JPS6369825A - Block copolymer and production thereof - Google Patents

Block copolymer and production thereof

Info

Publication number
JPS6369825A
JPS6369825A JP61214781A JP21478186A JPS6369825A JP S6369825 A JPS6369825 A JP S6369825A JP 61214781 A JP61214781 A JP 61214781A JP 21478186 A JP21478186 A JP 21478186A JP S6369825 A JPS6369825 A JP S6369825A
Authority
JP
Japan
Prior art keywords
lactide
polyoxyethylene
block copolymer
telechelic
acid segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214781A
Other languages
Japanese (ja)
Inventor
Toshio Kitao
北尾 敏男
Yoshiharu Kimura
良晴 木村
Noriyoshi Otani
大谷 典義
Hiroshi Matsuzaki
裕志 松崎
Keiko Yabuuchi
薮内 恵子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61214781A priority Critical patent/JPS6369825A/en
Publication of JPS6369825A publication Critical patent/JPS6369825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled copolymer having flexibility, hydrophilic property and excellent film-forming property and suitable for medical and surgical use as a film absorbable in living body, by copolymerizing a lactide with a polyoxyethylene telechelic acid ester. CONSTITUTION:Each of (A) 100pts.wt. of an L-lactide having a melting point of >=97 deg.C or a DL-lactide having a melting point of >=127 deg.C and (B) preferably 5-100pts.wt. of a polyoxyethylene telechelic acid is dried in vacuum, substituted with an inert gas, dissolved in a small amount of a solvent (e.g. toluene) under heating and made to react with each other e.g. at 50-100 deg.C under stirring in the presence of a catalyst (e.g. diethylzinc) to obtain the objective block copolymer composed of 70-97wt% polylactic acid segment and 3-30wt% polyoxyethylene dicarboxylic acid segment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医療性利用、特に生物吸収可能なフィルムに
適した、ポリ乳酸を−に成分とするブロック共重合体お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a block copolymer mainly composed of polylactic acid, which is suitable for medical use, particularly for bioabsorbable films, and a method for producing the same.

〔従来の技術及び問題点〕[Conventional technology and problems]

従来ポリ乳酸は、L−ラクタイド、又はDl−−ラクタ
イドの開環重合より得られ、種々の重合度のものが知ら
れている。
Conventionally, polylactic acid is obtained by ring-opening polymerization of L-lactide or Dl-lactide, and polylactic acids with various degrees of polymerization are known.

しかしながら、ポリ乳酸をフィルムに加Tすると、もろ
く、柔軟性に乏しく、生体内で使用覆るには吸水性に欠
けるという問題点がある。
However, when polylactic acid is added to a film, it becomes brittle, has poor flexibility, and lacks water absorption for use in vivo.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの問題点を踏まえポリ乳酸の高分
子鎖中に親水性の高いポリオキシエチレン基を導入する
ことを考え、ラクタイドとポリオキシエチレンの重合を
試みたがポリオ−キシエチレンの水酸基が、ラクタイド
の重合を阻害することにより、フィルム形成性を有しな
い、重合度の低い共重合体しか得られなかった。
In view of these problems, the present inventors considered introducing a highly hydrophilic polyoxyethylene group into the polymer chain of polylactic acid, and attempted to polymerize lactide and polyoxyethylene. Since the hydroxyl groups inhibited the polymerization of lactide, only a copolymer with a low degree of polymerization and no film-forming properties was obtained.

そこで、本発明者らはさらに鋭意検Nを川ねた結果、エ
ステル交換タイプの反応ならばポリ乳酸鎖の重合度をそ
こねないことを見出し、ポリオ−キシエチレン基を有す
るジカルボン酸エステルであるポリオキシエチレンテレ
ケリツク酸エステルを用いることにより、柔軟性、親水
性を有し、フィルム形成性に富んだブロック共重合体を
得ることに成功し、本発明を完成させたものである。
Therefore, the present inventors conducted further extensive research and found that a transesterification type reaction would not impair the degree of polymerization of polylactic acid chains. By using oxyethylene telechelic acid ester, we succeeded in obtaining a block copolymer having flexibility, hydrophilicity, and excellent film-forming properties, thereby completing the present invention.

