JPS6372063A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS6372063A
JPS6372063A JP61213991A JP21399186A JPS6372063A JP S6372063 A JPS6372063 A JP S6372063A JP 61213991 A JP61213991 A JP 61213991A JP 21399186 A JP21399186 A JP 21399186A JP S6372063 A JPS6372063 A JP S6372063A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
aqueous electrolyte
negative electrode
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213991A
Other languages
Japanese (ja)
Inventor
Kazuo Furushima
古嶋 和夫
Tomohiro Nishiyama
西山 朋宏
Shintaro Suzuki
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61213991A priority Critical patent/JPS6372063A/en
Publication of JPS6372063A publication Critical patent/JPS6372063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To retard an increase in internal resistance during discharge and to prevent internal short-circuit by arranging a separator obtained by laminating two or more porous films having specific pore size so that these draw directions are different each other between a negative electrode and a positive electrode. CONSTITUTION:A separator 3 obtained by laminating two or more polyethylene or polypropylene films having a mean pore size of 0.01-1mum so that these draw directions are different each other is interposed between a negative electrode 4 using alkali metal or alkali earth metal as a negative active material and a positive electrode 2 using cupric oxide or ion disulfide as a positive active material. By laminating two or more films, the strength of the separator is increased and no cracks are generated even if the positive electrode swelled during discharge. By specifying the mean pore size of the porous film to 0.01-1mum, an increase in the internal resistance of a battery caused by absorption of nonaqueous electrolyte in pores of the positive electrode can be prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水電解液電池に関し、更に詳しくは、放電
時の内部抵抗増大が抑制され、かつ内部短絡も防止でき
る非水電解液電池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous electrolyte battery, and more specifically, to a non-aqueous electrolyte battery, and more specifically, to a non-aqueous electrolyte battery that can suppress an increase in internal resistance during discharging and can also prevent internal short circuits. Regarding non-aqueous electrolyte batteries.

(従来の技術) 酸化第二銅(CuO)や二硫化鉄(FeS2)は、正極
活物質としての中位体積占りの理論電気容量が大きく、
資源としても“3富であり、したがって比較的安価に入
手できるという利点を有している。しかもCuOやFe
Sを正極活物質とする正極と、アルカリ金属またぼアル
カリ土類金属を負極活物質とする負極とから成る非水電
解液電池、例えば、CuO−リチウム(L i)系電池
または、FeS2−Li系電池は、その作動電圧が1.
4〜1,5■であり、酸化銀電池や水銀電池との互換使
用が可能であるため近年、種々の電子機器の電源として
注目を集めている。
(Prior art) Cupric oxide (CuO) and iron disulfide (FeS2) have a large theoretical electric capacity at a medium volume as positive electrode active materials.
As a resource, it has the advantage of being one of the three richest resources and therefore can be obtained relatively cheaply.Moreover, CuO and Fe
A non-aqueous electrolyte battery consisting of a positive electrode using S as a positive electrode active material and a negative electrode using an alkali metal or alkaline earth metal as a negative electrode active material, such as a CuO-lithium (Li)-based battery or a FeS2-Li The operating voltage of the system battery is 1.
4 to 1.5 square meters, and can be used interchangeably with silver oxide batteries and mercury batteries, so in recent years it has attracted attention as a power source for various electronic devices.

上記したような従来の非水電解液゛電池を一例として図
示した第1図において説明する。
The conventional non-aqueous electrolyte battery as described above will be explained with reference to FIG. 1, which shows it as an example.

