JPS6377379A - Constant voltage controller for converter - Google Patents

Constant voltage controller for converter

Info

Publication number
JPS6377379A
JPS6377379A JP21918486A JP21918486A JPS6377379A JP S6377379 A JPS6377379 A JP S6377379A JP 21918486 A JP21918486 A JP 21918486A JP 21918486 A JP21918486 A JP 21918486A JP S6377379 A JPS6377379 A JP S6377379A
Authority
JP
Japan
Prior art keywords
voltage
converter
output
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21918486A
Other languages
Japanese (ja)
Inventor
Tadashi Nishikawa
正 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21918486A priority Critical patent/JPS6377379A/en
Publication of JPS6377379A publication Critical patent/JPS6377379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PURPOSE:To control constant voltage with response at high speed when load suddenly fluctuates by comparing a voltage reference signal and a voltage feedback signal proportional to the output voltage of a converter and controlling the ignition phase of the converter by using the deviation signal of both signals. CONSTITUTION:A voltage transformer 101 detects the AC voltage of a converter 7, and the AC voltage of the converter 7 is converted into unit display voltage epu by a voltage-voltage converter 103. A current transformer 102 detects the currents of the converter 7, the currents of the converter 7 are converted into a voltage signal by a current-voltage converter 104, and unit display currents ipu are outputted. An output x/2.ipu/epu is outputted to an adding point 108 by employing a dividing circuit 105 and a regulation coefficient 106. On the other hand, Ed/1.35EAC (Ed: DC voltage and EAC: AC voltage of converter) acquired from a dividing circuit 111 is inputted to the adding point 108. An output from the adding point 108 functions as a command value as the constant voltage of open-loop control.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はサイリスタ等の可制御電気弁を使用した変換器
の定電圧制御装置に係り、特に過渡時は早急に応答し、
定常時は安定な応答を示す変換器の定電圧制御装置に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a constant voltage control device for a converter using a controllable electric valve such as a thyristor, and particularly relates to a constant voltage control device for a converter that uses a controllable electric valve such as a thyristor. ,
The present invention relates to a constant voltage control device for a converter that exhibits a stable response during steady state.

(従来の技術) 電車負荷や直流モータ等に直流電圧を供給する変換器に
使われる従来の負帰還式定電圧制御装置の基本ブロック
図を第4図に示す。第5図はその従来式定電圧制御装置
の特性グラフである。これらを用いて以下に従来の定電
圧制御を説明する。
(Prior Art) Fig. 4 shows a basic block diagram of a conventional negative feedback type constant voltage control device used in a converter that supplies DC voltage to electric train loads, DC motors, etc. FIG. 5 is a characteristic graph of the conventional constant voltage control device. Conventional constant voltage control will be explained below using these.

1は電圧基準設定器、2は加算点、3は誤差増幅回路、
4は点弧パルス移相回路、5は絶縁アンプ、6は変換器
用トランス、7は変換器、8は直流電圧検出回路である
。変換器7の出力電圧を直流電圧検出回路8により検出
し制御回路で扱いやすい電圧レベルにまで変換する。こ
の電圧信号をEf(以下電圧帰還信号と称す。)とする
。さらにこの信号を絶縁アンプ5により変換器7の出力
と制御回路間の縁切りをする。この絶縁アンプ5の出力
信号を極性反転し加転点2へ入力する。電圧基準設定器
1で与えられた電圧基準信号El−6fは、変換器7の
目標の出力電圧値である。加算点2の出力は、電圧帰還
信号Efと電圧基準信号E?efの偏差分(Er。t 
 Er)である。この偏差分はある定った利得をもつ誤
差増幅回路3で増幅され、さらに点弧パルス移相回路4
に入力され9位相制御された点弧パルスが点弧パルス移
相回路4の出力として得られる。この出力パルスで変換
器7の可制御電気弁を点弧し、変換器の出力電圧を制御
する。
1 is a voltage reference setter, 2 is a summing point, 3 is an error amplifier circuit,
4 is an ignition pulse phase shift circuit, 5 is an insulation amplifier, 6 is a converter transformer, 7 is a converter, and 8 is a DC voltage detection circuit. The output voltage of the converter 7 is detected by a DC voltage detection circuit 8 and converted to a voltage level that can be easily handled by a control circuit. This voltage signal is referred to as Ef (hereinafter referred to as voltage feedback signal). Furthermore, this signal is separated between the output of the converter 7 and the control circuit by the isolation amplifier 5. The polarity of the output signal of the isolation amplifier 5 is inverted and inputted to the turning point 2. The voltage reference signal El-6f given by the voltage reference setter 1 is the target output voltage value of the converter 7. The output of addition point 2 is the voltage feedback signal Ef and the voltage reference signal E? Deviation of ef (Er.t
Er). This deviation is amplified by an error amplification circuit 3 with a certain fixed gain, and is further amplified by an ignition pulse phase shift circuit 4.
The ignition pulse that is input to the ignition pulse generator and subjected to 9-phase control is obtained as the output of the ignition pulse phase shift circuit 4. This output pulse fires the controllable electric valve of the converter 7 and controls the output voltage of the converter.