すなわら、本発明は、 式 : で表されポリ乳酸セグメント(A)70〜97重量%と
ポリオキシエヂレンジカルボン酸セグメント(B)3〜
30重量%から4fるブロック共重合体。
That is, the present invention is represented by the formula: 70 to 97% by weight of a polylactic acid segment (A) and 3 to 97% by weight of a polyoxyethylene dicarboxylic acid segment (B)
30% to 4f block copolymer.

及び、L−ラクタイド及び又はD L−ラクタイドと式 (式中Rはアルキル基を示す)で示されるポリオキシエ
チレンテレケリツク酸エステルとを水分を除去した系中
加熱することによりエステル交換反応により綜合重合し
て前記ブロック共重合体を製造する方法である。
And, by heating L-lactide and/or D L-lactide and polyoxyethylene telechelic acid ester represented by the formula (in the formula, R represents an alkyl group) in a system from which water has been removed, a transesterification reaction is carried out. This is a method for producing the block copolymer by polymerization.

本発明に用いるポリオキシエチレンテレケリツク酸エス
テル(以11PEOエステルと略す)の分子量は100
乃至10000のものが使用出来、好ましくは400乃
至4000のものが良い。
The molecular weight of the polyoxyethylene telechelic acid ester (hereinafter abbreviated as 11PEO ester) used in the present invention is 100.
A number between 10,000 and 10,000 can be used, preferably between 400 and 4,000.

PEOエステルのアルキル基は飽和脂肪族アルキル基で
あれば好ましく、特にメチル基が好ましい。
The alkyl group of the PEO ester is preferably a saturated aliphatic alkyl group, particularly preferably a methyl group.

PEOエステルは、ポリオキシエチレンテレケリツク酸
エステル(日本触媒化学■業■より販売されている)を
常法によりエステル化して調整する。メチルエステルを
得るためにはメタノール中でパラトルエンスルホン酸等
の触媒を用いてエステル化するとPEOメチルニスデル
が得られる。
PEO ester is prepared by esterifying polyoxyethylene telechelic acid ester (sold by Nippon Shokubai Kagaku ■) by a conventional method. In order to obtain methyl ester, PEO methylnisder is obtained by esterification using a catalyst such as para-toluenesulfonic acid in methanol.

本発明に用いるラクタイドは、1−−ラクタイドであれ
ば融点97℃以−ヒのものを用い、DL−ラクタイドで
あれば融点127°C以上のものを用いる。使用するラ
クタイドは、し体、Dl体の単独のみならず1体とDl
体との混合物であってもよい。
The lactide used in the present invention is 1-lactide with a melting point of 97°C or higher, and DL-lactide with a melting point of 127°C or higher. The lactide used is not only single lactide and Dl body, but also one body and Dl body.
It may be a mixture with the body.

P E Oエステルとラクタイドは目的の共重合体の組
成に応じラクタイド100重量部に対しPEOエステル
5〜100重聞部の範囲から選ばれた最が用いられる。
The amount of PEO ester and lactide used is selected from the range of 5 to 100 parts by weight of PEO ester per 100 parts by weight of lactide, depending on the composition of the desired copolymer.

重合は、PEOエステルとラクタイドを真空乾燥し、不
活性ガス置換し水分を完全に除去した後、不活性ガス置
換下、少量の乾燥溶媒に加熱溶解し、ジエチル亜鉛など
の触媒をラクタイドの数%程度加え、50〜100℃程
度の温度で撹拌下0.5〜数時間反応させることによっ
て行われる。
For polymerization, PEO ester and lactide are vacuum-dried, replaced with inert gas to completely remove moisture, and then heated and dissolved in a small amount of dry solvent under inert gas replacement, and a catalyst such as diethylzinc is added to a few percent of lactide. The reaction is carried out by stirring at a temperature of about 50 to 100° C. for 0.5 to several hours.

〔実施例〕〔Example〕

本発明において、ポリマーの物性は以下の通りの方法で
分析した。
In the present invention, the physical properties of the polymer were analyzed by the following method.

数平均分子量 GPCを用い、ポリマーをTHFに0.1wt%の割合
で溶解させ、スヂレンスタンダードによって分子量を得
た。
Number average molecular weight Using GPC, the polymer was dissolved in THF at a ratio of 0.1 wt%, and the molecular weight was obtained using a sutylene standard.

NMR ポリマーを1%TMS、重クロロホルム溶媒に溶解させ
測定した。
NMR The polymer was dissolved in 1% TMS and deuterated chloroform solvent and measured.