第1図で、まず、1は正極缶であり、例えばステンレス
鋼から成る。2は、正極であり正極活物質であるCuO
および/またはFeS2と導電材である例えば黒鉛と結
着剤であるポリテトラフルオロエチレンとをUfiし、
この混合物をペレット状に加圧成形したものである。3
は、正極2の上面に載置されたセパレータであり、例え
ば、ポリプロピレンから成る不織布である。4は、アル
キル金属またはアルカリ土類金属から成り、上記した正
極2の上に載置されている負極で、例えば、ステンレス
鋼から成る負極缶5の内壁面に密着している。負極缶5
は、例えば、ポリプロピレンから成る絶縁バッキング6
を介して正極缶1の上方開口部に冠若され、該開口部縁
辺を内側に屈曲せしめて電池全体を封口しである。なお
、セパレータ3には、例えば、プロピレンカーボネート
と1.2−ジメトキシエタンとの等体積比混合溶媒に過
塩素酸リチウムを所定量溶解させた電解液が含浸されて
いる。
In FIG. 1, numeral 1 denotes a positive electrode can, which is made of stainless steel, for example. 2 is a positive electrode and positive electrode active material CuO
and/or Ufi FeS2, a conductive material such as graphite, and a binder polytetrafluoroethylene,
This mixture is pressure molded into pellets. 3
is a separator placed on the upper surface of the positive electrode 2, and is, for example, a nonwoven fabric made of polypropylene. Reference numeral 4 denotes a negative electrode made of an alkyl metal or an alkaline earth metal and placed on the above-mentioned positive electrode 2, and is in close contact with the inner wall surface of a negative electrode can 5 made of stainless steel, for example. Negative electrode can 5
is, for example, an insulating backing 6 made of polypropylene.
The upper opening of the positive electrode can 1 is capped through the opening, and the edges of the opening are bent inward to seal the entire battery. The separator 3 is impregnated with, for example, an electrolytic solution in which a predetermined amount of lithium perchlorate is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in an equal volume ratio.

(発明が解決しようとする問題点) ところで、上記したような非水電解液電池において、放
電すると正極が膨張する。この正極の膨張現象により以
下のような間開が生ずる。
(Problems to be Solved by the Invention) By the way, in the above-mentioned non-aqueous electrolyte battery, the positive electrode expands when it is discharged. This expansion phenomenon of the positive electrode causes the following gap.

第1の問題は、正極が膨張することによりセパレータと
密着するのでセパレータに含浸せしめていた非水電解液
が正極側にも一部吸収され、その結果、セパレータに残
存する非水電解液が減少することにより電池全体の内部
抵抗が上昇するという問題である。特に、不織布のよう
に目の粗いセパレータを用いたときは、この現象が顕著
に発現する。
The first problem is that as the positive electrode expands and comes into close contact with the separator, some of the non-aqueous electrolyte that was impregnated into the separator is absorbed into the positive electrode, resulting in a decrease in the amount of non-aqueous electrolyte remaining in the separator. The problem is that this increases the internal resistance of the entire battery. This phenomenon is particularly noticeable when a coarse separator such as a nonwoven fabric is used.

第2の問題は、膨張した正極とセパレータとは相互に強
く圧接することになるのでセパレータに亀裂が入ったり
、また、正極それ自身が破損して微粉が生ずるという問
題である。
The second problem is that the expanded positive electrode and separator come into strong pressure contact with each other, which may cause cracks in the separator or damage to the positive electrode itself, resulting in the production of fine powder.

このような事態になると、例えば、正極の微粉がセパレ
ータ内に侵入したり、または、セパレータの亀裂を介し
て正極と負極とが直接接触したりして結局は内部短絡が
発生して電池としての機能を喪失する。
If this happens, for example, fine powder from the positive electrode may enter the separator, or the positive electrode and negative electrode may come into direct contact through cracks in the separator, resulting in an internal short circuit that may cause the battery to fail. Loss of function.

特に、この第2の問題は、電池としての信頼性を著しく
損なわせるものであり、この解決は強く要請されている
In particular, this second problem significantly impairs the reliability of the battery, and a solution to this problem is strongly desired.

本発明は、上記した問題点を解決し、保液性が優れ、か
つ強度も大きい後述するvL層シートをセパレータとす
ることにより、放電時にける内部抵抗の増大が抑制され
、また、内部短絡を起すこともない新規構造の非水電解
液電池の提供を目的とする。
The present invention solves the above-mentioned problems and uses a vL layer sheet, which will be described later, which has excellent liquid retention and high strength, as a separator, thereby suppressing an increase in internal resistance during discharge and preventing internal short circuits. The purpose of the present invention is to provide a non-aqueous electrolyte battery with a new structure that does not cause any damage.

