JPS648412B2 - - Google Patents

Info

Publication number
JPS648412B2
JPS648412B2 JP8928179A JP8928179A JPS648412B2 JP S648412 B2 JPS648412 B2 JP S648412B2 JP 8928179 A JP8928179 A JP 8928179A JP 8928179 A JP8928179 A JP 8928179A JP S648412 B2 JPS648412 B2 JP S648412B2
Authority
JP
Japan
Prior art keywords
brazing
vacuum
vacuum valve
parts
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8928179A
Other languages
Japanese (ja)
Other versions
JPS5613628A (en
Inventor
Hideo Suzuki
Akira Goto
Fumio Takahashi
Katsumi Oshiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8928179A priority Critical patent/JPS5613628A/en
Publication of JPS5613628A publication Critical patent/JPS5613628A/en
Publication of JPS648412B2 publication Critical patent/JPS648412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空バルブに係り、特に真空バルブ構
成部品のろう付に用いるろう材を改良した真空バ
ルブの製造方法に関する。 一般に真空バルブは絶縁容器とその両端を端板
で閉塞した内部圧力10-4Torr以下の真空容器内
に一対の接離自在な電極を備えて構成している。
一方の電極には固定側通電軸が取付けられ一方の
端板を密に貫通して外部に導出し電路を構成して
いる。他方の電極には電路となる可動側通電軸が
取付けられベローズを介して他側の端板に取付け
られ、真空保持状態で電極の開閉を可能にしてい
る。また、前記電極の周囲を取巻くようにアーク
シールドが配置されており、電流開閉時のアーク
で電極から発生する金属蒸気により絶縁容器の内
壁が汚損することを防止している。真空バルブ構
成部品の主な材料として、絶縁容器にはアルミナ
磁器が用いられ、通電軸には銅、ベローズにはス
テンレス材(SUS304L又はSUS316L)が用いら
れ、また端板にはアルミナ磁器と熱膨張係数が近
似しているコバール(Fe−Co−Ni合金)が用い
られる。 このような構造の真空バルブに於て、これら構
成部品の取付はその大部分が金属ろう付によつて
行なわれている。ろう材にはAg72−Cu28共晶銀
ろう(JIS BAg−8相当)が従来が多く用いら
れ水素中又は真空中で800℃前後に加熱してろう
付する方法になつている。 ところで、ステンレスは表面に酸化保護膜(不
働態皮膜)が形成されているためそのままろう付
した場合ろうが濡れにくいという問題があり、そ
のため予めNiめつきを施こしておいてからろう
付するという方法が従来用いられていた。しかし
ながらステンレス部品をNiめつきする場合塩酸
溶液中で塩化Niを使用して行なつたりする為そ
のような溶液が付着して残つたりするとステンレ
ス部品を腐食させる原因になつている。特にベロ
ーズは厚さ0.1〜0.2mmの薄板からなる蛇腹状に形
成させたものであり、形状が複雑であるだけに
Niめつき時の酸性溶液の水洗が不充分になり易
く残つた溶液で薄板部を腐食させリークの原因に
なる恐れがあつた。またこのようなめつきを行な
うにはめつきの設備が必要であるばかりでなく手
間がかかるという問題もあつた。 その為、Niめつきを施さないでステンレス部
品をろう付する方法として、10-4Torr以下の真
空中で950℃以上の温度でろう付する方法が従来
提案されている。真空バルブにおいては一般に同
種金属部品同志より異種金属部品同志をろう付す
ることが多い。従つてろう付接合するにあたつて
は接合特性のみならず真空バルブの機械的特性や
電気的特性を勘案してろう付条件を選定しなけれ
ばならない。ところで上記した真空中950℃以上
で行なうろう付方法では次のような欠点を有して
いた。第1にはろう付温度が高いためベローズの
伸縮疲労寿命が低下するという問題である。すな
わちベローズは成形加工時の加工硬化により結晶
粒を微細化させ材料強度を高めているが、このよ
うな高い温度でろう付すると再結晶により結晶粒
を粗大化させ材料強度を低下せしめベローズの伸
縮疲労寿命を大巾に低下させてしまうという欠点
がある。第2には銅部品の結晶粒阻大化の問題で
あり、通電軸材に用いられる無酸素銅の場合を例
にとれば加熱時間を60分間とした時の結晶粒は
800℃では0.16〜0.35mmであるのに対して950℃で
は0.5〜1mm程度まで粗大化する傾向にあり通電
軸の強度が低下するという欠点がある。第3には
絶縁容器との封着金具に用いるコバール(Fe−
Ni−Co合金)に対するろう材の粒界侵入の問題
であり、ろう付温度が高い程粒界侵入する傾向が
強く、このような高温下でろう付した場合ろう材
の粒界侵入による粒界割れでリークを引起しやす
いという欠点がある。第4には真空バルブの電極
材料からの低融点物質の飛散の問題である。電極
材料には短絡電流通電時の溶着を防止する等の目
的のためBiやPuなどの低融点物質をを微量に添
加することが多く、このような高温下でしかも真
空中でろう付した場合低融点物質が蒸発飛散しや
すく耐融着性能を低下させやすいという欠点があ
る。その他高温ほど真空炉の寿命を低下させると
いう問題があり必ずしも充分なろう付方法とはい
えなかつた。 本発明は上記したような事情に鑑みなされたも
ので、その目的は950℃以下の温度で且つステン
レス部品等にNiめつきを施さずに直接ろう付を
行なうことができるようにし以つて経済的で且つ
耐食性・機械的性質・電気的性質に優れた真空バ
ルブの製造方法を提供することにある。 以下本発明の詳細を図面を参照しながら説明す
る。1は真空バルブであり、アルミナ磁器製絶縁
容器2とその両端を熱膨張係数がアルミナ磁器2
と近似しているコバール材(Fe−Ni−Co合金)
からなる端板3a,3bで閉塞して構成した内部
圧力が10-4Torr以下の真空容器内に一対の接離
自在な電極4a,4bを備えて構成している。一
方の電極4aには無酸素銅からなる固定側通電軸
5aが取付けられ一方の端板を密に貫通して外部
に導出し電路を構成している。他方の電極4bに
は電路となる可動側通電軸5bが取付けられステ
ンレス製ベローズ6を介して端板3bに取付けら
れ真空保持状態で電極4a,4bの開閉を可能に
している。7はアークシールドであり電極4a,
4bの周囲を取巻くように配置し、電流開閉時に
電極4a,4bから発生する金属蒸気で絶縁容器
2の内壁が汚損されることを防止している。この
ような構造の真空バルブに於て、端板3a,3b
及びベローズ6にはNiめつきを施していないこ
とを特徴にしており、互いに接合しようとする部
品の近傍にPdが5〜28%、Agが30〜95%、残り
のCuと不可避の不純物を組成にして構成したろ
う材を設置し、10-4Torr以下の真空中で810℃〜
950℃でろう付して真空バルブを製作する方法に
なつている。このような方法のろう付はステンレ
ス部品の表面酸化膜を10-4Torr以下の真空中で
950℃以上に加熱して除去する従来のろう付方法
と異なり、酸化皮膜層を除去しないでろう材を可
能にせしめている。すなわち本発明のろう付機構
は、ろう材の組成中のPdの合金化作用によるも
のであり、ステンレス表面に前記した酸化皮膜層
が形成されていてもろう材が直接その表面に作用
し母材表面にPd含有量の高い合金層が形成しろ
うの濡れ性を改善させる為と考えられる。このこ
とは第1表に示す種々の実験結果からも明らかな
ように、図に示した真空バルブを各種ろう材を用
いてろう付により製作した実験の結果本発明のろ
う材を使用したものでは820℃程度の条件下でろ
う付した場合でも気密性は良好であり、又ろうの
濡れ性も良好であることが確認できた。
The present invention relates to a vacuum valve, and more particularly to a method for manufacturing a vacuum valve using an improved brazing material used for brazing components of the vacuum valve. Generally, a vacuum valve consists of an insulating container and a pair of electrodes that can be freely connected to and separated from the vacuum container, which has an internal pressure of 10 -4 Torr or less and has both ends closed with end plates.
