JPS6364076B2 - - Google Patents

Info

Publication number
JPS6364076B2
JPS6364076B2 JP58024733A JP2473383A JPS6364076B2 JP S6364076 B2 JPS6364076 B2 JP S6364076B2 JP 58024733 A JP58024733 A JP 58024733A JP 2473383 A JP2473383 A JP 2473383A JP S6364076 B2 JPS6364076 B2 JP S6364076B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
heat sink
heat
recess
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58024733A
Other languages
Japanese (ja)
Other versions
JPS59151484A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58024733A priority Critical patent/JPS59151484A/en
Publication of JPS59151484A publication Critical patent/JPS59151484A/en
Publication of JPS6364076B2 publication Critical patent/JPS6364076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、光通信や光情報処理の光信号源と
して用いられる半導体レーザ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device used as an optical signal source for optical communications and optical information processing.

この種半導体レーザ装置においては、半導体レ
ーザ素子に電流が印加されることによりレーザ発
振が行なわれるものであるが、このレーザ発振の
出力特性は、該半導体レーザ素子から発生する熱
により制限を受けるものである。
In this type of semiconductor laser device, laser oscillation is performed by applying a current to the semiconductor laser element, but the output characteristics of this laser oscillation are limited by the heat generated from the semiconductor laser element. It is.

すなわち半導体レーザ素子の温度上昇はレーザ
発振出力を低下させる要因となるもので、従来の
半導体レーザ装置においては半導体レーザ素子の
温度上昇を抑えてレーザ発振出力を向上させる為
に、該半導体レーザ素子に放熱用のヒートシンク
が接合されているものである。
In other words, an increase in the temperature of a semiconductor laser element is a factor that reduces the laser oscillation output, and in conventional semiconductor laser devices, in order to suppress the temperature rise of the semiconductor laser element and improve the laser oscillation output, the semiconductor laser element is heated. A heat sink for heat dissipation is bonded to it.

この様に半導体レーザ素子にヒートシンクが接
合された従来の半導体レーザ装置を第1図に示す
と、図において1は半導体レーザ素子で、基板1
aと、この基板1aの一主面上に形成されたレー
ザ発振部1bと、電極(図示せず)によつて構成
されており、上記レーザ発振部1bの出力端面1
cからレーザ発振出力が得られるものである。2
は金・シリコンからなる接合材3によつて上記半
導体レーザ素子1の基板1aの裏面と一面が接合
された直方体形状のヒートシンクで、シリコンか
ら形成されている。
FIG. 1 shows a conventional semiconductor laser device in which a heat sink is bonded to a semiconductor laser element in this way. In the figure, 1 is a semiconductor laser element, and a substrate 1
a, a laser oscillation section 1b formed on one main surface of this substrate 1a, and an electrode (not shown), and the output end surface 1 of the laser oscillation section 1b
The laser oscillation output is obtained from c. 2
1 is a rectangular parallelepiped-shaped heat sink whose one surface is bonded to the back surface of the substrate 1a of the semiconductor laser element 1 by a bonding material 3 made of gold and silicon, and is made of silicon.

この様に構成された半導体レーザ装置におい
て、その放熱作用について説明すると、半導体レ
ーザ素子1のレーザ発振部1bで発生した熱は基
板1a内を伝わり、該基板1aの裏面から接合材
3を介してヒートシンク2に伝えられ、さらにヒ
ートシンク2から外部へ放熱されることにより半
導体レーザ素子1の温度上昇を防止しているもの
である。
To explain the heat dissipation effect of the semiconductor laser device configured in this way, heat generated in the laser oscillation part 1b of the semiconductor laser element 1 is transmitted within the substrate 1a, and is transferred from the back surface of the substrate 1a via the bonding material 3. The heat is transmitted to the heat sink 2 and further radiated from the heat sink 2 to the outside, thereby preventing the temperature of the semiconductor laser element 1 from rising.

