JPS6366931A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6366931A
JPS6366931A JP61210932A JP21093286A JPS6366931A JP S6366931 A JPS6366931 A JP S6366931A JP 61210932 A JP61210932 A JP 61210932A JP 21093286 A JP21093286 A JP 21093286A JP S6366931 A JPS6366931 A JP S6366931A
Authority
JP
Japan
Prior art keywords
beams
laser
semiconductor substrate
substrate
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61210932A
Other languages
Japanese (ja)
Inventor
Hideki Yakida
八木田 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61210932A priority Critical patent/JPS6366931A/en
Publication of JPS6366931A publication Critical patent/JPS6366931A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

PURPOSE: To stop laser beam machining immediately before a recessed section is penetrated, and to improve the productivity of laser beam machining by estimating the thickness of a semiconductor substrate in the bottom of the recessed section by the intensity of transmitted beams where second beams overlapped to the optical path of laser beams for machining are transmitted through the substrate. CONSTITUTION:When a groove or a recessed section is formed from the surface of a semiconductor substrate 101 by irradiating the semiconductor substrate 101 with laser beams 102, second beams 105 different from said laser beams 102 are overlapped to the optical path of laser beams 102, and the thickness of the substrate in the bottom of the recessed section 103 is estimated by the intensity of transmitted beams where second beams 105 are transmitted through the semiconductor substrate 101. A semi- insulating GaAs substrate is used as the semiconductor substrate 101, pulse beams having a wavelength of 280nm by an excimer laser as laser beams 102 for machining, an infrared laser as the second beams 105 and a photomultiplier as a detector 106. Laser beams for machining are stopped when an output from the detector reaches a fixed value, thus stopping etching immediately before the recessed section for a viahole is penetrated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関するもので、特にマ
イクロ波モノリシック集積回路において用いられるパイ
ヤホールの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a pie hole used in a microwave monolithic integrated circuit.

従来の技術 マイクロ波モノリシック集積回路において所定の電極を
集積回路基板の裏面接地電極から直接接続せしめる必要
がある。この方法としてパイヤホール電極形成技術があ
る。第2図にパイヤホール電極を示した。同図に於て2
01は半導体基板で、202は基板表面上の電極で、2
03は裏面接地tiで、204はパイヤホールである。
Prior Art In microwave monolithic integrated circuits, it is necessary to connect certain electrodes directly from the backside ground electrode of the integrated circuit board. As this method, there is a pie-hole electrode formation technique. Figure 2 shows a pie-hole electrode. In the same figure, 2
01 is a semiconductor substrate, 202 is an electrode on the surface of the substrate, 2
03 is the back ground ti, and 204 is the pie hole.

同図に示される様に205によって基板表面上の電極と
裏面接地電極が接続されている。
As shown in the figure, the electrode on the front surface of the substrate and the ground electrode on the back surface are connected by 205.

このようなパイヤホールの製造方法として化学エツチン
グ、プラズマエツチングなどが用いられているが、強度
の強いレーザ光綿によって加工する方法が、パイヤホー
ルの断面形状を任°意に加工できる、あるいは加工速度
が早い、などの利点から最近用いられるようになった。
Chemical etching, plasma etching, etc. are used to manufacture such pie holes, but the method of processing using a strong laser beam allows the cross-sectional shape of the pie hole to be processed arbitrarily, and the processing speed is fast. It has recently come into use due to its advantages such as .

第3図にレーザ加工によるパイヤホール形成を示す、2
01は半導体基板で、301はレーザ光線で半導体基板
裏面より照射せしめる。302はパイヤホールの底部で
、303は集積回路に用いられている表面電極を示す、
パイヤホールをレーザ加工によって形成する場合、凹部
の底部がその基板表面に達する前に加工を止めなければ
ならない、それは、レーザ加工により凹部を貫通させれ
ば、表面に形成された電極も同時にレーザ光線で溶かさ
れるか、もしくは昇華される。これは電極形成には大き
な障害となる。したがって、パイヤホール形成のための
レーザ加工では凹部が貫通する直前でとめ、残りの基板
は金属この選択性を有するような他のエツチング方法、
例えば、化学エツチングかプラズマエツチングによって
半導体基板をエツチング除去し、電極の裏面を露出させ
る必要がある。
Figure 3 shows the formation of a pie hole by laser processing, 2
01 is a semiconductor substrate, and 301 is a laser beam irradiated from the back surface of the semiconductor substrate. 302 is the bottom of the pie hole, 303 is the surface electrode used in the integrated circuit,
When forming a pie hole by laser processing, the processing must be stopped before the bottom of the recess reaches the surface of the substrate.This means that if the recess is penetrated by laser processing, the electrodes formed on the surface will also be exposed to the laser beam. be melted or sublimated. This poses a major obstacle to electrode formation. Therefore, the laser processing for forming the pie hole is stopped just before the recess penetrates, and the remaining substrate is etched using other etching methods that have this selectivity.
For example, the semiconductor substrate must be etched away by chemical etching or plasma etching to expose the backside of the electrode.