粘度測定 クロロホルムを溶媒に用い、0.5g/d、Ilの溶液
で30±0.1℃で測定し、η3./Cを算出した。
Viscosity measurement Using chloroform as a solvent, the viscosity was measured at 30±0.1°C with a solution of 0.5 g/d, Il, and η3. /C was calculated.

引張強度、初期ヤング率、伸度 ホットプレス(50Kfl / c#i)によりフィル
ム作成後5#X201Mの試料を切り取り引張試験機に
て測定した。
Tensile strength, initial Young's modulus, and elongation were measured using a tensile tester after a film was prepared using a hot press (50 Kfl/c#i) and a 5#x201M sample was cut out.

以下の実施例は本発明の好適な具体例であるが、本発明
を限定するものではない。
The following examples are preferred embodiments of the invention, but are not intended to limit the invention.

実施例1 PEOメヂメチステル2gとDl−−ラクタイド209
とを500蛇のナス型フラス」に装入し、50℃で加熱
しながら10時間真空乾燥、窒素置換し水分を完全に除
去した。窒素置換した]ヘルエン5dを加え、80℃で
反応物を溶解さVた後、触媒ジエチル亜鉛1y(ラクタ
イドの5wt%)を加え1時間撹拌しながら重合した。
Example 1 PEO medimethister 2g and Dl--lactide 209
The mixture was placed in a 500-sized eggplant-shaped flask and dried under vacuum for 10 hours while heating at 50°C, and the water was completely removed by replacing the mixture with nitrogen. After the reactant was dissolved at 80° C., the catalyst diethylzinc 1y (5 wt % of lactide) was added and polymerized with stirring for 1 hour.

重合終了後無水酢酸5 mlを加え末端アセチル化を行
なうことによって、重合を停止させた。生成物をn−ヘ
キサン中に注ぎ再沈殿させ、単離したあとエーテルで3
回洗浄し乾燥後20.7g(収率94%)のポリマー(
数平均分子機31,000.η8./CO,44)を得
た。このもののNMRスペクトルを調べたところ乳酸鎖
(PLA鎖)に基づく特性スペク1〜ル(1,4及び5
.0DDm)とPFO鎖に基づく特性スペクトル(3,
5ppm)を検出した。それぞれのモル比(P L A
 / P E O)は92/8であった。
After the polymerization was completed, 5 ml of acetic anhydride was added to carry out terminal acetylation to terminate the polymerization. The product was reprecipitated by pouring it into n-hexane, isolated and diluted with ether for 3 hours.
After washing twice and drying, 20.7 g (yield 94%) of polymer (
Number average molecular machine 31,000. η8. /CO,44) was obtained. When we investigated the NMR spectrum of this product, we found characteristic spectra 1 to 1 (1, 4 and 5) based on lactic acid chains (PLA chains).
.. 0DDm) and characteristic spectra based on PFO chains (3,
5 ppm) was detected. Each molar ratio (PLA
/PEO) was 92/8.

I Rで調べた結果、1300cm−’ 〜1000c
m−1にP IE O鎖に基づく特性吸収が見られ、1
750cm−1にエステルの特性吸収が見られ、これら
MNRとIRの結果よりブロック共重合体であることが
確認された。
As a result of checking with IR, 1300cm-'~1000c
A characteristic absorption based on the PIE O chain is seen at m-1, and 1
A characteristic absorption of ester was observed at 750 cm-1, and the MNR and IR results confirmed that it was a block copolymer.

このブロック共重合体を60℃でボッ1ヘプレスしてフ
ィルムを作成し、引張試験の結果、引張強度2.2Kg
/1IIIIl、初期ヤング率3.8Kg/mm2、伸
度99%である柔軟性の良いフィルムが得られ1こ 。
This block copolymer was pressed into a ball at 60°C to create a film, and as a result of a tensile test, the tensile strength was 2.2 kg.
A flexible film with an initial Young's modulus of 3.8 Kg/mm2 and an elongation of 99% was obtained.