A fixed-side current-carrying shaft is attached to one of the electrodes, which closely penetrates one end plate and leads to the outside to form an electric path. A movable current-carrying shaft serving as an electric path is attached to the other electrode and is attached to the other end plate via a bellows, making it possible to open and close the electrode while maintaining a vacuum. Further, an arc shield is disposed to surround the electrode, and prevents the inner wall of the insulating container from being contaminated by metal vapor generated from the electrode due to an arc during current switching. The main materials for the vacuum valve components are alumina porcelain for the insulating container, copper for the conductive shaft, stainless steel (SUS304L or SUS316L) for the bellows, and alumina porcelain and thermal expansion material for the end plate. Kovar (Fe-Co-Ni alloy) with similar coefficients is used. In a vacuum valve having such a structure, most of these components are attached by metal brazing. Conventionally, Ag 72 -Cu 28 eutectic silver solder (equivalent to JIS BAg-8) is often used as the brazing material, and brazing is performed by heating to around 800°C in hydrogen or vacuum. By the way, stainless steel has an oxidation protective film (passive film) formed on its surface, so if it is brazed as is, the solder will not get wet easily.Therefore, Ni plating is applied beforehand before brazing. method was previously used. However, when stainless steel parts are plated with Ni, Ni chloride is used in a hydrochloric acid solution, so if such a solution adheres and remains, it causes corrosion of the stainless steel parts. In particular, the bellows is made of a thin plate with a thickness of 0.1 to 0.2 mm and is shaped like an accordion, and its shape is complex.
During Ni plating, the acid solution tends to be washed insufficiently, and the remaining solution may corrode the thin plate and cause leaks. Furthermore, there is a problem in that plating equipment is not only required to perform such plating, but also that it is time-consuming. Therefore, as a method of brazing stainless steel parts without Ni plating, a method of brazing at a temperature of 950°C or higher in a vacuum of 10 -4 Torr or lower has been proposed. In vacuum valves, dissimilar metal parts are generally brazed together rather than like metal parts. Therefore, when brazing and joining, brazing conditions must be selected taking into account not only the joining characteristics but also the mechanical and electrical characteristics of the vacuum valve. However, the above-mentioned brazing method performed in vacuum at a temperature of 950° C. or higher had the following drawbacks. The first problem is that the expansion and contraction fatigue life of the bellows is reduced due to the high brazing temperature. In other words, the material strength of bellows is increased by making the crystal grains finer through work hardening during the forming process, but when brazing at such high temperatures, the crystal grains become coarse due to recrystallization, reducing the material strength and causing expansion and contraction of the bellows. The drawback is that the fatigue life is significantly reduced. The second problem is the problem of increasing the size of crystal grains in copper parts.For example, in the case of oxygen-free copper used for current-carrying shaft materials, the crystal grain size when heating time is 60 minutes is
At 800°C, it is 0.16 to 0.35 mm, but at 950°C, it tends to become coarser to about 0.5 to 1 mm, which has the disadvantage of reducing the strength of the current-carrying shaft. Thirdly, Kovar (Fe-