[発明の構成コ (問題点を解決するだめの手段) 本発明の非水電解液電池は、アルカリ金属またはアルカ
リ土類金属を負極活物質とする負極と、CuOおよび/
またはFeS2を正極活物質とする正極と、負極と正極
との間に介在されるセパレータと、該セパレータに含浸
されている非水電解液とから成る非水電解液電池におい
て、該セパレータが、ポリエチレンまたはポリプロピレ
ンから成る平均粒径0.01〜1μmの多孔質フィルム
を2枚重上積層した積層シートであることを特徴とする
[Configuration of the Invention (Means for Solving the Problems)] The non-aqueous electrolyte battery of the present invention comprises a negative electrode containing an alkali metal or an alkaline earth metal as a negative electrode active material, CuO and/or
Alternatively, in a non-aqueous electrolyte battery comprising a positive electrode using FeS2 as a positive electrode active material, a separator interposed between the negative electrode and the positive electrode, and a non-aqueous electrolyte impregnated in the separator, the separator is made of polyethylene Alternatively, it is characterized in that it is a laminated sheet in which two porous films made of polypropylene and having an average particle diameter of 0.01 to 1 μm are laminated.

本発明の非水電解液電池は、セパレータに後述するよう
なりi層シートを用いたことに特徴を有するものであっ
て他の要素は第1図に例示した従来構造の電池と変わる
ことはない。
The non-aqueous electrolyte battery of the present invention is characterized by the use of an i-layer sheet for the separator, as will be described later, and other elements are the same as the battery of the conventional structure illustrated in FIG. .

本発明にかかるセパレータは、ポリエチレンフィルムま
たはポリプロピレンフィルムから成る平均孔径が0.0
1〜1胛の多孔質フィルムを2枚重上積層した積層シー
トである。セパレータを構成する多孔質フィルムの平均
孔径が1μ贋を超えると、正極から溶は出した銅イオン
や鉄イオンが孔を透過して負極表面上に銅や鉄として析
出し、これらが酸化されて負極表面上で酸化被膜となる
ため内部抵抗が増す。更に、膨張し、かつセパレータに
圧接させる正極側に該孔内に保持されている非水電解液
が吸収され易くなるため上記した理由で内部抵抗の増大
が促進される。また、平均孔径がO,QIIjJ1未満
の場合には、孔径が小さすぎるのでイオン伝導性が悪く
なり、電池の作動電圧が低くなる。好ましくは、0.0
5〜0.6牌である。また、セパレータに用いる多孔質
フィルムは、適正量の非水電解液をフィルムに分散する
孔内に保持されるために、気孔率が30〜65%である
ものを用いることが好ましい。
The separator according to the present invention is made of polyethylene film or polypropylene film and has an average pore diameter of 0.0.
It is a laminated sheet made by laminating two porous films of 1 to 1 layer. If the average pore diameter of the porous film constituting the separator exceeds 1μ, copper and iron ions dissolved from the positive electrode will pass through the pores and precipitate on the negative electrode surface as copper and iron, which will be oxidized. An oxide film forms on the surface of the negative electrode, increasing internal resistance. Furthermore, the non-aqueous electrolyte held in the pores is more likely to be absorbed by the positive electrode that expands and is brought into pressure contact with the separator, which promotes an increase in internal resistance for the reasons described above. Furthermore, when the average pore diameter is less than O,QIIjJ1, the pore diameter is too small, resulting in poor ionic conductivity and a low battery operating voltage. Preferably 0.0
5 to 0.6 tiles. Further, the porous film used for the separator preferably has a porosity of 30 to 65% so that an appropriate amount of non-aqueous electrolyte is retained in the pores that are dispersed in the film.

上記した多孔質フィルム1枚では、その機械的強度が充
分でなく、膨張したときセパレータに亀裂が入る虞れが
あるので本発明においては上記多孔質フィルムを2枚以
上績層した積層シートをセパレータとする。
A single porous film described above does not have sufficient mechanical strength and may cause cracks in the separator when it expands. Therefore, in the present invention, a laminated sheet made of two or more of the above porous films is used as a separator. shall be.

更に、これらの多孔質フィルムを2枚以上績層する時に
、その延伸方向がそれぞれ異なるように積層することが
好ましくこれにより、得られた積層シートは充分な強度
を有するようになるので放電途中で正極が膨張しても亀
裂が入ることをほぼ完全に防止できる。
Furthermore, when two or more of these porous films are laminated, it is preferable to laminate them so that their stretching directions are different, so that the resulting laminated sheet has sufficient strength. Even if the positive electrode expands, cracking can be almost completely prevented.

本発明にかかるセパレータは、例えば、次のようにして
製造することができる。
The separator according to the present invention can be manufactured, for example, as follows.