実施例2 PEOメヂメチステルを4g、DL−ラクタイドのかわ
りに1−ラクタイド20gを使用づ−る以外は実施例1
と同じ方法で重合した結果、18.2gのブロック共重
合体(数平均分子邑25.000η8./co、67、
融点170℃)を得た。この共重合体のモル比(P L
 A / P E O)は96/4であった。
Example 2 Example 1 except that 4 g of PEO medimethister and 20 g of 1-lactide were used instead of DL-lactide.
As a result of polymerization in the same manner as above, 18.2 g of block copolymer (number average molecular weight 25.000 η8./co, 67,
(melting point: 170°C). The molar ratio of this copolymer (PL
A/PEO) was 96/4.

この共重合体を120℃でホットプレスし、フィルムを
作成し、引張試験を行なった結果、引張強度2.8N9
/mm2、初期ヤング率4.2Kg/ll1m2、伸度
45%である柔軟性の良いフィルムが得られた。
This copolymer was hot-pressed at 120°C to create a film, and a tensile test was performed. As a result, the tensile strength was 2.8N9.
A flexible film having an initial Young's modulus of 4.2 kg/1 m 2 and an elongation of 45% was obtained.

〔発明の効果〕〔Effect of the invention〕

以上のとおりポリ乳酸に少量のPFOをPEOジカルボ
ン酸セグメントとして導入しlこ本発明のブロック共重
合体は、P IE Oによる親水性を有するとともにポ
リ乳酸セグメントにより生物が吸収可能であり、しかも
高重合度が得られ柔軟なフィルムを形成することができ
、医療外科用品への利用が期待できる。
As described above, a small amount of PFO is introduced into polylactic acid as a PEO dicarboxylic acid segment, and the block copolymer of the present invention has hydrophilicity due to PIE O, can be absorbed by living organisms due to the polylactic acid segment, and has a high It is possible to obtain a high degree of polymerization and form a flexible film, and is expected to be used in medical and surgical supplies.

Claims (1)

【特許請求の範囲】 1、式 ▲数式、化学式、表等があります▼ で表されポリ乳酸セグメント(A)70〜97重量%と
ポリオキシエチレンジカルボン酸セグメント(B)3〜
30重量%からなるブロック共重合体。 2、L−ラクタイド及び又はDL−ラクタイドと式 ▲数式、化学式、表等があります▼ (式中Rはアルキル基を示す)で示されるポリオキシエ
チレンテレケリック酸エステルとを水分を除去した系中
加熱することによりエステル交換反応により縮合重合し
て式 ▲数式、化学式、表等があります▼ で表わされポリ乳酸セグメント(A)70〜97重量%
とポリオキシエチレンジカルボン酸セグメント(B)3
〜30重量%からなるブロック共重合体を製造する方法
[Claims] 1. Represented by the formula ▲ Numerical formulas, chemical formulas, tables, etc.
A block copolymer consisting of 30% by weight. 2. L-lactide and/or DL-lactide and polyoxyethylene telechelic acid ester represented by the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. When heated, condensation polymerization occurs due to transesterification reaction, which is represented by the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Polylactic acid segment (A) 70 to 97% by weight
and polyoxyethylene dicarboxylic acid segment (B) 3
A method for producing a block copolymer consisting of ~30% by weight.
JP61214781A 1986-09-11 1986-09-11 Block copolymer and production thereof Pending JPS6369825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214781A JPS6369825A (en) 1986-09-11 1986-09-11 Block copolymer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214781A JPS6369825A (en) 1986-09-11 1986-09-11 Block copolymer and production thereof

Publications (1)

Publication Number Publication Date
JPS6369825A true JPS6369825A (en) 1988-03-29

Family

ID=16661428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214781A Pending JPS6369825A (en) 1986-09-11 1986-09-11 Block copolymer and production thereof

Country Status (1)