This problem is caused by the penetration of the filler metal into grain boundaries (Ni-Co alloy), and the higher the brazing temperature, the stronger the tendency for grain boundary penetration to occur.When brazing at such high temperatures, grain boundaries due to the penetration of the filler metal The drawback is that cracks can easily cause leaks. The fourth problem is the scattering of low melting point substances from the electrode material of the vacuum valve. Electrode materials often contain trace amounts of low-melting-point substances such as Bi and Pu to prevent welding when short-circuit current is applied, and when brazing at such high temperatures and in vacuum, There is a drawback that the low melting point substance tends to evaporate and scatter, which tends to reduce the anti-fusing performance. Another problem is that the higher the temperature, the shorter the life of the vacuum furnace, and it has not always been a sufficient brazing method. The present invention was made in view of the above-mentioned circumstances, and its purpose is to make it possible to directly braze stainless steel parts, etc., at a temperature of 950°C or less without Ni plating, and to achieve an economical method. It is an object of the present invention to provide a method for manufacturing a vacuum valve that has excellent corrosion resistance, mechanical properties, and electrical properties. The details of the present invention will be explained below with reference to the drawings. 1 is a vacuum valve, which has an alumina porcelain insulating container 2 and both ends thereof made of alumina porcelain with a thermal expansion coefficient of 2.
Kovar material (Fe-Ni-Co alloy) similar to
A pair of electrodes 4a and 4b which can be freely connected and separated are provided in a vacuum container having an internal pressure of 10 -4 Torr or less, which is closed by end plates 3a and 3b. A fixed-side current-carrying shaft 5a made of oxygen-free copper is attached to one electrode 4a, and closely penetrates one end plate to lead out to the outside to form an electric path. A movable current-carrying shaft 5b serving as an electric path is attached to the other electrode 4b, and is attached to the end plate 3b via a stainless steel bellows 6, making it possible to open and close the electrodes 4a and 4b in a vacuum-maintained state. 7 is an arc shield, and electrodes 4a,
4b to prevent the inner wall of the insulating container 2 from being contaminated by metal vapor generated from the electrodes 4a and 4b when the current is switched on and off. In a vacuum valve having such a structure, the end plates 3a, 3b
The bellows 6 is characterized by not being plated with Ni, with 5 to 28% Pd, 30 to 95% Ag, and the remaining Cu and unavoidable impurities in the vicinity of the parts to be joined. The brazing filler metal with the composition is installed and heated to 810℃ in a vacuum of 10 -4 Torr or less.
Vacuum valves are manufactured by brazing at 950℃. This method of brazing removes the oxide film on the surface of stainless steel parts in a vacuum of less than 10 -4 Torr.
Unlike conventional brazing methods, which require heating to over 950°C to remove the material, this method enables the brazing material to be soldered without removing the oxide film layer. In other words, the brazing mechanism of the present invention is based on the alloying effect of Pd in the composition of the brazing material, and even if the aforementioned oxide film layer is formed on the surface of the stainless steel, the brazing material acts directly on the surface of the stainless steel, resulting in the brazing of the base metal. This is thought to be due to the formation of an alloy layer with a high Pd content on the surface, which improves the wettability of the wax. As is clear from the various experimental results shown in Table 1, the results of experiments in which the vacuum valve shown in the figure was manufactured by brazing using various brazing materials showed that the vacuum valve shown in the figure was not made using the brazing material of the present invention. It was confirmed that even when brazing was performed under conditions of about 820°C, the airtightness was good and the wettability of the solder was also good.