しかしながら、レーザ加工による凹部の底部が基板表面
に達する直前に止めることは次ぎの理由により回灯であ
った。
However, stopping the laser processing just before the bottom of the recess reaches the substrate surface is a round-trip process for the following reason.

(1)レーザ加工に於て、加工面の上下動に伴う焦点距
離の変化と、加工時に発生する溶融基板材料の再付着に
よって、基板のエツチングレートな再現性のある正確な
値として見積る事ができない。
(1) During laser processing, it is difficult to estimate the etching rate of the substrate as a reproducible and accurate value due to changes in the focal length due to vertical movement of the processing surface and re-deposition of the molten substrate material that occurs during processing. Can not.

(2)レーザ加工による凹部の底部は必ずしも平面では
ないため凹部が局部的に貫通してしまう場合が多い。
(2) Since the bottom of a recess formed by laser processing is not necessarily flat, the recess often penetrates locally.

このような理由によってレーザ加工の生産性は著しく低
く、大きな問題であった。
For these reasons, the productivity of laser processing has been extremely low, which has been a major problem.

発明が解決しようとする問題点 本発明が解決しようとする問題点は、レーザ加工におい
て、凹部が貫通直前に加工を止めるための効率的な手段
が無い事ために、レーザ加工の生産性が低いという点で
ある。
Problems to be Solved by the Invention The problems to be solved by the present invention are that in laser processing, there is no efficient means to stop the processing immediately before the recess penetrates, so the productivity of laser processing is low. That is the point.

問題点を解決するための手段 この様な点を鑑みた問題点を解決するための手段は、半
導体基板に第1の光線となるレーザ光線を照射すること
によって、半導体基板表面より溝もしくは凹部を形成す
る方法において、前記レーザ光線とは異なる第2の光線
を前記レーザ光線の光路に重畳せしめ、前記第2の光線
が該半導体基板を通過する透過光強度によって、溝もし
くは凹部の底部の基板厚みを見積ることを特徴とする半
導体装置の製造方法を用いることである。
Means for solving the problem In view of the above points, a means for solving the problem is to irradiate the semiconductor substrate with a laser beam serving as the first beam to form grooves or recesses from the surface of the semiconductor substrate. In the forming method, a second light beam different from the laser beam is superimposed on the optical path of the laser beam, and the second light beam determines the thickness of the substrate at the bottom of the groove or recess depending on the intensity of transmitted light passing through the semiconductor substrate. The present invention is to use a semiconductor device manufacturing method characterized by estimating .

作用 本発明は、半導体基板を通過した透過光の強度が基板厚
みと逆比例する現象を利用したもので、レーザ加工によ
って形成された凹部の底部の基板厚みが、加工が進むに
つれ薄くなるに伴って凹部の底部の透過光強度が増加す
るために底部の基板厚みのよいモニターとなる。一般に
光の半導体中での吸収係数なαとすると、基板の厚みd
と透過光強度Pこの関係は、pcxexp(−αd)の
関係があるが、波長を適当に選ぶことによって透過光強
度の変化を十分に取ることができる。
The present invention utilizes the phenomenon that the intensity of transmitted light passing through a semiconductor substrate is inversely proportional to the thickness of the substrate, and as the thickness of the substrate at the bottom of the recess formed by laser processing becomes thinner as processing progresses, Since the transmitted light intensity at the bottom of the recess increases, it becomes a good monitor of the substrate thickness at the bottom. In general, if α is the absorption coefficient of light in a semiconductor, then the thickness of the substrate d
This relationship is pcxexp(-αd), but by appropriately selecting the wavelength, the transmitted light intensity can be sufficiently varied.