しかるに上記半導体レーザ装置のレーザ出力特
性は、第2図のグラフで示す曲線Bの様に低い出
力しか得られないものであつた。図において縦軸
はレーザ発振出力を示し、横軸は印加電流を示す
ものである。また、しきい値電流It値から立ち上
がつた曲線Aは半導体レーザ素子で発生する熱を
強制的に除去した場合の曲線であり半導体レーザ
装置の放熱特性が非常に良い場合におけるレーザ
発振出力特性を示すもので理想的な直線である。
また、曲線Bは上記従来の半導体レーザ装置のレ
ーザ発振出力特性を示すものである。この第2図
から明らかな様に従来の半導体レーザ装置におい
ては、出力を上げるために印加電流を増大させて
いつても、ある電流値(ここではa点の電流値)
からは出力の向上が計れなく、しかも上記出力の
上限値は非常に低い値を示すという欠点があつ
た。
However, the laser output characteristic of the semiconductor laser device described above is such that only a low output can be obtained as shown by curve B shown in the graph of FIG. In the figure, the vertical axis shows the laser oscillation output, and the horizontal axis shows the applied current. Furthermore, the curve A that rises from the threshold current It value is the curve when the heat generated in the semiconductor laser element is forcibly removed, and is the laser oscillation output characteristic when the heat dissipation characteristics of the semiconductor laser device are very good. It is an ideal straight line.
Further, curve B shows the laser oscillation output characteristics of the conventional semiconductor laser device. As is clear from FIG. 2, in the conventional semiconductor laser device, even if the applied current is increased to increase the output, a certain current value (here, the current value at point a)
However, there was a drawback that the output could not be improved and the upper limit of the output was extremely low.

この様に従来の半導体レーザ装置の出力が低く
抑えられている原因は、半導体レーザ素子から発
生する熱が充分放熱されていないことによるもの
で、このことは該半導体レーザ装置の発熱部であ
るレーザ発振部1bと放熱用のヒートシンク2と
の間に基板1aが介在するので伝熱距離が長くな
ること、およびレーザ発振部1bの熱をヒートシ
ンク2に伝える伝熱部分が基板1aの裏面のみで
あるので発熱量に比して伝熱面積が少ないことに
起因するものと考えられる。
The reason why the output of conventional semiconductor laser devices is kept low in this way is that the heat generated from the semiconductor laser element is not sufficiently dissipated. Since the substrate 1a is interposed between the oscillation section 1b and the heat sink 2 for heat dissipation, the heat transfer distance becomes long, and the heat transfer portion that transfers the heat of the laser oscillation section 1b to the heat sink 2 is only the back surface of the substrate 1a. Therefore, this is thought to be due to the fact that the heat transfer area is small compared to the amount of heat generated.

一方、伝熱距離を短かくして放熱特性を向上さ
せる手段として、半導体レーザ素子1のレーザ発
振部1b側の面をヒートシンク2に接合して発熱
部であるレーザ発振部1bを放熱用のヒートシン
ク3に近づける方法が考えられるが、この場合に
おいてはレーザ発振部1bの出力端面1cがヒー
トシンク2とほぼ接する状態で接合される為、上
記接合において接合面からはみ出た接合材3が出
力端面1cを遮蔽してレーザ発振出力を防害する
という欠点があつた。
On the other hand, as a means to shorten the heat transfer distance and improve heat dissipation characteristics, the surface of the semiconductor laser element 1 on the side of the laser oscillation section 1b is bonded to the heat sink 2, and the laser oscillation section 1b, which is the heat generating section, is connected to the heat sink 3 for heat dissipation. One possible method is to bring them closer together, but in this case, the output end surface 1c of the laser oscillation section 1b is joined in a state where it is almost in contact with the heat sink 2, so the bonding material 3 protruding from the joint surface during the above joining may shield the output end surface 1c. The disadvantage was that the laser oscillation output was prevented from harming the laser oscillation output.

この発明は上記欠点に鑑みなされたもので、半
導体レーザ装置を構成する基板の少なくとも2面
と接合する被接合部をヒートシンクに具備させる
ことにより、半導体レーザ素子で発生する熱を効
率良くヒートシンクに伝達するようにして、半導
体レーザ装置の出力の向上を計ろうとするもので
ある。
This invention was made in view of the above-mentioned drawbacks, and the heat generated by the semiconductor laser element is efficiently transferred to the heat sink by providing the heat sink with a bonded part that is bonded to at least two surfaces of the substrate constituting the semiconductor laser device. In this way, the output of the semiconductor laser device is improved.