Country Link
JP (1) JPS6369825A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152461A (en) * 1988-12-01 1990-06-12 Nippon Sogo Igaku Kenkyusho:Kk Tissue absorbable film
JPH03505535A (en) * 1988-07-05 1991-12-05 ビオコン オーワイ Polymer film for reinforced biofunctional materials
EP0493008A2 (en) * 1990-12-21 1992-07-01 Toray Industries, Inc. Polyester film and photosensitive material
EP0558965A2 (en) * 1992-03-02 1993-09-08 American Cyanamid Company Reduced friction coatings for articles in contact with human or animal tissues
WO2011081406A3 (en) * 2009-12-29 2011-12-01 주식회사 삼양사 Macromolecule for delivering protein, polypeptide or peptide drugs and a production method for the same, and a slow release composition for protein, polypeptide or peptide drugs and a production method for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505535A (en) * 1988-07-05 1991-12-05 ビオコン オーワイ Polymer film for reinforced biofunctional materials
JPH02152461A (en) * 1988-12-01 1990-06-12 Nippon Sogo Igaku Kenkyusho:Kk Tissue absorbable film
EP0493008A2 (en) * 1990-12-21 1992-07-01 Toray Industries, Inc. Polyester film and photosensitive material
EP0558965A2 (en) * 1992-03-02 1993-09-08 American Cyanamid Company Reduced friction coatings for articles in contact with human or animal tissues
WO2011081406A3 (en) * 2009-12-29 2011-12-01 주식회사 삼양사 Macromolecule for delivering protein, polypeptide or peptide drugs and a production method for the same, and a slow release composition for protein, polypeptide or peptide drugs and a production method for the same
KR101224004B1 (en) * 2009-12-29 2013-01-22 주식회사 삼양바이오팜 A polymer for protein, polypeptide or peptide drug delivery and a method for preparing the same, and a composition for sustained release of protein, polypeptide or peptide drug and a method for preparing the same
US9603931B2 (en) 2009-12-29 2017-03-28 Samyang Biopharmaceuticals Corporation Macromolecule for delivering protein, polypeptide or peptide drugs and a production method for the same, and a slow release composition for protein, polypeptide or peptide drugs and a production method for the same

Similar Documents

Publication Publication Date Title
He et al. Synthesis of biodegradable poly (propylene fumarate) networks with poly (propylene fumarate)–diacrylate macromers as crosslinking agents and characterization of their degradation products
Jamshidi et al. Thermal characterization of polylactides
US5321113A (en) Copolymers of an aromatic anhydride and aliphatic ester
EP2678326B1 (en) Monomers and polymers for functional polycarbonates and poly (ester-carbonates) and peg-co-polycarbonate hydrogels
Dobrzynski et al. Synthesis of biodegradable glycolide/L-lactide copolymers using iron compounds as initiators
US6770717B2 (en) Sequentially ordered biodegradable lactide (glycolide or lactide/glycolide)ε-caprolactone multi-block copolymer and process for the preparation thereof
Fiordeliso et al. Design, synthesis, and pr eliminary characterization of tyrosine-containing polyarylates: New biomaterials for medical applications
Wang et al. Synthesis of poly (1, 4‐dioxan‐2‐one‐co‐trimethylene carbonate) for application in drug delivery systems
Alla et al. Degradable poly (ester amide) s based on l-tartaric acid
Wolinsky et al. Poly (carbonate ester) s based on units of 6-hydroxyhexanoic acid and glycerol
Wang et al. Biodegradable aliphatic/aromatic copoly (ester-ether) s: the effect of poly (ethylene glycol) on physical properties and degradation behavior
Albertsson et al. Synthesis, characterization and degradation of aliphatic polyanhydrides
Coullerez et al. Synthesis of acrylate functional telechelic poly (lactic acid) oligomer by transesterification
EP1642921B1 (en) Triblock copolymer, method for producing the same and biocompatible material
KR100365721B1 (en) Hyperstructure-controlled aliphatic polyester compounds for a plasticizer of polyvinylchloride and polyvinylchloride blend containing the same
JPS6369825A (en) Block copolymer and production thereof
WO2020241624A1 (en) Polymer composition, molded body and nerve regeneration inducing tube
JPH01108226A (en) Block, copolymer, its production, copolymer film and copolymer fiber
Lee et al. Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers
He et al. Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive
Schwach-Abdellaoui et al. Control of molecular weight for auto-catalyzed poly (ortho ester) obtained by polycondensation reaction
Zavradashvili et al. Amino acid based epoxy-poly (ester amide) s—A new class of functional biodegradable polymers: Synthesis and chemical transformations
Ranucci et al. Block copolymers containing poly (ethylene glycol) and poly (amido-amine) or poly (amido-thioether-amine) segments
Mohammadi‐Rovshandeh et al. Synthesis and thermal behavior of triblock copolymers from l‐lactide and ethylene glycol with long center PEG block
Olofsson et al. Soft hydrogels from tetra-functional PEGs using UV-induced thiol–ene coupling chemistry: a structure-to-property study