実施例 本発明による実施例を第1図を用いて説明する。Example An embodiment according to the present invention will be described with reference to FIG.

101は゛半導体基板で、102は加工用の第1の光線
であるレーザ光線で、103はレーザ加工によって作ら
れた凹部の底部で、104は表面電極で、105は本発
明による第2のレーザ光線で、106は前記第2のレー
ザ光線の透過光強度を測定する検知器である。本実施例
においては、半導体基板として半絶縁性G a A s
基板、加工用のレーザ光線として、キセノン・クロライ
ドによるエキシマレーザによる波長が280nmのパル
ス光が用いられた。第2のレーザ光線としては、半導体
基板の透過特性を考慮して赤外光レーザが用いられた。
101 is a semiconductor substrate, 102 is a laser beam that is the first beam for processing, 103 is the bottom of a recess made by laser processing, 104 is a surface electrode, and 105 is a second laser beam according to the present invention. 106 is a detector that measures the transmitted light intensity of the second laser beam. In this example, semi-insulating GaAs is used as the semiconductor substrate.
As the laser beam for processing the substrate, pulsed light having a wavelength of 280 nm produced by an excimer laser using xenon chloride was used. As the second laser beam, an infrared laser was used in consideration of the transmission characteristics of the semiconductor substrate.

また、前記赤外光の透過強度を測定するための検知器と
しては一般に用いられているフォトマルチプライヤ−が
用いられた。
Furthermore, a commonly used photomultiplier was used as a detector for measuring the transmitted intensity of the infrared light.

レーザ光A11l102は第2のレーザ光線105と重
畳され加工が開始される。レーザ光線105は加工の初
期においては基板の厚みが十分に厚いためにそのほとん
どが半導体基板に吸収され、検知器には出力が現れない
が、加工が進むにつれてレーザ光NjA 105の透過
量が増し検知器からの出力が大きくなる。検知器の出力
があらかじめ決められた所定値になった時、加工用レー
ザ光線を止めることによってパイヤホール用の凹部が貫
通直前にエツチングを止めることができた。
The laser beam A11l102 is superimposed on the second laser beam 105, and processing is started. At the beginning of processing, most of the laser beam 105 is absorbed by the semiconductor substrate because the substrate is sufficiently thick, and no output appears on the detector, but as processing progresses, the amount of laser beam NjA 105 transmitted increases. The output from the detector increases. By stopping the processing laser beam when the output of the detector reached a predetermined value, it was possible to stop etching just before the recess for the pie hole penetrated.

実施例に於ては、第2の光線としてレーザ光線を用いた
がレーザ光線に限らないことは明らかである。加工する
材料の透過特性によって任意の光が選ぶことができるが
、いずれの場合においても同様の効果が期待できる。
In the embodiment, a laser beam is used as the second light beam, but it is clear that the second light beam is not limited to a laser beam. Any light can be selected depending on the transmission characteristics of the material to be processed, but similar effects can be expected in either case.

発明の効果 本発明によって、レーザ加工でパイヤホールを形成する
ための溝、あるいは凹部の加工方法として再現性の有る
、しかも生産性の高い加工方法が実現できた。
Effects of the Invention According to the present invention, a reproducible and highly productive processing method for forming a groove or a recess for forming a pie hole by laser processing has been realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例のパイヤホール形成工程を
示す図、第2図はパイヤホールの説明図、第3図は従来
技術によるレーザ加工を−示す図である。 101・・・・半導体基板、102・・・・レーザ光線
103・・・・凹部の底部、104・・・・表面金属電
極105・・・・第2のレーザ光線、106・・・・第
2のレーザ光線の検知器。 代理人の氏名 弁理士 中尾敏男 はか1名II  図 [=〒ヨ、 106検矢退
FIG. 1 is a diagram showing the step of forming a piere hole according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the piere hole, and FIG. 3 is a diagram illustrating laser processing according to the prior art. 101...Semiconductor substrate, 102...Laser beam 103...Bottom of recess, 104...Surface metal electrode 105...Second laser beam, 106...Second laser beam laser beam detector. Name of agent: Patent attorney Toshio Nakao II