変換器の出力電圧は直流電圧検出回路8に入力される。The output voltage of the converter is input to a DC voltage detection circuit 8.

従って定電圧制御系は閉ループとなり。Therefore, the constant voltage control system becomes a closed loop.

常に電圧基準信号EP31と電圧帰還信号Efどの差が
最小になるように作用する。変換器7の出力電圧が電圧
基準信号に相当する電圧以上になると偏差信号Epet
  Efが大きくなり、電圧をしぼり込むように働く。
It always operates so that the difference between the voltage reference signal EP31 and the voltage feedback signal Ef is minimized. When the output voltage of the converter 7 exceeds the voltage corresponding to the voltage reference signal, the deviation signal Epet
Ef increases and acts to throttle the voltage.

また逆に変換器7の出力電圧が電圧基準信号に相当する
電圧以下になると偏差信号EPf3f−Efが大きくな
り、電圧を上げる方向に働く。
Conversely, when the output voltage of the converter 7 becomes less than the voltage corresponding to the voltage reference signal, the deviation signal EPf3f-Ef increases, working in the direction of increasing the voltage.

(発明が解決しようとする問題点) しかし実際には定電圧制御の誤差増幅回路3は制御系安
定した動作となるように応答を遅らせるような回路にな
っており定電圧制御が働くまで時間がかかる。従って変
換器7の負荷短絡に近いような負荷で瞬時的な変動によ
る急激な電圧変化に対しては充分に応答できず、場合に
よっては電車の急加速が出来ない等の問題があった。第
5図を用いてその動作を説明する。横軸は直流出力電流
(Problem to be solved by the invention) However, in reality, the error amplification circuit 3 for constant voltage control is a circuit that delays the response in order to ensure stable operation of the control system, and it takes time for constant voltage control to work. It takes. Therefore, the converter 7 cannot sufficiently respond to sudden voltage changes due to instantaneous fluctuations in loads that are close to load short circuits, and in some cases there have been problems such as the inability to rapidly accelerate the train. The operation will be explained using FIG. The horizontal axis is the DC output current.

縦軸は直流出力電圧で、直流出力電流が零または零に近
い時には電圧基準信号EPefに相熱する出力電圧とな
っている。負荷がゆっくりと直流電流をとって行くと第
5図のDで示す水平なカーブ上に乗る特性となる。しか
し負荷が急激に直流電流をとると誤差増幅回路3が遅れ
て動作するので第5図A→B→Cの順に変化してい<、
A→Bの動作は誤差増幅回路3が全く動作しないので変
換器用トランス6のリアクタンスと系統のりアクタンス
で決まるレギュレーションカーブ上に乗った特性になる
。従ってこの装置は定電圧制御装置であるが、最悪はB
点まで変換器7の出方電圧が低下する。
The vertical axis is the DC output voltage, and when the DC output current is zero or close to zero, the output voltage is similar to the voltage reference signal EPef. When the load slowly draws a direct current, the characteristic is that it rides on a horizontal curve as shown by D in FIG. However, if the load suddenly draws a direct current, the error amplification circuit 3 operates with a delay, so the changes occur in the order of A → B → C in Figure 5.
Since the error amplification circuit 3 does not operate at all in the operation from A to B, the characteristic lies on the regulation curve determined by the reactance of the converter transformer 6 and the system load actance. Therefore, this device is a constant voltage control device, but the worst case is B
The output voltage of the converter 7 decreases up to a point.