以下この発明の一実施例を第3図および第4図
に基づいて説明すると、図において4はシリコン
からなるヒートシンク2上面の所定の部位を反応
性イオンエツチングによつて所定の深さにエツチ
ングして形成された凹部からなる被接合部で、底
面4aおよびこの底面4aに連らなる垂直な3側
面4b,4c,4dを有しており、この被接合部
4の底面4aおよび3側面4b,4c,4dに
金・シリコンからなる接合材3によつて前記従来
装置と同様の半導体レーザ素子の基板1aの底面
及びレーザ発振部の出力端面1c側側面を除く3
側面が接合されているものであり、被接合部4の
側方開口面にレーザ発振部1bの出力端面1cが
位置する様に半導体レーザ素子1がヒートシンク
2に固着されるものである。又被接合部4と半導
体レーザ素子1との接合は基板1aのみで接合さ
れているので、ヒートシンク2との電気的短絡が
防止されているものである。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In the figures, reference numeral 4 shows that a predetermined portion of the upper surface of a heat sink 2 made of silicon is etched to a predetermined depth by reactive ion etching. It is a part to be joined consisting of a concave part formed by a recess, and has a bottom surface 4a and three vertical side surfaces 4b, 4c, and 4d connected to the bottom surface 4a. A bonding material 3 made of gold and silicon is applied to 4c and 4d to remove the bottom surface of the substrate 1a of the semiconductor laser device similar to the conventional device and the side surface 3 on the side of the output end surface 1c of the laser oscillation section.
The side surfaces are joined, and the semiconductor laser element 1 is fixed to the heat sink 2 so that the output end face 1c of the laser oscillation part 1b is located on the side opening surface of the part 4 to be joined. Further, since the bonded portion 4 and the semiconductor laser element 1 are bonded only through the substrate 1a, an electrical short circuit with the heat sink 2 is prevented.

この様にして形成された半導体レーザ装置にお
いては、半導体レーザ素子1の裏面および3側面
がヒートシンク2と接合されており、さらに発熱
部である半導体レーザ素子1のレーザ発振部1b
の近くにまでヒートシンク2が接合されているの
で、従来の半導体レーザ装置に比べて伝熱面積お
よび伝熱距離が改善されたものとなつている。ま
たこの様な半導体レーザ装置について、前記従来
装置と同様にレーザ発振出力特性を調査したとこ
ろ、前記第2図における曲線Cの特性が得られ、
前記従来装置のレーザ発振出力特性である曲線B
に比べてレーザ発振出力の向上が見られ、この発
明になる半導体レーザ装置の伝熱面積および伝熱
距離の改善効果が上記レーザ発振出力特性の向上
に寄与しているものである。
In the semiconductor laser device formed in this manner, the back surface and three side surfaces of the semiconductor laser element 1 are joined to the heat sink 2, and the laser oscillation part 1b of the semiconductor laser element 1, which is a heat generating part, is bonded to the heat sink 2.
Since the heat sink 2 is bonded close to the semiconductor laser device, the heat transfer area and heat transfer distance are improved compared to conventional semiconductor laser devices. Furthermore, when the laser oscillation output characteristics of such a semiconductor laser device were investigated in the same manner as the conventional device, the characteristics of curve C in FIG. 2 were obtained.
Curve B is the laser oscillation output characteristic of the conventional device.
An improvement in the laser oscillation output is seen compared to the above, and the effect of improving the heat transfer area and heat transfer distance of the semiconductor laser device of the present invention contributes to the improvement in the laser oscillation output characteristics.

なお、上記実施例では被接合部4の底面4aに
連らなる3側面4b,4c,4dが、該底面4a
に対して垂直に形成されたものであつたが、この
3側面4b,4c,4dは第5図に示す様にその
上部をテーパ状に加工して底面4aより上方開口
面を広くしたものであつても同様の効果を奏し、
この様にすることによりさらに該凹部からなる被
接合部4に半導体レーザ素子1を挿入して接合す
る場合における挿入作業が容易となる効果を有す
るものである。
In addition, in the above embodiment, the three side surfaces 4b, 4c, and 4d that are continuous with the bottom surface 4a of the part to be joined 4 are connected to the bottom surface 4a.
However, as shown in FIG. 5, these three side surfaces 4b, 4c, and 4d have their upper portions tapered to make the upper opening wider than the bottom surface 4a. It has the same effect even if
By doing so, there is an effect that the insertion operation when the semiconductor laser element 1 is inserted into the part to be joined 4 consisting of the recessed part and joined is facilitated.