【表】 一方図のコバール材を用いた端板2a,2bに
対するろう材の結晶粒界への侵入に伴なう粒界割
れの問題は、今回の実験では結果の詳細は示して
いないが、本発明の場合粒界割れによる気密不良
の問題は発生しなかつた。しかし従来のろう材を
使用したものではコバール材の粒界にろう材が侵
入しやすい傾向にあることは既に知られておりそ
の為にコバール部品には従来Niめつきを施し粒
界割れを防止していたが、それに対して本発明の
ろう材を用いたものでは前記したPd含有量の高
い合金層の形成がコバール部品に対しても行なわ
れるのでろう材が母材の粒界に侵入しにくくして
いることは明らかである。その為Niめつきをし
ないでも粒界割れの必配のない高信頼度の真空バ
ルブを提供できる。またステンレス部品とコバー
ル部品のNiめつきを省略したのでNiめつきをす
る手間がなくなり真空バルブを経済的に製作でき
ることはもちろんであり、めつき溶液付着に伴な
う腐食の問題も無くなり真空バルブの品質を高め
ることができる。 真空バルブに使用するろう材のその他の条件と
しては蒸気圧が低いことが望まれている。本発明
と同様にステンレス部品表面層の合金層形成作用
でろう付性を改善させる方法としてAg−Cuろう
にLiを添加する方法がある。しかしLiは蒸気圧が
高く真空中でろう付もしくは高温に加熱した場合
にLiの分子が真空バルブの部品に付着し汚損させ
るという問題があり真空バルブの電気的特性に悪
影響を与えるだけでなく汚損による変色で外観を
損なう問題が生じる。それに対して本発明のろう
材を使用した製造方法を採用すれば組成成分中の
Pdの蒸気圧はAgやCuのそれよりもはるかに低く
真空中でろう付もしくは高温加熱した場合でも汚
損の問題が無く、このような点からも品質の高い
真空バルブを製作することができる。 更に本発明によれば、従来のように10-4Torr
以下真空中で950℃以上に加熱してろう付する必
要がなく、より低い温度でのろう付を可能にした
のでステンレスベローズの結晶粒粗大化に伴なう
ベローズの伸縮疲労寿命が低下するという従来の
問題が解消でき、又電極材料からの低融点物質飛
散に伴なう電気的性能に対しても従来のろう付温
度より低温化を計つた分だけ向上するなど、種々
の効果を有する。 本発明は上記した実施例に限定されることなく
その要旨を変更しない範囲で種々応用して実施す
ることができる。第1図の実施例では真空バルブ
の全部品を同時に真空中でろう付して構成した場
合で示したが、予め必要な部品を部分的にろう付
しておきその後にろうの溶融温度がそれより低い
ろう材を用い全体組立を真空中で行なつて構成し
てもよい。また溶融温度の異なるろう材の組合せ
で3回あるいはそれ以上のろう付を行なつて真空
バルブを構成してもよい。 上記した以外の他の実施例として、本発明のろ
う材を用いて水素雰囲気中で種々ろう付試験を行
なつた。SUS304L材とSUS316L材からなるベロ
ーズのろう付はPd含有量が5%以上のろう材を
用いれば水素の露点が−35℃以下であれば加熱温
度820℃以上であればNiめつきをしないでも良好
なろう付を行なえることが判つた。従つて上記し
たと同様に部分的な組立を水素中ろう付で行ない
全体の組立を真空中でろう付して真空バルブを構
成させれば前記したと同様な効果が得られる。 以上述べたように本発明によれば、経済的で機
械的・電気的特性に優れしかも耐食性に優れた高
信頼度真空バルブを提供することができる等種々
の効果を有する。
[Table] On the other hand, regarding the problem of grain boundary cracking caused by the penetration of the brazing filler metal into the grain boundaries for the end plates 2a and 2b made of Kovar material shown in the figure, the details of the results are not shown in this experiment. In the case of the present invention, the problem of poor airtightness due to grain boundary cracking did not occur. However, it is already known that in products using conventional brazing filler metal, the filler metal tends to penetrate into the grain boundaries of the Kovar material, and for this reason, Kovar parts are conventionally plated with Ni to prevent intergranular cracking. However, in the case where the brazing filler metal of the present invention is used, the formation of the alloy layer with high Pd content described above is also performed on Kovar parts, so the brazing filler metal invades the grain boundaries of the base metal. It is clear that it is difficult. Therefore, even without Ni plating, it is possible to provide a highly reliable vacuum valve that is free from intergranular cracking. In addition, since Ni plating on stainless steel parts and Kovar parts is omitted, there is no need to do Ni plating, and vacuum valves can be manufactured economically, and the problem of corrosion caused by adhesion of plating solution is also eliminated. can improve the quality of Another requirement for the brazing filler metal used in vacuum valves is that it has a low vapor pressure. Similar to the present invention, there is a method of adding Li to Ag-Cu solder to improve the brazing properties by forming an alloy layer on the surface layer of stainless steel parts. However, Li has a high vapor pressure, and when it is brazed in a vacuum or heated to high temperatures, Li molecules adhere to vacuum valve parts and cause contamination.This not only adversely affects the electrical characteristics of the vacuum valve, but also causes contamination. This causes problems such as discoloration and spoiling the appearance. On the other hand, if the manufacturing method using the brazing filler metal of the present invention is adopted, the
