表面を摺擦し、引つかくから摩耗させ
ることが少ない。この偏衝突の角θi≦45度が適当
である。突起25は加速管14の直径Dよりもわ
ずかに大きい範囲において加速管14より噴出す
るジエツト流に随伴する砕料が直接偏衝突する
が、それ以外に、突起25に一旦偏衝突して母線
に沿いあるいは母線から第1図、第4図において
斜め下方に反撥してとぶ砕料に後続の加速管14
から高速度でほぼ直線状に送られる砕料が衝突す
る。即ち、砕料同志の衝突が突起25のほぼ加速
管14の出口径Dの範囲で生ずる。この砕料同志
の衝突は破砕作用のみで衝突板13を摩耗させる
ことは殆んどない。このような作用は突起25の
中心部から立体的に放射状に生じ、衝突によつて
粉砕された砕料は細かく粉砕されて、衝突板13
の平面26では平行して旋回粉砕室10に放射的
に飛散する。この飛散した砕料は旋回粉砕用ノズ
ル12からのジエツト流により加速され、破砕粉
同志が衝突及び摩擦して粉砕される。すなわち、
旋回粉砕室10内では、高速旋回によつて粉体に
は遠心力が働らき、大きい粒子は外壁側で旋回し
ながら、旋回粉砕ノズルによつてさらに粉砕が繰
り返され、微細化してゆく。衝突と旋回粉砕作用
により微細化された微粉は、遠心力を失つてノズ
ル8、加速管14をとおり旋回粉砕室10に入つ
た空気に旋回粉砕用ノズル12より旋回粉砕室1
0に入つた空気を加えた空気の流動に随伴され
て、前述の加速管14の外周に旋回粉砕室10か
ら連通している整流ゾーン15を高速旋回し乍
ら、分級室16に至る。衝突粉砕及び旋回粉砕さ
れた砕料は該分級室16内でより粒度の大きい細
粉とより粒度の小さい微粒とに分級されて細粉室
19、微粉室18に進入し、微粉は排出孔21、
排出管22を通過して、集合排出管23に集めら
れ、機外に設置している(図示せず)捕集機で捕
集される。一方分級室16で分級された細粉は、
循環路24を経て再度固気混合室4に吸引され、
衝突粉砕及び旋回粉砕を繰り返すものである。
Therefore, the collision plate 13 made of ceramics is very fragile against the action of colliding at right angles, but the crushed material will absorb all the collision angles including the angles θ 1 and θ 2 formed with the generatrix of the protrusion 25. The surface of the protrusion 25 for collision at an angle θi < 90 degrees is rubbed and stuck, so there is less wear. It is appropriate that the angle of this eccentric collision is θi≦45 degrees. The projections 25 are directly biased by the debris accompanying the jet stream ejected from the acceleration tube 14 in a range slightly larger than the diameter D of the acceleration tube 14, but in addition to this, the debris collides biasedly with the projections 25 once and reaches the generatrix. The accelerating tube 14 that follows the crushed material repulses diagonally downward along the line or from the generatrix in Figures 1 and 4.
The crushed material that is sent almost in a straight line at high speed collides with each other. That is, the collision of the crushed particles occurs within the range of approximately the exit diameter D of the acceleration tube 14 of the protrusion 25 . This collision of the crushed materials with each other is only a crushing effect and hardly causes any wear on the collision plate 13. Such an action occurs three-dimensionally and radially from the center of the protrusion 25, and the crushed material crushed by the collision is finely crushed and hits the collision plate 13.
The particles are scattered radially in parallel on the plane 26 into the rotating grinding chamber 10. This scattered crushed material is accelerated by the jet flow from the rotating crushing nozzle 12, and the crushed powder collides and rubs against each other to be crushed. That is,
In the rotating crushing chamber 10, centrifugal force acts on the powder due to high-speed rotation, and large particles are further crushed by the rotating crushing nozzle while rotating on the outer wall side, becoming finer. The fine powder, which has been made fine by the collision and the rotational crushing action, loses its centrifugal force and passes through the nozzle 8 and the acceleration tube 14 into the rotational crushing chamber 10.
Accompanied by the flow of air to which the air that has entered zero is added, it reaches the classification chamber 16 while rotating at high speed through the rectifying zone 15 which is connected to the outer periphery of the aforementioned accelerating tube 14 from the swirling crushing chamber 10 . The crushed material subjected to collision crushing and rotational crushing is classified into fine powder with a larger particle size and fine particles with a smaller particle size in the classification chamber 16, and enters the fine powder chamber 19 and the fine powder chamber 18, and the fine powder passes through the discharge hole 21. ,
It passes through the discharge pipe 22, is collected in the collecting discharge pipe 23, and is collected by a collector (not shown) installed outside the machine. On the other hand, the fine powder classified in the classification chamber 16 is
It is sucked into the solid-gas mixing chamber 4 again through the circulation path 24,
Collision crushing and rotational crushing are repeated.