本発明の目的は従来の欠点を除去し、過渡時にも急速に
応答する変換器の定電圧制御装置を提供することにある
The object of the present invention is to eliminate the drawbacks of the prior art and to provide a constant voltage control device for a converter that responds quickly even during transients.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は従来の閉ループの定電圧制御回路と。 (Means for solving problems) The present invention is a conventional closed loop constant voltage control circuit.

変換器の特性を表わす数式である0式を用い開ループの
定電圧制御回路とから構成されている。
It consists of an open-loop constant voltage control circuit using equation 0, which is a mathematical equation representing the characteristics of the converter.

ここで Ed:直流電圧    EA(: :変換器の交流電圧
X:変換器のバーユニットリアクタンスePu :変換
器のユニット表示電圧 ipu :変換器のユニット表示電流 α:変換器の位相制御遅れ角 (ト)式は必要とする直流電圧Edに対して、変換器の
交流電圧EAC*バーユニットリアクタンスX。
where Ed: DC voltage EA (:: AC voltage of converter ) formula is the converter's AC voltage EAC*bar unit reactance X for the required DC voltage Ed.

変換器のユニット表示電圧ePU、変換器のユニット表
示電流ipuを用いて、位相制御遅れ角αを算出するも
のである。
The phase control delay angle α is calculated using the unit display voltage ePU of the converter and the unit display current ipu of the converter.

(作  用) 本発明は前述の開ループの定電圧制御回路により、負荷
が急激に変化したとき高速応答で定電圧制御が可能とな
る。
(Function) The present invention enables constant voltage control with high-speed response when the load suddenly changes due to the aforementioned open-loop constant voltage control circuit.

(実 施 例) 本発明を実施例により以下で詳述する。(Example) The invention will be explained in more detail below by means of examples.

第1図は本発明の一実施例を示す構成図であり。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

第4図と同一符号のものは同一機能を持つ要素である。Elements with the same symbols as in FIG. 4 are elements having the same functions.

第1図において101は電圧変成器、102は変流器、
103は電圧−電圧変換器、104は電流−電圧変換器
、105は割算回路、106はレギュレーションを示す
係数、107は開ループ制御基準、108は加算点、1
09は位相進み優先回路、 110は電圧−電圧変換器
、111は割算回路である。
In FIG. 1, 101 is a voltage transformer, 102 is a current transformer,
103 is a voltage-voltage converter, 104 is a current-voltage converter, 105 is a division circuit, 106 is a coefficient indicating regulation, 107 is an open loop control reference, 108 is a summing point, 1
09 is a phase advance priority circuit, 110 is a voltage-to-voltage converter, and 111 is a division circuit.

従来の閉ループの定電圧制御回路は前に述べたので省略
する。開ループの定電圧制御回路を第1図、第2図を用
いて説明する。
The conventional closed loop constant voltage control circuit has been described previously and will therefore be omitted. An open loop constant voltage control circuit will be explained using FIGS. 1 and 2.

第1図において電圧変成器101は、変換器7の交流電
圧を検出するためのもので主回路とはMRをとり電圧−
電圧変換器103にて定格電圧1.0としたユニット表
示電圧ePtlに変換する。また変流器102は変換器
7の電流を検出するためのもので主回路とは絶縁をとり
、電流−電圧変換器104にて電流信号から電圧信号に
変換し、かつ変換器7の定格電流を1.0としたユニッ
ト表示電流ipuに変換する。次に割算回路105にて
電圧−電圧変換器103の出力ePuを分母、電流−電
圧変換器104の出力ipuを分子として割算する6割
算回路105の出力をレギュレーション係数106に入
力し9乗算する。し算点108に入力する。
In FIG. 1, the voltage transformer 101 is for detecting the AC voltage of the converter 7, and the main circuit is MR and the voltage -
A voltage converter 103 converts it into a unit display voltage ePtl with a rated voltage of 1.0. The current transformer 102 is for detecting the current of the converter 7 and is insulated from the main circuit.The current-voltage converter 104 converts the current signal into a voltage signal, and the rated current of the converter 7 Convert to unit display current ipu with 1.0. Next, a division circuit 105 divides the output ePu of the voltage-voltage converter 103 as the denominator and the output ipu of the current-voltage converter 104 as the numerator.The output of the division circuit 105 by 6 is inputted to the regulation coefficient 106. Multiply. Enter the calculation point 108.