The vapor pressure of Pd is much lower than that of Ag or Cu, so there is no problem with contamination even when brazing it in a vacuum or heating it at high temperatures, and from this point of view it is possible to manufacture high-quality vacuum valves. Furthermore, according to the present invention, 10 -4 Torr
There is no need to heat the brazing to over 950℃ in a vacuum, making it possible to braze at a lower temperature, which reduces the elastic fatigue life of the bellows due to coarsening of the crystal grains of the stainless steel bellows. It has various effects such as solving the conventional problems and improving electrical performance due to low melting point substances scattering from the electrode material by lowering the temperature compared to the conventional brazing temperature. The present invention is not limited to the above-described embodiments, and can be applied and implemented in various ways without changing the gist thereof. In the embodiment shown in Figure 1, all parts of the vacuum valve are brazed together in a vacuum. The entire assembly may be performed in a vacuum using a lower brazing filler metal. Further, the vacuum valve may be constructed by performing brazing three or more times using a combination of brazing materials having different melting temperatures. As other Examples other than those described above, various brazing tests were conducted in a hydrogen atmosphere using the brazing filler metal of the present invention. When brazing bellows made of SUS304L and SUS316L materials, if a brazing filler metal with a Pd content of 5% or more is used, if the hydrogen dew point is -35°C or lower, and the heating temperature is 820°C or higher, Ni plating can be done without Ni plating. It was found that good brazing could be achieved. Therefore, if a vacuum valve is constructed by partially assembling the parts by brazing in hydrogen and then brazing the entire assembly in a vacuum, the same effect as described above can be obtained. As described above, the present invention has various effects such as being able to provide a highly reliable vacuum valve that is economical, has excellent mechanical and electrical properties, and has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す真空バルブの断面
図である。 1……真空バルブ、2……絶縁容器、3a,3
b……端板、4a,4b……電極、5a,5b…
…通電軸、6……ベローズ、7……アーク・シー
ルド。
The figure is a sectional view of a vacuum valve showing an embodiment of the present invention. 1... Vacuum valve, 2... Insulating container, 3a, 3
b... End plate, 4a, 4b... Electrode, 5a, 5b...
...Electric shaft, 6...Bellows, 7...Arc shield.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器内に一対の電極を収納しその一対の
電極を真空中で互に接離可能にせしめる為にベロ
ーズを設けたものに於いて、互に接合される部品
の近傍にPdを5%〜20%、Agを52%〜68.5%、
Cuを26.5%〜31.5%とからなる合金の金属ろうを
配置し、真空中或いは水素雰囲気中で加熱温度を
820℃以上950℃以下で互に接合しようとする部品
をろう付にて接合するようにしたことを特徴とす
る真空バルブの製造方法。
1 A pair of electrodes is housed in a vacuum container and a bellows is provided to allow the pair of electrodes to come into contact with and separate from each other in vacuum, and 5% Pd is added near the parts to be joined together. ~20%, Ag 52% ~68.5%,
A metal solder alloy consisting of 26.5% to 31.5% Cu is placed, and the heating temperature is set in a vacuum or hydrogen atmosphere.
A method for manufacturing a vacuum valve, characterized in that parts to be joined to each other are joined by brazing at a temperature of 820°C or more and 950°C or less.
JP8928179A 1979-07-16 1979-07-16 Method of manufacturing vacuum valve Granted JPS5613628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8928179A JPS5613628A (en) 1979-07-16 1979-07-16 Method of manufacturing vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8928179A JPS5613628A (en) 1979-07-16 1979-07-16 Method of manufacturing vacuum valve