すなわち、上記したような多孔質の延伸フィルムを用意
し、延伸方向がそれぞれ異なるように積層して積層シー
トとし、これに所定の大きさに打抜き加工を施せば本発
明にかかるセパレータを製造することができる。
That is, the separator according to the present invention can be produced by preparing porous stretched films as described above, laminating them in different stretching directions to form a laminated sheet, and punching this into a predetermined size. Can be done.

得られたセパレータを従来と同じように組込むことによ
り本発明の非水電解液電池を製造することができる。
The non-aqueous electrolyte battery of the present invention can be manufactured by incorporating the obtained separator in a conventional manner.

(実施例) 実施例1〜2、比較例1〜3 (イ)非水電解液電池の製造 平均孔径0.05u、気孔率50%、厚さ30μ肩のポ
リプロピレンから成る2枚の多孔質フィルムをそれぞれ
の延伸方向が直交するように積層して積層シートとした
。これを実施例1の積層シート(試料A)とした。
(Example) Examples 1 to 2, Comparative Examples 1 to 3 (a) Production of nonaqueous electrolyte battery Two porous films made of polypropylene with an average pore diameter of 0.05 μ, a porosity of 50%, and a thickness of 30 μ. were laminated so that their stretching directions were perpendicular to each other to form a laminated sheet. This was used as the laminated sheet (sample A) of Example 1.

平均孔径0.05g、気孔率60%、厚さ50−のポリ
エチレンから成る2枚の多孔質フィルムを用いたことを
除いては、資ネ1Aと同様にして積層シートを製造した
。これを実施例2の積層シート(試料B)とした。
A laminate sheet was produced in the same manner as in Material 1A, except that two porous films made of polyethylene having an average pore diameter of 0.05 g, a porosity of 60%, and a thickness of 50 mm were used. This was used as the laminated sheet of Example 2 (Sample B).

平均孔径0.008.、気孔率10%、厚さ20−のポ
リプロピレンから成る2枚の多孔質フィルムを用いたこ
とを除いては試料Aと同様にして積層シートを製造した
。これを比較例1の積層シート (試料C)とした。
Average pore diameter 0.008. A laminated sheet was produced in the same manner as Sample A except that two porous films made of polypropylene having a porosity of 10% and a thickness of 20 mm were used. This was used as the laminated sheet of Comparative Example 1 (Sample C).

平均孔径3戸、気孔率65%、厚さ45μmのポリプロ
ピレンから成る2枚の多孔質フィルムを用いたことを除
いては試料Aと同様にして積層シートを製造した。これ
を比較例2の積層シート (試料D)とした。
A laminated sheet was produced in the same manner as Sample A except that two porous films made of polypropylene having an average pore diameter of 3, a porosity of 65%, and a thickness of 45 μm were used. This was used as the laminated sheet of Comparative Example 2 (Sample D).

ポリプロピレンから成る不織布(試料E)を比較例3と
して用いた。
A nonwoven fabric made of polypropylene (Sample E) was used as Comparative Example 3.

次に、ステンレス鋼からなる正極缶の底面内壁に、Ca
O85重量部と導電材である黒鉛10重量部と結着剤で
あるポリテトラフルオロエチレン5重量部とを混練後、
ペレット状に加圧成形した正極を装填し、その上に上記
の方法で得られた各積層シートまたは不織布に打抜き加
工を施してセパレータとしたものをそれぞれ載置した。
Next, Ca
After kneading 85 parts by weight of O, 10 parts by weight of graphite as a conductive material, and 5 parts by weight of polytetrafluoroethylene as a binder,
A positive electrode press-molded into a pellet was loaded, and a separator obtained by punching each laminated sheet or nonwoven fabric obtained by the above method was placed on top of the positive electrode.

なお、セパレータには、プロピレンカーボネートと1.
2−ジメトシキエタンとの等体積比混合溶媒に過塩素酸
リチウムを1モル/交溶解せしめた電解液を含浸した。
Note that the separator contains propylene carbonate and 1.
It was impregnated with an electrolytic solution in which 1 mol/mol of lithium perchlorate was dissolved in a mixed solvent with 2-dimethoxyethane in an equal volume ratio.

次に、金属L+から成る負極を内填したステンレス鋼の
負極毎に正極缶をバッキングを介して嵌合し、正極缶の
開口周縁部を内方に屈曲せしめて電池全体を封口して、
セパレータがそれぞれ異なる5種類の電池を得た。
Next, a positive electrode can is fitted to each stainless steel negative electrode containing a negative electrode made of metal L+ via a backing, and the opening periphery of the positive electrode can is bent inward to seal the entire battery.
Five types of batteries with different separators were obtained.