述べる方法により具現する。電圧変成器101からの信
号を電圧−電圧変換器110に入力し、ここで電子回路
レベルの信号に変換する。当然、この信号は主回路の電
圧に比例し、定格時の電圧を基準とした規格化された値
に変換され、Q)式の右辺の第一項のEACの値として
扱われる。次に開ループ決めるもので、これが開ループ
制御の目標値となる0次に割算回路111は開ループ制
御基@107からの信号を分子として入力し、電圧−電
圧変換器110からの信号を分母として入力し、(0式
の右辺の第加算点108はレギュレーション係数106
からの信号と割算回路111からの信号を入力する。こ
の加を示し、開ループ制御の定電圧とするための指令値
となる。
It will be realized by the method described. A signal from the voltage transformer 101 is input to a voltage-to-voltage converter 110, where it is converted into an electronic circuit level signal. Naturally, this signal is proportional to the voltage of the main circuit, is converted to a standardized value based on the rated voltage, and is treated as the EAC value of the first term on the right side of equation Q). Next, the open loop is determined, and this becomes the target value for open loop control.The zero-order divider circuit 111 inputs the signal from the open loop control base @107 as a numerator, and inputs the signal from the voltage-voltage converter 110. Input it as the denominator, (the 1st addition point 108 on the right side of equation 0 is the regulation coefficient 106
The signal from the divider circuit 111 and the signal from the divider circuit 111 are input. It indicates this addition and becomes a command value for maintaining a constant voltage in open loop control.

さらに加算点108の出力と誤差増幅回路3の出力を位
相進み優先回路109に入力する。位相進み優先回路1
09は2つの入力のうち位相制御遅れ角αを進める方を
優先して選択する回路である。この位相進み優先回路1
09で選択された信号は点弧パルス移相回路4に入力さ
れ2位相制御された点弧パルスが点弧パルス移相回路4
がら出力され。
Furthermore, the output of the addition point 108 and the output of the error amplification circuit 3 are input to a phase advance priority circuit 109. Phase advance priority circuit 1
09 is a circuit that selects the one that advances the phase control delay angle α with priority among the two inputs. This phase advance priority circuit 1
The signal selected in step 09 is input to the ignition pulse phase shift circuit 4, and the 2-phase controlled ignition pulse is input to the ignition pulse phase shift circuit 4.
It is output as is.

変換器7の可制御電気弁を点弧し、変換器7の出力電圧
を制御する。
The controllable electric valve of converter 7 is ignited to control the output voltage of converter 7.