Publications (2)

Publication Number Publication Date
JPS5613628A JPS5613628A (en) 1981-02-10
JPS648412B2 true JPS648412B2 (en) 1989-02-14

Family

ID=13966324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8928179A Granted JPS5613628A (en) 1979-07-16 1979-07-16 Method of manufacturing vacuum valve

Country Status (1)

Country Link
JP (1) JPS5613628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597547B2 (en) 2011-11-14 2023-03-07 Signode Industrial Group Llc Strapping apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986124A (en) * 1982-11-08 1984-05-18 株式会社東芝 Method of producing vacuum bulb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597547B2 (en) 2011-11-14 2023-03-07 Signode Industrial Group Llc Strapping apparatus

Also Published As

Publication number Publication date
JPS5613628A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
CN101687284A (en) Welding material and manufacture method thereof, conjugant and manufacture method thereof and power semiconductor modular and manufacture method thereof
JP2941682B2 (en) Vacuum valve and method of manufacturing the same
JPH01111832A (en) Electrode material for vacuum switch
KR910007948B1 (en) Vacuum interrupter contacts and process for producing the same
EP0158509B1 (en) Lead materials for semiconductor devices
JPS648412B2 (en)
JP2009113089A (en) Joining material for vacuum valve
JPS59175521A (en) Method of producing vacuum bulb
JPS6367722B2 (en)
JPS6215716A (en) Contact for vacuum breaker electrode
JP4458797B2 (en) Bonding materials for vacuum valves
JP4782386B2 (en) Bonding materials for vacuum valves
JP2658311B2 (en) Alloy brazing material
JPH0227067B2 (en)
JPS6367723B2 (en)
JP2008277038A (en) Jointing material for vacuum valve
JPH042020A (en) Manufacture of vacuum interrupter
EP0097906A1 (en) Contacts for vacuum switches
JPH056292B2 (en)
JP2022116670A (en) Vacuum valve contact material, manufacturing method thereof, and vacuum valve
JPS598930B2 (en) Vacuum valve manufacturing method
JPS61156614A (en) Manufacture of vacuum valve
JPH03297595A (en) Brazing filler metal and brazing method
JPS6226130B2 (en)
JPH0494892A (en) Manufacture of brazing filler material