(ロ)評価試験 上記方法で得られた電池を用いて、zo’cにおいて外
部抵抗30にΩの定抵抗放電を行なったときの電池の内
部抵抗の変化を周波数1 kHzにて交流インピーダン
ス法にて測定した。結果を第2図に示した。
(b) Evaluation test Using the battery obtained by the above method, the change in internal resistance of the battery was measured using the AC impedance method at a frequency of 1 kHz when a constant resistance discharge of Ω was performed to an external resistor 30 in zo'c. It was measured using The results are shown in Figure 2.

実施例3〜4、比較例4〜6 平均粒径0.05.、気孔率50%、厚さ30μmのポ
リプロピレンから成る多孔質フィルムを用意して、これ
を表に示したように組合わせて積層シートとしたものと
ポリプロピレンから成る不織布に打抜き加工を施して各
種類のセパレータを用意した。
Examples 3-4, Comparative Examples 4-6 Average particle size 0.05. A porous film made of polypropylene with a porosity of 50% and a thickness of 30 μm was prepared, and this was combined into a laminated sheet as shown in the table, and a nonwoven fabric made of polypropylene was punched out to form various types. A separator was prepared.

これら5種類のセパレータを用いて実施例1と同様にし
て非水電解液電池をそれぞれ50個製造し、それらの評
価試験を行なった。放電途中で作動電圧が急激に落ち込
んだ個数とその時の負極であるリチウムの利用率を表に
示した。
Using these five types of separators, 50 non-aqueous electrolyte batteries were manufactured in the same manner as in Example 1, and evaluation tests were conducted on them. The table shows the number of batteries whose operating voltage suddenly dropped during discharge and the utilization rate of lithium, which is the negative electrode, at that time.

[発明の効果] 以上の説明で明らかなように、本発明の非水電解液電池
は、放電時の内部抵抗の増大が抑制され、かつ内部短絡
が防止でき、信頼性は極めて高いものであり、したがっ
て、その工業的価値は大である。
[Effects of the Invention] As is clear from the above explanation, the nonaqueous electrolyte battery of the present invention suppresses an increase in internal resistance during discharge, prevents internal short circuits, and has extremely high reliability. , therefore, its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の非水電解液電池の一例であるボタン型
非水電解液゛屯池の断面図である。第2図は、本発明の
非水電解液電池の放電時の内部抵抗の変化を比較例と共
に示したものである。 1・・・・・・正極缶    2・・・・・・正極3・
・・・・・セパレータ  4・・印・負極5・・・・・
・負極毎    6・・・・・・バッキング第1図 方文屯椅閾 (hr) 第2ド1
FIG. 1 is a sectional view of a button-type non-aqueous electrolyte reservoir, which is an example of a conventional non-aqueous electrolyte battery. FIG. 2 shows the change in internal resistance during discharge of the non-aqueous electrolyte battery of the present invention together with a comparative example. 1...Positive electrode can 2...Positive electrode 3.
...Separator 4...mark/negative electrode 5...
・For each negative electrode 6...Backing 1st figure Wentun chair threshold (hr) 2nd do 1

Claims (1)

【特許請求の範囲】 1、アルカリ金属またはアルカリ土類金属を負極活物質
とする負極と、酸化第二銅および/または二硫化鉄を正
極活物質とする正極と、負極と正極との間に介在される
セパレータと、該セパレータに含浸されている非水電解
液とから成る非水電解液電池において、該セパレータが
、ポリエチレンまたはポリプロピレンから成る平均孔径
0.01〜1μmの多孔質フィルムを2枚以上積層した
積層シートであることを特徴とする非水電解液電池。 2、該セパレータが2枚以上の該多孔質フィルムをそれ
ぞれの延伸方向が異なるように積層した積層シートであ
る特許請求の範囲第1項記載の非水電解液電池。
[Claims] 1. A negative electrode containing an alkali metal or an alkaline earth metal as a negative electrode active material, a positive electrode containing cupric oxide and/or iron disulfide as a positive electrode active material, and between the negative electrode and the positive electrode. In a non-aqueous electrolyte battery consisting of an interposed separator and a non-aqueous electrolyte impregnated in the separator, the separator is made of two porous films made of polyethylene or polypropylene and having an average pore diameter of 0.01 to 1 μm. A non-aqueous electrolyte battery characterized by being a laminated sheet formed by laminating the above layers. 2. The non-aqueous electrolyte battery according to claim 1, wherein the separator is a laminated sheet in which two or more of the porous films are laminated in different stretching directions.
JP61213991A 1986-09-12 1986-09-12 Nonaqueous electrolyte battery Pending JPS6372063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213991A JPS6372063A (en) 1986-09-12 1986-09-12 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213991A JPS6372063A (en) 1986-09-12 1986-09-12 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS6372063A true JPS6372063A (en) 1988-04-01