さて、第2図でいままで述べた本発明の作用をグラフに
より説明する。この図と横軸と細軸は第5図で述べたも
のと同じものである。但しここで開ループ制御基準は閉
ループ制御基準よりやや低めにしておく。直流出力電流
が零または零に近い時には閉ループの電圧基準EP@t
に相当する出力電圧となっている。負荷がゆっくりと直
流電流をとって行くと第2図のD′で示す水平なカーブ
上に乗る特性となる。しかし負荷が急激に直流電流をと
ると、閉ループの定電圧制御は遅れをもっているので第
5図に示す特性となるが、開ループの定電圧制御は遅れ
をほとんど持っていないので開ループ制御基準の値にな
り破線で示す特性上に乗りA′→B′と変化する。B′
からC′に移るのは閉ループの定電圧制御の遅れた状態
から負荷変化に追従して来たことを意味し、閉ループ制
御が追いついた段階では、閉ループ制側御指令と開ルー
プ制御側指令とを比較すると閉ループ制御側が位相進め
側となり、これにて選択され制御されるからである。こ
の閉ループ制御側が選択される理由は開ループ制御基準
を閉ループ制御基準より低くしていることにより基準値
が高いほど位相が進み側となっているためである。
Now, the operation of the present invention described above will be explained using a graph in FIG. In this figure, the horizontal axis and thin axis are the same as those described in FIG. However, here, the open loop control standard is set slightly lower than the closed loop control standard. When the DC output current is zero or near zero, the closed-loop voltage reference EP@t
The output voltage is equivalent to . When the load slowly draws a direct current, the characteristic is that it rides on a horizontal curve as shown by D' in FIG. However, when the load suddenly draws a direct current, the closed-loop constant voltage control has a delay, resulting in the characteristics shown in Figure 5, but the open-loop constant voltage control has almost no delay, so it meets the open-loop control standard. value and changes from A' to B' on the characteristic shown by the broken line. B'
The transition from C' to C' means that the closed-loop constant voltage control has started to follow the load change from a delayed state, and at the stage when the closed-loop control has caught up, the closed-loop control side command and the open-loop control side command This is because when compared, the closed loop control side becomes the phase advance side, and is selected and controlled accordingly. The reason why this closed-loop control side is selected is that the open-loop control reference is set lower than the closed-loop control reference, so that the higher the reference value, the more advanced the phase is.

本発明の実施例の効果は第2図と第5図で比較して分か
るように負荷が急激に変化したときに全く対策のない定
電圧制御よりは定電圧の効果が得られる。また、定常の
ゆっくりした負荷変化時は制御精度のよい閉ループ制御
による位相制御が行なわれる。
As can be seen by comparing FIGS. 2 and 5, the effect of the embodiment of the present invention is that when the load suddenly changes, the effect of constant voltage can be obtained rather than constant voltage control that does not provide any countermeasures. Further, when the load changes steadily and slowly, phase control is performed using closed loop control with high control accuracy.