また、第6図及び第7図はさらに他の実施例を
示すものであり凹部からなる被接合部4に連結し
て補助凹部5を形成し、さらに被接合部4の底面
5aの周囲に溝6を設けることにより、半導体レ
ーザ素子1とヒートシンク2との接合作業が容易
となるものである。すなわち、上記補助凹部5と
溝6を設けることにより、第7図に示す様にヒー
トシンク2に形成された被接合部4に半導体レー
ザ素子1を挿入し、次に補助凹部5に接合材3を
仮置する接合準備作業を行ない、後は上記ヒート
シンク3の下面を一定温度で加熱することのみ
で、溶融した上記接合材3が上記溝6および半導
体レーザ素子1と被接合部4のすき間にまわり込
んで接合が行なわれるものである。一方、余剰の
接合材3は溝6内に収納され、レーザ発振部1b
に付着せず、悪影響を及ぼさないものである。
Further, FIGS. 6 and 7 show still another embodiment, in which an auxiliary recess 5 is formed by connecting to the welded part 4 consisting of a recess, and a groove is further formed around the bottom surface 5a of the welded part 4. 6 facilitates the bonding work between the semiconductor laser element 1 and the heat sink 2. That is, by providing the auxiliary recess 5 and the groove 6, the semiconductor laser element 1 is inserted into the bonded portion 4 formed on the heat sink 2, as shown in FIG. After performing a temporary bonding preparation work, all that is left to do is to heat the bottom surface of the heat sink 3 at a constant temperature, and the molten bonding material 3 will flow around the groove 6 and the gap between the semiconductor laser element 1 and the part to be bonded 4. The bonding is performed in a complicated manner. On the other hand, the surplus bonding material 3 is stored in the groove 6, and the laser oscillating part 1b
It does not adhere to the surface and does not have any adverse effects.

なお、上記第3図ないし第7図で示したそれぞ
れの実施例は、半導体レーザ素子1の4面、すな
わち裏面と3側面がヒートシンク2に接合された
ものであるが、半導体レーザ素子1の接合面は都
合により例えばその裏面と1側面の計2面であつ
ても従来装置に比べて伝熱面積及び伝熱距離の改
善が行なわれるもので、従つてレーザ発振出力特
性の向上が計れるものである。
In each of the embodiments shown in FIGS. 3 to 7 above, four surfaces of the semiconductor laser device 1, that is, the back surface and three side surfaces, are bonded to the heat sink 2, but the bonding of the semiconductor laser device 1 is Depending on the circumstances, the heat transfer area and heat transfer distance can be improved compared to conventional devices even if there are only two surfaces, the back surface and one side surface, and therefore the laser oscillation output characteristics can be improved. be.

以上のようにこの発明によれば、半導体レーザ
素子をヒートシンクに接合する半導体レーザ装置
において、ヒートシンクに側方開口面を有する凹
部及び溝を介してこの凹部に連らなり加熱溶融す
る接合材が入れられる補助凹部を設け、少なくと
も2面で半導体レーザ素子をヒートシンクに接合
するようにしたので、半導体レーザ素子とヒート
シンクとの接合面積が増加し、さらに半導体レー
ザ素子の発熱部分とヒートシンクとの伝熱距離が
短くなり、半導体レーザ素子の温度上昇を抑える
ことができ半導体レーザ装置の出力の向上を図る
ことができると共に、ヒートシンクへの半導体レ
ーザ素子の接合も容易にできるという効果があ
る。
As described above, according to the present invention, in a semiconductor laser device in which a semiconductor laser element is bonded to a heat sink, a bonding material that is heated and melted is inserted into the heat sink through a concave portion and a groove having a side opening surface, and is connected to the concave portion and is heated and melted. Since the semiconductor laser element is bonded to the heat sink on at least two sides, the bonding area between the semiconductor laser element and the heat sink is increased, and the heat transfer distance between the heat generating part of the semiconductor laser element and the heat sink is increased. is shortened, the temperature rise of the semiconductor laser element can be suppressed, the output of the semiconductor laser device can be improved, and the semiconductor laser element can be easily bonded to the heat sink.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザ装置の斜視図、第
2図は半導体レーザ装置のレーザ発振出力特性を
示すグラフ、第3図および第4図はこの発明の一
実施例を示す斜視図、第5図はこの発明の他の実
施例を示す斜視図、第6図および第7図はこの発
明のさらに他の実施例を示す斜視図である。 図において1は半導体レーザ素子、1aは基
板、1bはレーザ発振部、1cは出力端面、2は
ヒートシンク、3は接合材、4は凹部、5は補助
凹部である。なお、図中同一符号は同一、又は相
当部分を示す。
FIG. 1 is a perspective view of a conventional semiconductor laser device, FIG. 2 is a graph showing the laser oscillation output characteristics of the semiconductor laser device, FIGS. 3 and 4 are perspective views showing an embodiment of the present invention, and FIG. The figure is a perspective view showing another embodiment of the invention, and FIGS. 6 and 7 are perspective views showing still other embodiments of the invention. In the figure, 1 is a semiconductor laser element, 1a is a substrate, 1b is a laser oscillation part, 1c is an output end face, 2 is a heat sink, 3 is a bonding material, 4 is a recess, and 5 is an auxiliary recess. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 底面とこの底面に連らなる3側面と側方開口
面からなる凹部及び溝を介してこの凹部に連らな
り加熱溶融する接合材が入れられる補助凹部を有
するヒートシンク、レーザ発振部の出力端面が上
記凹部の側方開口面に位置するように上記接合材
で上記ヒートシンクの凹部の少なくとも2面に接
合された半導体レーザ素子を備えた半導体レーザ
装置。 2 凹部の上方開口面は該凹部の底面より広く形
成されたことを特徴とする特許請求の範囲第1項
記載の半導体レーザ装置。
[Scope of Claims] 1. A heat sink having a recess consisting of a bottom surface, three side surfaces connected to the bottom surface, and a side opening surface, and an auxiliary recess connected to the recess through a groove into which a heat-melted bonding material is placed; A semiconductor laser device comprising a semiconductor laser element bonded to at least two surfaces of the recess of the heat sink using the bonding material so that the output end face of the laser oscillation section is located on the side opening surface of the recess. 2. The semiconductor laser device according to claim 1, wherein the upper opening surface of the recess is formed wider than the bottom surface of the recess.
JP58024733A 1983-02-18 1983-02-18 Semiconductor laser device Granted JPS59151484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024733A JPS59151484A (en) 1983-02-18 1983-02-18 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024733A JPS59151484A (en) 1983-02-18 1983-02-18 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS59151484A JPS59151484A (en) 1984-08-29
JPS6364076B2 true JPS6364076B2 (en) 1988-12-09