Family

ID=16648446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213991A Pending JPS6372063A (en) 1986-09-12 1986-09-12 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6372063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723304A3 (en) * 1994-12-22 1996-08-28 Hoechst Celanese Corp
JP2003346766A (en) * 2002-05-23 2003-12-05 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
KR100696452B1 (en) * 1999-11-25 2007-03-16 삼성에스디아이 주식회사 Separator for Li-ion secondary battery and Li-ion secondary battery utilizing the same
JP2010027617A (en) * 2009-10-01 2010-02-04 Panasonic Corp Lithium-ion secondary battery
CN102263220A (en) * 2011-06-22 2011-11-30 广东博特动力能源有限公司 Preparation method for battery diaphragm
JP2016072233A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
US11283136B2 (en) 2014-09-29 2022-03-22 Gs Yuasa International Ltd. Energy storage device and method of producing energy storage device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667911A (en) * 1994-11-17 1997-09-16 Hoechst Celanese Corporation Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby
EP0723304A3 (en) * 1994-12-22 1996-08-28 Hoechst Celanese Corp
JPH08236098A (en) * 1994-12-22 1996-09-13 Hoechst Celanese Corp Production of crossing layer porosity film battery separatorand battery separator that is manufactured by it
CN1075248C (en) * 1994-12-22 2001-11-21 思凯德公司 Methods of making cross-ply microporous membrane battery separator, and battery separators made thereby
JP2002184381A (en) * 1994-12-22 2002-06-28 Celgard Inc Manufacturing method of battery cell, and battery separator
KR100696452B1 (en) * 1999-11-25 2007-03-16 삼성에스디아이 주식회사 Separator for Li-ion secondary battery and Li-ion secondary battery utilizing the same
JP2003346766A (en) * 2002-05-23 2003-12-05 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2010027617A (en) * 2009-10-01 2010-02-04 Panasonic Corp Lithium-ion secondary battery
CN102263220A (en) * 2011-06-22 2011-11-30 广东博特动力能源有限公司 Preparation method for battery diaphragm
WO2012174998A1 (en) * 2011-06-22 2012-12-27 Guangdong Powerlink Energy Co., Ltd Method for preparing separator of battery
US9705118B2 (en) 2011-06-22 2017-07-11 Guangdong Powerlink Energy Co., Ltd. Method for preparing separator of battery
JP2016072233A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Power storage device and method for manufacturing power storage device
US11283136B2 (en) 2014-09-29 2022-03-22 Gs Yuasa International Ltd. Energy storage device and method of producing energy storage device

Similar Documents

Publication Publication Date Title
US4070528A (en) Battery having porous inherently sealable separator
JP2588523B2 (en) Carbon electrode
US3870564A (en) Alkaline cell
EP0110491A2 (en) Size and weight graded multi-layered EAS diffusion electrodes
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
JP2012089303A (en) Lithium secondary battery electrode and lithium secondary battery using the same
US20120028092A1 (en) Aa lithium primary battery and aaa lithium primary battery
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
JPS6372063A (en) Nonaqueous electrolyte battery
US4687716A (en) Organic electrolyte cell
KR101190026B1 (en) Negative electrode material and battery using the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JPH11288723A (en) Current collector for electrochemical element
JPH03291848A (en) Battery
JP2021158028A (en) Zinc secondary battery
JPH0426075A (en) Organicelectrolyte battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
EP4131530A1 (en) Flat battery and method for manufacturing same
JPH07235303A (en) Nickel pole for alkaline storage battery and its manufacture
JPH0750602B2 (en) Lead acid battery
JPS60170172A (en) Rechargeable electrochemical device
JPH04507171A (en) Porous lithium electrode and battery equipped with the same
JP3462563B2 (en) Hydrogen storage alloy electrode
JP2925631B2 (en) Non-aqueous electrolyte battery