本発明の他の実施例を第3図に示す。ここで示す構成図
は変換器7の交流側の電圧変動が少ないと仮定した場合
で、第1図で交流側電圧を電圧変成器101により検出
し、電子回路で変換器の交流電圧EACと変換器のユニ
ット表示電圧epuを具現していたものを省略したもの
である。すなわち、■式でEACは定格電圧で一定v 
epuは1.0.u一定としとしたものである。但し開
ループ制御基準107は〔発明の効果〕 本発明により、11!車を駆動する変換器の定電圧制御
装置においては電車が急坂を登るような急激かつ重負荷
でも電圧低下を発生せずに電車の速度を下げずに登れる
という効果が得られる。
Another embodiment of the invention is shown in FIG. The configuration diagram shown here assumes that voltage fluctuations on the AC side of the converter 7 are small. In Figure 1, the AC side voltage is detected by the voltage transformer 101 and converted to the AC voltage EAC of the converter using an electronic circuit. The unit display voltage epu of the device is omitted. In other words, in equation (■), EAC is constant v at the rated voltage.
epu is 1.0. It is assumed that u is constant. However, the open loop control standard 107 is [Effect of the Invention] According to the present invention, 11! A constant voltage control device for a converter that drives a car has the effect of being able to climb a sudden and heavy load, such as when a train climbs a steep hill, without causing a voltage drop and without reducing the speed of the train.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図は第1図
の動作を説明するための図、第3図は他の実施例、第4
図は従来式定電圧制御の構成図。 第5図は第4図の動作を説明するための図である。 1・・・電圧基準設定器   2・・・加算点3・・・
誤差増幅回路 4・・・点弧パルス移相回路 5・・・絶縁アンプ6・
・・変換器用トランス  7・・・変換器8・・・直流
電圧検出回路  101・・・電圧変成器102・・・
変流器 103・・・電圧−電圧変換器 104・・・電流−電圧変換器 105・・・割算回路
106・・・イギュレーション係数 107・・・開ループ制御基準 10g・・・加算点1
09・・・位相進み優先回路 110・・・電圧−電圧変換Wl!111・・・割算回
路第1図 第3図 第4図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of FIG. 1, FIG. 3 is a diagram showing another embodiment, and FIG.
The figure is a configuration diagram of conventional constant voltage control. FIG. 5 is a diagram for explaining the operation of FIG. 4. 1... Voltage reference setter 2... Addition point 3...
Error amplification circuit 4... Ignition pulse phase shift circuit 5... Isolation amplifier 6.
...Converter transformer 7...Converter 8...DC voltage detection circuit 101...Voltage transformer 102...
Current transformer 103...Voltage-voltage converter 104...Current-voltage converter 105...Divider circuit 106...Ignition coefficient 107...Open loop control reference 10g...Summing point 1
09... Phase advance priority circuit 110... Voltage-voltage conversion Wl! 111...Division circuit Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電圧基準設定器から与えられる電圧基準信号と変換器の
出力電圧に比例した電圧帰還信号とを比較し、その偏差
信号を定電圧誤差増幅回路に印加し、この増幅回路の出
力信号に応じて前記変換器の点弧位相を制御して前記変
換器の出力電圧が前記電圧基準信号に対応した値となる
ように制御する第一の手段と、変換器の交流電圧E_A
_C、直流電圧Ed、変換器のユニット表示電流i_P
_U、変換器のユニット表示電圧e_P_U、変換器の
バーユニットリアクタンスX、変換器の位相制御遅れ角
αとしたときに数式cosα=(Ed/1.35E_A
_C)+(X/2)+(i_P_U/e_P_U)で表
わされる関係から位相制御遅れ角αを決定する第二の手
段と備えたことを特徴とする変換器の定電圧制御装置。
The voltage reference signal given from the voltage reference setter is compared with a voltage feedback signal proportional to the output voltage of the converter, and the deviation signal is applied to a constant voltage error amplification circuit, and the above-mentioned a first means for controlling the firing phase of the converter so that the output voltage of the converter has a value corresponding to the voltage reference signal; and an AC voltage E_A of the converter.
_C, DC voltage Ed, converter unit display current i_P
_U, unit display voltage of the converter e_P_U, bar unit reactance of the converter
_C)+(X/2)+(i_P_U/e_P_U) A constant voltage control device for a converter, comprising second means for determining a phase control delay angle α from the relationship expressed by:_C)+(X/2)+(i_P_U/e_P_U).
JP21918486A 1986-09-19 1986-09-19 Constant voltage controller for converter Pending JPS6377379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21918486A JPS6377379A (en) 1986-09-19 1986-09-19 Constant voltage controller for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21918486A JPS6377379A (en) 1986-09-19 1986-09-19 Constant voltage controller for converter

Publications (1)

Publication Number Publication Date
JPS6377379A true JPS6377379A (en) 1988-04-07

Family

ID=16731515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21918486A Pending JPS6377379A (en) 1986-09-19 1986-09-19 Constant voltage controller for converter

Country Status (1)

Country Link
JP (1) JPS6377379A (en)

Similar Documents

Publication Publication Date Title
US4767976A (en) Control system for PWM inverter
US5010467A (en) Control apparatus of DC power coupling system
JPS6146186A (en) Speed controlling method
JPS6377379A (en) Constant voltage controller for converter
JPH0270280A (en) Control method for electric motor
JPH0445440Y2 (en)
JP3264706B2 (en) Superconducting power controller
JPH061988B2 (en) Current control method for current source thyristor inverter
JPH0433583A (en) Induction motor controller
JPH02164299A (en) Automatic voltage regulator for generator
JPS6162102A (en) Control arithmetic unit
JPH05316737A (en) Voltage type inverter
JPH0888972A (en) Power supply
SU1453555A1 (en) Method of controlling stabilized rectifier
JPH0626457B2 (en) Control system of reactive power compensator
JPH0530136B2 (en)
JPH0635556A (en) Controller for synchronous rotary phase modifier
JPH057956B2 (en)
JPS6194124A (en) Hybrid static reactive power compensator
JPH0585471B2 (en)
JPH11137000A (en) Controller for ac machine
JPS6231591B2 (en)
JPH03143290A (en) Drooping controller for motor
JPS63146113A (en) Reactive power controller
JPH0471385A (en) Current limiting method for thyristor leonard system