第5図は衝突板13の他の実施例の斜視図、第
6図は第5図の平面図、第7図は第6図のC−C
断面図であつて、衝突板13に設ける突起25に
は、旋回粉砕用ノズル12の向き、即ち旋回流の
向きに倣うように中心から外周に向うにつれて下
流側になる向きに複数のスパイラル溝27が設け
てある。スパイラル溝27の直角断面は第7図に
示すように底及び縁共に滑らかな曲線例えば円弧
である。スパイラル溝27は突起25の先端から
若干離れた処から幅、深さ共小さくして始まり、
次第に幅、深さが広くなつて中間部に到り、幅は
突起25の根本部に向けて同じもしくは広くな
り、深さは突起25の根本部に向けて浅くなる。
突起25の根本では深さは零で、衝突板13の平
面26に接している。
5 is a perspective view of another embodiment of the collision plate 13, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is a line C-C of FIG. 6.
In the cross-sectional view, a protrusion 25 provided on the collision plate 13 has a plurality of spiral grooves 27 extending downstream from the center toward the outer periphery so as to follow the direction of the swirling crushing nozzle 12, that is, the direction of the swirling flow. is provided. As shown in FIG. 7, the right-angled cross section of the spiral groove 27 has a smooth bottom and edge, such as a circular arc. The spiral groove 27 starts slightly away from the tip of the protrusion 25 with a smaller width and depth,
The width and depth gradually become wider until reaching the middle part, the width becomes the same or wider towards the root part of the protrusion 25, and the depth becomes shallower towards the root part of the protrusion 25.
The depth at the base of the protrusion 25 is zero and is in contact with the plane 26 of the collision plate 13.

この実施例によれば加速管14から噴出して突
起25に衝突する砕料の一部はスパイラル溝27
に入り、こゝで旋回流を与えられ乍ら突起25の
中心部から渦状に突起25の根本に進む。従つ
て、旋回粉砕室10へ供給される粉砕された砕料
に予旋回が与えられ、旋回粉砕室10ではより強
い旋回流が生じることとなる。
According to this embodiment, a part of the crushed material ejected from the accelerating tube 14 and colliding with the protrusion 25 is formed in the spiral groove 27.
The air flows from the center of the protrusion 25 to the base of the protrusion 25 while being given a swirling flow therein. Therefore, a pre-swirl is given to the crushed material supplied to the swirling crushing chamber 10, and a stronger swirling flow is generated in the swirling crushing chamber 10.

以上説明したように砕料の固体壁としての衝突
板への直角よりも小さい衝突入角をもたせること
によつてセラミツクスの衝撃による脆さの欠点を
捕い、こすり摩耗、引掻き摩耗に強い最大の特性
を発揮させることにより、耐摩耗材料としての寿
命を延命させることができる。
As explained above, by making the collision angle smaller than the right angle to the collision plate as a solid wall of the crushed material, the disadvantage of brittleness due to impact of ceramics can be overcome, and the maximum resistance to rubbing and scratching wear can be achieved. By demonstrating these characteristics, the life of the wear-resistant material can be extended.

更に本発明の実施例について実験した粉砕試験
に於ては、前記衝突角度θiが30゜〜45゜の範囲では、
平板のものと比べ、粉砕能力に大差のないことが
確認されている。
Furthermore, in the crushing test conducted on the embodiment of the present invention, when the collision angle θ i was in the range of 30° to 45°,
It has been confirmed that there is no significant difference in crushing ability compared to flat plates.