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に第1の光線レーザ光線を照射することによ
つて、この半導体基板表面より溝もしくは凹部を形成す
る方法において、このレーザ光線とは異なる第2の光線
を前記レーザ光線の光路に重畳せしめ、前記第2の光線
が前記半導体基板を通過する透過光強度によつて、前記
もしくは凹部の底部の基板の厚みを見積ることを特徴と
する半導体装置の製造方法。
In a method of forming grooves or recesses from the surface of a semiconductor substrate by irradiating the semiconductor substrate with a first laser beam, a second light beam different from the laser beam is superimposed on the optical path of the laser beam. . A method of manufacturing a semiconductor device, characterized in that the thickness of the substrate at the bottom of the recess is estimated based on the intensity of light transmitted through the semiconductor substrate by the second light beam.
JP61210932A 1986-09-08 1986-09-08 Manufacture of semiconductor device Pending JPS6366931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210932A JPS6366931A (en) 1986-09-08 1986-09-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210932A JPS6366931A (en) 1986-09-08 1986-09-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6366931A true JPS6366931A (en) 1988-03-25

Family

ID=16597470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210932A Pending JPS6366931A (en) 1986-09-08 1986-09-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6366931A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563222A (en) * 1991-09-03 1993-03-12 Sanyo Electric Co Ltd Manufacturing equipment of photovoltaic apparatus
JP2007330985A (en) * 2006-06-13 2007-12-27 Disco Abrasive Syst Ltd Method of working via hole
JP2008010489A (en) * 2006-06-27 2008-01-17 Disco Abrasive Syst Ltd Method of processing via hole
JP2008024294A (en) * 1994-10-31 2008-02-07 Tip Engineering Group Inc Method of preweakening interior trim cover for automobiles for airbag deployment opening
JP2008062261A (en) * 2006-09-06 2008-03-21 Disco Abrasive Syst Ltd Via hole machining method
JP2008073740A (en) * 2006-09-22 2008-04-03 Disco Abrasive Syst Ltd Via hole machining method
JP2008212999A (en) * 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd Laser beam machining apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563222A (en) * 1991-09-03 1993-03-12 Sanyo Electric Co Ltd Manufacturing equipment of photovoltaic apparatus
JP2008024294A (en) * 1994-10-31 2008-02-07 Tip Engineering Group Inc Method of preweakening interior trim cover for automobiles for airbag deployment opening
JP2007330985A (en) * 2006-06-13 2007-12-27 Disco Abrasive Syst Ltd Method of working via hole
JP2008010489A (en) * 2006-06-27 2008-01-17 Disco Abrasive Syst Ltd Method of processing via hole
JP2008062261A (en) * 2006-09-06 2008-03-21 Disco Abrasive Syst Ltd Via hole machining method
JP2008073740A (en) * 2006-09-22 2008-04-03 Disco Abrasive Syst Ltd Via hole machining method
JP2008212999A (en) * 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd Laser beam machining apparatus
US8779325B2 (en) 2007-03-06 2014-07-15 Disco Corporation Laser beam processing machine

Similar Documents

Publication Publication Date Title
US7887712B2 (en) Laser machining system and method
US5185295A (en) Method for dicing semiconductor substrates using a laser scribing and dual etch process
US8894868B2 (en) Substrate containing aperture and methods of forming the same
US20020149136A1 (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
US20060091126A1 (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
TW525240B (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
JP2011517427A (en) Multi-layer semiconductor wafer processing
JPS6366931A (en) Manufacture of semiconductor device
US5259925A (en) Method of cleaning a plurality of semiconductor devices
JPS63261851A (en) Manufacture of semiconductor element
US5030316A (en) Trench etching process
JPH11320155A (en) Laser beam machining method, machining equipment, and work
JPH0327885A (en) Working method by laser
JPH0444285A (en) Semiconductor light emitting element
JPH07124775A (en) Microfabrication method
JPS6196733A (en) Ion beam working process
JPH0774142A (en) Manufacture of semiconductor device
JPS61131462A (en) Ion beam processing method
JP2017045952A (en) High-accuracy submount substrate and manufacturing method thereof
JPH0680858B2 (en) Semiconductor laser manufacturing method
JPH07161682A (en) Etching control method of semiconductor chip
JP2624216B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH0238587A (en) Laser beam machining and wet etching method
JPS6139596A (en) Evaluation of semiconductor crystal wafer
JPS63137452A (en) Metal-film fusing apparatus