Family

ID=12146347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024733A Granted JPS59151484A (en) 1983-02-18 1983-02-18 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59151484A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0160567U (en) * 1987-10-12 1989-04-17
US5284790A (en) * 1990-01-03 1994-02-08 Karpinski Arthur A Method of fabricating monolithic laser diode array
US5040187A (en) * 1990-01-03 1991-08-13 Karpinski Arthur A Monolithic laser diode array
US5128951A (en) * 1991-03-04 1992-07-07 Karpinski Arthur A Laser diode array and method of fabrication thereof
US5438580A (en) * 1993-09-24 1995-08-01 Opto Power Corporation Laser package and method of assembly
JP2006013551A (en) * 2002-03-25 2006-01-12 Sanyo Electric Co Ltd Semiconductor laser apparatus
CN1327581C (en) 2002-03-25 2007-07-18 三洋电机株式会社 Semiconductor laser beam device
JP2007048839A (en) * 2005-08-08 2007-02-22 Mitsubishi Electric Corp Semiconductor element
JP5368957B2 (en) 2009-12-04 2013-12-18 シャープ株式会社 Manufacturing method of semiconductor laser chip
GB2514605B (en) * 2013-05-30 2016-09-14 Solus Tech Ltd Method and apparatus for mounting a semiconductor disk laser (SDL)
DE102013216526A1 (en) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh laser device
JP6773399B2 (en) * 2015-09-28 2020-10-21 京セラ株式会社 Optical element mounting package and electronic device
DE102018009383A1 (en) * 2018-11-30 2020-06-04 Diehl Defence Gmbh & Co. Kg Method for manufacturing a multi-beam laser
CN116235371A (en) * 2020-10-01 2023-06-06 三菱电机株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JPS59151484A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
JPS6364076B2 (en)
US5205032A (en) Electronic parts mounting apparatus
US5671315A (en) Optical parts fixing apparatus and method of manufacturing the same
JPS6257277A (en) Automatically adjustable positioning apparatus for semiconductor laser with glass fiber
CN110214399B (en) Bonding laser having solder-free laser active stripes in facing relationship with a substrate
JP7368450B2 (en) Semiconductor device and bonding method
US20190143434A1 (en) Semiconductor Device and Method of Manufacturing Semiconductor Device
JP4161267B2 (en) Surface acoustic wave device
TWI730826B (en) Semiconductor laser device
JP4631205B2 (en) Semiconductor device and manufacturing method thereof
JP2003142509A (en) Semiconductor device and its manufacturing method
JP2004228352A (en) Power semiconductor device
JP2853692B2 (en) Semiconductor device
JP2002289956A (en) Semiconductor laser device
JPH1022570A (en) Nitride semiconductor laser element
JPS63143851A (en) Semiconductor device
JPH05251827A (en) Packaging of optical semiconductor element
JPH04246876A (en) Semiconductor laser element
JPS60239086A (en) Semiconductor laser device
JPH0738197A (en) Semiconductor laser device and manufacture thereof
JP3262086B2 (en) Semiconductor device and manufacturing method thereof
JPS61115366A (en) Semiconductor laser device
JPH06163607A (en) Method for die bonding semiconductor element
JPH04253388A (en) Semiconductor laser module
JPH0621263Y2 (en) Semiconductor laser device