〔発明の効果〕〔Effect of the invention〕

本発明は砕料供給口に通ずる固気混合室に高圧
空気の供給されるノズルの先端を開口し、ノズル
と一直線上に固気混合室に連通する加速管を備
え、加速管出口に対向して衝突板を備えた微粉砕
機において、前記衝突板に加速管出口中心に向つ
て中心部が最も突出した突起を設けたことを特徴
とする微粉砕機としたから衝突型ジエツトミル機
能を備えた微粉砕機において、衝突板の耐久力が
著しく増大し、砕料の直衝突に対して耐摩性のな
いセラミツクスのような材質を固体壁として用い
ることができる。
The present invention has an opening at the tip of a nozzle through which high-pressure air is supplied to a solid-gas mixing chamber that communicates with a crushed material supply port, an acceleration tube that communicates with the solid-gas mixing chamber in a straight line with the nozzle, and a nozzle that faces the acceleration tube outlet. A pulverizer equipped with a collision plate is characterized in that the collision plate is provided with a protrusion whose center part is most protruding toward the center of the outlet of the accelerator tube, so that the pulverizer has a collision-type jet mill function. In a pulverizer, the durability of the impact plate is significantly increased, and materials such as ceramics, which are not resistant to wear against direct impact of the crushed material, can be used as solid walls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の縦断面図、第2図は
第1図のA−A断面図、第3図は第1図のB−B
断面図、第4図は衝突板の正面図、第5図は衝突
板の他の実施例の斜視図、第6図は第5図の平面
図、第7図は第6図のC−C拡大断面図である。 1……胴体、2……ヘツド部材、3……蓋、4
……固気混合室、5……砕料供給口、6……高圧
ヘツダ、7……圧縮空気管、8……ノズル、9…
…底壁、10……旋回粉砕室、11……圧縮空気
管、12……旋回粉砕用ノズル、13……衝突
板、14……加速管、15……整流ゾーン、16
……分級室、17……分級室、18……微粉室、
19……細粉室、21……排出孔、22……排出
管、23……集合排出管、24……循環路、25
……突起、26……平面、27……スパイラル
溝。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 3 is a cross-sectional view taken along line B-B in FIG.
4 is a front view of the collision plate, FIG. 5 is a perspective view of another embodiment of the collision plate, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is taken along C-C of FIG. 6. It is an enlarged sectional view. 1... Body, 2... Head member, 3... Lid, 4
... solid-gas mixing chamber, 5 ... crushed material supply port, 6 ... high pressure header, 7 ... compressed air pipe, 8 ... nozzle, 9 ...
...Bottom wall, 10... Rotating crushing chamber, 11... Compressed air pipe, 12... Rotating grinding nozzle, 13... Collision plate, 14... Accelerator tube, 15... Rectification zone, 16
... Classification room, 17 ... Classification room, 18 ... Fine powder room,
19...Fine powder chamber, 21...Discharge hole, 22...Discharge pipe, 23...Collective discharge pipe, 24...Circulation path, 25
... protrusion, 26 ... plane, 27 ... spiral groove.

Claims (1)

【特許請求の範囲】[Claims] 1 砕料供給口に通ずる固気混合室に高圧空気の
供給されるノズルの先端を開口し、ノズルと一直
線上に固気混合室に連通する加速管を備え、加速
管出口に対向して衝突板を備えた微粉砕機におい
て、前記衝突板に加速管出口中心に向つて中心部
が最も突出した突起を設けたことを特徴とする微
粉砕機。
1 Open the tip of the nozzle that supplies high-pressure air to the solid-gas mixing chamber leading to the crushed material supply port, and provide an acceleration pipe that communicates with the solid-gas mixing chamber in a straight line with the nozzle, and collide against the acceleration pipe outlet. A pulverizer equipped with a plate, characterized in that the collision plate is provided with a protrusion whose center part is most protruding toward the center of the exit of the acceleration tube.
JP7459685A 1985-04-09 1985-04-09 Finely pulverizing machine Granted JPS61234959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7459685A JPS61234959A (en) 1985-04-09 1985-04-09 Finely pulverizing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7459685A JPS61234959A (en) 1985-04-09 1985-04-09 Finely pulverizing machine

Publications (2)

Publication Number Publication Date
JPS61234959A JPS61234959A (en) 1986-10-20
JPS649057B2 true JPS649057B2 (en) 1989-02-16

Family

ID=13551688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7459685A Granted JPS61234959A (en) 1985-04-09 1985-04-09 Finely pulverizing machine

Country Status (1)

Country Link
JP (1) JPS61234959A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725227Y2 (en) * 1988-03-29 1995-06-07 日本ニユーマチツク工業株式会社 Airflow crusher
JP2566158B2 (en) * 1988-10-20 1996-12-25 キヤノン株式会社 Collision airflow crusher

Also Published As

Publication number Publication date
JPS61234959A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
CA1091206A (en) Jet-type axial pulverizer
US5692688A (en) Comminuting screen for hammermills
JP3855138B2 (en) Method and apparatus for performing substance collision synchronously
JP5849951B2 (en) Jet mill
US6224004B1 (en) Mill provided with partition within milling chamber
US5597127A (en) Ultrafines coal pulverizer
JPS649057B2 (en)
JPS6018454B2 (en) Opposed jet mill
JP2005118725A (en) Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
JPH01215354A (en) Crushing and coating device
JPS6136463B2 (en)
JPS58143853A (en) Supersonic jet mill
JP2531028B2 (en) Pulverizer
US4728047A (en) Separator-disintegrator
JP2003047880A (en) Pulverization nozzle, auxiliary pulverization nozzle, and jet mill provided with them
JPH06182242A (en) High-speed rotary impact type pulverizer
JPS6317501B2 (en)
JP3091289B2 (en) Collision type air crusher
SU893252A1 (en) Percussion-action mill
JPH03213161A (en) Pulverizing apparatus
JPH0725227Y2 (en) Airflow crusher
JP4926524B2 (en) Airflow crusher rectifier
JPH0321356A (en) Pulverizing apparatus
KR20040073116A (en) N-Fluid Energy Mill with Multiple Discharge Outlets and Vortex Generators
JPH04210255A (en) Pulverizer and crushing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees